
Reference for language elements
Version 4.1

WPS Reference for
Language Elements

Version: 4.1.2
Copyright © 2002-2019 World Programming Limited

www.worldprogramming.com

Reference for language elements
Version 4.1

2

Contents

How to read railroad syntax diagrams... 13

Common Syntax...15
Identifying access and view descriptors.. 15

Access Descriptors..15
View Descriptors..15

Identifying Views.. 15
Identifying datasets.. 16

Dataset...16
Input dataset..16
Output dataset... 16
Dataset options..17

Expressions.. 24
SAS Language expressions.. 24
SQL expressions... 28

External Files..29
LOCALE Values... 29
Variable Lists..32
ENCODING Values.. 32

z/OS encoding values... 32
Encoding values on non-z/OS platforms...34
Not supported for server encoding... 36

LOCALE Values... 37

WPS Core..42
System options...42

Setting system options.. 42
Displaying system options...45
Restricting system options.. 46
COMMUNICATIONS group system options..48
DATABASE ENGINE group system options...71
DB2 group system options..78
EMAIL group system options.. 81
ENVDISPLAY group system options.. 87
ENVFILES group system options..93
ERRORHANDLING group system options..116
EXECMODES group system options.. 125
EXTFILES group system options.. 134
FLE_CONTROL group system options...156
GRAPHICS group system options.. 159

Reference for language elements
Version 4.1

3

HUB group system options... 161
IMS group system options.. 165
INPUTCONTROL group system options...166
INSTALL group system options.. 180
ISPF group system options...182
LANGUAGECONTROL group system options..196
LOG_LISTCONTROL group system options.. 207
LISTCONTROL group system options..215
LOGCONTROL group system options..231
MACRO group system options..264
MEMORY group system options...285
ODSPRINT group system options.. 291
PERFORMANCE group system options... 297
SASFILES group system options..309
SMF group system options... 348
SORT group system options...349
SQL group system options..368
TLS group system options.. 371

Formats...373
Core formats..374
Basic character formats...378
Bidirectional formats.. 384
Unicode formats.. 387
Simple numeric formats...397
Numeric date formats..428
ISO8601 date formats... 476
International date formats..491
NLS-sensitive date formats... 511
NLS-sensitive money formats... 526
NLS-sensitive numeric formats... 532

Informats...538
Core informats... 540
Basic character informats..541
Bidirectional informats... 548
Unicode informats..550
Simple numeric informats..558
Numeric date informats... 575
ISO8601 date informats.. 587
NLS-sensitive date informats.. 598
NLS-sensitive money informats...600
NLS-sensitive numeric informats...603

Global statements.. 605
Comment...606
CATNAME..606
DSNEXST.. 606
ENDSAS.. 606

Reference for language elements
Version 4.1

4

ENDWPS... 606
FILENAME statements.. 607
FOOTNOTE... 616
%INCLUDE.. 618
LIBNAME... 618
MISSING..619
OPTIONS...619
PAGE... 621
RUN... 621
SKIP...621
SYSTASK statements..621
TITLE... 622
WAITFOR...624
X statements..624

DATA step statements.. 625
NEW...625
ABORT...625
ARRAY...625
ATTRIB.. 626
BY.. 626
CALL.. 626
CONTINUE.. 626
DATA..627
DELETE... 627
DESCRIBE...627
DO..627
DO, iterative...627
DO UNTIL..628
DO WHILE...628
DROP...628
END..628
ERROR.. 629
EXECUTE.. 629
FILE..629
FORMAT..632
GO TO... 632
IF, subsetting... 632
IF-THEN/ELSE...632
INFILE..633
INFORMAT.. 635
INPUT.. 635
KEEP..637
LABEL..637
Labels,Statement... 637
LEAVE..637
LENGTH...637

Reference for language elements
Version 4.1

5

LINK... 638
LIST..638
MERGE..638
MODIFY... 638
OUTPUT.. 639
PUT..639
PUTLOG.. 642
REDIRECT...642
REMOVE..642
RENAME..642
REPLACE.. 643
RETAIN..643
RETURN.. 643
SELECT... 643
SET.. 644
SKIP...644
STOP... 644
Sum..644
UPDATE...645
WHERE..645
Describing data in a DATA step.. 645

DATA step functions and CALL routines.. 646
Array functions...648
Bitwise functions..652
Combination functions and CALL routines.. 658
Comparison functions..671
Cryptographic functions...674
Date and time functions and CALL routine... 684
Dataset input and output functions and CALL routines...723
Decision forest functions and CALL routines.. 764
Difference and lag functions... 768
Distribution-based functions and CALL routines... 775
External file functions.. 1367
External module functions and CALL routines.. 1420
Financial functions...1434
Internet functions... 1578
List functions and CALL routines.. 1593
ISPF CALL routines...1741
Macro functions and CALL routines.. 1743
Mathematical functions and CALL routines...1757
Memory manipulation functions...1880
Miscellaneous functions...1894
National language support functions...1899
Regular expression functions and CALL routines... 1913
Sequence manipulation functions..1932
String functions and CALL routines...1941

Reference for language elements
Version 4.1

6

System command function and CALL routine...2109
System information functions.. 2112
Truncation and rounding functions..2119
Unicode functions.. 2145
Value formatting and assignment functions.. 2150
Variable information functions and CALL routines.. 2162
Web functions..2214
Zipcode functions...2220

DATA step Components.. 2231
HASH Component... 2231
HITER Component.. 2236
JAVAOBJ Component... 2237

Output Delivery System... 2241
ODS global statements... 2241
ODS... 2244
ODS MARKUP.. 2244
ODS EXCEL.. 2253
ODS OLDHTML...2256
ODS LISTING..2256
ODS PDF...2257

Procedures..2260
ACCESS procedure...2260
APPEND procedure...2263
APPSRV Procedure...2264
CATALOG procedure.. 2282
CDISC procedure.. 2286
CHART procedure... 2291
CIMPORT procedure...2295
COMPARE procedure... 2297
CONTENTS procedure..2300
COPY procedure... 2302
CORR procedure...2305
CPORT procedure...2309
DATASETS procedure...2311
DBLOAD procedure...2320
DELETE procedure..2324
EXPORT procedure...2325
FMTLIB procedure...2329
FONT Procedure... 2333
FORMAT procedure.. 2339
FORMS procedure...2343
FREQ procedure..2345
HADOOP Procedure..2355
HTTP procedure.. 2357
IMPORT procedure..2362
JSON Procedure..2369

Reference for language elements
Version 4.1

7

JAVAINFO procedure..2384
MEANS procedure...2388
OPTIONS procedure... 2395
OPTLOAD procedure.. 2404
OPTSAVE procedure...2406
PDS procedure.. 2407
PDSCOPY procedure..2409
PLOT procedure.. 2410
PRINT procedure...2412
PRINTTO procedure..2416
PWENCODE procedure.. 2417
PYTHON procedure...2419
R Procedure.. 2435
RANK procedure..2455
RELEASE procedure...2457
REPORT procedure...2459
SOAP procedure..2467
SORT procedure..2470
SOURCE procedure.. 2472
SQL Procedure..2475
STANDARD procedure..2494
SUMMARY procedure... 2496
TABLEAU procedure... 2503
TABULATE procedure...2504
TEMPLATE procedure...2511
TRANSPOSE procedure... 2533
TRANTAB procedure...2535
UNIVARIATE procedure.. 2537

Library engines...2578
CVP..2578
JSON..2579
SASDASD..2579
SAS7BDAT.. 2579
SD2.. 2580
SASSEQ.. 2580
V8SEQ... 2580
V9SEQ... 2580
WPDSEQ... 2580
WPD...2580
WPD (z/OS)...2581
WPD1...2582
WPDV2.. 2582
WPDV2 (z/OS).. 2582
XML..2583
XPORT...2584

Macros.. 2585

Reference for language elements
Version 4.1

8

Automatic macro variables.. 2585
Macro processor statements... 2590
Macro processor functions.. 2595

WPS Graphing..2602
Global statements.. 2602

AXIS...2602
GOPTIONS.. 2604
LEGEND.. 2606
PATTERN.. 2608
SYMBOL.. 2608

Graphing procedures..2610
GANNO procedure.. 2610
GBARLINE procedure... 2611
GCHART procedure.. 2616
GINSIDE procedure...2624
GMAP procedure...2625
GOPTIONS procedure...2628
GPLOT procedure... 2629
GPROJECT procedure..2637
GREDUCE procedure..2639
GREMOVE procedure... 2641
GREPLAY procedure...2642
GSLIDE procedure.. 2644
MAPIMPORT procedure..2645
SGPANEL procedure...2646
SGPLOT procedure...2707
SGSCATTER procedure..2775

WPS Statistics..2787
Statistics procedures.. 2787

ACECLUS procedure...2787
ANOVA procedure...2790
ASSOCRULES procedure... 2795
BIN procedure... 2808
BOXPLOT procedure...2811
CANCORR procedure... 2816
CANDISC procedure... 2820
CLUSTER procedure...2824
CORRESP procedure..2828
DISCRIM procedure.. 2834
DISTANCE procedure... 2839
FACTOR procedure...2845
FASTCLUS procedure...2850
GAM procedure... 2854
GENMOD procedure... 2860

Reference for language elements
Version 4.1

9

GLM procedure..2872
GLMMOD procedure... 2884
GLMSELECT procedure..2887
ICLIFETEST procedure... 2900
KDE procedure.. 2907
LIFEREG procedure.. 2911
LIFETEST procedure...2920
LOESS procedure..2926
LOGISTIC procedure...2933
MDS procedure... 2948
MI procedure... 2952
MIANALYZE procedure... 2961
MIXED procedure.. 2965
MODECLUS procedure... 2979
NESTED procedure...2982
NLIN procedure... 2985
NPAR1WAY procedure... 2995
PHREG procedure...3001
PLAN procedure.. 3011
PLS procedure...3015
POWER procedure..3019
PRINCOMP procedure.. 3072
PROBIT procedure.. 3076
QUANTREG procedure... 3085
REG procedure..3093
ROBUSTREG procedure...3104
RSREG procedure...3113
SCORE procedure...3120
SIMNORMAL procedure..3122
STDIZE procedure...3125
STEPDISC procedure..3129
SURVEYSELECT procedure...3134
TPSPLINE procedure.. 3138
TRANSREG procedure..3142
TREE procedure..3153
TTEST procedure.. 3157
VARCLUS procedure...3161
VARCOMP procedure... 3166

WPS Machine Learning... 3170
DECISIONFOREST procedure.. 3171

About decision forests... 3171
Using the DECISIONFOREST procedure... 3174
DECISIONFOREST procedure reference... 3179

DECISIONTREE procedure... 3189
About decision trees..3189

Reference for language elements
Version 4.1

10

Predictive power criteria.. 3191
Using the DECISIONTREE procedure..3194
DECISIONTREE procedure reference.. 3197

GMM procedure... 3210
About Gaussian mixture models... 3210
Mixture models.. 3216
Gaussian mixture models..3217
Posterior probabilities.. 3217
Maximum likelihood and expectation maximisation.. 3218
Model selection..3219
Using the GMM procedure..3222
GMM procedure reference.. 3238
GMM bibliography..3250

MLP procedure...3251
About multilayer perceptrons...3251
Specifying network structure... 3253
Preprocessing data..3253
Training a network...3254
Loading and saving a trained network..3255
Results and generated output...3256
Using the MLP procedure... 3256
MLP procedure reference..3263

OPTIMALBIN procedure...3297
About optimal binning..3297
Predictive power criteria.. 3298
Using the OPTIMALBIN procedure... 3301
OPTIMALBIN procedure reference... 3306

SEGMENT procedure...3315
About segmentation...3315
Segmentation calculations...3316
Difference functions...3317
Weighting factor...3321
ODS Outputs... 3323
Scoring datasets..3323
Saving and reusing segmentation models.. 3324
Using the SEGMENT procedure... 3324
SEGMENT procedure reference... 3330
SEGMENT bibliography...3349

SVM procedure.. 3350
About support vector machines...3350
SVM classification..3350
SVM Regression..3355
Data standardisation..3355
Encoding categorical variables..3356
Weighting and standardisation.. 3356
Using the SVM procedure...3357

Reference for language elements
Version 4.1

11

SVM procedure reference... 3364
SVM bibliography...3388

WPS Operational Research...3390
Operational research procedures...3390

LP procedure... 3390

WPS Quality Control..3395
Quality control procedures... 3395

CAPABILITY Procedure.. 3395

WPS Timeseries... 3441
Timeseries procedures...3441

ARIMA procedure.. 3441
AUTOREG procedure..3449
EXPAND procedure...3455
FORECAST procedure..3462
LOAN procedure..3466
X12 procedure... 3472

WPS Communicate.. 3482
Global statements.. 3482

ENDRSUBMIT... 3482
RSUBMIT...3482
SIGNOFF... 3486
SIGNON...3487
WAITFOR...3491

Macro processor statements..3492
%SYSLPUT..3492
%SYSRPUT...3492

WPS Communicate procedures...3493
DOWNLOAD Procedure.. 3493
UPLOAD Procedure.. 3497

Data Engines.. 3502
WPS Engine for Access...3502

ACCESS.. 3502
WPS Engine for Actian Matrix... 3507

ACTIANMATRIX.. 3507
WPS Engine for DB2... 3514

DB2.. 3514
DB2OLD...3528
DB2 (for z/OS)...3537
DB2OLD (for z/OS)... 3547

Reference for language elements
Version 4.1

12

DB2EXT Procedure... 3553
WPS Engine for Excel... 3554

EXCEL... 3554
XLSX..3558

WPS Engine for Greenplum.. 3561
GREENPLUM.. 3561

WPS Engine for Hadoop..3568
HADOOP..3568

WPS Engine for Informix... 3573
INFORMIX..3573

WPS Engine for Kognito.. 3578
KOGNITIO..3578

WPS Engine for MariaDB.. 3584
MARIADB...3584

WPS Engine for MySQL.. 3591
MYSQL...3591

WPS Engine for Netezza... 3598
NETEZZA...3598
NETEZZAOLD... 3610

WPS Engine for ODBC..3618
ODBC...3618
ODBCOLD... 3628

WPS Engine for OLEDB.. 3639
OLEDB...3639

WPS Engine for Oracle..3649
Data Types in Oracle.. 3650
How to use the Oracle engine.. 3651
ORACLE connection reference... 3652

WPS Engine for PostgreSQL...3726
POSTGRESQL.. 3726

WPS Engine for Sand..3732
SAND... 3732

WPS Engine for SQL Server... 3737
SQLSERVER... 3737
SQLSERVEROLD..3751

WPS Engine for Sybase.. 3764
SYBASE...3764

WPS Engine for Sybase IQ... 3769
SYBASEIQ...3769

WPS Engine for Teradata..3777
TERADATA..3777

WPS Engine for Vertica... 3783
VERTICA..3783

Legal Notices..3790

Reference for language elements
Version 4.1

13

How to read railroad syntax
diagrams
Railroad diagrams are a graphical syntax notation that accompanies significant language structures
such as procedures, statements and so on.

The description of each language concept commences with its syntax diagram.

Entering text
Text that should be entered exactly as displayed is shown in a typewriter font :

OUTPUT ;

This example describes a fragment of syntax in which the keyword OUTPUT is followed by a semi-colon
character: ;. The syntax diagram form is: .

Generally the case of the text is not significant, but in this reference, it is the convention to use upper-
case for keywords.

Placeholder items
Placeholders that should be substituted with relevant, context-dependent text are rendered in a lower-
case, italic font :

OUTPUT data- set- name ;

Here, the keyword OUTPUT should be entered literally, but data-set-name should be replaced by
something appropriate to the program – in this case, the name of a dataset to add an observation to.

Optionality
When items are optional, they appear on a branch below the main line in railroad diagrams. Optionality
is represented by an alternative unimpeded path through the diagram:

OUTPUT

data- set- name

;

Repetition
In syntax diagrams, repetition is depicted with a return loop that optionally specifies the separator that
should be placed between multiple instances.

Reference for language elements
Version 4.1

14

OUTPUT data- set- name ;

Above, the keyword OUTPUT should be entered literally, and it should be followed by one or more
repetitions of data-set-name - in this case, no separator other than a space has been asked for.

The example below shows the use of a separator.

funct ion- name (

,

argument) ;

Choices
In syntax diagrams, the choice is shown by several parallel branches.

GETNAMES YES

NO

;

In the above example, the keyword GETNAMES should be entered literally, and then either the keyword
YES or the keyword NO.

Fragments
When the syntax is too complicated to fit in one definition, it might be broken into fragments:

PROC PRINT option

option

DATA = data- set- name

LABEL

Above, the whole syntax is split into separate syntax diagram fragments. The first indicates that PROC
PRINT should be followed by one or more instances of an option, each of which must adhere to the
syntax given in the second diagram.

Reference for language elements
Version 4.1

15

Common Syntax
Many language elements in this manual refer to common syntax constructs such as expressions,
datasets or variable lists. They are detailed below.

Identifying access and view descriptors

Access Descriptors

Access descriptor

l ibrary .

access- descriptor- name
.access

View Descriptors

View descriptor

l ibrary .

view- descriptor- name

.view

Identifying Views

l ibrary .

view- name

Reference for language elements
Version 4.1

16

Identifying datasets

Dataset

Dataset

l ibrary .

dataset- name

Input dataset

Input dataset with options

dataset
i

(dataset- opt ion)

i See Dataset (page 16).

Output dataset

Output dataset with options

dataset
i

(dataset- opt ion)

i See Dataset (page 16).

Reference for language elements
Version 4.1

17

Dataset options

BUFNO

BUFNO = n

nK

nM

nG

Valid for:

• Input:
• Output:

yes
no

BUFSIZE

BUFSIZE = n

nK

nM

nG

Valid for:

• Input:
• Output:

yes
no

COMPRESS

COMPRESS = YES

Y

ON

NO

N

CHAR

BINARY

Reference for language elements
Version 4.1

18

Valid for:

• Input:
• Output:

yes
yes

DROP

DROP = variable- list
i

i See Variable Lists (page 32).

Valid for:

• Input:
• Output:

yes
yes

ENCRYPT
Specifies that dataset is encrypted.

ENCRYPT = AES

NO

Valid for:

• Input:
• Output:

yes
yes

The ENCRYPT dataset option specifies the encryption mechanism, using the key defined in the
ENCRYPTKEY dataset option. The supported encryption mechanism is Advanced Encryption Standard
(AES)

ENCRYPTKEY
Specifies the key used to encode the dataset.

ENCRYPTKEY = encrypt ion- key

Reference for language elements
Version 4.1

19

Valid for:

• Input:
• Output:

yes
yes

The specified encryption-key is used by the ENCRYPT dataset option to encrypt and decrypt the dataset.

The encryption-key is encoded using the current system session encoding. You will therefore not
be able to use an encrypted dataset in a session that uses a different encoding if the key contains
characters whose representation differs between the session encodings.

If you need to transfer a dataset between machines with different session encoding, we strongly
recommend you use a hexadecimal-encoded encryption-key to ensure the key is the same in all
session encodings you need to use.

Warning:

If the encryption-key is lost you will be unable to recover encrypted data.

You must therefore ensure the specified encryption-key is securely stored. WPS does not record the
encryption key and is unable to recover a key that has been lost.

FILECLOSE

FILECLOSE = DISP

FREE

LEAVE

REREAD

REWIND

Valid for:

• Input:
• Output:

yes
no

FIRSTOBS

FIRSTOBS = n

Valid for:

• Input: yes

Reference for language elements
Version 4.1

20

• Output: no

IN

IN = variable

Valid for:

• Input:
• Output:

yes
no

INDEX

INDEX = (index- name

(variables
i

)

/ UNIQUE

)

i See Variable Lists (page 32).

Valid for:

• Input:
• Output:

no
yes

KEEP

KEEP = variable- list
i

i See Variable Lists (page 32).

Valid for:

• Input:
• Output:

yes
yes

Reference for language elements
Version 4.1

21

LABEL

LABEL = "dataset label"

Valid for:

• Input:
• Output:

no
yes

OBS

OBS = n

MAX

Valid for:

• Input:
• Output:

yes
no

OBSBUF

OBSBUF = n

MAX

This dataset option is only valid for views and determines the number of observations that can be
buffered when executing a view in parallel. If specified, it overrides the VBUFSIZE system option.

Reference for language elements
Version 4.1

22

OUTREP

OUTREP = ALPHA_OSF

ALPHA_TRU64

ALPHA_VMS

ALPHA_VMS_32

ALPHA_VMS_64

INTEL_ABI

LINUX

LINUX_32

MVS

MVS_32

OS2

HP_UX

HP_UX_32

MIPS_ABI

RS_6000_AIX

RS_6000_AIX_32

SOLARIS

SOLARIS_32

HP_IA64

HP_ITITANIUM

HP_UX_64

RS_6000_AIX_64

SOLARIS_64

WINDOWS

WINDOWS_32

WINDOWS_64

Valid for:

• Input:
• Output:

yes
no

POINTOBS

POINTOBS = YES

NO

Reference for language elements
Version 4.1

23

Valid for:

• Input:
• Output:

yes
yes

RENAME

RENAME = (old- name = new- name)

Valid for:

• Input:
• Output:

yes
yes

REPLACE

REPLACE = YES

NO

Valid for:

• Input:
• Output:

no
yes

SPILL

SPILL = YES

NO

This dataset option is only valid for views and specifies if the view gets spilled to disk or executed in
parallel.

Reference for language elements
Version 4.1

24

WHERE

WHERE = (SQL expression
i

)

i See SQL expressions (page 28).

Valid for:

• Input:
• Output:

yes
no

Expressions

SAS Language expressions

Expression

(expression)

variable

array- name [

,

expression]

{

,

expression }

(

,

expression)

funct ion- name (

,

argument)

FIRST.

LAST.

by- variable- name

expression = "bit- test- constant"X

Logical operators
And operator

expression &

AND

expression

Reference for language elements
Version 4.1

25

NOT operator

~

NOT

expression

IN operator

expression

NOT

IN (

,

expression)

OR operator

expression |

!

OR

expression

Arithmetic operators
Addition operator

expression + expression

Subtraction operator

expression - expression

Multiplication operator

expression * expression

Division operator

expression / expression

Power operator

expression ** expression

Unary negation operator

- expression

Reference for language elements
Version 4.1

26

Comparison operators
Choose minimum

expression <

LT :

expression

Less-than operator

expression <

LT :

expression

Less-than operator

expression <

LT :

expression

Less-than or equal-to operator

expression <=

LE :

expression

Greater-than or equal-to operator

expression >

GT :

expression

Greater-than or equal-to operator

expression >=

GE :

expression

Not-equal-to operator

expression !=

^=

¬=

NE

:

expression

String concatenation
Concatenation operator

expression ||expression

Reference for language elements
Version 4.1

27

Numeric comparison
Select Maximum

expression <> expression

Select minimum

expression >< expression

Reference for language elements
Version 4.1

28

SQL expressions

SQL expression

column

funct ion- name (

,

argument)

(SQL expression)

SQL expression |

!

OR

AND

&

SQL expression

~

^

NOT

SQL expression

- SQL expression

SQL expression +

-

*

/

**

SQL expression

SQL expression <

LT

<=

LE

>

GT

>=

GE

=

EQ

!=

^=

¬=

<>

NE

:

SQL expression

SQL expression

NOT

BETWEEN SQL expression AND SQL expression

SQL expression IS

NOT

NULL

MISSING

SQL expression LIKE SQL expression

SQL expression CONTAINS

?

SQL expression

SQL expression *= SQL expression
i

Reference for language elements
Version 4.1

29

i Sounds like.

External Files
External files can be referenced in a number of ways.

"quoted- f ile- name"

fileref

f ileref (member)

f ileref (member)

Not all of the ways of referring to external files are valid in all circumstances. In particular, when
referring to output files, at least one file must be identified.

LOCALE Values
Supported LOCALE Values:

• Arabic_Algeria
• Arabic_Bahrain
• Arabic_Egypt
• Arabic_Jordan
• Arabic_Kuwait
• Arabic_Lebanon
• Arabic_Morocco
• Arabic_Oman
• Arabic_Qatar
• Arabic_SaudiArabia
• Arabic_Tunisia
• Arabic_UnitedArabEmirates
• Bulgarian_Bulgaria
• Byelorussian_Belarus
• Croatian_Croatia
• Czech_CzechRepublic
• Danish_Denmark

Reference for language elements
Version 4.1

30

• Dutch_Belgium
• Dutch_Netherlands
• English_Australia
• English_Canada
• English_HongKong
• English_India
• English_Ireland
• English_Jamaica
• English_NewZealand
• English_Singapore
• English_SouthAfrica
• English_UnitedKingdom
• English_UnitedStates
• Estonian_Estonia
• Finnish_Finland
• French_Belgium
• French_Canada
• French_France
• French_Luxembourg
• French_Switzerland
• German_Austria
• German_Germany
• German_Liechtenstein
• German_Luxembourg
• German_Switzerland
• Greek_Greece
• Hebrew_Israel
• Hungarian_Hungary
• Icelandic_Iceland
• Italian_Italy
• Italian_Switzerland
• Japanese_Japan
• Latvian_Latvia
• Lithuanian_Lithuania
• Norwegian_Norway
• Polish_Poland

Reference for language elements
Version 4.1

31

• Portuguese_Brazil
• Portuguese_Portugal
• Romanian_Romania
• Russian_Russia
• Serbian_Yugoslavia
• Slovak_Slovakia
• Slovenian_Slovenia
• Spanish_Argentina
• Spanish_Bolivia
• Spanish_Chile
• Spanish_Colombia
• Spanish_CostaRica
• Spanish_DominicanRepublic
• Spanish_Ecuador
• Spanish_ElSalvador
• Spanish_Guatemala
• Spanish_Honduras
• Spanish_Mexico
• Spanish_Nicaragua
• Spanish_Panama
• Spanish_Paraguay
• Spanish_Peru
• Spanish_PuertoRico
• Spanish_Spain
• Spanish_UnitedStates
• Spanish_Uruguay
• Spanish_Venezuela
• Swedish_Sweden
• Thai_Thailand
• Turkish_Turkey
• Ukrainian_Ukraine
• Vietnamese_Vietnam

Reference for language elements
Version 4.1

32

Variable Lists
ALL

CHARACTER

NUMERIC

start- variable- name -- end- variable- name

start- variable- name -NUMERIC- end- variable- name

start- variable- name -CHARACTER- end- variable- name

variable- name :

variable- name- numeric- suff ix - variable- name- numeric- suff ix variable- name

ENCODING Values
The following tables lists the character encodings that are supported and not supported by WPS.

z/OS encoding values
The following table lists encodings that are supported in the ENCODING system option for z/OS servers.
They are also available for use with INFILE or FILE and other language statements for which the
ENCODING option is valid.

Name Short
Name

Alternative Name Description

ebcdic037 E037 ibm-037 EBCDIC 037 Old North America

ebcdic273 E273 ibm-273 EBCDIC 273 Old Austria/Germany

ebcdic277 E277 ibm-277 EBCDIC 277 Old Denmark/Norway

ebcdic278 E278 ibm-278 EBCDIC 278 Old Finland/Sweden

ebcdic280 E280 ibm-280 EBCDIC 280 Old Italy

ebcdic284 E284 ibm-284 EBCDIC 284 Old Spain/Latin America

ebcdic285 E285 ibm-285 EBCDIC 285 Old United Kingdom

ebcdic297 E297 ibm-297 EBCDIC 297 Old France

ebcdic420 E420 ibm-420 EBCDIC 420 Old Arabic

ebcdic424 E424 ibm-424 EBCDIC 424 Hebrew

ebcdic500 E500 ibm-500 EBCDIC 500 Old International

Reference for language elements
Version 4.1

33

Name Short
Name

Alternative Name Description

ebcdic838 E838 ibm-838 EBCDIC 838 Thai

ebcdic870 E870 ibm-870 EBCDIC 870 Central Europe

ebcdic875 E875 ibm-875 EBCDIC 875 Greek

ebcdic1025 ECYL ibm-1025 EBCDIC 1025 Cyrillic

ebcdic1026 ETUR ibm-1026 EBCDIC 1026 Turkish

ebcdic1047 ELAT ibm-1047 EBCDIC 1047 Latin 1

ebcdic1112 EBAL ibm-1112 EBCDIC 1112 Baltic

ebcdic1122 EEST ibm-1122 EBCDIC 1122 Estonian

ebcdic1130 EVIE ibm-1130 EBCDIC 1130 Vietnamese

ebcdic1140 E140 ibm-1140 EBCDIC 1140 North America

ebcdic1141 E141 ibm-1141 EBCDIC 1141 Austria/Germany

ebcdic1142 E142 ibm-1142 EBCDIC 1142 Denmark/Norway

ebcdic1143 E143 ibm-1143 EBCDIC 1143 Finland/Sweden

ebcdic1144 E144 ibm-1144 EBCDIC 1144 Italy

ebcdic1145 E145 ibm-1145 EBCDIC 1145 Spain/Latin America

ebcdic1146 E146 ibm-1146 EBCDIC 1146 United Kingdom

ebcdic1147 E147 ibm-1147 EBCDIC 1147 France

ebcdic1148 E148 ibm-1148 EBCDIC 1148 International

open_ed-420 EOAR ibm-420,swaplfnl Open Edition 420 Old Arabic

open_ed-424 EOIW ibm-424,swaplfnl Open Edition 424 Hebrew

open_ed-838 EOTH ibm-838,swaplfnl Open Edition 838 Thai

open_ed-875 EOEL ibm-875,swaplfnl Open Edition 875 Greek

open_ed-1025 EOCY ibm-1025,swaplfnl Open Edition 1025 Cyrillic

open_ed-1026 EOTR ibm-1026,swaplfnl Open Edition 1026 Turkish

open_ed-1047 EOL1 ibm-1047,swaplfnl Open Edition 1047 Latin 1

open_ed-1112 EOBL ibm-1112,swaplfnl Open Edition 1112 Baltic

open_ed-1122 EOET ibm-1122,swaplfnl Open Edition 1122 Estonian

open_ed-1130 EOVT ibm-1130,swaplfnl Open Edition 1130 Vietnamese

open_ed-037 EOUS ibm-037,swaplfnl Open Edition 037 Old North America

open_ed-273 EODE ibm-273,swaplfnl Open Edition 273 Old Austria/Germany

open_ed-277 EODA ibm-277,swaplfnl Open Edition 277 Old Denmark/Norway

open_ed-278 EOFI ibm-278,swaplfnl Open Edition 278 Old Finland/Sweden

Reference for language elements
Version 4.1

34

Name Short
Name

Alternative Name Description

open_ed-280 EOIT ibm-280,swaplfnl Open Edition 280 Old Italy

open_ed-284 EOES ibm-284,swaplfnl Open Edition 284 Old Spain

open_ed-285 EOUK ibm-285,swaplfnl Open Edition 285 Old United Kingdom

open_ed-297 EOFR ibm-297,swaplfnl Open Edition 297 Old France

open_ed-500 EOSW ibm-500,swaplfnl Open Edition 500 Old International

open_ed-870 EOL2 ibm-870,swaplfnl Open Edition 870 Central Europe

open_ed-1140 EO40 ibm-1140,swaplfnl Open Edition 1140 North America

open_ed-1141 EO41 ibm-1141,swaplfnl Open Edition 1141 Austria/Germany

open_ed-1142 EO42 ibm-1142,swaplfnl Open Edition 1142 Denmark/Norway

open_ed-1143 EO43 ibm-1143,swaplfnl Open Edition 1143 Finland/Sweden

open_ed-1144 EO44 ibm-1144,swaplfnl Open Edition 1144 Italy

open_ed-1145 EO45 ibm-1145,swaplfnl Open Edition 1145 Spain

open_ed-1146 EO46 ibm-1146,swaplfnl Open Edition 1146 United Kingdom

open_ed-1147 EO47 ibm-1147,swaplfnl Open Edition 1147 France

open_ed-1148 EO48 ibm-1148,swaplfnl Open Edition 1148 International

ibm-930 J930 ibm-930 Katakana (IBM)

ibm-933 KIBM ibm-933 Korean (IBM)

ibm-935 ZIBM ibm-935 Simplified Chinese (IBM)

ibm-937 YIBM ibm-937 Traditional Chinese (IBM)

ibm-939 JIBM ibm-939 Japanese (IBM)

Encoding values on non-z/OS platforms
The following table lists encodings that are supported in the ENCODING system option for other platform
servers, such as Windows and Linux. They are also available for use with INFILE or FILE and other
language statements for which the ENCODING option is valid.

Name Short
Name

Alternative Name Description

utf-8 UTF8 utf-8 UTF-8 Unicode

ibm-942 JPC ibm-942 Japanese (PCIBM)

ibm-949 KPC ibm-949 Korean (PCIBM)

ibm-950 ZPC ibm-950 Traditional Chinese (PCIBM)

Reference for language elements
Version 4.1

35

Name Short
Name

Alternative Name Description

us-ascii ANSI us-ascii 7-Bit US-ASCII

latin1 LAT1 iso-8859-1 ISO-8859-1 Western

latin2 LAT2 iso-8859-2 ISO-8859-2 Central Europe

latin3 LAT3 iso-8859-3 ISO-8859-3 Southern Europe

latin4 LAT4 iso-8859-4 ISO-8859-4 Northern Europe

latin5 LAT5 iso-8859-9 ISO-8859-9 Turkish

latin6 LAT6 iso-8859-10 ISO-8859-10 Baltic

latin9 LAT9 iso-8859-15 ISO-8859-15 European

cyrillic CYRL iso-8859-5 ISO-8859-5 Cyrillic

arabic ARAB iso-8859-6 ISO-8859-6 Arabic

greek GREK iso-8859-7 ISO-8859-7 Greek

hebrew HEBR iso-8859-8 ISO-8859-8 Hebrew

thai THAI iso-8859-11 ISO-8859-11 Thai

pcoem437 P437 ibm-437 IBM-4337 USA

pcoem850 P850 ibm-850 IBM-850 Western

pcoem852 P852 ibm-852 IBM-852 Central Europe

pcoem857 P857 ibm-857 IBM-857 Turkish

pcoem858 P858 ibm-858 IBM-858 European

pcoem862 P862 ibm-862 IBM-862 Hebrew

pcoem864 P864 ibm-864 IBM-864 Arabic

pcoem865 P865 ibm-865 IBM-865 Nordic

pcoem866 P866 ibm-866 IBM-866 Cyrillic

pcoem869 P869 ibm-869 IBM-869 Greek

pcoem874 P874 ibm-874 IBM-874 Thai

pcoem921 P921 ibm-921 IBM-921 Baltic

pcoem922 P922 ibm-922 IBM-922 Estonian

pcoem1129 PVIE ibm-1129 IBM-1129 Vietnamese

msdos720 P720 windows-720 Windows OEM 720 Arabic

msdos737 P737 windows-737 Windows OEM 737 Greek

msdos775 P775 windows-775 Windows OEM 775 Baltic

pcoem860 P860 ibm-860 IBM-860 Portuguese (MS-DOS)

pcoem863 P863 ibm-863 IBM-863 French Canadian

Reference for language elements
Version 4.1

36

Name Short
Name

Alternative Name Description

wlatin2 WLT2 windows-1250 Windows-1250 Central Europe

wcyrillic WCYL windows-1251 Windows-1251 Cyrillic

wlatin1 WLT1 windows-1252 Windows-1252 Western

wgreek WBRK windows-1253 Windows-1253 Greek

wturkish WTUR windows-1254 Windows-1254 Turkish

whebrew WHEB windows-1255 Windows-1255 Hebrew

warabic WARA windows-1256 Windows-1256 Arabic

wbaltic WBAL windows-1257 Windows-1257 Baltic

wvietnamese WVIW windows-1258 Windows-1258 Vietnamese

ms-950 ZWIN windows-950 Traditional Chinese (PCMS)

euc-cn ZEUC euc-cn Simplified Chinese (EUC)

euc-tw YEUC euc-tw Traditional Chinese (EUC)

big5 BIG5 big5 Traditional Chinese (Big5)

ms-936 YWIN windows-936 Simplified Chinese (PCMS)

euc-jp JEUC euc-jp Japanese (EUC)

ms-932 J932 windows-932 Japanese (PCMS)

shift-jis SJIS shift_jis Japanese (SJIS)

euc-kr KEUC euc-kr Korean (EUC)

ms-949 KWIN windows-949 Korean (PCMS)

Not supported for server encoding
The following table lists encodings that are not supported for server encoding, but can be used for the
import and export of data.

Name Short
Name

Alternative Name Description

utf-16be utf-16BE UTF-16 Big Endian Unicode

utf-16le utf-16LE UTF-16 Little Endian Unicode

utf-32be utf-32BE UTF-32 Big Endian Unicode

utf-32le utf-32LE UTF-32 Little Endian Unicode

Reference for language elements
Version 4.1

37

LOCALE Values
The following table lists supported LOCALE values, and PXLOCALE and PXREGION codes. The
PXLOCALE code is created from a combination of a language code for the locale and the locale region
code.

LOCALE values PXLOCALE PXREGION

Afrikaans_SouthAfrica af_ZA ZA

Albanian_Albania sq_AL AL

Arabic_Algeria ar_DZ DZ

Arabic_Bahrain ar_BH BH

Arabic_Egypt ar_EG EG

Arabic_India ar_IN IN

Arabic_Iraq ar_IQ IQ

Arabic_Jordan ar_JO JO

Arabic_Kuwait ar_KW KW

Arabic_Lebanon ar_LB LB

Arabic_Libya ar_LY LY

Arabic_Morocco ar_MA MA

Arabic_Oman ar_OM OM

Arabic_Qatar ar_QA QA

Arabic_SaudiArabia ar_SA SA

Arabic_Sudan ar_SD SD

Arabic_Syria ar_SY SY

Arabic_Tunisia ar_TN TN

Arabic_UnitedArabEmirates ar_AE AE

Bengali_India bn_IN bn

Bosnian_BosniaHerzegovina bs_BA BA

Bulgarian_Bulgaria bg_BG BG

Byelorussian_Belarus be_BY BY

Catalan_Spain ca_ES ES

Chinese_China zh_CN CN

Chinese_HongKong zh_HK HK

Chinese_Macau zh_MO MO

Chinese_Singapore zh_SG SG

Reference for language elements
Version 4.1

38

LOCALE values PXLOCALE PXREGION

Chinese_Taiwan zh_TW TW

Catalan_Spain ca_ES ES

Cornish_UnitedKingdom kw_GB GB

Croatian_BosniaHerzegovina hr_BA BA

Croatian_Croatia hr_HR HR

Czech_CzechRepublic cs_CZ CZ

Danish_Denmark da_DK DK

Dutch_Belgium nl_BE BE

Dutch_Netherlands nl_NL NL

English_Australia en_AU AU

English_Belgium en_BE BE

English_Botswana en_BW BW

English_Canada en_CA CA

English_Caribbean en_CB CB

English_HongKong en_HK HK

English_India en_IN IN

English_Ireland en_IE IE

English_Jamaica en_JM JM

English_Malta en_MT MT

English_NewZealand en_NZ NZ

English_Philippines en_PH PH

English_Singapore en_SG SG

English_SouthAfrica en_ZA ZA

English_UnitedKingdom en_GB GB

English_UnitedStates en_US US

English_Zimbabwe en_ZW ZW

Estonian_Estonia et_EE EE

Faroese_FaroeIslands fo_FO FO

Finnish_Finland fi_FI FI

French_Belgium fr_BE BE

French_Canada fr_CA CA

French_France fr_FR FR

French_Luxembourg fr_LU LU

Reference for language elements
Version 4.1

39

LOCALE values PXLOCALE PXREGION

French_Switzerland fr_CH CH

German_Austria de_AT AT

German_Germany de_DE DE

German_Liechtenstein de_LI LI

German_Luxembourg de_LU LU

German_Switzerland de_CH CH

Greek_Cyprus el_CY CY

Greek_Greece el_GR GR

Greenlandic_Greenland kl_GL GL

Hebrew_Israel he_IL IL

Hindi_India hi_IN IN

Hungarian_Hungary hu_HU HU

Icelandic_Iceland is_IS IS

Indonesian_Indonesia id_ID ID

Irish_Ireland ga_IE IE

Italian_Italy it_IT IT

Italian_Switzerland it_CH CH

Japanese_Japan ja_JP JP

Korean_Korea (South Korea) ko_KR KR

Latvian_Latvia lv_LV LV

Lithuanian_Lithuania lt_LT LT

Macedonian_Macedonia mk_MK MK

Malay_Malaysia ms_MY MY

Maltese_Malta mt_MT MT

ManxGaelic_UnitedKingdom gv_GB GB

Marathi_India mr_IN IN

NorwegianBokmal_Norway nb_NO NO

NorwegianNynorsk_Norway nn_NO NO

Norwegian_Norway no_NO NO

Persian_India fa_IN IN

Persian_Iran fa_IR IR

Polish_Poland pl_PL PL

Portuguese_Brazil pt_BR BR

Reference for language elements
Version 4.1

40

LOCALE values PXLOCALE PXREGION

Portuguese_Portugal pt_PT PT

Romanian_Romania ro_RO RO

Russian_Russia ru_RU RU

Russian_Ukraine ru_UA UA

Serbian_BosniaHerzegovina sr_BA BA

Serbian_Montenegro sr_ME ME

Serbian_Serbia sr_RS RS

SerbianLatin_Serbia sh_RS RS

SerbianLatin_BosniaHerzegovina sh_BA BA

SerbianLatin_Montenegro sh_ME ME

Serbian_Serbia sr_RS RS

Slovak_Slovakia sk_SK SK

Slovenian_Slovenia sl_SI SI

Spanish_Argentina es_AR AR

Spanish_Bolivia es_BO BO

Spanish_Chile es_CL CL

Spanish_Colombia es_CO CO

Spanish_CostaRica es_CR CR

Spanish_DominicanRepublic es_DO DO

Spanish_Ecuador es_EC EC

Spanish_ElSalvador es_SV SV

Spanish_Guatemala es_GT GT

Spanish_Honduras es_HN HN

Spanish_Mexico es_MX MX

Spanish_Nicaragua es_NI NI

Spanish_Panama es_PA PA

Spanish_Paraguay es_PY PY

Spanish_Peru es_PE PE

Spanish_PuertoRico es_PR PR

Spanish_Spain es_ES ES

Spanish_UnitedStates es_US US

Spanish_Uruguay es_UY UY

Spanish_Venezuela es_VE VE

Reference for language elements
Version 4.1

41

LOCALE values PXLOCALE PXREGION

Swedish_Sweden sv_SE SE

Tamil_India ta_IN IN

Telugu_India te_IN IN

Thai_Thailand th_TH TH

Turkish_Turkey tr_TR TR

Ukrainian_Ukraine uk_UA UA

Vietnamese_Vietnam vi_VN VN

Reference for language elements
Version 4.1

42

WPS Core

System options
System options are settings that apply to a WPS Analytics.

System options enable you to set the behaviour of WPS and the language of SAS. For example, you
can set system options that affect how errors are handled, how datasets and external files are handled,
how sorts are performed, and so on.

System options can be set in a SAS-language program, in a SAS-language configuration file, or on the
command line.

The reference documentation for each system option:

• Assumes that system options can be set on all operating systems, unless specified otherwise in a
Supported Items section.

• Specifies whether it is:

‣ Portable – The system option can be moved to a different operating system to the one it was set
on.

‣ Restrictable – The system option can be restricted. See Restricting system options (page
46) for more details.

‣ Saveable – The system option can saved. See OPTSAVE (page 2407) for more details.

Setting system options
You can set system options in various ways: in a configuration file, on the WPS command line, and by
using the OPTIONS statement in a Sas-language program.

You can set system options using:

• A configuration file. Configuration files are read when Workbench starts, or when WPS is run from
the command line, or if specified on the command line. For information on configuration files, see
Configuration files in the WPS Analytics installation and administration guide.

• The command line. The system option remains in effect while the program runs. For information on
running programs on the command line and setting system options, see Command line mode in Run
a program in the WPS Workbench User Guide.

• The OPTIONS (page 619) global statement.

Reference for language elements
Version 4.1

43

Once set, a system option remains in effect for the session. The value of a system option is the last
value set. If you set a system option in a configuration file, but subsequently set it on the command line,
the value of the system option on the command line is used. If you set a system option on a command
line, but the system option is set in a SAS language program, then the value in the program is used.

Some system options can only be set on the command line or in a configuration file because they affect
the environment of the WPS session. For example, the system option ENCODING, which specifies the
character encoding of the WPS system, can only be set on the command line or in a configuration file
because the encoding for the session needs to be specified before a program is run. The description for
each system option specifies how it can be set.

Specifying configuration files
A configuration file can be used by specifying it on the command line, or in another configuration file.

There is a default configuration file that is included with the WPS installation, called wps.cfg, located
in the WPS installation directory. We recommend that you do not edit this file. Instead, create a
configuration file that itself opens wps.cfg before any other system options are set. Because system
options are set in the order in which they are specified, all default options in wps.cfg are set first, and
then the system options in the configuration file that calls wps.cfg. A configuration file can contain
references configuration files other than wps.cfg, and can contain as many references as required.

Configuration files are specified with the option:

-CONFIG filename

where filename is the filename of the configuration file, including an absolute or relative path.

In the following example, the option is specified on the command line. The configuration file
ycopt.cfg contains:

-config 'C:\Program Files\World Programming\WPS\4\wps.cfg'
-yearcutoff 1900

The first entry in the file is the option CONFIG, specifying the default configuration file; this ensures that
all default system options are set. The YEARCUTOFF option is then set.

The following program (c:\temp\test.wps) is then run on the command line:

DATA _NULL_;
 x = '16-JUN-02'D;
 PUT x DATE11.;
RUN;

The CONFIG option is also set on the command line to specify the file ycopt.fcg:

WPS c:\temp\test.wps -CONFIG c:\temp\ycopt.cfg

The following result is written to the log:

16-JUN-1902

Reference for language elements
Version 4.1

44

The specified configuration file has been used to set the system option. The last system option read in
the configuration file ycopt.fcg is YEARCUTOFF 1900, which sets the starting year for interpreting
two digit years as 1900. The date 16-JUN-02 is therefore interpreted as 16-JUN-1902.

Setting system options on the command line
On the command line, an option specified to a system option is treated as a single string. An option
might, therefore, need to be escaped or entered in quotation marks (depending on the operating
system) if it contains special characters, including spaces.

Some system options enable you to specify more than one option, in which case the options are
separated by spaces and enclosed in brackets. For example, the system option AUTOEXEC enables
you to specify programs that run when WPS starts. You can specify more than one program to start, if
required:

WPS test.wps -AUTOEXEC "(test1.wps test2.wps)"

WPS first runs test1.wps and test2.wps before running test.wps. However, for this command
to execute on Windows, the option must be enclosed in quotation marks, as the option is treated as
one string, Without the quotation marks, Windows assumes that the option finished at the space, and
test2.wps would be an unrecognised option on the command line.

Setting system options in Workbench
WPS Workbench also provides dialogues in which system options can be set. For information, see
WPS server properties in WPS Server Explorer in WPS server in your WPS Workbench User Guide.

Appending and inserting values
You can modify many system options that take string values using the APPEND and INSERT directives.
These directives can be specified as arguments to the OPTION statement, as arguments on the WPS
command line, or in a configuration file. They have the same format as as system options.

APPEND and INSERT can be used with any system option that has the attribute Appendable.

APPEND enables you to add a string to the end of the current value of a system option. INSERT enables
you to add a string at the beginning of the current value of a system option. These options have the
format.

For more information on the format of APPEND and INSERT, see the OPTIONS (page 619)
statement.

For example, to append a value in the following program (myprog.wps):

LIBNAME MS1 "c:\wk\macros1";
OPTIONS APPEND = (SASAUTOS = MS1);
%mymac;

If SASAUTOS is already specified in a configuration file with the value "c:\wk\macros2", the new
value when the program is run is:

SASAUTOS = ("c:\wk\macros2" ms1)

Reference for language elements
Version 4.1

45

You could subsequently change that value of SASAUTOS on the command line, for example, so that
another value is added when the program is run, in this example on a Windows command line:

wps myprog -insert '(sasautos = ("c:\temp\macros3" "c:\temp\wkmacros"))'

The new value of SASAUTOS is then:

SASAUTOS = ("c:\temp\macros3" "c:\temp\wkmacros" "c:\wk\macros2" MS1)

where:

• "c:\temp\macros3" and "c:\temp\wkmacros" have been inserted at the beginning of the
system option from the command line.

• "c:\wk\macros2" was specified in a configuration file.
• The library name MS1 has been appended by the OPTIONS statement in the program.

Displaying system options
You might want to view which system options have been set. You can use the OPTIONS procedure to
do this.

PROC OPTIONS (page 619) can be used to list the current settings of all options, or the setting of a
specific option. You can specify the amount and kind of detail that is returned.

To list the current settings of all system options, and return summary information about what they do,
enter:

PROC OPTIONS;

The procedure lists the options in two groups, host and portable options. Host options only have an
effect on the current system, while portable options have an effect on the current system and on any
operating system to which the SAS language program is ported.

For example, when you run the OPTION procedure the following might be listed in the log. Each section
of the listing has been truncated for brevity.

Portable Options:

 ALTLOG= Name of the altlog
 NOAUTOSIGNON Remote submit will not attempt to automatically signon
 BASEENGINE=WPD The library engine to use when BASE is specified
 BOMFILE Write a Byte Order Mark prefix on external Unicode files
 BUFNO=1 Specifies the number of buffers used by a library engine for
a data set (not honoured by all engines)
 BUFSIZE=0 Specifies the size of a page for a WPS data set
⋮
Host Options:

 AUTOEXEC= The location of a file automatically executed at WPS
initialisation
 BOTTOMMARGIN=1CM The bottom margin of a page output using the ods pdf
destination

Reference for language elements
Version 4.1

46

 CPUCOUNT=8 Number of CPUs available to the application
 NODBIDIRECTEXEC PROC SQL will handle CREATE TABLE AS SELECT and DELETE
statements to a relational database in the normal way
 NODLCREATEDIR Do not allow a directory to be created upon assignment of a
libname, even if the directory does not already exist
 NODMS Use the non-windowed environment
⋮

Restricting system options
You can restrict a system option so that it cannot be changed This enables specific values to be
enforced by the system administrator.

System options can be restricted by using the:

• RESTRICT option of the OPTIONS global statement
• RESTRICT option in configuration files
• Restricted configuration file rwps.cfg (Windows, UNIX and Linux only)
• RESTRICT option of the SITEOPTION statement of PROC SETINIT

Using the RESTRICT option of the OPTIONS statement only restricts specified system options during
the session in which the statement is set, and is more appropriate for users. To restrict system options
more generally, use one of the methods described below.

Not all system options can be restricted. Whether a system option can be restricted is indicated in the
description for each system option.

Using the RESTRICT configuration option
The RESTRICT keyword can be used in configuration files. System options can be restricted using the
format:

RESTRICT = sys-options

on z/OS, or:

-RESTRICT sys-options

on other operating systems. sys-options can be a single system option, or a list of space-separated
system options enclosed in parentheses. For example:

-RESTRICT MEMSIZE

or:

-RESTRICT (MEMSIZE CARDIMAGE NODATE)

Reference for language elements
Version 4.1

47

Using a restricted configuration file
On Windows, UNIX and Linux, you can restrict system options by entering them in the restricted
configuration file. The file is read when the WPS session starts. System options set in the restricted
configuration file cannot be subsequently changed by users during the session.

The file has the name:

wpshome\misc\rstropts\rwps.cfg

where wpshome is the installation folder or directory of WPS. For example, the default installation folder
for Windows is:

C:\Program Files\World Programming\WPS\4

The path and filename of the restricted file is therefore:

C:\Program Files\World Programming\WPS\4\misc\rstropts\rwps.cfg

Note:

System options cannot be restricted in this way on z/OS when WPS is run as an MVS job or by TSO in
the foreground.

On UNIX and Linux you can also restrict the configuration file to particular groups or to particular users:

wpshome\misc\rstropts\name_rwps.cfg

where name is group or user name.

Using the SETINIT procedure
You cannot restrict the ability to change system options by using a restricted configuration file on z/OS.
If you want to ensure that users cannot modify a system option on z/OS you must use the SETINIT
procedure.

The SETINIT procedure is defined in the WPS license text file. When WPS starts, it reads the
installation file generated when the SETINIT procedure runs. The specified system options are then set
for all WPS installations to which the license applies.

System options are restricted using the RESTRICT option of the SITEOPTION statement of PROC
SETINIT.

For example, a site administrator could ensure users never see the logic of macros that are being used
by adding the following lines to the license file before the license is applied to a WPS installation:

PROC SETINIT;
 ... statements in SETINIT...
 SITEOPTION = "NOMLOGIC RESTRICT MLOGIC;";
 SAVE;
RUN;

When the license is applied PROC SETINIT is run; the NOMLOGIC system option is set, and then
MLOGIC restricted. Users can then never change the setting using, for example, the OPTIONS
statement.

Reference for language elements
Version 4.1

48

Finding out if an option is restricted
You can find out if an option is currently restricted using the GETOPTION function. This has an optional
argument that you can set to HOWRESTRICTED or HOWSET. If set to HOWRESTRICTED, a string is
returned indicating whether the option is restricted. For example:

DATA _NULL_;
 isr = getoption("SPOOL","HOWRESTRICTED");
 put isr;
RUN;

The following is written to the log:

Unrestricted

For information on the options, see GETOPTION (page 2113).

COMMUNICATIONS group system options
The system options in this group specify settings for WPS Communicate. Some of these options
specify values that provides default values for WPS Communicate statement options. For example,
you can specify the remote server to which a Communicate connection is made using either the
CONNECTREMOTE system option, or the CONNECTREMOTE option of the RSUBMIT statement.

AUTOSIGNON
Specifies whether remote submit (RSUBMIT) automatically attempts to sign on.

AUTOSIGNON

NOAUTOSIGNON

Valid in: OPTIONS statement, configuration file and command line.
Default: NOAUTOSIGNON

Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

AUTOSIGNON
Remote submit automatically attempts to sign on.

NOAUTOSIGNON
Remote submit does not automatically attempt to sign on.

Reference for language elements
Version 4.1

49

If you do not specify this option, you need two WPS Communicate statements to initiate a remote
submit, SIGNON and RSUBMIT. If you specify this option, you need only specify RSUBMIT.

If you specify AUTOSIGNON you must also specify the CONNECTREMOTE (page 52) system option
to identify the server to which the remote submit will connect.

Other sign-on options that are set with the SIGNON statement can also be set with system options in the
COMMUNICATIONS group. Other options of SIGNON, such as authentication, can be set in RSUBMIT.

The SIGNON and RSUBMIT statements are described in the WPS Communicate User Guide and
Reference.

Example
In this example, the OPTIONS statement is used to specify that an automatic sign-on is attempted when
RSUBMIT is encountered.

OPTIONS AUTOSIGNON CONNECTREMOTE=myremote;
RSUBMIT USERNAME="jdoe" PASSWORD="xxxxxxxx"
 LAUNCHCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

COMAMID
Specifies the communication method to use for establishing remote communications.

COMAMID = communicat ion- method

Valid in: OPTIONS statement, configuration file and command line.
Default: TCP

Maximum length: 8
Option group: COMMUNICATIONS

Portable True
Restrictable False
Saveable False

communication-method
The supported communication method; currently only TCP is supported.

• TCP

Reference for language elements
Version 4.1

50

CONNECTPERSIST
Specifies whether a remote connection persists after an ENDRSUBMIT statement.

CONNECTPERSIST

CPERSIST

NOCONNECTPERSIST

NOCPERSIST

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCONNECTPERSIST

Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

CONNECTPERSIST
The remote connection persists.

NOCONNECTPERSIST
The remote connection does not persist.

The connection created for an RSUBMIT block normally ends when ENDRSUBMIT is executed. If
CONNECTPERSIST is specified, the connection persists, and work folders and resources remain
available, and can be used by subsequent RSUBMIT blocks.

Note:
The connection will not persist after a SIGNOFF statement, even if CONNECTPERSIST is specified.

The setting of this option can be overridden in a program using the PERSIST option of the RSUBMIT
statement.

RSUBMIT blocks, and the RSUBMIT and ENDRSUBMIT statements, are described in the WPS
Communicate User Guide and Reference.

Reference for language elements
Version 4.1

51

Basic example
In this example, the OPTIONS statement is used to specify that connections do not continue to exist
after ENDRSUBMIT statements.

OPTIONS NOCONNECTPERSIST;
SIGNON
 CONNECTREMOTE = myserver
 USERNAME = "jdoe"
 PASSWORD = "xxxxxxxx"
 LAUNCHCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
 RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, again";
 RUN;
ENDRSUBMIT;
SIGNOFF;

The second RSUBMIT block is not executed because the NOCONNECTPERSIST system option is set.
Error messages are displayed in the log. If CONNECTPERSIST had been set, both blocks would run.

Example – autosignon and connection persistence
In this example, the OPTIONS statement is used to specify that connections do continue to exist
after ENDRSUBMIT statements. The connection is made through the RSUBMIT statement after the
AUTOSIGNON system option has been specified.

OPTIONS CONNECTPERSIST AUTOSIGNON;
RSUBMIT
 CONNECTREMOTE = lcen7x64d01 USERNAME = "jlees"
 PASSWORD = "xXy68900lk"
 LAUNCHCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;

RSUBMIT;
 DATA _NULL_;
 PUT "Hello, again";
 RUN;
ENDRSUBMIT;

RSUBMIT;
 DATA _NULL_;
 PUT "One more time";
 RUN;
ENDRSUBMIT;

SIGNOFF;

Reference for language elements
Version 4.1

52

The second and third RSUBMIT blocks are executed because the CONNECTPERSIST system option is
set. They use the sign-on information of the first RSUBMIT.

CONNECTREMOTE
Specifies the remote server to which a connection is made in WPS Communicate.

CONNECTREMOTE

CREMOTE

PROCESS

REMOTE

= server- id

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 1024
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

server-id
The name or IP address of the remote server.

If this system option is set, you do not have to specify a connection in a SIGNON or RSUBMIT statement
to sign on to a remove server. If you do specify a connection in one of those statements, it will override
the connection specified by this system option.

The RSUBMIT and SIGNON statements, are described in the WPS Communicate User Guide and
Reference.

Reference for language elements
Version 4.1

53

Example
In this example, the OPTIONS statement is used to specify the name of the server for a WPS
Communicate session.

OPTIONS CONNECTREMOTE=myremote;
SIGNON
 USERNAME = "jdoe"
 PASSWORD = "xxxxxxxx"
 LAUNCHCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

Because the connection is specified using the system option, it does not need to be specified in the
SIGNON statement.

CONNECTTIMEOUT
Specifies a WPS Communicate client time-out for connect and read operations.

CONNECTTIMEOUT = t imeout

Valid in: OPTIONS statement, configuration file and command line.
Default: 60000
Minimum value: 0
Maximum value: 3600000
Option group: COMMUNICATIONS

Portable True

If a response from the remote server is not received within the specified timeout period, an error is
written to the log and the attempt to connect terminates.

timeout

The timeout, in milliseconds.

If you specify 0 (zero), no timeout is set.

Reference for language elements
Version 4.1

54

Example
In this example, the OPTIONS statement is used to specify that an automatic sign-on is attempted when
RSUBMIT is encountered, but that if no response is received in 30 seconds, the program terminates.

OPTIONS CONNECTTIMEOUT=30000 AUTOSIGNON CONNECTREMOTE=myremote;
RSUBMIT USERNAME="jdoe" PASSWORD="xxxxxxxx"
 LAUNCHCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

CONNECTWAIT
Specifies whether RSUBMIT blocks are executed synchronously or asynchronously.

CONNECTWAIT

CWAIT

NOCONNECTWAIT

NOCWAIT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCONNECTWAIT

Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

CONNECTWAIT
Submit RSUBMIT blocks synchronously; blocks will not wait for preceding blocks to finish
executing.

NOCONNECTWAIT
Submit RSUBMIT blocks asynchronously; a block only starts when the preceding block has
finished executing.

RSUBMIT blocks can be run asynchronously, that is, at the same time, or synchronously, that is one
after another. By default If NOCONNECTWAIT is specified, WPS will not wait for one RSUBMIT block to
end before starting another.

The system option can be overridden by the WAITFOR statement in an RSUBMIT block.

Reference for language elements
Version 4.1

55

Example
In this example, the OPTIONS statement is used to specify that RSUBMIT blocks can run
asynchronously.

OPTIONS NOCONNECTWAIT;
SIGNON
 CONNECTREMOTE = myremote
 USERNAME = "zx"
 PASSWORD = "********"
 LAUNCHCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
 RSUBMIT;
 DATA _NULL_;
 do i = 1 to 1000000000;
 end;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, again";
 RUN;
ENDRSUBMIT;
SIGNOFF;

The second block will begin to execute before the first block has finished.

DMR
Specifies whether to invoke a remote or local WPS Communicate session.

DMR

NODMR

Valid in: Command line.
Default: NODMR

Option group: COMMUNICATIONS

Portable True
Restrictable False
Saveable False

DMR

Starts a WPS session on a remote service using Communicate. A WPS client can then run a
program using WPS on the server.

NODMR
A WPS session is not established, and an error message is written to the log.

Reference for language elements
Version 4.1

56

This system option must only be used on the command line by specifying it to the:

• SASCMD or LAUNCHCMD option of the SIGNON or RSUBMIT statement.
• SASCMD system option.

To use WPS on a remote server through Communicate, this option must be specified. This starts the
remote session in server mode and returns the session connection details to the initiating WPS client.
If it is not specified, or if NODMR is specified, a connection is not established, and an error message is
written to the log.

For example, to start the WPS Communicate and use the wps.exe command in /opt/
worldprogramming/wps-4/bin/:

SASCMD ='/opt/worldprogramming/wps-4/bin/wps -DMR'

Note:

If you specify -DMR on the operating system command line to start a program, a communication session
is established to an assigned port, but you cannot do anything with the session, and the program will
not run. For example, if you specify:

wps test2.wps -dmr

a WPS Communicate session starts:

WPS COMMUNICATE PORT=54496 SESSION ESTABLISHED.

However, the program test2 does not run. You can do nothing with the session and you will have to
stop the process.

Example
In this example, the DMR option is specified to the LAUNCHCMD option of the SIGNON statement.

OPTIONS SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr';
SIGNON
 CONNECTREMOTE = myserver
 USERNAME = "jdoe"
 PASSWORD = "xxxxxxxxx"
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "I'm running over here";
 RUN;
ENDRSUBMIT;
SIGNOFF;

You can then run this program from the command line; for example:

wps test2.wps

Reference for language elements
Version 4.1

57

SASCMD
Specifies the command required to start WPS on the remote system when Communicate signs on.

SASCMD = command

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 32767
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

command

The command to use. For example, on a Linux system this might be:

'/opt/worldprogramming/wps-4/bin/wps'

On a Windows system , this might be:

'C:\Program Files\World Programming\WPS\4\bin\wps'

The setting of this option can be overridden in a program by the SASCMD option of the RSUBMIT or
SIGNON statement.

For information on RSUBMIT blocks, and how you specify remote servers, see the WPS Communicate
User Guide and Reference.

Note:

You must always also specify the DMR system option on the command line used to start the remote
server session in Communicate; see DMR (page 55) for information.

Reference for language elements
Version 4.1

58

Example
In this example, the OPTIONS statement is used to specify the location of the WPS executable
command.

OPTIONS SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr';
SIGNON
 CONNECTREMOTE = myremote
 USERNAME = "jdoe"
 PASSWORD = "x2x3x4x1jd"
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

SASSCRIPT
Specifies the location of WPS Communicate telnet sign-on scripts.

SASSCRIPT = f ilepath

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 1024
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

filepath
The path to the telnet script location.

This system option can be used to specify the location of a telnet script specified by the CSCRIPT
option of the RSUBMIT or SIGNON statements. This script is used to control the login process for telnet
session.

If you specify the filepath to a script using the CSCRIPT option of the RSUBMIT or SIGNON statements,
this system option is ignored.

For information on RSUBMIT and SIGNON, see the WPS Communicate User Guide and Reference.

Reference for language elements
Version 4.1

59

Example
In this example, the OPTIONS statement is used to specify the SASSCRIPT option. The telnet login
script tnlogon is found in the folder c:\scripts.

OPTIONS SASSCRIPT=c:\scripts;
SIGNON
 CONNECTREMOTE = myserver
 USERNAME = "jdoe"
 PASSWORD = "x1x2x3!!"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 cscript=tnlogon
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

SIGNONWAIT
Specifies whether sign-on is complete before executing subsequent program statements.

SIGNONWAIT

CONNECTSWAIT

SWAIT

NOSIGNONWAIT

NOCONNECTSWAIT

NOSWAIT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSIGNONWAIT

Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

SIGNONWAIT
Wait for sign-on to complete.

NOSIGNONWAIT
Do not wait for sign-on to complete.

Reference for language elements
Version 4.1

60

If SIGNONWAIT is specified, no program statements are executed until the WPS Communicate sign-on
process has finished. If NOSIGNONWAIT is specified, statements subsequent to any sign-on statements
can be executed before the WPS Communicate sign-on process has finished.

The system option can be overridden by the SIGNONWAIT option of the RSUBMIT or SIGNON
statements.

Example
In this example, the OPTIONS statement is used to specify that subsequent program statements will not
wait for sign-on to complete.

OPTIONS SSH_HOSTVALIDATION = NONE NOSIGNONWAIT;
SIGNON
 CONNECTREMOTE = myserver
 USERNAME = 'jdoe'
 PASSWORD = 'x1x2x3x1!'
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
DATA _NULL_;
 DO i = 1 TO 1000000;
 x = (i + 1)/20;
 END;
 PUT 'End of this program';
RUN;
RSUBMIT;
 DATA _NULL_;
 PUT 'Hello, from the remote computer';
 RUN;
ENDRSUBMIT;
SIGNOFF;

The statements in the DATA step after the SIGNON statement will not wait for the sign-on process to
complete before executing.

SSH_HOSTVALIDATION
Specifies the method used to validate an SSH host key.

SSH_HOSTVALIDATION = validat ion- method

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 16
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

61

When an SSH connection is made to a remote server, the identity of the remote server is validated
using either the OpenSSH or the PuTTY validation methods, by searching for the server in either the
Open SSH or the PuTTY known hosts files. If the host is not known, then the server connection will not
proceed unless the NONE option is specified.

validation-method
The type of validation:

• NONE

No validation is performed. Only use this option in a test environment.
• OPENSSH.

SSH is validated using OpenSSH. This is the default method for all operating systems except
Windows. All remote servers must be known to OpenSSH.

• PUTTY.

SSH is validated using PuTTY. This is the default method for Windows. All remote servers
must be known to PuTTY.

Basic example
In this example, the OPTIONS statement is used to specify that no validation is used.

OPTIONS SSH_HOSTVALIDATION = NONE;
SIGNON
 CONNECTREMOTE = myremote
 USERNAME = "jdoe"
 PASSWORD = "x1x2x3x4"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

Reference for language elements
Version 4.1

62

Example - server not in PuTTY host file
In this example, the OPTIONS statement,is used to specify that the PuTTY host file is used, but the
server does not the server.

OPTIONS SSH_HOSTVALIDATION = PuTTY;
SIGNON
 CONNECTREMOTE = myremote
 USERNAME = "jdoe"
 PASSWORD = "x1x2x3x4"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

This produces the following output:

NOTE: Remote SSH signon to myremote starting
ERROR: SSH error occurred : reject HostKey: LCEN7X64D01
NOTE: Remote signon to myremote failed

SSH_IDENTITYFILE
Specifies the location of the SSH identity file used for public key authentication.

SSH_IDENTITYFILE = f ilepath

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 32767
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

filepath
The filename and pathname of the identity file.

The system option can be overridden by the IDENTITYFILE option of the RSUBMIT or SIGNON
statements.

Reference for language elements
Version 4.1

63

Example
In this example, the OPTIONS statement is used to specify the filename of an SSH identity file.

OPTIONS SSH_IDENTITYFILE = 'c:\ssh\ssh-files\id-file';
SIGNON
 CONNECTREMOTE = myremote
 USERNAME = "fdoe"
 PASSWORD = "xyxyxyxyx"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

SYSRPUTSYNC
Specifies whether %SYSRPUT statements are actioned immediately.

SYSRPUTSYNC

CSYSRPUTSYNC

NOSYSRPUTSYNC

NOCSYSRPUTSYNC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSYSRPUTSYNC

Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

The %SYSRPUT statement can be used to retrieve a macro variable from a remote host. This option
determines when %SYSRPUT is performed.

SYSRPUTSYNC
%SYSRPUT statements are performed immediately.

NOSYSRPUTSYNC
%SYSRPUT statements are not performed until a WPS Communicate synchronisation point
occurs.

The system option can be overridden by the CSYSRPUTSYNC option of the RSUBMIT or SIGNON
statements.

Reference for language elements
Version 4.1

64

Example
In this example, the OPTIONS statement is used to specify that %SYSRPUT is actioned only at a
CONNECT synchronisation point.

OPTIONS NOSYSRPUTSYNC

TBUFSIZE
Specifies the buffer size for remote communication.

TBUFSIZE = buffer- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 32768
Minimum value: 0
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

buffer-size
The buffer size for remote communication. The size can entered in bytes, in kilobytes by
appending K, or in megabytes by appending M.

The system option can be overridden by the TBUFSIZE option of the RSUBMIT or SIGNON statements.

If you use PROC OPTIONS to return the value of TBUFSIZE, the value is the number of bytes; it does
not return the value in K or M formats.

Example
In this example, the OPTIONS statement is used to specify that the buffer size is 32Kbytes. PROC
OPTIONS is used to return the value you set.

OPTIONS TBUFSIZE = 32K;
PROC OPTIONS OPTION=TBUFSIZE;

This produces the following output:

TBUFSIZE=32768 Buffer size for remote communication

The value is returned as bytes, not Kbytes.

Reference for language elements
Version 4.1

65

TCPPORTFIRST
Specifies the lowest TCP/IP port number that WPS Communicate can use for the data communication
channel.

TCPPORTFIRST = port- number

Valid in: Configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 65535
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

port-number

The TCP/IP port number.

This system option can be used with TCPPORTLAST to restrict the set of ports, so that different sessions
have known ranges of ports.

Example
In this example, the system option is set on the command line, with the TCPPORTLAST also specified, to
set a range of ports.

wps test.wps -tcpportfirst 1024 -tcpportlast 2028

This sets the lowest port number that can be used by WPS Communicate to 1024.

TCPPORTLAST
Specifies the highest TCP/IP port number that WPS Communicate can use for the data communication
channel.

TCPPORTLAST = port- number

Valid in: Configuration file and command line.
Default: 65535
Minimum value: 0

Reference for language elements
Version 4.1

66

Maximum value: 65535
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

This system option can be used with TCPPORTFIRST to restrict the set of ports, so that different
sessions have known ranges of ports.

port-number

The TCP/IP port number.

Example
In this example, the system option is set on the command line, with the TCPPORTFIRST also specified,
to set a range of ports.

wps test.wps -tcpportfirst 1024 -tcpportlast 2028

This sets the highest port number that can be used by WPS Communicate to 2028.

WPSCOMCOMPRESS
Specifies whether the WPS Communicate data channel uses a compression scheme.

WPSCOMCOMPRESS = CHAR

NONE

RDC

RLE

YES

ZLIB

ZLIB1

ZLIB2

ZLIB3

ZLIB4

ZLIB5

ZLIB6

ZLIB7

ZLIB8

ZLIB9

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

67

Default: NONE

Maximum length: 16
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

If SSH is being used, then prefer SSH compression to WPS compression. WPS compresses all data on
the data channel. Specifying this option might, therefore, decrease throughput.

CHAR
User Ross Data Compression (RDC).

NONE
Do not use a compression scheme.

RDC
User Ross Data Compression (RDC).

RLE
Run-length encoding.

YES
Use RLE encoding.

ZLIB
Use ZLIB compression. This uses the default compression (ZLIB6).

ZLIB1
Use ZLIB compression, level 1.

ZLIB2
Use ZLIB compression, level 2.

ZLIB3
Use ZLIB compression, level 3.

ZLIB4
Use ZLIB compression, level 4.

ZLIB5
Use ZLIB compression, level 5.

ZLIB6
Use ZLIB compression, level 6.

ZLIB7
Use ZLIB compression, level 7.

Reference for language elements
Version 4.1

68

ZLIB8
Use ZLIB compression, level 8.

ZLIB9
Use ZLIB compression, level 9.

Example
In this example, the OPTIONS statement is used to specify that RDC is used.

OPTIONS WPSCOMCOMPRESS=RDC;
SIGNON
 CONNECTREMOTE = myserver
 USERNAME = "jdoe"
 PASSWORD = "x1x2x3x4"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

Communications between the local and remote servers are compressed using RDC.

WPSCOMENCRYPT
Specifies whether the WPS Communicate session data channel is encrypted.

WPSCOMENCRYPT = AES

AES256

NONE

Valid in: OPTIONS statement, configuration file and command line.
Default: NONE

Maximum length: 16
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

If WPS communicates with a server over an SSH connection, there is no need to use WPS encryption
to encrypt the data channel. The data channel is created on a secure SSH connection. Specifying this
option might, therefore, decrease throughput.

Communication with a remote server is encrypted using AES.

Reference for language elements
Version 4.1

69

AES
Use basic AES encryption.

AES256
User AES-256 encryption.

NONE
Do not encrypt communications.

AES encryption requires a key, which can be specified using WPSCOMENCRYPTKEY (page 69).

Example
In this example, the OPTIONS statement is used to specify that basic AES encryption is used.

OPTIONS WPSCOMENCRYPTKEY = aaXXy1 WPSCOMENCRYPT=AES;
SIGNON
 CONNECTREMOTE = myserver
 USERNAME = "jdoe"
 PASSWORD = "x12xx12"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

Communication with the remote server is encrypted using AES.

WPSCOMENCRYPTKEY
Specifies the key to be used by WPSCOMENCRYPT.

WPSCOMENCRYPTKEY = key

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32000
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

70

key
The key used to encrypt WPS Communicate communications. The key specified must be
identical for both client and server. Encoding differences between client and server might cause
the key to appear differently to each.

WPS Communicate sessions are encrypted using the WPSCOMENCRYPT system option.

WPSCOMPROTOCOL
Specifies the protocol used to communicate with a remote WPS server.

WPSCOMPROTOCOL = SAS

WPS

Valid in: OPTIONS statement, configuration file and command line.
Default: WPS

Maximum length: 16
Option group: COMMUNICATIONS

Portable True
Restrictable True
Saveable True

SAS
Use the SAS Connect protocol for compatibility. This protocol might limit the facilities and
capabilities available to the Communicate session.

WPS
Use the WPS protocol.

Example
In this example, the OPTIONS statement is used to specify that the SAS protocol is used.

OPTIONS WPSCOMPROTOCOL=SAS;
SIGNON
 CONNECTREMOTE = myremote
 USERNAME = "AZ"
 PASSWORD = "********"
 SASCMD='/opt/worldprogramming/wps-4/bin/wps -dmr'
 SSH;
RSUBMIT;
 DATA _NULL_;
 PUT "Hello, from the remote computer";
 RUN;
ENDRSUBMIT;
SIGNOFF;

Reference for language elements
Version 4.1

71

DATABASE ENGINE group system options
The system options in this group specify settings for debug tracing for database engines.

CONSIDERXLSXCOLWIDTHS
Specifies that the width of columns defined in an Excel worksheet are used to define the length and
format of variables.

CONSIDERXLSXCOLWIDTHS

NOCONSIDERXLSXCOLWIDTHS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCONSIDERXLSXCOLWIDTHS

Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

The widths of columns in an Excel worksheet can be defined. This width can be used to define the
length and formats of variables in imported datasets. This system option affects worksheets imported
with both the Excel and XLSX data engines.

CONSIDERXLSXCOLWIDTHS

Use worksheet column widths to define the length and format of variables.

NOCONSIDERXLSXCOLWIDTHS
Ignore worksheet column widths. For strings, the length and format of variables is defined by the
length of the longest string. The length of numbers is always eight.

If a column contains strings, and the column width is shorter than the longest string, then the length of
the longest string is used as the length and format of the corresponding variable in WPS.

If a column contains numbers, and the column is shorter than the longest number, then the column
width is used to specify the number format; the length of the number is always eight. For example, if the
number is 10000 but the column is only three characters wide, BEST3. is defined as the format. The
format BEST. is used for all number formats, including currency and accounting. The largest format for
a number is BEST20..

All other Excel worksheet formats are read by WPS as described in the section WPS Engine for Excel.
For example, a column formatted as date-time has the WPS format DATE9., whatever the column
width.

Reference for language elements
Version 4.1

72

Example
In this example, the OPTIONS statement is used to specify that column widths do not define variable
lengths. An Excel worksheet is read that lists library books. The widths of the Title and Author
columns have been respectively formatted as 100 characters wide and 80 characters wide. The
following program reads the worksheet.

OPTIONS NOCONSIDERXLSXCOLWIDTHS;
LIBNAME BOOKS XLSX 'c:\temp\books\lib_books.xlsx';
DATA books_out;
 SET books.sheet1;
 OUTPUT;
RUN;

If you open the properties of the dataset BOOKS_OUT in the WORK library, you can see that the width of
the variables Author and Title have been set to the width of the longest values for those variables,
rather than the column width:

If you had specified CONSIDERXLSXCOLWIDTHS, or left the option value at its default, then the
properties for the dataset created by the DATA step are:

Here, you see that the widths of the formats for Author and Title are the same as those specified in
the Excel worksheet.

Reference for language elements
Version 4.1

73

DBIDIRECTEXEC
Specifies whether SQL procedure statements to create are delete tables are converted to a native
database query.

DBIDIRECTEXEC

NODBIDIRECTEXEC

Valid in: OPTIONS statement, configuration file and command line.
Default: NODBIDIRECTEXEC

Option group: DATABASE ENGINE

Portable False
Restrictable True
Saveable False

DBIDIRECTEXEC

Convert statements to a native database query.

NODBIDIRECTEXEC

Do not convert statements to a native database query.

Example
In this example, the OPTIONS statement is used to specifying that SQL procedure statements are
converted to a native database query.

OPTIONS = DBIDIRECTEXEC

LEGACYDB2ENGINE
Specifies whether the legacy DB2 data engine is used for DB2 interactions..

LEGACYDB2ENGINE

NOLEGACYDB2ENGINE

Valid in: Configuration file and command line.
Default: NOLEGACYDB2ENGINE

Option group: DATABASE ENGINE

Portable True
Restrictable True

Reference for language elements
Version 4.1

74

Saveable True

LEGACYDB2ENGINE
Use the legacy engine. This is the equivalent of specifying DB2OLD as the engine to the
LIBNAME statement.

NOLEGACYDB2ENGINE
Use the current version of the data engine.

Example
In this example, the system option is specified on the command line, and sets the data engine to use as
the legacy version.

WPS c:\temp\test2.wps -LEGACYDB2ENGINE

LEGACYNETEZZAENGINE
Specifies whether the legacy Netezza data engine is used.

LEGACYNETEZZAENGINE

NOLEGACYNETEZZAENGINE

Valid in: Configuration file and command line.
Default: NOLEGACYNETEZZAENGINE

Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

When you specify NETEZZA as a libname, the latest version of the Netezza data engine is used. You
might, however, want to use the legacy version of the data engine. This system option enables you to
do this.

LEGACYNETEZZAENGINE

Use the legacy engine. This is the equivalent of specifying NETEZZAOLD as the engine to the
LIBNAME statement.

NOLEGACYNETEZZAENGINE

Use the current version of the data engine.

Reference for language elements
Version 4.1

75

Example
In this example, the system option is specified on the command line, and sets the data engine to use as
the legacy version.

WPS c:\temp\test2.wps -LEGACYNETEZZAENGINE

LEGACYODBCENGINE
Specifies whether the legacy ODBC data engine is used.

LEGACYODBCENGINE

NOLEGACYODBCENGINE

Valid in: Configuration file and command line.
Default: NOLEGACYODBCENGINE

Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

When you specify ODBC as a libname, the latest version of the ODBC data engine is used. You might,
however, want to use the legacy version of the data engine. This system option enables you to do this.

LEGACYODBCENGINE
Use the legacy engine. This is the equivalent of specifying ODBCOLD as the engine to the
LIBNAME statement.

NOLEGACYODBCENGINE
Use the current version of the data engine.

Example
In this example, the system option is specified on the command line, and sets the data engine to use as
the legacy version.

WPS c:\temp\test2.wps -LEGACYODBCENGINE

Reference for language elements
Version 4.1

76

LEGACYORACLEENGINE
Specifies whether the legacy Oracle data engine is used.

LEGACYORACLEENGINE

NOLEGACYORACLEENGINE

Valid in: Configuration file and command line.
Default: NOLEGACYORACLEENGINE

Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

When you specify ORACLE as a libname, the latest version of the Oracle data engine is used. You
might, however, want to use the legacy version of the data engine. This system option enables you to
do this.

LEGACYORACLEENGINE
Use the legacy engine. This is the equivalent of specifying ORACLEOLD as the engine to the
LIBNAME statement.

NOLEGACYORACLEENGINE
Use the current version of the data engine.

Example
In this example, the system option is specified on the command line, and sets the data engine to use as
the legacy version.

WPS c:\temp\test2.wps -LEGACYORACLEENGINE

LEGACYSQLSERVERENGINE
Specifies whether the legacy SQL Server data engine is used.

LEGACYSQLSERVERENGINE

LEGACYSQLSERVRENGINE

LEGACYSQLSVRENGINE

NOLEGACYSQLSERVERENGINE

NOLEGACYSQLSERVRENGINE

NOLEGACYSQLSVRENGINE

Reference for language elements
Version 4.1

77

Valid in: Configuration file and command line.
Default: NOLEGACYSQLSERVERENGINE

Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

When you specify SQLSERVER as a libname, the latest version of the SQL Server data engine is used.
You might, however, want to use the legacy version of the data engine. This system option enables you
to do this.

LEGACYSQLSERVERENGINE

Use the legacy engine. This is the equivalent of specifying SQLSERVEROLD as the engine to the
LIBNAME statement.

NOLEGACYSQLSERVERENGINE

Use the current version of the data engine.

Example
In this example, the system option is specified on the command line, and sets the data engine to use as
the legacy version.

WPS c:\temp\test2.wps -LEGACYSQLSERVERENGINE

SASTRACE
Specifies the level of debug tracing in the database engines.

SASTRACE = debug- level

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32
Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

debug-level
The level of debug tracing, must be one of:

• ",,,d"

Reference for language elements
Version 4.1

78

The basic level of trace. Returns information on communications with the database, and other
information at a database level.

• ",,d,"

Returns information more detailed information. It returns the information returned by ",,,d" ,
but adds more information at the record level.

Example
In this example, the OPTIONS statement is used to specify the basic level of trace.

OPTIONS SASTRACE = ',,,d'

SASTRACELOC
Specifies the location of the log file to which debug tracing is written.

SASTRACELOC = logf ile

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: DATABASE ENGINE

Portable True
Restrictable True
Saveable True

logfile
The name of the file to which database trace debugging is written. This can be specified as an
operating system path and filename, such as c:\temp\tlog); or as SAS-language system
output file, such as STDOUT or SASLOG; or as a SAS-language filename reference or catalog.

DB2 group system options
The system options in this group specify settings for DB2 database connectivity.

Reference for language elements
Version 4.1

79

DB2IN
Specifies the default DB2 tablespace in which tables are created.

DB2IN = db2- tablespace

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: DB2

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

db2-tablespace
The default tablespace name.

Example
In this example, the OPTIONS statement is used to specify that the default DB2 tablespace is used.

OPTIONS DB2IN = TEMPSPACE1;

DB2READBUFF
Specifies the number of rows to read from DB2.

DB2READBUFF = read- rows

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 1
Maximum value: 32767
Option group: DB2

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Reference for language elements
Version 4.1

80

When rows are requested from a DB2 database, this is the number of rows read and stored in memory.
Larger values consume more memory as buffers are larger, but provide more read-ahead, and so can
improve performance.

read-rows
The number of rows to be read.

Example
In this example, the OPTIONS statement is used to specify the number of rows read.

OPTIONS DB2READBUFF = 10000;

DB2SSID
Specifies the default DB2 subsystem identifier.

DB2SSID = system- ID

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: DB2

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

system-ID
The default DB2 subsystem identifier.

Example
In this example, the OPTIONS statement is used to specify the system identifier.

OPTIONS DB2SSID = DA1A;

Reference for language elements
Version 4.1

81

DBSLICEPARM
Controls how WPS database connections use threaded read operations.

DBSLICEPARM = NONE

THREADED_APPS

ALL

(THREADED_APPS
,

threads)

(ALL
,

threads)

Valid in: OPTIONS statement, configuration file and command line.
Default: THREADED_APPS

Option group: DATABASE ENGINE
DB2

Portable True
Restrictable False
Saveable True

NONE
Multiple threads are not used.

THREADED_APPS
When the keyword THREADED_APPS is specified, the number of available threads is equal to the
number of available CPUs. The number of available threads can be limited by using the threads
option with the THREADED_APPS keyword.

ALL
When only the keyword ALL is specified, the number of available threads is equal to the number
of available CPUs. The number of available threads can be limited by using the threads option
with the ALL keyword.

Example
In this example, the OPTIONS statement is used to specify that multiple threads are not used.

OPTIONS DBSLICEPARM = THREADED_APPS;

EMAIL group system options
The system options in this group specify settings for email connectivity. Email can be sent using the
EMAIL access method for FILENAME.

Reference for language elements
Version 4.1

82

EMAILAUTHDOMAIN
Specifies an authentication domain that supplies email credentials.

EMAILAUTHDOMAIN = unknown- argument

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 80
Option group: EMAIL

Portable False
Restrictable True
Saveable False

You can specify an authentication domain that can be used with the EMAIL access method of the
FILENAME statement. If you use an authentication domain, you might not need to specify the EMAILPW
and EMAILID system options.

unknown-argument
The name of the authentication domain.

Example
In this example, the OPTIONS statement is used to specify that an authentication domain is used for
email access.

OPTIONS EMAILAUTHDOMAIN=myemail.accounts;

EMAILAUTHPROTOCOL
Specifies whether authentication is required when WPS initiates an SMTP email connection.

EMAILAUTHPROTOCOL = LOGIN

NONE

Valid in: OPTIONS statement, configuration file and command line.
Default: NONE

Option group: EMAIL

Portable False
Restrictable True
Saveable False

Reference for language elements
Version 4.1

83

LOGIN

Authentication is required.

NONE

Authentication is not required.

Example
In this example, the OPTIONS statement is used to specify authentication is required.

OPTIONS EMAILAUTHPROTOCOL = LOGIN;

EMAILHOST
Specifies the SMTP server host for the email access method.

EMAILHOST = server- id

Valid in: OPTIONS statement, configuration file and command line.
Default: localhost
Maximum length: 1024
Option group: EMAIL

Portable False
Restrictable True
Saveable False

server-id
The SMTP server name or IP address to use. By default this the host name localhost.

Example
In this example, the OPTIONS statement is used to specify the address of the SMTP server.

OPTIONS EMAILHOST = smtp.ourserver.com;

EMAILID
Specifies the identifier used to authenticate a user when connecting to the SMTP server.

EMAILID = SMPT- login- id

Reference for language elements
Version 4.1

84

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32000
Option group: EMAIL

Portable False
Restrictable True
Saveable False

SMPT-login-id
The user identifier. If the identifier contains spaces, you must enclose it in quotation marks.

Example
In this example, the OPTIONS statement is used to specify the user identifier.

OPTIONS EMAILID = 'SMTP User 1';

EMAILMASQUERADEHOST
Specifies a fully qualified domain name to masquerade as your email domain name.

EMAILMASQUERADEHOST = fdqn

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 1024
Option group: EMAIL

Portable False
Restrictable True
Saveable False

An email masquerade enables you to set the server component of the outgoing email address for
sent SMTP emails, instead of the actual host name of the sending server. The name specified is
used instead of, or in place of, the name specified in the FROM option of the EMAIL access method
of FILENAME. For example, you might want email that would normally appear with the host name
mybigcompany.com to madeupco.co.uk.

fdqn
The fully qualified domain name of the masquerading email address.

Reference for language elements
Version 4.1

85

Example
In this example, the OPTIONS statement is used to specify the email masquerade address.

OPTIONS EMAILMASQUERADEHOST = madeupco.co.uk;

EMAILPORT
Specifies the port number of the SMTP server for the email access method.

EMAILPORT = port- number

Valid in: OPTIONS statement, configuration file and command line.
Default: 25
Minimum value: 0
Maximum value: 2147483647
Option group: EMAIL

Portable False
Restrictable True
Saveable False

port-number
The port number for the SMTP server.

Example
In this example, the OPTIONS statement is used to set the port number used by the SMTP server to
125.

OPTIONS EMAILPORT = 125

EMAILPW
Specifies the password to use when authentication is required to connect to an SMTP server.

EMAILPW = SMTP- login- passwd

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32000
Option group: EMAIL

Reference for language elements
Version 4.1

86

Portable False
Restrictable True
Saveable False

SMTP-login-passwd
The password for the identifier specified in the EMAILID (page 83) system option. If the
password contains spaces, you must enclose it in quotes.

Example
In this example, the OPTIONS statement is used to specify the password for an email.

OPTIONS EMAILHOST = mysimplepassword;

EMAILSTARTTLS
Specifies whether STARTTLS is used to secure SMTP email connections.

EMAILSTARTTLS = AUTO

IGNORE

REQUIRE

Valid in: OPTIONS statement, configuration file and command line.
Default: AUTO

Option group: EMAIL

Portable False
Restrictable True
Saveable False

AUTO
If possible, the SMTP communication channel is secured using TLS encryption before email is
sent over it. Otherwise, the email is sent over an unencrypted channel.

IGNORE
The email is sent over an unencrypted channel. No start TLS negotiation is performed. SMTP
mail transfer fails if the server requires STARTTLS.

REQUIRE
The SMTP communication channel must be secured using TLS encryption before email is sent
over it. If it is not, an error is generated and the email is not sent. the SMTP server must support
STARTTLS.

STARTTLS is a mechanism that changes a plain text connection to an encrypted connection.

Reference for language elements
Version 4.1

87

Example
In this example, the OPTIONS statement is used to specify that STARTTLS is ignored.

OPTIONS EMAILSTARTTLS = IGNORE;

EMAILSYS
Specifies the type of email system.

EMAILSYS = interface- name

Valid in: OPTIONS statement, configuration file and command line.
Default: MAPI

Option group: EMAIL

Portable False
Restrictable True
Saveable False

interface-name
Can be one of :

• CSSMTP

• MAPI

• SMTP

On Windows operating systems, the default value is MAPI; on all other operating systems the default
value is SMTP.

Example
In this example, the OPTIONS statement is used to set the type of email system to SMTP.

OPTIONS EMAILSYS = SMTP;

ENVDISPLAY group system options
The system options in this group define display characteristsics.

Reference for language elements
Version 4.1

88

CHARCODE
Specifies whether character combinations can be used as a substitute for special characters that are
not present on the keyboard.

CHARCODE

NOCHARCODE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCHARCODE

Option group: ENVDISPLAY

Portable True
Restrictable True
Saveable True

CHARCODE
Enable character combinations.

NOCHARCODE
Do not enable character combinations.

This system option enables you to enter characters that are not on the keyboard by using combinations
of characters. If this system option is set, all such character combinations are replaced by the
equivalent character.

Example
In this example, the OPTIONS statement is used to specify that character combinations cannot be used.

OPTIONS NOCHARCODE;

FONTPATH
Specifies search paths to use when locating TrueType fonts.

FONTPATH = path

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 2048
Option group: ENVDISPLAY

Portable False
Restrictable True

Reference for language elements
Version 4.1

89

Saveable False

path
List of paths to search for TrueType fonts. More than one path can be specified. To specify
multiple paths, use the format ('path1' 'path2' ...). See the example below.

Example
In this example, the OPTIONS statement is used to specify a Windows folder containing TrueType fonts:

OPTIONS FONTPATH = c:\work\fonts;

In this example, the OPTIONS statement is used to specify multiple Windows folders containing
TrueType fonts:

OPTIONS FONTPATH = ('c:\work\fonts' 'n:\all\fonts');

XMIN
Specifies whether windows that are opened by commands executed using the X statement, the SYSTEM
function, or the CALL SYSTEM routine are minimised on starting.

XMIN

NOXMIN

Valid in: OPTIONS statement, configuration file and command line.
Default: NOXMIN

Option group: ENVDISPLAY

Portable False
Restrictable True
Saveable True
Supported platform: 64-bit Windows

32-bit Windows

Only the window opened by the specified command is minimised. If a process executed by the
command also opens a window, that window is not minimised. For example, if this system option is set,
and you start Windows Notepad directly using X, the Notepad window is started in its minimized state; if
you start Notepad from the Windows Command Prompt window, then the Command Prompt window is
minimised, but the Notepad window is not.

XMIN

Windows are minimized.

Reference for language elements
Version 4.1

90

NOXMIN

Windows are not minimized.

Basic example
In this example, the OPTIONS statement is used to specify that the operating system command is run in
a default, non-minimised window.

OPTIONS NOXMIN;
X dir c:\temp;

Example - starting application
In this example, the OPTIONS statement is used to specify that an application starts in a minimised
Window.

OPTIONS XMIN;
DATA _NULL_;
 CALL SYSTEM("notepad");
RUN;

The Windows Notepad application starts minimised.

Example - starting application from command prompt
In this example, the OPTIONS statement is used to specify that the Command Prompt window is started
minimized.

OPTIONS XMIN;
DATA _NULL_;
 CALL SYSTEM("start notepad");
RUN;

Specifying the Windows START command first opens the Windows Command Prompt, and applies
the command to start Notepad in that prompt. The Command Prompt window starts minimised, the
Notepad window does not.

XSYNC
Specifies whether to wait for applications or commands, launched through the X statement, the SYSTEM
function, or the CALL SYSTEM routine, to finish before continuing program execution.

XSYNC

NOXSYNC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOXSYNC

Reference for language elements
Version 4.1

91

Option group: ENVDISPLAY

Portable False
Restrictable True
Saveable True
Supported platform: 64-bit Windows

32-bit Windows

An application or command is considered to have finished when the Windows Command Prompt
window is closed, either by the user or by the application or program.

XSYNC
WPS waits before continuing.

NOXSYNC
WPS does not wait and continues program execution.

Example
In this example, the OPTIONS statement is used to specify that the program does not continue to
execute until applications and commands have finished.

OPTIONS XSYNC;
DATA _NULL_;
 rc = SYSTEM('dir c:');
RUN;

The program executes the Windows DIR command in a command window. The SAS language program
stops executing until the command window is closed.

The log shows:

 real time : 2.272
 cpu time : 0.015

The CPU time reflects the time taken to execute the SAS language program. The amount of real time
elapsed also includes the amount of time taken to check the command window and then close it.

If the system option had been set as OPTIONS NOXSYNC, the log might show something similar to:

 real time : 0.017
 cpu time : 0.015

This time, both figures are roughly the same, as the program did not wait for the command window
before continuing.

Reference for language elements
Version 4.1

92

XWAIT
Specifies that a Command Prompt opened using the X statement, the SYSTEM function or the CALL
SYSTEM routine, remains active until you exit from it.

XWAIT

NOXWAIT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOXWAIT

Option group: ENVDISPLAY

Portable False
Restrictable True
Saveable True
Supported platform: 64-bit Windows

32-bit Windows

XWAIT
The Command Prompt window waits for you exit from it.

NOXWAIT
The Command Prompt window does not wait for you to exit from it.

A Windows command can be started from a SAS language program using the X statement, the SYSTEM
function or a CALL SYSTEM routine.

If a command opens a Command Prompt window, then:

• If XWAIT is set, the window remains open until closed
• If NOXWAIT is set, the window only remains open while the command executes.

The SAS language program that invoked the command runs to completion, unless the XSYNC (page
90) system option is set.

Note:
Windows PowerShell has its own option that controls the display of its command window, and is
unaffected by the setting of this system option.

Example
In this example, the OPTIONS statement is used to specify that the Command Prompt window remains
open after the Windows command has executed.

OPTIONS XWAIT;
DATA _NULL_;
 rc = SYSTEM('dir c:');
RUN;

Reference for language elements
Version 4.1

93

The program executes the Windows DIR command in a Command Prompt window. The window
remains open until it is closed.

If the system option had been set as OPTIONS NOWAIT, the Command Prompt window would have
opened very briefly while the command executed, and then closed when the Windows command
finished.

ENVFILES group system options
The system options in this group specify environment settings for files.

ALTLOG
Specifies that a duplicate of the WPS server log is created, and the file name for the duplicate log.

ALTLOG = f ilepath

Valid in: Configuration file and command line.
Maximum length: 256
Option group: ENVFILES

Portable True
Restrictable True
Saveable False

All text written to the WPS server log is automatically copied to the alternative log in the specified
location. Log information from multiple WPS servers cannot be written to the same alternative log file;
you must define an alternative log location for each WPS server. This system option can be restricted
for additional security.

filepath
Specifies the filename for the alternative log file.

The file name can contain naming directives to control the name format. To use the naming
directives, you must specify rollover=auto or rollover=session in the LOGPARM system
option.

Note:
If the filename contains naming directives, and the LOGPARM (page 241) system option is set
to overwrite the existing log (that is, the REPLACE or REPLACEOLD option of LOGPARM has been
set), then the ROLLOVER option of LOGPARM (page 241) must be set to AUTO.

Reference for language elements
Version 4.1

94

Each directive must be preceded by an escape character, either %, or #. On z/OS platforms, you
must use the # escape character.

The literal escape characters can be included in the file by preceding them with another escape
character. For example, ## outputs # as part of the file name.

The supported naming directives are:

A Adds the full name of the day (for example, Sunday) to the file name.
a Adds the abbreviated name of the day (for example, Sun) to the file name.
B Adds the full month name (for example, January) to the file name.
b Adds the abbreviated month name (for example, Jan) to the file name.
C Adds the numeric century value to the file name.
d Adds the numeric day of the month to the file name.
H Adds the hour at which the log was created to the file name.
j Add the numeric Julian day value to the file name.
l Adds the login name to the file name.
m Adds the ordinal numeric month value to the file name, starting at 1 for January to 12 for

December.
M Adds the minute at which the log was created to the file name.
n Adds the unqualified host name of the WPS server host machine to the file name
p Adds the process ID of the WPS server to the file name, enabling you to identify

individual WPS servers where multiple servers run on the same host machine.
s Adds the second at which the log was created to the file name. The log will not roll over

more frequently than once per minute, but will roll over at the first minute boundary after
the log is created.

For example, if the first log is created at 9:00:47, the second is created at 9:01:00, the
third at 9:02:00, and so on.

u Adds the ordinal numeric day of the week in the file name, starting at 1 for Monday to 7
for Sunday.

v Adds a unique identifier to the file name in the form:

<procces-id>v<counter>

The counter is incremented until a unique file name can be created. This directive can
only be used once per file name definition.

W Adds the week number in the year to the file name. The first day of the week is Monday,
and week number one begins on the first Monday of the year. Any days in the year before
the first Monday are treated as week 0 (zero).

w Adds the numeric day of the week to the file name, starting at 0 (zero) for Sunday to 6 for
Saturday.

Y Adds the four-digit year to the file name.

Reference for language elements
Version 4.1

95

y Adds the two-digit year without the century (for example, 08 for 2008) to the file name.

If you use Workbench and specify ALTLOG in a configuration file, to ensure each WPS server writes
information to a different alternative log file you must:

• Specify either the #v, or #p directives in the ALTLOG file name, and
• Specify rollover=auto or rollover=session in the LOGPARM system option.

Basic example
In this example, the system option is specified on the command line, and provides a name and location
for the WPS log.

wps tscript.wps -log c:\temp\op.log -altlog m:\logs\op-alt.log

This directs WPS to write the log output to the file op.log in the folder c:\temp, and to the alternative
log file op-alt.log in the folder m:\logs.

Example – example with filename substitutions
In this example, the system option is specified on the command line, and provides a name and location
for the WPS log.

wps tscript.wps -logparm "rollover = auto"
 -log c:\temp\log%u%H%M.log -altlog m:\logs\log%u%H%M.log

This directs WPS to write the log output in the file log21125.log in the folder c:\temp. In this
filename, various substitutions have been made reflecting the time at which the log was created. %u has
been replaced by 2 (the second day of the week, Tuesday); %H has been replaced by the hour of the
day (11) and %M has been replaced by the minutes past the hour (25). A file with the same name has
been written to the alternative log location, m:\logs.

AUTOEXEC
Specifies whether a file is automatically executed when WPS starts.

AUTOEXEC = f ilepath

NOAUTOEXEC

Valid in: Configuration file and command line.
Maximum length: 1024
Option group: ENVFILES

Appendable True
Portable False
Restrictable False

Reference for language elements
Version 4.1

96

Saveable False

AUTOEXEC

Specifies the name of one or more files to be automatically executed. If more than one filename
is specified, surround the filenames with brackets.

NOAUTOEXEC
No file is automatically executed.

The statements in the program that is autoexecuted are not listed in the log unless the ECHOAUTO
(page 235) system option is set.

Basic Example
In this example, the system option is specified on the command line, and names a program that is
executed when WPS starts.

WPS c:\temp\test2.wps -AUTOEXEC c:\temp\test.wps

test.wps is executed first, and then test2.wps is executed.

The results are written to the log.

NOTE: AUTOEXEC processing beginning; file is c:\temp\test.wps

This program runs first
NOTE: The data step took :
 real time : 0.013
 cpu time : 0.000

NOTE: AUTOEXEC processing completed

1 DATA _NULL_;
2 PUT 'This program runs second';
3 RUN;

This program runs second
NOTE: The data step took :
 real time : 0.029
 cpu time : 0.015

NOTE: Submitted statements took :
 real time : 0.254
 cpu time : 0.156

The statements in the program that is autoexecuted are not listed in the log. If you want list the
statements in the autoexecuted programs, specify the ECHOAUTO system option.

Reference for language elements
Version 4.1

97

Example – specifying more than one program
In this example, the system option is specified on the command line, and names two programs that are
executed when WPS starts.

WPS c:\temp\noo.wps -AUTOEXEC "(c:\temp\tscript3.wps c:\temp\tscript2.wps)"

tscript3.wps is executed first, and then tscript3.wps; finally noo.wps is executed. The
argument to -AUTOEXEC has been specified in quotation marks, because on the Windows command
line, the space between the filenames would otherwise be regarded as a separator between arguments.

The results are written to the log.

NOTE: AUTOEXEC processing beginning: (c:\temp\tscript3.wps c:\temp\tscript2.wps)
NOTE: AUTOEXEC processing: file c:\temp\tscript3.wps

This starts second
NOTE: The data step took :
 real time : 0.002
 cpu time : 0.000

NOTE: AUTOEXEC processing: file c:\temp\tscript2.wps

This starts second
NOTE: The data step took :
 real time : 0.002
 cpu time : 0.000

NOTE: AUTOEXEC processing completed

1 DATA _NULL_;
2
3 PUT 'Hello there!';
4
5 RUN;

Hello there!
NOTE: The data step took :
 real time : 0.007
 cpu time : 0.000

6
7
8
9

NOTE: Submitted statements took :
 real time : 0.089
 cpu time : 0.046

The statements in the programs that are autoexecuted are not listed in the log. If you want list the
statements in the autoexecuted programs, specify the ECHOAUTO system option.

Reference for language elements
Version 4.1

98

FMTSEARCH
Specifies the catalogs to search to locate user formats.

FMTSEARCH = (path)

Valid in: OPTIONS statement, configuration file and command line.
Default: ()
Maximum length: 2048
Option group: ENVFILES

Appendable True
Portable True
Restrictable True
Saveable True

path
One or more catalogs. The catalogs must be enclosed in parentheses.

The paths specified must be two-part names, providing the library name and the catalog name. If you
do not provide a catalog name, it defaults to FORMATS. For example, if you specify FMTSEARCH =
(WORK), the catalog FORMAT in the temporary library WORK is searched for formats.

Example
In this example, the OPTIONS statement is used to specify the path for the user formats.

LIBNAME books "c:\temp\books";
LIBNAME olib "c:\newfmt";
OPTIONS FMTSEARCH = (work, books.sformats, olib);

WPS searches for user formats in the catalog FORMATS in the libraries work and olib, and in the
catalog SFORMATS in the library books.

LOG
Specifies the path and filename for the WPS log.

LOG = f ilepath

Valid in: Configuration file and command line.
Maximum length: 256
Option group: ENVFILES

Reference for language elements
Version 4.1

99

Portable True
Restrictable False
Saveable False

If the specified file already exists, it is overwritten unless you specify LOGPARM (page 241), which
enables you to set various parameters that control what happens to the log file.

filepath
The path and filename.

The log file name can contain naming directives that control the name format for the log file. Each
directive must be preceded by an escape character, either %, or #. On z/OS platforms, you must
use the # escape character.

Note:
If the filename contains naming directives, and the LOGPARM (page 241) system option is set
to overwrite the existing log (that is, the REPLACE or REPLACEOLD option of LOGPARM has been
set), then the ROLLOVER option of LOGPARM (page 241) must be set to AUTO.

Escape characters can be included in the log file name as literal characters by preceding them
with another escape character. For example, ## outputs # as part of the log file name.

The supported naming directives are:

A Adds the full name of the day (for example, Sunday) to the log file name.
a Adds the abbreviated name of the day (for example, Sun) to the log file name.
B Adds the full month name (for example, January) to the log file name.
b Adds the abbreviated month name (for example, Jan) to the log file name.
c Adds the numeric century value to the log file name.
d Adds the numeric day of the month to the log file name.
H Adds the hour at which the log was created to the log file name.
j Add the numeric Julian day value to the log file name.
l Adds the user name to the log file name.
M Adds the minute at which the log was created to the log file name.
m Adds the ordinal numeric month value to the log file name, starting at 1 for January to 12

for December.
n Adds the unqualified host name of the WPS server host machine to the log file name
p Adds the process ID of the WPS server to the log file name, enabling you to identify

individual WPS servers where multiple servers run on the same host machine.
s Adds the second at which the log was created to the log file name. The log will not roll

over more frequently than once per minute, but will roll over at the first minute boundary
after the log is created.

Reference for language elements
Version 4.1

100

For example, if the first log is created at 9:00:47, the second is created at 9:01:00, the
third at 9:02:00, and so on.

u Adds the ordinal numeric day of the week in the log file name, starting at 1 for Monday to
7 for Sunday.

v Adds a unique identifier to the log file name in the form:

process-idvcounter

The counter is incremented until a unique file name can be created. This directive can
only be used once per file name definition.

W Adds the week number in the year to the log file name. The first day of the week is
Monday, and week number one begins on the first Monday of the year. Any days in the
year before the first Monday are treated as week 0 (zero).

w Adds the numeric day of the week to the log file name, starting at 0 (zero) for Sunday to 6
for Saturday.

Y Adds the four-digit year to the log file name.
y Adds the two-digit year without the century (for example, 08 for 2008) to the file name.

If you do not specify this system option, the log file is written to a default location. On z/OS, the default
location is the DD SASLOG. On Windows, the default is the console output. On other platforms, the
default is a filename formed from the name of the input program with the extension replaced by the text
log; for example, for a program myprog.wps, the log file is myprog.log in the same location as the
program

Basic example
In this example, the system option is specified on the command line, and provides a name and location
for the WPS log.

wps c:\temp\test2.wps -log c:\temp\op.log

This directs WPS to write the log output in the file op.log in the folder c:\temp.

Example – example with filename substitutions
In this example, the system option is specified on the command line, and provides a name and location
for the WPS log.

wps tscript.wps -logparm "rollover = auto" -log c:\temp\log%u%H%M.log

This directs WPS to write the log output in the file log21125.log in the folder c:\temp. In this
filename, various substitutions have been made reflecting the time at which the log was created. %u has
been replaced by 2 (the second day of the week, Tuesday); %H has been replaced by the hour of the
day (11) and %M has been replaced by the minutes past the hour (25).

Reference for language elements
Version 4.1

101

NEWS
Specifies the name of a file that contains messages to be written at the top of the log output.

NEWS = f ilepath

NONEWS

Valid in: Configuration file and command line.
Default: <empty-string>
Maximum length: 255
Option group: ENVFILES

LOGCONTROL

Portable True
Restrictable True
Saveable False

NEWS

Messages from the specified filename are written to the log.

NONEWS

News messages are not written to the log.

The messages are written at the top of the log, after information about WPS Analytics.

Example
In this example, the NEWS system option is specified on the command line. The file specified by the
system option contains a message. The results are written to the log.

wps c:\temp\sadd.wps -news c:\temp\logmsg.txt

The file logmsg.txt contains the following:

Good day.
Remember to lock your screen when you leave your desk.

This produces the following output:

NOTE: (c) Copyright World Programming Limited 2002-2019. All rights reserved.
NOTE: World Programming System 4.01 (04.01.00.00.014673)
 Licensed to World Programming Company Ltd, 80 installations
NOTE: This session is executing on the X64_WIN10PRO platform and is running in 64
 bit mode

Good day.
Remember to lock your screen when you leave your desk.

Subsequent lines of the log contain program execution information, as usual.

Reference for language elements
Version 4.1

102

PARM
Specifies a parameter string to pass to external programs.

PARM = program- argument

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 2048
Option group: ENVFILES

Portable True
Restrictable True
Saveable True

program-argument
The parameter string to pass to external programs.

This system option only has an affect when WPS is used on z/OS. When WPS is used with an unknown
procedure is assumed to be an external program. For example, WPS would assume PROC FOO to be
a reference to an external program FOO. This system option enables you to specify parameters that are
passed when the external program is invoked. The format of the parameters depend on the external
program. Parameters are separated by spaces.

PARMCARDS
Specifies the name of a file to use as the PARMCARDS file.

PARMCARDS = f ilepath

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32
Option group: ENVFILES

Portable True
Restrictable True
Saveable True

filepath
The name and path of the file to use.

This only has an affect when WPS is used on z/OS. Any unknown procedure is assumed to be an
external program. For example, WPS would assumePROC FOO to be a reference to an external

Reference for language elements
Version 4.1

103

program FOO. This system option enables you to specify a file containing parameters to pass to the
external program. The format of the parameters depend on the external program.

PRINT
Specifies the name of a file to which the listing output is written.

PRINT = f ilepath

Valid in: Configuration file and command line.
Maximum length: 1024
Option group: ENVFILES

Portable False
Restrictable False
Saveable False

filepath
The path and name of the listing output file.

Example
In this example, the system option is specified on the command line, and names the file to which the
listing is written. The following DATA step creates two variables:

DATA _NULL_;
 x = 2 + 1;
 y = 3;
 FILE PRINT ODS;
 PUT x y;
RUN;

The FILE PRINT ODS statement directs output to a listing file. The command:

wps c:\temp\sadd.wps -print c:\temp\outlst.lst

runs the program and writes the listing output to the file outlst.lst, which is created in the specified
folder.

SASAUTOS
Specifies the list of locations to be searched for autocall macros.

SASAUTOS = l ibrary- specif icat ion

Reference for language elements
Version 4.1

104

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 2048
Option group: ENVFILES

MACRO

Appendable True
Portable True
Restrictable True
Saveable True

This system option provides a list of locations to be searched for unknown macros encountered in SAS
language programs. If an unknown macro is found in a source program, the specified locations are
searched for source files with the name of that macro. If a suitable source file is found it is read and
processed as if it had been included in the source program with the %INCLUDE statement.

You must also specify the MAUTOSOURCE (page 103) system option.

The source file does not have to contain a macro of the same name. The source file might instead
contain only non-macro statements. In this case, a message is written to the log noting that the autocall
member did not contain a macro of the same name. If you run the macro again, an error message is
returned, unless you also set the MRECALL (page 277) system option.

library-specification

One or more locations to be searched. An autocall location can be specified as an operating
system pathname, or as an existing filename reference, or as an external DD card on z/OS.
If multiple locations are specified, enter them in parentheses. For example, to specify one
autocall location SASAUTOS = location-specification; to specify two autocall locations,
SASAUTOS = (location-specification1 location-specification2)

Enter an operating system pathname inside quotation marks.

The length of library-specification can only be 2048 bytes or less.

Example
In this example, the OPTIONS statement is used to specify that there are two autocall locations. The
SASAUTOS option must be used with the MAUTOSOURCE system option.

FILENAME ms1 'c:\temp\macros';
OPTIONS MAUTOSOURCE SASAUTOS=(ms1 'c:\temp\macros2')

If one location contained the file test.wps, and the other the file test2.wps, you could compile and
run the macros in these files by executing:

%test;
%test2;

Reference for language elements
Version 4.1

105

SASHELP
Specifies the location of the SASHELP library.

SASHELP = l ibrary- reference

Valid in: Configuration file and command line.
Maximum length: 8192
Option group: ENVFILES

Appendable True
Portable True
Restrictable True
Saveable False

library-reference
The pathname of the library location.

The SASHELP library is a standard library that is installed when you install WPS, and contains
information that controls features of a WPS session. By default, the library is in the installation location.
For example, on Windows, WPS is by default installed in C:\Program Files\World Programming
\WPS\version, where version is the version number of WPS. You can, however, move or copy the
SASHELP library to another location.

The SASHELP library contains datasets that you might want to customise, such as the MIME type
dataset. If you customise such a dataset, you can save it in a local location rather than the SASHELP
library; the local location can then be specified to this system option by concatenating it with the
SASHELP library location, using the format:

SASHELP = ('local-lib-path' 'installation-sashelp')

where local-lib-path is the path to the local library, and installation-sashelp is the path to the installed
SASHELP library.

Basic example
In this example, the system option is specified on the command line, and specifies the location of
SASHELP when WPS starts.

wps c:\temp\test.wps -sashelp c:\temp\sashlpdir

Example – concatenating locations
In this example, the system option is specified on the command line, and specifies the location of
SASHELP and a local folder that is checked for files before SASHELP.

wps c:\temp\test.wps -sashelp "('c:\temp\localdir'
 'c:\Program Files\World Programming\WPS\4\sashelp')"

Reference for language elements
Version 4.1

106

SASINITIALFOLDER
Specifies the current working directory for the WPS server.

SASINITIALFOLDER = f ilepath

Valid in: Configuration file and command line.
Maximum length: 260
Option group: ENVFILES

Portable False
Restrictable True
Saveable False
Supported platform: AIX for pSeries

64-bit Linux for ARM
Linux for pSeries
Linux (LE) for pSeries
Linux for System z
64-bit Linux for System z
64-bit Linux
32-bit Linux
64-bit Mac O/S
Solararis for SPARC
Solaris for 64-bit x86
Solaris for 32-bit x86
64-bit Windows
32-bit Windows

filepath
The path and filename.

Example
In this example, the system option is specified on the command line, and sets the current working
directory. The option AUTOEXEC is also specified, so an additional program is run. This program is in
the folder specified by SASINITIALFOLDER.

wps c:\temp\test.wps -sasinitialfolder c:\temp\sastmp -autoexec test2.wps

test2.wps is executed first, and then c:\temp\test.wps.

Reference for language elements
Version 4.1

107

SASUSER
Specifies the location of the SASUSER library.

SASUSER = l ibrary- reference

Valid in: Configuration file and command line.
Maximum length: 8192
Option group: ENVFILES

Portable True
Restrictable False
Saveable False

library-reference
The path to the library location.

The SASUSER library contains various files specific to a user. The library is created in a default location
when WPS is installed; for example, on Windows, it is the folder Documents/My WPS Files for a
particular user. You can specify a different location for the library, if required.

Example
In this example, the system option is specified on the command line, and set the path of SASUSER.

WPS c:\temp\test2.wps -SASUSER c:\temp\sastmp

SET
Enables you to set the values of environment variables.

SET = variable- name " variable- value "

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32000
Option group: ENVFILES

Portable False
Restrictable True
Saveable True

Reference for language elements
Version 4.1

108

Environment variables are variables that can be set for a WPS session, and used by SAS language
programs during that session. This enables you to set an item such as a directory pathname once at the
beginning of the session, and then use that item in one or more programs during the session.

variable-name
The name of the environment variable. This is a name you specify that can then be used by
programs during a session.

variable-value

The value for the environment variable. This must be a quoted string. This value can include a
WPS environment variable, a system environment variable, or a Windows constant special item
ID list (CSIDL) value. To include a WPS environment variable or system environment variable,
prefix the string with a ! (exclamation mark). To include a CSIDL value, prefix the string with a ?
(question mark).

For example, SET = tmp 'c:\temp' sets a system variable tmp to the specified path;
SET = tmp '!HOMEPATH' sets a system variable tmp to the specified Windows environment
variable, and therefore to the path specified by that environment variable.

If you specify this system option to the OPTIONS procedure, all environment variables set using this
option in this WPS session are listed, including any set in configuration files when the session started.

Basic example
In this example, the OPTIONS statement is used to specify a system variable.

OPTION SET = tmp "c:\temp";
FILENAME test '!tmp\logmsg.txt';
DATA _NULL_;
 INFILE test;
 INPUT;
 PUT _INFILE_;
RUN;

The system variable tmp has been set to c:\temp. If there is a file logmsg.txt in the folder c:
\temp, the observations in it are read and written to the log.

If you were to then specify SET to the OPTIONS procedure, the tmp variable is listed as an environment
variable, in addition to any options set by configuration files. For example:

PROC OPTIONS OPTION = SET;

This writes the following to the log:

Environment Variables:

 SASAUTOS=('!wpshome\sasmacro')
 tmp=c:\temp

Reference for language elements
Version 4.1

109

Example – using operating system environment variables
In this example, the OPTIONS statement is used to specify a system variable that has the value of an
operating system environment variable.

OPTIONS SET = tmp "?CSIDL_DESKTOP";
FILENAME test '!tmp\logmsg.txt';
DATA _NULL_;
 INFILE test;
 INPUT;
 PUT _INFILE_;
RUN;

The system variable tmp has been set to the CSIDL value CSIDL_DESKTOP. This identifies the folder
used to store Windows desktop items. If there is a file logmsg.txt on the Windows desktop, the
observations in it are read and written to the log. The CSIDL requires that you use the special character
? to identify it.

In this example, if you specify SET to the OPTIONS procedure, the tmp variable is listed as an
environment variable, in addition to any options set by configuration files. For example:

PROC OPTIONS OPTION = SET;

This writes the following to the log:

Environment Variables:

 SASAUTOS=('!wpshome\sasmacro')
 tmp=!CSIDL_DESKTOP

In the log, the CSIDL value is prefixed with an exclamation mark.

SYSIN
Specifies the program file from which source code is read.

SYSIN = f ilepath

Valid in: Configuration file and command line.
Maximum length: 1024
Option group: ENVFILES

Portable False
Restrictable False
Saveable False

filepath
The program file. Also include the pathname of the file if required. On z/OS, this can be a name
specified by a DD statement.

Reference for language elements
Version 4.1

110

On z/OS, you can specify SYSIN=SASIN to read program source from SASIN DD, rather than from the
default SYSIN DD.

Example
In this example, the system option is specified on the command line, and specifies the file containing
the program to be executed.

WPS -SYSIN c:\temp\tscript.wps

SYSPARM
Specifies a character string that is used to initialise the SYSPARM macro variable.

SYSPARM = character- value

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32767
Option group: ENVFILES

Portable True
Restrictable True
Saveable True

character-value
The string to be passed to SYSPARM.

This system option could be used, for example, to pass information from the command line to the
program; in this case, you specify the value on the command line. That value might itself be included in
the command line using some operating system method.

To access the information in a DATA step, use the SYSPARM function, which returns a character string.
To access the information as a macro variable, use the automatic macro variable &SYSPARM.

Basic example
In this example, the OPTIONS statement is used to specify the value passed to the SYSPARM variable.

OPTIONS SYSPARM="Bicycle";
%PUT &SYSPARM;

Bicycle is written to the log.

Reference for language elements
Version 4.1

111

Example – specifying value on the command line
In this example, the option is specified on the command line. The value is then passed to the program.

WPS -sysparm='Bye' m:\wps_test_progs\tscript.wps

Farewell! is written to the log.

The program is:

DATA _NULL_;
 IF SYSPARM() EQ 'Hello' THEN PUT 'Welcome!';
 IF SYSPARM() EQ 'Bye' THEN PUT 'Farewell!';
RUN;

USER
Specifies the default location for all one-level dataset names.

USER = l ibrary- reference

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: ENVFILES

Portable True
Restrictable False
Saveable True

library-reference
The location to be used. It can be specified as a WPS library reference or as an operating system
pathname. If it is a folder or directory, it must exist before use – the directory is not automatically
created on access.

A message is displayed if the directory or folder does not exist:

NOTE: Library USER does not exist

Example
In this example, the OPTIONS statement is used to specify that c:\temp is used as the default library.

OPTIONS USER="c:\temp";

You could then run a program:

DATA out1;
 ovar = 1;
RUN;

Reference for language elements
Version 4.1

112

If the system option USER had not been set, the dataset out1 would have been written in the WORK
library. However, USER has been set, so the out1 is written to the specified folder.

WORK
Specifies the location of the WORK library used for temporary datasets and catalogs.

WORK = locat ion

Valid in: Configuration file and command line.
Maximum length: 1024
Option group: ENVFILES

Portable True
Restrictable False
Saveable False

Each WPS session creates a folder or directory that is used for temporary datasets and catalogs. These
folders or libraries are created in the WORK library. A WORK library location is specified by default when
you install WPS. For example, on Windows, it is C:\Users\user-name\AppData\Local\Temp
\WPS Temporary Data; on Linux, it is /tmp.

This system option enables you to set your own location for the WORK library.

location

The path to the WORK library location.

If the location does not exist, it is created.

Folders in the WORK library location are deleted at the end of the WPS session. If you want to keep
the working datasets you have created, you must also set NOWORKTERM. However, although you can
use NOWORKINIT (page 113) and NOWORKTERM (page 115) to persist files across sessions,
we recommend that you use the SASUSER (page 107) or USER (page 111) system options to
create a location in which you can store permanent files.

Example
In this example, the system option is specified on the command line:

WPS d:\temp\out1.wps -WORK d:\tempwork

Any datasets created by the program out1.wps are written to the folder d:\tempwork. These can
be used while the program is running, but when the session ends, the datasets are deleted.

To retain the datasets, also specify NOWORKTERM:

WPS d:\temp\out1.wps -WORK d:\tempwork -NOWORKTERM

Reference for language elements
Version 4.1

113

WORKINIT
Specifies whether files in the WORK library location are deleted when WPS starts.

WORKINIT

NOWORKINIT

Valid in: Configuration file and command line.
Default: NOWORKINIT

Option group: ENVFILES

Portable True
Restrictable True
Saveable False

If this system option is specified, all pre-existing content in the WORK library location is deleted when the
WPS session starts.

WORKINIT
Delete files.

NOWORKINIT
Do not delete files.

Although NOWORKINIT and NOWORKTERM (page 115) can be used to persist datasets across
sessions, we recommend that you use the SASUSER (page 107) or USER (page 111) system
options to create a location in which you can store files you want to keep.

Example
In this example, the system option is specified on the command line. First, a program is run with the
NOWORKTERM system option so that the datasets are retained in the working location.

WPS c:\temp\out1.wps -NOWORKTERM

Then, the following program is run with the system option specified, so that the session retains the
datasets in the working location:

WPS c:\temp\in1.wps -NOWORKINIT

WORKPERMS
Specifies the permission level of the WORK library location.

WORKPERMS = permissions

Reference for language elements
Version 4.1

114

Valid in: Configuration file and command line.
Default: 700
Maximum length: 3
Option group: ENVFILES

Portable False
Restrictable False
Saveable False
Supported platform: AIX for pSeries

64-bit Linux for ARM
Linux for pSeries
Linux (LE) for pSeries
Linux for System z
64-bit Linux for System z
64-bit Linux
32-bit Linux
64-bit Mac O/S
Solararis for SPARC
Solaris for 64-bit x86
Solaris for 32-bit x86
z/OS for System z

permissions
The permission level. This is expressed using Unix-style octal numeric notation for file system
permissions.

For example, the default setting 700 specifies that the owner can read from, write to, or execute
files in directories the WORK location, but no other user can access the location.

When a WPS session starts a WORK location is created. For example, on Linux, by default the WORK
library location is created as a subdirectory of /tmp. Permissions are set for the WORK location, not for
the directory that contains it.

Example
In this example, the system option is specified on the command line on Linux. A WORK library location is
specified and the permissions set for any directories created in that location.

/opt/wps/bin/wps tscr.wps -work 'temp' -noworkterm -workperms 700

This created a subdirectory temp in the current directory, which is used as the current WORK library
location. The system option NOWORKTERM was also specified so that the working lo

The ls command is then used to display the permissions of the directory:

ls -l temp

Reference for language elements
Version 4.1

115

This displays the listing for the WORK location in temp:

drwx------. 2 sd sd 21 Oct 5 10:33 WPS_work0547000022da_ian-bd-vm2.teamwpc.local

Only the owner has access to the directory.

WORKTERM
Specifies whether files in the WORK library location are deleted when the WPS session finishes.

WORKTERM

NOWORKTERM

Valid in: OPTIONS statement, configuration file and command line.
Default: NOWORKTERM

Option group: ENVFILES

Portable True
Restrictable True
Saveable True

If this system option is specified, all content in the WORK library location is deleted when the WPS
session ends.

WORKTERM
Delete files.

NOWORKTERM
Do not delete files.

Although NOWORKINIT (page 113) and NOWORKTERM can be used to persist datasets across
sessions, we recommend that you use the SASUSER (page 107) or USER (page 111) system
options to create a location in which you can store files you want to keep.

Example
In this example, the system option is specified on the command line. First, a program is run with the
NOWORKTERM system option so that the datasets are retained in the working location.

WPS c:\temp\out1.wps -NOWORKTERM

Then, the following program is run with the system option specified, so that the session retains the
datasets in the working location:

WPS c:\temp\in1.wps -NOWORKINIT

Reference for language elements
Version 4.1

116

WPDDASDLIBNAMEINFO
Specifies that extra information is returned for WPD DASD libraries.

WPDDASDLIBNAMEINFO = EXTENDED

SIMPLE

Valid in: OPTIONS statement, configuration file and command line.
Default: SIMPLE

Option group: ENVFILES

Portable True
Restrictable True
Saveable True
Supported platform: z/OS for System z

This option enables additional information to be reported about DASD libraries:

• The maximum number of blocks that have been used by container.
• The number of blocks that are currently used.
• The number of blocks that are currently free.

EXTENDED
Provide the extra information.

SIMPLE
Do not provide the extra information.

Note:
Specifying this option changes how DICTIONARY.LIBNAME, SASHELP.VLIBNM and LIBNAME LIST
describe a library.

Example
In this example, the OPTIONS statement is used to specifies that extra information is returned for WPD
DASD libraries.

OPTIONS WPDDASDLIBNAMEINFO = EXTENDED;

ERRORHANDLING group system options
The system options in this group specify settings that affect error handling.

Reference for language elements
Version 4.1

117

BYERR
Specifies that an error is generated if a null dataset is used as input to the SORT procedure and there is
no BY variable.

BYERR

NOBYERR

Valid in: OPTIONS statement, configuration file and command line.
Default: NOBYERR

Option group: ERRORHANDLING

Portable True
Restrictable True
Saveable True

BYERR
Generate an error.

NOBYERR
Do not generate an error.

This option controls what happens when a _NULL_ dataset is used with PROC SORT and no BY
variables are specified.

Example
In this example, the OPTIONS statement is used to specify that no error is generated if a null dataset
and no BY variables are specified to PROC SORT.

OPTIONS NOBYERR;
PROC SORT DATA=WORK._NULL_;
BY;

CLEANUP
This system option is provided for compatibility only, and has no effect in WPS.

CLEANUP

NOCLEANUP

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCLEANUP

Option group: ERRORHANDLING

Reference for language elements
Version 4.1

118

Portable True
Restrictable True
Saveable True

CLEANUP
For compatibility only.

NOCLEANUP
For compatibility only.

DSNFERR
Specifies whether an error is generated when a specified dataset does not exist.

DSNFERR

NODSNFERR

Valid in: OPTIONS statement, configuration file and command line.
Default: NODSNFERR

Option group: ERRORHANDLING

Portable True
Restrictable True
Saveable True

DSNFERR

An error is generated.

NODSNFERR

No error is generated and the program continues to run.

Example
In this example, the OPTIONS statement is used to specify that no error is generated if a specified
dataset does not exist.

OPTIONS NODSNFERR;
LIBNAME books 'c:\temp\books';
DATA out;
 SET books.books_new;
 OUTPUT;
RUN;

In this example, the dataset books_new does not exist. The program runs without error.

Reference for language elements
Version 4.1

119

If the system option is set:

OPTIONS NODSNFERR

the program stops and an error message is written to the log:

ERROR: Data set "BOOKS.books_new" not found

ERRORABEND
Specifies whether a program stops running when an error occurs.

ERRORABEND

ERRABEND

NOERRORABEND

NOERRABEND

Valid in: OPTIONS statement, configuration file and command line.
Default: NOERRORABEND

Option group: ERRORHANDLING

Portable True
Restrictable True
Saveable True

ERRORABEND
The program stops.

NOERRORABEND
The program continues. A note is written to the log.

Example
In this example, the OPTIONS statement is used to specify that a program continues to run if an error
occurs.

OPTIONS NOERRORABEND;
DATA _NULL_;
 PUR "The program starts here";
RUN;

DATA _NULL_;
 PUT "The program continues to here";
RUN;

Because NOERRORABEND is set, the error in the first DATA step is noted, but the program continues to
run through the second DATA step.

Reference for language elements
Version 4.1

120

If ERRORABEND had been specified instead, the program would have stopped at the error in the first
DATA step, with the message:

ERROR: The statement "pur" is unknown in this context
ERROR: Processing of the program will terminate because an error has occurred and
 the ERRORABEND
 system option is in effect

ERRORCHECK
Specifies what happens if a file specified to %INCLUDE is missing.

ERRORCHECK

ERRCHECK

= NORMAL

STRICT

Valid in: OPTIONS statement, configuration file and command line.
Default: NORMAL

Maximum length: 10
Option group: ERRORHANDLING

Portable True
Restrictable True
Saveable True

NORMAL
If the specified file does not exist, an error message is written to the log, and the program stops.
The SYSCC automatic macro variable is set to 0.

STRICT
If the specified file does not exist, an error message is written to the log, and the program stops.
The SYSCC automatic macro variable is set to 3000.

Example
In this example, the OPTIONS statement is used to specify that the SYSCC is set to 0 if an included file
does not exist.

FILENAME test 'c:\temp\test.wps';
OPTIONS ERRORCHECK=STRICT;
DATA _NULL_;
 %INCLUDE test1;
RUN;
%LET x = &SYSCC;
%PUT Result code is: &x;

Reference for language elements
Version 4.1

121

This produces the following output:

Result code is: 3000

If ERRORCHECK had been set to NORMAL, then the result is:

Result code is: 0

ERRORS
Specifies the maximum number of observations for which error messages are output.

ERRORS

ERROR

= error- count

Valid in: OPTIONS statement, configuration file and command line.
Default: 20
Minimum value: 0
Maximum value: 2147483647
Option group: ERRORHANDLING

LOGCONTROL

Portable True
Restrictable True
Saveable True

error-count
The number of observations for which error messages are output.

Example
In this example, the OPTIONS statement is used to specify that the program stops producing messages
if the number of errors exceeds five.

OPTIONS ERRORS=5;
LIBNAME books XLSX 'c:\temp\books\books.xlsx';
DATA out;
 SET books.books1;
 IF title EQ 6 THEN OUTPUT;
RUN;

Reference for language elements
Version 4.1

122

The IF statement attempts to compare a character value to a numeric value, which causes an error.
This error is reported in the log for each observation, until the fifth is reached:

WARNING: Limit set by ERRORS= reached : No further messages of this type will be
 printed
N=5 _ERROR_=1 _IORC_=0 Title=English Common Reader, The Type=History
 Author=Altick, Richard D
Read=a Date_Read= Owned=n Y_Total=.

No more errors are reported after this observation.

FMTERR
Specifies whether to treat missing user-defined formats as an error.

FMTERR

NOFMTERR

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFMTERR

Option group: ERRORHANDLING

Portable True
Restrictable True
Saveable True

FMTERR
Missing formats are treated as an error. The program stops running and an error message is
written to the log.

NOFMTERR
Missing formats are not treated as an error. The program continues running. Values to which
formats would have been applied remain unformatted.

Reference for language elements
Version 4.1

123

Example
In this example, the OPTIONS statement is used to specify that no error is generated a user format is
not found. The program creates user formats, but the DATA step has a mistyped format name.

PROC FORMAT;
VALUE txt
1='Zebra'
2='Ocelot'
3='Horse';

OPTIONS NOFMTERR;
DATA _NULL_;
 x = 1;
 FORMAT x tct.;
 PUT 'The animal is: ' x;
RUN;

This produces the following output:

The animal is: 1

The program has run to the end, but the variable has not been formatted.

If FMTERR is set, an error message is written to the log. In this example, the error message is:

ERROR: Format tct was not found or could not be loaded

QUOTELENMAX
Specifies whether to write a warning to the log output when quoted string literals exceed 262
characters.

QUOTELENMAX

NOQUOTELENMAX

Valid in: OPTIONS statement, configuration file and command line.
Default: NOQUOTELENMAX

Option group: ERRORHANDLING

Portable True
Restrictable True
Saveable True

QUOTELENMAX
Print a warning.

NOQUOTELENMAX
Do not print a warning.

Reference for language elements
Version 4.1

124

Example
In this example, the OPTIONS statement is used to specify that a warning is written if quoted string
literals exceed 262 characters.

OPTIONS QUOTELENMAX;
DATA _NULL_;
 z = 'The Magnificent Cycle Company of Dyreham, 1 Forgotten Lane, Hampstead,
 Dyreham,
The Magnificent Car Company of Wessex, 2 Forgotten Lane, Hampstead, Dyreham,
The Esteemed West Country Steel Company, 6 Forgotten Lane, Hampstead, Dyreham,
The Local Cheese Company, 10 Forgotten Lane, Hampstead, Dyreham,
Bread and Cakes, 100 Southleigh Road, Dyreham';
 ll = length(z);
 put 'Length of string is: ' ll;

RUN;

The program runs to the end, and writes the following to the log:

Length of string is: 342
The Magnificent Cycle Company of Dyreham, 1 Forgotten Lane, Hampstead, Dyreham,The
 Magnificent C
ar Company of Wessex, 2 Forgotten Lane, Hampstead, Dyreham,The Esteemed West Country
 Steel Compa
ny, 6 Forgotten Lane, Hampstead, Dyreham,The Local Cheese Company, 10 Forgotten
 Lane, Hampstead,
 Dyreham,Bread and Cakes, 100 Southleigh Road, Dyreham

However, a warning is also written:

WARNING: A quoted string literal has become more than 262 characters in length.
 The literal currently contains: 'The Magnificent Cycle Company of Dyreham,
 1 Forgotten
 Lane, Hampstead, Dyreham,The Magnificent Car Company of Wessex, 2 Forgotten
 Lane,
 Hampstead, Dyreham,The Esteemed West Country Steel Company, 6 Forgotten
 Lane,
 Hampstead, Dyreham,The Local Cheese Company, 10 F'

VNFERR
Specifies whether to generate an error if there are missing variables.

VNFERR

NOVNFERR

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVNFERR

Option group: ERRORHANDLING

Portable True

Reference for language elements
Version 4.1

125

Restrictable True
Saveable True

VNFERR
An error is generated.

NOVNFERR
An error is not generated.

Example
In this example, the OPTIONS statement is used to specify that an error is not generated if there are
missing variables.

DATA short1;
 v1 = 'abc';
 v2 = 1;
 v3=1;
 v4=1;
 OUTPUT;
RUN;

OPTIONS NOVNFERR;
DATA out;
 MERGE short1 _null_;
 BY v1 v2 v3;
 PUT 'Has run to end';
RUN;

In this example, the first DATA step creates dataset with four variables. The second DATA step attempts
to merge the created dataset with a _NULL_ dataset. The _NULL_ dataset does not contain the
variables contained in the BY statement. The second DATA step writes Has run to end to the log.
However, warning messages are also written:

WARNING: BY variable "v1" does not exist in the data set "WORK._null_"
WARNING: BY variable "v2" does not exist in the data set "WORK._null_"
WARNING: BY variable "v3" does not exist in the data set "WORK._null_"

If the system option had been set to NOVNFERR, the second DATA step would have stopped with errors:

ERROR: BY variable "v1" does not exist in the data set "WORK._null_"
ERROR: BY variable "v2" does not exist in the data set "WORK._null_"
ERROR: BY variable "v3" does not exist in the data set "WORK._null_"

EXECMODES group system options
The system options in this group specify environment settings for files.

Reference for language elements
Version 4.1

126

CONFIGFONT
Specifies whether to generate the font configuration installation file.

CONFIGFONT

NOCONFIGFONT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCONFIGFONT

Option group: EXECMODES

Portable True
Restrictable True
Saveable True
Supported platform: AIX for pSeries

64-bit Linux for ARM
Linux for pSeries
Linux (LE) for pSeries
Linux for System z
64-bit Linux for System z
64-bit Linux
32-bit Linux
64-bit Mac O/S
Solararis for SPARC
Solaris for 64-bit x86
Solaris for 32-bit x86
z/OS for System z

CONFIGFONT
Do not generate the font configuration installation file.

NOCONFIGFONT
Do not generate the font configuration installation file.

Example
In this example, the OPTIONS statement is used to specify that the font configuration file is not
generated.

OPTIONS NOCONFIGFONT;

Reference for language elements
Version 4.1

127

DMS
This system option is provided for compatibility only, and has no effect in WPS.

DMS

NODMS

Valid in: Configuration file and command line.
Default: NODMS

Option group: EXECMODES

Portable False
Restrictable True
Saveable False

DMS
For compatibility only.

NODMS
For compatibility only.

If you specify DMS, an error message is displayed.

FONTCACHEDIR
Specifies the location of the WPS font cache directory, used by ODS to cache fonts.

FONTCACHEDIR = pathname

Valid in: Configuration file and command line.
Maximum length: 32767
Option group: INSTALL

Portable False
Restrictable True
Saveable True

The specified directory is used to cache fonts required for ODS PDF fonts.

pathname

The path to the location.

Reference for language elements
Version 4.1

128

This location is only used if necessary to cache the fonts. Some operating systems automatically set up
cache when required, and this is used as a backup location.

Example
In this example, the system option is specified on the command line:

WPS c:\temp\print.wps -FONTCACHEDIR c:\temp\fontcache

INITSTMT
Specifies statements to execute before any submitted SAS language program.

INITSTMT

IS

= statements

Valid in: Configuration file and command line.
Maximum length: 2048
Option group: EXECMODES

Portable True
Restrictable False
Saveable False

statements
The list of statements to execute before a submitted program.

Statements can include procedures, data steps, global statements, and so on. The statements must be
enclosed in double quotations marks (").

Example
In this example, the system option is specified on the command line, and specifies DATA step
statements that are to be run before the submitted DATA step.

wps c:\temp\test.wps -initstmt "DATA _NULL_;PUT 'The initial statements output this
 message';RUN;"

If c:\temp\test.wps contains:

DATA _NULL_;
 PUT 'This program runs after statements in INITSTMT have been processed';
RUN;

Reference for language elements
Version 4.1

129

then the following is written to the log:

The initial statements output this message
NOTE: The data step took :
 real time : 0.014
 cpu time : 0.000

1
2 DATA _NULL_;
3 PUT 'These statements run after statements in INITSTMT have been
 processed';
4 RUN;

These statements run after statements in INITSTMT have been processed
NOTE: The data step took :
 real time : 0.044
 cpu time : 0.000

NOTE: Submitted statements took :
 real time : 0.273
 cpu time : 0.125

LINKINITSTMT
Specify statements to execute on the local server before any program submitted to a WPS Link server.

LINKINITSTMT = statements

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 2048
Option group: EXECMODES

Portable True
Restrictable True
Saveable False

statements

The statements to be executed. These must be enclosed in quotation marks.

statements can contain any SAS language statements. You can use this system option to execute
statements that write information to the log such as user identifiers and the time at which the program
was submitted; for example:

%put Current user: &SYSUSERID;%SYSFUNC(datetime(),datetime22.3);

Reference for language elements
Version 4.1

130

This system option can be useful for recording user activity with the WPS Workbench, providing
information for compliance purposes.

If the system option is used for compliance or security purposes, we recommend that the system
options are restricted, so that users cannot change their values. For information on restricting system
options, see Restricting system options (page 46).

You can also execute statements when the submit to WPS Link has finished; see LINKTERMSTMT
(page 130).

Example
In this example, the OPTIONS statement is used to specify statements to execute before any submitted
program to a WPS Link server.

OPTIONS LINKINITSTMT= "%put The user: &SYSUSERID ran this job with
 process ID: &SYSPROCESSID on: %SYSFUNC(datetime(),datetime22.3);";

The following is written to the log when a WPS Link program is submitted:

Current user: sd ran this job with process ID: 41DBD1EBA430F5C30000000000000000 on:
28FEB2019:16:21:08.689

LINKTERMSTMT
Specify statements to execute on the local server after any program submitted to a WPS Link server.

LINKTERMSTMT = statements

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 2048
Option group: EXECMODES

Portable True
Restrictable True
Saveable False

statements

The statements to be executed. These must be enclosed in quotation marks.

statements can contain any SAS language statements. You can use this system option to execute
statements that write information to the log such as user identifiers and the time at which the program
finished executing; for example:

%put Current user: &SYSUSERID;%SYSFUNC(datetime(),datetime22.3);

Reference for language elements
Version 4.1

131

This system option can be useful for recording user activity with the WPS Workbench, providing
information for compliance purposes.

If the system option is used for compliance or security purposes, we recommend that the system
options are restricted, so that users cannot change their values. For information on restricting system
options, see Restricting system options (page 46).

You can also execute statements when the submit to WPS Link has finished; see LINKTERMSTMT
(page 130).

Example
In this example, the OPTIONS statement is used to specify statements to execute after a program
submitted to a WPS Link server has executed.

OPTIONS LINKTERMSTMT= "%put The user: &SYSUSERID ran this job with
 process ID: &SYSPROCESSID on: %SYSFUNC(datetime(),datetime22.3);";

The following is written to the log after the submitted program has finished executing:

Current user: sd ran this job with process ID: 41DBD1EBA430F5C30000000000000000 on:
28FEB2019:16:22:10.001

JREOPTIONS
Specifies options for the Java Runtime Environment (JRE).

JREOPTIONS = (runt ime- opt ions)

Valid in: Configuration file and command line.
Default: <empty-string>
Maximum length: 32000
Option group: EXECMODES

Appendable True
Portable False
Restrictable True
Saveable False

runtime-options
The options, in parentheses, for the JRE. For example, when set in a configuration file:

-JREOPTIONS ('-Djava.class.path=!wpshome\jars\wpcnet.jar;!wpshome\jars

\wpcjocl.jar;!wpshome\jars\wpsssh.jar')

Reference for language elements
Version 4.1

132

Example
In this example, the option is set in a configuration file:

-JREOPTIONS ('-Djava.class.path=!wpshome\jars\wpcnet.jar;!wpshome\jars
\wpcjocl.jar;!wpshome\jars\wpsssh.jar'

SCANDEFAULTMODIFERS
Specifies the default modifiers for the SCAN DATA step function.

SCANDEFAULTMODIFERS = modif iers

Valid in: Configuration file and command line.
Maximum length: 1024
Option group: EXECMODES

Portable True
Restrictable True
Saveable True

The SCAN DATA step function returns the word at a specified position in a string. Various modifiers can
be set that specify how the string is searched, what characters are viewed as delimiters, what type of
characters are considered, and so on. The modifiers are set to default values by WPS, but you can set
the defaults yourself using this system option.

modifiers

If more than one modifier is specified, specify them as a string without separators; for example,
BMOQ. The modifiers are the same as you would use in the DATA step function. SCAN

Example
In this example, the system option is specified on the command line.

wps -scandefaultmodifiers HM c:\temp\program1.wps

This sets the default modifiers for SCAN to H and M. The program program1.wps contains the DATA
step:

DATA _NULL_;
 result1 = SCAN('london,,,bike,company;;A1', 3, ',;');
 PUT result1=;
RUN;

By default, SCAN treats multiple adjacent separators as one separator. If you set M, adjacent
separators are treated separately. In this example, SCAN returns null as M has been set using
SCANDEFAULTMODIFERS.

Reference for language elements
Version 4.1

133

TERMSTMT
Specifies statements to execute after any submitted SAS language program.

TERMSTMT = statements

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 2048
Option group: EXECMODES

Portable True
Restrictable True
Saveable False

statements
The list of statements to execute after the submitted program.

Statements can include procedures, data steps, global statements, and so on. The statements must be
enclosed in double quotations marks (").

Example
In this example, the system option is specified on the command line, and specifies DATA step
statements that will execute after the submitted DATA step.

wps c:\temp\test.wps -termstmt "DATA _NULL_;PUT 'The terminal statements output this
 message';RUN;"

The file c:\temp\test.wps contains:

DATA _NULL_;
 PUT 'These statements run before statements in TERMSTMT have been processed';
RUN;

Reference for language elements
Version 4.1

134

The following is written to the log:

1 DATA _NULL_;
2 PUT 'These statements run before statements in TERMSTMT have been
 processed';
3 RUN;

These statements run before statements in TERMSTMT have been processed
NOTE: The data step took :
 real time : 0.041
 cpu time : 0.000

The terminal statements output this message
NOTE: The data step took :
 real time : 0.017
 cpu time : 0.000

NOTE: Submitted statements took :
 real time : 0.279
 cpu time : 0.171

EXTFILES group system options
The system options in this group specify settings for external files.

BOMFILE
Specifies whether a Byte Order Mark (BOM) prefix is written to external files that have Unicode
encoding.

BOMFILE

NOBOMFILE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOBOMFILE

Option group: EXTFILES

Portable True
Restrictable True
Saveable True

BOMFILE
Write a BOM prefix.

Reference for language elements
Version 4.1

135

NOBOMFILE
Do not write a BOM prefix.

Example
In this example, the OPTIONS statement is used to specify that no byte order mark is written.

OPTIONS NOBOMFILE;

CAPSOUT
Specifies whether listing output written to an MVS file is converted to upper case.

CAPSOUT

NOCAPSOUT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCAPSOUT

Option group: EXTFILES

Portable True
Restrictable True
Saveable True
Supported platform: z/OS for System z

CAPSOUT
Convert output to upper case.

NOCAPSOUT
Do not convert output to upper case.

Example
In this example, the OPTIONS statement is used to specify that output is not converted to upper case.

OPTIONS CAPSOUT;

FILEBLKSIZE(3375)
Specifies the default block size for data libraries on 3375 devices.

FILEBLKSIZE(3375) = block- size

Reference for language elements
Version 4.1

136

Valid in: OPTIONS statement, configuration file and command line.
Default: 17600
Minimum value: 5
Maximum value: 32760
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(3375) = 15552

FILEBLKSIZE(3380)
Specifies the default block size for data libraries on 3380 devices.

FILEBLKSIZE(3380) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 23476
Minimum value: 5
Maximum value: 32760
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Reference for language elements
Version 4.1

137

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(3375) = 17600;

FILEBLKSIZE(3390)
Specifies the default block size for data libraries on 3390 devices.

FILEBLKSIZE(3390) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 27998
Minimum value: 5
Maximum value: 32760
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify that connections continue to exist after
ENDRSUBMIT statements.

OPTIONS FILEBLKSIZE(3390) = 15552;

FILEBLKSIZE(3400)
Specifies the default block size for data libraries on 3400 devices.

FILEBLKSIZE(3400) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 32760

Reference for language elements
Version 4.1

138

Minimum value: 5
Maximum value: 32760
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(3400) = 15552;

FILEBLKSIZE(3480)
Specifies the default block size for data libraries on 3480 devices.

FILEBLKSIZE(3480) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 32760
Minimum value: 5
Maximum value: 65535
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Reference for language elements
Version 4.1

139

Example
In this example, the OPTIONS statement is used to specify that connections continue to exist after
ENDRSUBMIT statements.

OPTIONS FILEBLKSIZE(3480) = 27998;

FILEBLKSIZE(3490E)
Specifies the default block size for data libraries on 3490E devices.

FILEBLKSIZE(3490E) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 32760
Minimum value: 5
Maximum value: 65535
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(3490E) = 17600;

FILEBLKSIZE(3590)
Specifies the default block size for data libraries on 3590 devices.

FILEBLKSIZE(3590) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 32760

Reference for language elements
Version 4.1

140

Minimum value: 5
Maximum value: 262144
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(3590) = 27998;

FILEBLKSIZE(9345)
Specifies the default block size for data libraries on 9345 devices.

FILEBLKSIZE(9345) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 22928
Minimum value: 5
Maximum value: 32760
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Reference for language elements
Version 4.1

141

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(9345) = 15552;

FILEBLKSIZE(DISK)
Specifies the default block size for external files on DISK devices.

FILEBLKSIZE(DISK)

FILEBLKSIZE(DASD)

= block- size

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 8
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(DISK) = 15552;

FILEBLKSIZE(OTHER)
Specifies the default block size for external files on OTHER devices.

FILEBLKSIZE(OTHER) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 6400
Minimum value: 5
Maximum value: 6400

Reference for language elements
Version 4.1

142

Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(OTHER) = 32000;

FILEBLKSIZE(SYSOUT)
Specifies the default block size for external files on SYSOUT devices.

FILEBLKSIZE(SYSOUT) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 264
Minimum value: 5
Maximum value: 264
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(SYSOUT) = 128;

Reference for language elements
Version 4.1

143

FILEBLKSIZE(TAPE)
Specifies the default block size for external files on TAPE devices.

FILEBLKSIZE(TAPE) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 8
Option group: EXTFILES

Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(TAPE) = 256;

FILEBLKSIZE(TERM)
Specifies the default block size for external files on TERM devices.

FILEBLKSIZE(TERM) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 264
Minimum value: 5
Maximum value: 264
Option group: EXTFILES

Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify the block size.

OPTIONS FILEBLKSIZE(TERM) = 256;

Reference for language elements
Version 4.1

144

FILECC
Specifies whether external datasets are checked for the PRINT attribute.

FILECC

NOFILECC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFILECC

Option group: EXTFILES

Supported platform: z/OS for System z

FILECC
Check datasets.

NOFILECC
Do not check datasets.

Example
In this example, the OPTIONS statement is used to specify that external datasets are not checked for
the PRINT attribute.

OPTIONS NOFILECC;

FILEDEV
Specifies the default device to be used for new physical files on z/OS.

FILEDEV = device- name

Valid in: OPTIONS statement, configuration file and command line.
Default: SYSDA
Maximum length: 8
Option group: EXTFILES

SASFILES

Supported platform: z/OS for System z

device-name
The name of the default device. This can be up to eight characters long.

Reference for language elements
Version 4.1

145

Example
In this example, the OPTIONS statement is used to specify that the default device is VIO.

OPTIONS FILEDEV=VIO;

FILEMSGS
Specifies whether to write messages to the log about the results of dynamic allocations using DDNAME.

FILEMSGS

NOFILEMSGS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFILEMSGS

Option group: EXTFILES
SASFILES

Supported platform: z/OS for System z

FILEMSGS
Write messages to the log.

NOFILEMSGS
Do not write messages to the log.

A message written to the log during dynamic allocation has the following form:

1 message from dynalloc
1GD103I SMS ALLOCATED TO DDNAME CAT SYS0008

Example
In this example, the OPTIONS statement is used to specify that dynamic allocation log messages are
not display.

OPTIONS NOFILEMSGS;

FILESPPRI
Specifies the default primary space allocation for new physical files.

FILESPPRI = default- space

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

146

Default: 1
Minimum value: 1
Maximum value: 32760
Option group: EXTFILES

SASFILES

Supported platform: z/OS for System z

default-space

The default primary space allocation.

The space is allocated in the units specified by the system option FILEUNIT (page 147).

Example
In these examples, the OPTIONS statement is used to specify the size of the primary space allocation.

OPTIONS FILEUNIT = CYL FILESPPRI = 2;

This sets the default primary space allocation to two cylinders.

OPTIONS FILEUNIT = 1024 FILESPPRI = 56;

This sets the default primary space allocation to 56 units of 1024 bytes, or 57,344 bytes.

FILESPSEC
Specifies the default secondary space allocation for new physical files.

FILESPSEC = default- space

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 0
Maximum value: 32760
Option group: EXTFILES

SASFILES

Supported platform: z/OS for System z

default-space

The default secondary space allocation.

The space is allocated in the units specified by the system option FILEUNIT (page 147).

Reference for language elements
Version 4.1

147

Example
In these examples, the OPTIONS statement is used to specify the size of the secondary space
allocation.

OPTIONS FILEUNIT = CYL FILESPPRI = 1;

This sets the default secondary space allocation to one cylinders.

OPTIONS FILEUNIT = 1024 FILESPPRI = 56;

This sets the default secondary space allocation to 57,344 bytes.

FILESTAT
Specifies whether to maintain ISPF member statistics in partitioned datasets (PDS) or extended
partitioned datasets (PDSE).

FILESTAT

NOFILESTAT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFILESTAT

Option group: EXTFILES

Supported platform: z/OS for System z

FILESTAT
Maintain ISPF member statistics in partitioned data sets.

NOFILESTAT
Do not maintain ISPF member statistics in partitioned data sets.

Example
In this example, the OPTIONS statement is used to specify that ISPF member statistics are not
maintained in partitioned data sets.

OPTIONS NOFILESTAT;

FILEUNIT
Specifies the default unit of allocation for new physical files.

FILEUNIT = block- size

Reference for language elements
Version 4.1

148

Valid in: OPTIONS statement, configuration file and command line.
Default: CYL
Maximum length: 8
Option group: EXTFILES

SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size
The default block-size. The size can be specified as a number of bytes, or as a string. The string
can be:

BLKS or BLK Blocks

CYLS or CYL Cylinders

TRKS or TRK Tracks

This option enables you to specify the default unit of allocation as either a number of bytes or as an
element of disk storage, such as a cylinder or track. These units can then be specified to other system
options, such as FILESPPRI and FILESPSEX. For example, you might set the default unit of allocation
as blocks. You can then use this as the unit to when specifying FILESPPRI. Setting FILESPPRI = 16
would then set the primary space allocation for new physical files to 16 blocks. The number of bytes
that this specifies depends on the type of device to which the allocation applies. If you specify the
default unit as a number of bytes, that number of bytes is used as the unit. For example, you might set
the default unit of allocation as 1024 bytes; specifying FILESPPRI = 24 would then set the primary
space allocation for new physical files to 24576 bytes.

Example
In this example, the OPTIONS statement is used to specify the default unit of allocation.

OPTIONS FILEUNIT = TRK;

The default unit of allocation is tracks.

OPTIONS FILEUNIT = 2048;

The default unit of allocation is 2048 bytes.

Reference for language elements
Version 4.1

149

LRECL
Specifies the default record length for input and output files.

LRECL = record- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 256
Minimum value: 1
Maximum value: 32767
Option group: EXTFILES

Portable True
Restrictable True
Saveable True

record-length

The default record length.

Example
In this example, the OPTIONS statement is used to specify the default record length.

OPTIONS LRECL=320;

S99NOMIG
Specifies whether to restore migrated datasets.

S99NOMIG

NOS99NOMIG

Valid in: OPTIONS statement, configuration file and command line.
Default: NOS99NOMIG

Option group: EXTFILES
SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Reference for language elements
Version 4.1

150

S99NOMIG
Restore migrated data sets.

NOS99NOMIG
Do not restore migrated data sets.

Example
In this example, the OPTIONS statement is used to specify that migrated datasets are not restored.

OPTIONS NOS99NOMIG;

SYSPREF
Specifies a prefix for partially-qualified physical file names.

SYSPREF = prefix

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 42
Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

prefix

The prefix for the high-level qualifier. By default, the host system's default high-level qualifier is
used.

SYSTEMLOCALEENCODING
Specifies that filenames created in a WPS session are transcoded using the device's locale.

SYSTEMLOCALEENCODING

NOSYSTEMLOCALEENCODING

Valid in: Configuration file and command line.

Reference for language elements
Version 4.1

151

Default: NOSYSTEMLOCALEENCODING

Option group: EXTFILES

Portable False
Restrictable True
Saveable True

This system options enables a filename created using the session encoding to be transcoded to the
system locale encoding when writing the file to a device. For example, if a WPS session using Latin1
session encoding creates a file on a device using UTF-8 encoding, the filename is transcoded correctly.

SYSTEMLOCALEENCODING

Filenames are transcoded to the device locale.

NOSYSTEMLOCALEENCODING

Filenames are not transcoded to the device locale.

This system options applies to WPS on Linux and UNIX, not z/OS, Windows or Macintosh.

Example
In this example, the OPTIONS statement is used to specify that filenames are transcoded.

OPTION SYSTEMLOCALEENCODING;

TRANSACTEDFILELOCKINGBLOCKS
Specifies what happens when a dataset cannot be opened for read or write because another process
has locked it.

TRANSACTEDFILELOCKINGBLOCKS

NOTRANSACTEDFILELOCKINGBLOCKS

Valid in: OPTIONS statement, configuration file and command line.
Option group: EXTFILES

Portable True
Restrictable True
Saveable True

A process cannot open a dataset or catalog for a read or write operation if another process already has
access to the file. Use this option to specify what happens if the file cannot be locked.

Reference for language elements
Version 4.1

152

TRANSACTEDFILELOCKINGBLOCKS

The process will request a lock, and then wait for the current activity on the file to finish and for its
own lock to be granted. Any other activity on the file by any other process is blocked.

NOTRANSACTEDFILELOCKINGBLOCKS

If a process cannot access the file, the operation fails. The process waits for the file to become
available but times out with an error and terminates the current process.

Example
In this example, the OPTIONS statement is used to specify that if a transacted file operation is blocked,
the operation does not wait for the file to be released.

OPTION NOTRANSACTEDFILELOCKINGBLOCKS;

VSAMLEENGINE
Specifies whether to use the old or new VSAM engines in WPS.

VSAMLEENGINE

NOVSAMLEENGINE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVSAMLEENGINE

Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

VSAMLEENGINE
Use the old VSAM engine.

NOVSAMLEENGINE
Use the new VASM engine.

The old VSAM engine uses the IBM Language Environment, whereas the new VSAM engine does not.

Example
In this example, the OPTIONS statement is used to specify that new VSAM engine is used.

OPTIONS NOVSAMLENGINE;

Reference for language elements
Version 4.1

153

VSAMLOAD
Specifies whether empty VSAM datasets can be loaded.

VSAMLOAD

NOVSAMLOAD

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVSAMLOAD

Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

VSAMLOAD
Empty VSAM datasets can be loaded.

NOVSAMLOAD
Empty VSAM datasets cannot be loaded.

Example
In this example, the OPTIONS statement is used to specify that empty VSAM datasets cannot be
loaded.

OPTIONS NOVSAMLOAD;

VSAMREAD
Specifies whether a VSAM dataset can be read using an INFILE statement.

VSAMREAD

NOVSAMREAD

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVSAMREAD

Option group: EXTFILES

Portable False
Restrictable True
Saveable True

Reference for language elements
Version 4.1

154

Supported platform: z/OS for System z

VSAMREAD
A VSAM dataset can be read.

NOVSAMREAD
A VSAM dataset cannot be read.

Example
In this example, the OPTIONS statement is used to specify that a VSAM dataset cannot be read.

OPTIONS NOVSAMREAD;

VSAMRLS
Enables record-level sharing for VSAM datasets.

VSAMRLS

NOVSAMRLS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVSAMRLS

Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

VSAMRLS
Record-level sharing is enabled.

NOVSAMRLS
Record-level sharing is disabled.

Example
In this example, the OPTIONS statement is used to disable record-level sharing for VSAM datasets.

OPTIONS NOVSAMRLS;

Reference for language elements
Version 4.1

155

VSAMRLSREAD
Specifies whether the level of integrity for VSAM read operations can be set.

VSAMRLSREAD

NOVSAMRLSREAD

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVSAMRLSREAD

Option group: EXTFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

VSAMRLSREAD
Level of integrity can be set.

NOVSAMRLSREAD
Level of integrity cannot be set.

Example
In this example, the OPTIONS statement is used to specify that the VSAM read operations cannot be
set.

OPTIONS VSAMRLSREAD;

VSAMUPDATE
Specifies whether a VSAM dataset opened using an INFILE statement can be updated.

VSAMUPDATE

NOVSAMUPDATE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOVSAMUPDATE

Option group: EXTFILES

Portable False
Restrictable True
Saveable True

Reference for language elements
Version 4.1

156

Supported platform: z/OS for System z

VSAMUPDATE
A VSAM dataset can be updated.

NOVSAMUPDATE
A VSAM dataset cannot be updated.

Example
In this example, the OPTIONS statement is used to specify that VSAM datasets opened with the
INFILE statement cannot be updated.

OPTIONS NOVSAMUPDATE;

FLE_CONTROL group system options
Specifies system options that control how WPS handles Python and R.

PYTHONHOME
Specifies the location of the Python installation.

PYTHONHOME = f ilepath

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: FLE_CONTROL

INSTALL

Portable True
Restrictable True
Saveable True

filepath
The location of the Python installation.

The Python installation location contains all the resources required to run a Python program; specifying
the location enables WPS to run Python programs using the PYTHON procedure. The location must
contain the python.exe executable to enable Python to run.

Reference for language elements
Version 4.1

157

Example
In this example, the option is specified on the command line.

wps c:\temp\sadd.wps -pythonhome "c:\program files\python"

The Python resources are found in the specified folder, and the program sadd.wps is executed.

PYTHONKEEP
Specifies whether to retain the Python environment after the Python procedure finishes.

PYTHONKEEP

NOPYTHONKEEP

Valid in: OPTIONS statement, configuration file and command line.
Default: NOPYTHONKEEP

Option group: FLE_CONTROL

Portable True
Restrictable True
Saveable True

PYTHONKEEP
Retain the Python environment.

NOPYTHONKEEP
Do not retain the Python environment.

If PYTHONKEEP is specified, the Python environment is retained throughout the session, unless the
TERMINATE option of a PROC PYTHON statement is specified, in which case the environment is
terminated.

Reference for language elements
Version 4.1

158

Example
In this example, the OPTIONS statement is used to specify that the Python environment is kept.

OPTIONS PYTHONKEEP;
PROC PYTHON;
SUBMIT;
msg = "Hello World!"
print (msg)
ENDSUBMIT;
RUN;

PROC PYTHON;
SUBMIT;
print (msg)
ENDSUBMIT;
RUN;

The first program writes Hello World! to the location specified by the default ODS settings. Because
the Python environment is retained, the second program also writes a message to the same location.

If NOPYTHONKEEP was set (the default), the Python environment is not retained, and the program fails.
The following message is written to the log:

NOTE: NameError
NOTE: :
NOTE: name 'msg' is not defined

RKEEP
Specifies whether to retain the R environment after the R procedure finishes.

RKEEP

NORKEEP

Valid in: OPTIONS statement, configuration file and command line.
Default: NORKEEP

Option group: FLE_CONTROL

Portable True
Restrictable True
Saveable True

RKEEP
Retain the R environment.

NORKEEP
Do not retain the R environment.

Reference for language elements
Version 4.1

159

If RKEEP is specified, the R environment is retained throughout the session, unless the TERMINATE
option of a PROC R statement is specified, in which case the environment is terminated.

Example
In this example, the OPTIONS statement is used to specify that the R environment is not kept.

OPTIONS RKEEP;
PROC R;
SUBMIT;
 myString <- "Hello, World!"
 print (myString)
ENDSUBMIT;
RUN;

PROC R;
SUBMIT;
 print (myString)
ENDSUBMIT;
RUN;

The first program writes Hello World! to the location specified by the default ODS settings. Because
the T environment is retained, the second program also writes a message to the same location.

If NORKEEP is set (the default), the Python environment is not retained, and the program fails. The
following message is written to the log:

Error in print(myString) : object 'myString' not found

GRAPHICS group system options
Specifies system options that apply to graphics devices.

DEVICE
Specifies the device to be used for graphical output.

DEVICE

DEV

= device- name

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 8
Option group: GRAPHICS

Portable True
Restrictable False

Reference for language elements
Version 4.1

160

Saveable False

device-name
The name of the device to use. The device can be one of GIF, JPG, PNG, PDF, SVG,
MULTI:PDF.

Example
In this example, the OPTIONS statement is used to specify that graphical output is written to PNG.

OPTIONS DEVICE = PNG;

MAPS
Specifies the location that contains map datasets.

MAPS = maps- source

Valid in: Configuration file and command line.
Maximum length: 8192
Option group: GRAPHICS

Appendable True
Portable True
Restrictable True
Saveable False

maps-source
The location.

By default, map datasets provided by WPS are stored in the installation location. For example,
on Windows, the map datasets are stored in the folder installation-folder/maps, where
installation-folder is the folder in which WPS was installed. This system option enables you to find map
datasets in a specified location.

Example
In this example, the location of the map is specified on the command line.

wps -maps 'c:\temp\maps' mapprog.wps

The GMAP procedure uses the mapping dataset required by mapprog.wps that is located in the folder
c:\temp\maps.

Reference for language elements
Version 4.1

161

HUB group system options

HUB_AUTOLIBS
Specifies whether all libraries specified in the Hub are automatically available for use by programs.

HUB_AUTOLIBS

NOHUB_AUTOLIBS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOHUB_AUTOLIBS

Option group: HUB

Portable True
Restrictable True
Saveable True

HUB_AUTOLIBS
Libraries are available.

NOHUB_AUTOLIBS
Libraries are not available.

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

Example
In this example, the OPTIONS statement is used to specify that all libnames specified in the Hub are
available to a program.

OPTIONS HUB_AUTOLIBS;

HUB_PORT
Specifies the port number of the WPS Hub server.

HUB_PORT = hub_port

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

162

Default: 8080
Minimum value: 1
Maximum value: 65535
Option group: HUB

Portable True
Restrictable True
Saveable True

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

hub_port
The port number.

Example
In this example, the OPTIONS statement is used to specify the WPS Hub port.

OPTIONS HUB_PORT = 8082;

HUB_PROTOCOL
Specifies whether to use HTTP or HTTPS to connect to the WPS Hub server.

HUB_PROTOCOL = hub_protocol

Valid in: OPTIONS statement, configuration file and command line.
Default: HTTPS

Option group: HUB

Portable True
Restrictable True
Saveable True

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

hub_protocol
The protocol to use:

• HTTP

• HTTPS

Reference for language elements
Version 4.1

163

Example
In this example, the OPTIONS statement is used to specify that HTTP is used to connect to WPS HUB.

OPTIONS HUB_PROTOCOL = HTTP;

HUB_PWD
Specifies the password required to log in to WPS Hub.

HUB_PWD = hub_pwd

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 80
Option group: HUB

Appendable False
Portable True
Restrictable True
Saveable False

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

hub_pwd
The password.

You can create an encoded password using the PWENCODE DATA step function, or the PWENCODE
procedure.

Example
In this example, the OPTIONS statement is used to specify the password used to connect to WPS HUB.

OPTIONS HUB_PWD = HTTP;

HUB_SERVER
Specify the URL of the WPS Hub server.

HUB_SERVER = hub_server

Reference for language elements
Version 4.1

164

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 255
Option group: HUB

Appendable False
Portable True
Restrictable True
Saveable True

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

hub_server
The URL.

Example
In this example, the OPTIONS statement is used to specify the URL of WPS Hub.

OPTIONS HUB_SERVER = credentials-store;

HUB_TOKEN
Specifies a token to connect to the Web server.

HUB_TOKEN = hub_token

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 32767
Option group: HUB

Appendable False
Portable True
Restrictable True
Saveable True

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

hub_token
A token to be used as authorisation.

Reference for language elements
Version 4.1

165

A token is generated using the hub.

Example
In this example, the OPTIONS statement is used to specify that all libnames specified in the Hub are
available to a program.

OPTIONS HUB_TOKEN = "xJ1yHb2zZ";

HUB_USER
Specifies the password required to log in to WPS Hub.

HUB_USER = hub_user

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 80
Option group: HUB

Appendable False
Portable True
Restrictable True
Saveable True

WPS Hub provides a central location for user credentials and resources that can be used with SAS
language programs. For more information on WPB Hub, see the WPS Hub User Guide.

hub_user
The user name.

Example
In this example, the OPTIONS statement is used to specify the user name required to connect to WPS
HUB.

OPTIONS HUB_USER = "FredSmith";

IMS group system options
Specifies system options for the IMS.

Reference for language elements
Version 4.1

166

IMSDLDBR
Specifies whether IMS sets the DBRC parameter when it invokes an IMS DLI region.

IMSDLDBR = *

N

Y

Valid in: OPTIONS statement, configuration file and command line.
Default: Y

Option group: IMS

Portable False
Restrictable False
Saveable True
Supported platform: z/OS for System z

*

Use the subsystem default.

N

The DBRC parameter is not set.

Y

The DBRC parameter is set.

Example
In this example, the OPTIONS statement is used to specify that the subsystem default is used.

OPTIONS IMSDLDBR = *;

INPUTCONTROL group system options
System options that control input.

Reference for language elements
Version 4.1

167

CAPS
Specifies whether strings specified in comparison operations are converted to upper case.

CAPS

NOCAPS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCAPS

Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

CAPS
Convert comparison strings to upper case.

NOCAPS
Do not convert comparison strings to upper case.

This system option can be useful if you want to run the same program with datasets that have similar
variables, but where those values differ in case. By setting the system option appropriately, you can
ensure that the same condition matches only the values in upper case. If the system option is set, any
new strings added are also converted to upper case.

Example
In this example, the OPTIONS statement is used to specify that strings in the comparisons are treated
as upper case.

OPTIONS CAPS;
DATA test;
 INPUT author $13. title $20.;
 if author EQ "Rendell, Ruth" then do;
 newob = CATX(' ', author, title, 'Novel');
 put newob ;
 end;
datalines;
Rendell, Ruth Going Wrong
ReNdElL, RUTH The Bridesmaid
RENDELL, RUTH The Tree of Hands
;

This produces the following output:

RENDELL, RUTH The Tree of Hands NOVEL

Reference for language elements
Version 4.1

168

Only one of the observations is written to the log, the one in which the string in the author variable
consists entirely of upper-case characters. Neither value containing lower-case letters matches the
condition. The string Novel, which is concatenated to the other values, is also converted to upper-case
characters.

CARDIMAGE
This system option is provided for compatibility only, and has no effect in WPS.

CARDIMAGE

NOCARDIMAGE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCARDIMAGE

Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

CARDIMAGE

For compatibility only.

NOCARDIMAGE

For compatibility only.

DATASTMTCHK
Specifies whether dataset names can be the same as SAS language keywords.

DATASTMTCHK = ALLKEYWORDS

COREKEYWORDS

NONE

Valid in: OPTIONS statement, configuration file and command line.
Default: COREKEYWORDS

Option group: INPUTCONTROL

Portable True
Restrictable True

Reference for language elements
Version 4.1

169

Saveable True

ALLKEYWORDS
No WPS-recognised, SAS-language keyword can be used as a dataset name.

COREKEYWORDS
The keywords MERGE, RETAIN, SET and UPDATE cannot be used as dataset names.

NONE
Keywords can be used as dataset names.

By default, all SAS language keywords can be used as dataset names, except those associated with
dataset and variable operations listed under COREKEYWORDS. You might, however, want to ensure that
no dataset can be accidentally overwritten because keywords and dataset names are the same, in
which case you can set ALLKEYWORDS.

Example
In this example, the OPTIONS statement is used to specify that no keywords can be used as dataset
names.

OPTIONS DATASTMTCHK = ALLKEYWORDS;

If you were to then run the following DATA step:

DATA WHERE;
 x = 2 +1;
 OUTPUT;
RUN;

an error message is written to the log:

ERROR: Dataset name 'WHERE' is invalid due to system option DATASTMTCHK=ALLKEYWORDS

DATESTYLE
Specifies how date-like and time-like values are interpreted by the ANYDTDTEw., ANYDTDTMw., and
ANYDTTMEw. informats.

DATESTYLE = DMY

DYM

LOCALE

MDY

MYD

YDM

YMD

Reference for language elements
Version 4.1

170

Valid in: OPTIONS statement, configuration file and command line.
Default: LOCALE

Option group: INPUTCONTROL
LANGUAGECONTROL

Portable True
Restrictable True
Saveable True

The ANYDTDTEw., ANYDTDTMw.and ANYDTTMEw. informats convert into a numeric date value any
input that has a format that looks like a date, time or datetime. The value you enter for this system
option specifies how dates read into a program are interpreted for these informats. For example,
10/11/12 has different meanings depending on locale; 10 November 2012 in the UK, or 11 October
2012 in the US.

DMY
Date-like values are interpreted by the informats as day, month, year.

DYM
Date-like values are interpreted by the informats as day, year, month.

LOCALE
Date-like values are interpreted by the informats according to the current locale for the WPS
session. The current locale is specified when the session starts based on the setting of

MDY
Date-like values are interpreted by the informats as month, day, year.

MYD
Date-like values are interpreted by the informats as month, year, day.

YDM
Date-like values are interpreted by the informats as year, day, month.

YMD
Date-like values are interpreted by the informats as year, month, day.

Example
In this example, the OPTIONS statement is used to specify that input dates are interpreted as day,
month, and year.

OPTIONS DATESTYLE = MDY;
DATA _NULL_;
 INPUT dt ANYDTDTE9.;
 PUT 'Numeric output = ' dt;
 PUT 'Reformatted output based on numeric date:' dt WORDDATX18.;
CARDS;
12/10/18
;

Reference for language elements
Version 4.1

171

This produces the following output:

Numeric output = 21528
Reformatted output based on numeric date: 10 December 2018

The input data could be read as either the 12th of October in UK date format, or the 10th of December
in US date format. However, because the system option is set as MDY, the input data is assumed to be
in month, day, year format (US date format). The ANYDTDTE9. informat therefore returns a numeric
date based on the US date format. The numeric date is then output as a formatted date string that has
the equivalent US date, as shown in the line that begins Reformatted output, where the date is 10
December 2018.

DYNAMICNOBS
Specifies when the NOBS variable is set.

DYNAMICNOBS

NODYNAMICNOBS

Valid in: OPTIONS statement, configuration file and command line.
Default: NODYNAMICNOBS

Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

A variable can be specified to the NOBS keyword into which is written the number of observations in a
dataset. You can specify that the value for the NOBS variable is set:

• Only once, when the DATA step is run.
• When the DATA step is run, and then when a SET or MODIFY statement in the DATA step is

executed.

DYNAMICNOBS

Set the NOBS variable when the DATA step is run, and when SET or MODIFY is executed.

NODYNAMICNOBS

Set NOBS variable only when the DATA step is parsed.

Reference for language elements
Version 4.1

172

Basic example
In this example, the OPTIONS statement is used to specify that NOBS is only set when the DATA step is
run.

OPTIONS NODYNAMICNOBS;

INVALIDDATA
This system option is provided for compatibility only, and has no effect in WPS.

INVALIDDATA = character

Valid in: OPTIONS statement, configuration file and command line.
Default: .
Maximum length: 1
Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

character
For compatibility only.

S
Specifies the length of source statements and data lines.

S = l ine- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 2147483647
Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

173

line-length
The length of source statements and data lines in the program. This can be specified as:

• A number; for example, if you enter 80, line consists of 80 characters.
• A number of lines multiplied by 1,024, or by 1,0242, by appending K or M to the value,

respectively. For example, if the value is 0.1K, the line length is 102 characters.
• MAX – the maximum supported value.

If line-length is set to 0 (zero), the length of source statements and data lines is unlimited.

If you set this system option and the length of one or more lines in the source exceeds the value
specified, the program does not execute properly and errors are generated because, for example, a
keyword might be truncated or the line termination not found.

If you truncate data lines using this option, and the informats on your INPUT statement specify a length
greater than the truncated line, errors occur because the INPUT reads past the end of line.

Note:
By default, various ODS statements run before a program starts. Therefore, if you set this system
option, the default ODS statements are not affected by the option. However, in Workbench, options
remain set until you set a new value or restart the server. If the value of this option is set to a value
smaller than the longest ODS statement, then, when the next program is run, that ODS statement fails
unless the option is reset or Workbench restarted.

Example
In this example, the OPTIONS statement is used to specify the line length for source and data lines.

OPTIONS S = 200;

S2
Specifies the length of secondary source statements, such as those in included files.

S2 = l ine- length

S

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

174

line-length

The length of secondary source statements.

If line-length is set to 0 (zero), the length of secondary source statements is unlimited.

S
Use the value assigned to the S system option as the maximum line-length. This is the default.

If you truncate data lines using this option, and the informats on your INPUT statement specify a length
greater than the truncated line, errors will occur because the INPUT reads past the end of line.

Example
In this example, the OPTIONS statement is used to specify the line length for secondary source.

OPTIONS S2 = 500;

SEQ
Specifies the number of digits to remove from the numeric part of the sequence number field in lines of
source.

SEQ = numeric- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 8
Minimum value: 1
Maximum value: 8
Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

Use this option to remove sequence numbers from source codes.

numeric-length

The number of digits. This can be specified as:

• A number; for example, you can enter 4.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Reference for language elements
Version 4.1

175

If the numeric-length is greater than 0 (zero), and sequence numbers are found, the specified number
of digits is removed from the sequence number.

Example
In this example, the OPTIONS statement is used to specify that sequence numbers over four digits long
are removed.

OPTIONS SEQ = 4

Assuming the sequence numbers in subsequent programs to be four digits long, then all sequence
numbers are removed.

SEQNUMFEACH
Specifies that sequence numbers are checked and removed on a per line basis.

SEQNUMFEACH

NOSEQNUMFEACH

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSEQNUMFEACH

Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

SEQNUMFEACH
Each source input line is checked to see if it has a sequence number. If it does, then the number
of digits specified by SEQ are removed from the sequence number.

NOSEQNUMFEACH
The first source input line is checked for a sequence number. If it has one, then all lines are
assumed to have sequence numbers, and the number of digits specified by SEQ are removed
as sequence numbers. If the first source line does not have a sequence number, all lines are
assumed to not have sequence numbers.

Example
In this example, the OPTIONS statement is used to specify that sequence numbers are four digits long
and that the presence or absence of sequence numbers is checked only at the first source line.

OPTIONS SEQ = 4 NOSEQNUMFEACH;

Reference for language elements
Version 4.1

176

Assuming the sequence numbers in subsequent source lines to be four digits long, and that the first line
contains a sequence number, then all sequence numbers are removed.

SPOOL
This system option is provided for compatibility only, and has no effect in WPS.

SPOOL

NOSPOOL

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSPOOL

Option group: INPUTCONTROL

Portable False
Restrictable True
Saveable False

SPOOL

For compatibility only.

NOSPOOL

For compatibility only.

STDIO
Specifies the default streams used for input, output, and error reporting.

STDIO

NOSTDIO

Valid in: Configuration file and command line.
Default: NOSTDIO

Option group: INPUTCONTROL

Portable False
Restrictable False
Saveable False

Reference for language elements
Version 4.1

177

STDIO
Use standard streams:

• Input – standard input (stdin)
• Output – standard output (stdout)
• Error reporting – standard error (stderr)

NOSTDIO
Use the values set for the corresponding system options:

• Input – SYSIN
• Output – LOG
• Error reporting – PRINT

Example
In this example, the system option is specified on the command line, and sets the input, output and
error reporting streams to the values of the SYSIN, LOG and PRINT system options.

WPS c:\temp\test2.wps -NOSTDIO;

VBUFSIZE
Specifies the size of the buffer used when executing a view in parallel.

VBUFSIZE = buffer- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 65536
Minimum value: 0
Maximum value: Maximum integer value supported by the system.
Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

buffer-size

The maximum buffer size available, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 21000.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 0.5G, the buffer size is 0.5 GiB.

Reference for language elements
Version 4.1

178

• The number of bytes specified in hexadecimal, by appending X. For example, if the value is
BBC2X, the buffer size is 48066 bytes.

• MIN – the minimum supported value.
• MAX – the maximum supported value.

The value of the OBSBUF dataset option overrides this system option.

Example
In this example, the OPTIONS statement is used to specify that the view buffer is 0.25 mebibytes.

OPTIONS VBUF = 0.25M;

XCMD
Specifies whether the X statement is available for use.

XCMD

NOXCMD

Valid in: Configuration file and command line.
Default: NOXCMD

Option group: INPUTCONTROL

Portable False
Restrictable True
Saveable False

XCMD
The X statement is available.

NOXCMD
The X statement is not available.

The X gobal statement enables you to run operating system commands from a SAS language program.

Example
In this example, the system option is specified on the command line, and disables the X statement.

WPS c:\temp\testx.wps NOXCMD

Reference for language elements
Version 4.1

179

The file testx.wps contains only one line, the statement X DIR. However, the statement cannot run
because NOXCMD has been specified. The log contains the following messages:

ERROR: The X statement is disabled by the System Option "NOXCMD"
ERROR: Error printed on page 1

YEARCUTOFF
Specifies the starting year from which two-digit years in functions and formats are calculated.

YEARCUTOFF = year- value

Valid in: OPTIONS statement, configuration file and command line.
Default: 1920
Minimum value: 1582
Maximum value: 19900
Option group: INPUTCONTROL

Portable True
Restrictable True
Saveable True

year-value
The starting year.

For example, the default year cut off is 1920. Any two-digit year is assumed to fall within the century
from 1920 to 2020. The two-digit year 05 is, therefore, 2005, while the two-digit year 20 is 1920.

Example
In this example, the OPTIONS statement is used to specify the starting year for two-digit years.

OPTION YEARCUTOFF=1900;
DATA _NULL_;
 x = '16-JUN-02'D;
 PUT x DATE11.;
RUN;

This writes the following to the log:

16-JUN-1902

If the option had not been set, the default year of 1920 is used as the cut off, and the result is:

16-JUN-2002

Reference for language elements
Version 4.1

180

INSTALL group system options
System options that specify the location of installed files.

FONTCACHEDIR
Specifies the location of the WPS font cache directory, used by ODS to cache fonts.

FONTCACHEDIR = pathname

Valid in: Configuration file and command line.
Maximum length: 32767
Option group: INSTALL

Portable False
Restrictable True
Saveable True

The specified directory is used to cache fonts required for ODS PDF fonts.

pathname

The path to the location.

This location is only used if necessary to cache the fonts. Some operating systems automatically set up
cache when required, and this is used as a backup location.

Example
In this example, the system option is specified on the command line:

WPS c:\temp\print.wps -FONTCACHEDIR c:\temp\fontcache

PATH
Specifies paths to the location of user-provided extensions for user programs.

PATH = f ilepath

Valid in: Configuration file and command line.
Maximum length: 32000
Option group: INSTALL

Reference for language elements
Version 4.1

181

Portable False
Restrictable True
Saveable False

filepath

The pathname of the location containing the user-provided extensions.

This system option enables you to start WPS and find executable components located elsewhere.

Example
In this example, the option is specified on the command line.

wps c:\temp\noo.wps -path 'c:\temp'

The folder c:\temp is searched for any user-provded extensions required by the progam noo.wps.

USSWPSHOME
Specifies the location of the USS WPS installation.

USSWPSHOME = pathname

Valid in: Configuration file and command line.
Maximum length: 32767
Option group: INSTALL

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

The location of the USS WPS installation is required for some MVS WPS functionality to complete
successfully, such as using outline fonts for charting, graphing, and generating reports in PDF files.

pathname
The path to the location of the USS WPS installation.

Any job that uses ODS PDF must be run with this option set to the appropriate location.

Note:
Users are prompted to provide this system option if they run the @fontcfg.cntl job, which is part of
the installation process on z/OS.

Reference for language elements
Version 4.1

182

Example
In this example, the option is specified on the command line.

/u/products/worldprogramming/bin/wps -usswpshome /u/products/worldprogramming
 script.wps

ISPF group system options
System options that control ISPF operations and specify variables for ISPF.

ISPCAPS
Specifies whether to convert to upper case any lower case characters in arguments to the ISPF call
routines.

ISPCAPS

NOISPCAPS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPCAPS

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPCAPS

Convert characters.

NOISPCAPS

Do not convert characters.

Example
In this example, the OPTIONS statement is used to specify that lower-case characters are not converted
to upper case characters in the ISPF call routines.

OPTIONS NOISPCAPS;

Reference for language elements
Version 4.1

183

ISPCHARF
Specifies whether to convert printable characters in arguments to the ISPF call routines using their
associated formats and informats.

ISPCHARF

NOISPCHARF

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPCHARF

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPCHARF
Convert printable characters.

NOISPCHARF
Do not convert printable characters.

Example
In this example, the OPTIONS statement is used to specify that printable characters in arguments in the
ISPF call routines cannot be converted using formatting.

OPTIONS NOISPCHARF;

ISPCSR
Specifies a variable that will be used by the ISPF interface to store the name of a variable whose value
is found to be invalid.

ISPCSR = ispf- varname

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False

Reference for language elements
Version 4.1

184

Restrictable True
Saveable True
Supported platform: z/OS for System z

ispf-varname
The name of the variable.

Example
In this example, the OPTIONS statement is used to specify the name of a variable used to store the
name of a variable whose value is found to be invalid..

OPTIONS ISPCSR = INVVSTR;

ISPEXECV
Specifies an ISPF variable that when accessed, starts an ISPF service.

ISPEXECV = ispf- varname

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ispf-varname
The name of the variable.

Example
In this example, the OPTIONS statement is used to specify the name of a variable.

OPTIONS ISPEXECV = ISTRT;

Reference for language elements
Version 4.1

185

ISPMISS
Specifies a value that is assigned to WPS character variables that have been defined in ISPF when the
associated ISPF variable has length zero.

ISPMISS = character

Valid in: OPTIONS statement, configuration file and command line.
Default:
Maximum length: 1
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

character
The value to be assigned.

Example
In this example, the OPTIONS statement is used to specify the value to use.

OPTIONS ISPMISS = *;

ISPMSG
Specifies the name of an ISPF variable that contains a message identifier that is accessed when a
variable is found to be invalid.

ISPMSG = ispf- varname

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Reference for language elements
Version 4.1

186

ispf-varname
Name of the variable name that holds the message identifier.

Example
In this example, the OPTIONS statement is used to specify the name of a variable.

OPTIONS ISPMSG = INVMSGID;

ISPNOTES
Specifies whether to write ISPF error messages to the WPS log.

ISPNOTES

NOISPNOTES

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPNOTES

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPNOTES
Write ISPF error messages to the WPS log.

NOISPNOTES
Do not write ISPF error messages to the WPS log.

Example
In this example, the OPTIONS statement is used to specify that error messages are not written to the
WPS log.

OPTIONS NOISPNOTES;

Reference for language elements
Version 4.1

187

ISPNUMF
Specifies whether WPS converts numeric variables using associated formats and informats when the
variables are used as ISPF variables.

ISPNUMF

NOISPNUMF

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPNUMF

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPNUMF
Convert numeric values.

NOISPNUMF
Do not convert numeric values.

Example
In this example, the OPTIONS statement is used to that specify that numeric variables are not
converted.

OPTIONS ISPCSR = NOISPNUMF;

ISPNZTRC
Specifies whether non-zero ISPF service return codes are written to the WPS log.

ISPNZTRC

NOISPNZTRC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPNZTRC

Option group: ISPF

Portable False
Restrictable True

Reference for language elements
Version 4.1

188

Saveable True
Supported platform: z/OS for System z

ISPNZTRC
Write non-zero ISPF service return codes to the WPS log.

NOISPNZTRC
Do note write non-zero ISPF service return codes to WPS log.

Example
In this example, the OPTIONS statement is used to specify that non-zero ISPF service return codes are
not written to the WPS log.

OPTIONS NOISPNZTRC;

ISPPT
Specifies whether ISPF parameter pointers and lengths are written to the WPS log.

ISPPT

NOISPPT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPPT

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPPT
Write ISPF parameter pointers and lengths to the WPS log.

NOISPPT
Do not write ISPF parameter pointers and lengths to the WPS log.

Example
In this example, the OPTIONS statement is used to specify that ISPF parameter pointers and lengths
are not written to the WPS log.

OPTIONS NOISPPT;

Reference for language elements
Version 4.1

189

ISPTRACE
Specifies whether ISPF parameter lists and service return codes are written to the WPS log.

ISPTRACE

NOISPTRACE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPTRACE

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPTRACE
Write parameter lists and service return codes to the WPS log.

NOISPTRACE
Do not write parameter lists and service return codes to the WPS log.

Example
In this example, the OPTIONS statement is used to specify that ISPF parameter lists and service return
codes are not written to the WPS log.

OPTIONS NOISPTRACE;

ISPVDEFA
Specifies whether current WPS variables are identified to ISPF via the VDEFINE user exit.

ISPVDEFA

NOISPVDEFA

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPVDEFA

Option group: ISPF

Portable False
Restrictable True
Saveable True

Reference for language elements
Version 4.1

190

Supported platform: z/OS for System z

ISPVDEFA
Identify variables to ISPF using VDEFINE user exit.

NOISPVDEFA
Do not identify variables to ISPF using VDEFINE user exit.

Example
In this example, the OPTIONS statement is used to specify that variables are not identified to ISPF
using VDEFINE.

OPTIONS NOISPVDEFA;

ISPVDLT
Specifies whether the VDELETE service automatically deletes a variable from ISPF before it is defined
using the VDEFINE service.

ISPVDLT

NOISPVDLT

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPVDLT

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPVDLT
Delete the variable automatically.

NOISPVDLT
Do not delete the variable automatically.

Example
In this example, the OPTIONS statement is used to specify that the VDELETE command is not issued
automatically.

OPTIONS NOISPVDLT;

Reference for language elements
Version 4.1

191

ISPVDTRC
Specifies whether to write a message to the WPS log on each call to VDEFINE.

ISPVDTRC

NOISPVDTRC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPVDTRC

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPVDTRC
Write a note to the WPS log.

NOISPVDTRC
Do not write a note to the WPS log.

For each call to VDEFINE, a message is written to the WPS log.

Example
In this example, the OPTIONS statement is used to specify that calls to VDEFINE are noted in the WPS
log.

OPTIONS NOISPVDTRC;

ISPVIMSG
Specifies the ISPF message identifier to be set by the VDEFINE user exit when an informat for a
variable returns an error code.

ISPVIMSG = message- id

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Reference for language elements
Version 4.1

192

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

message-id
The message identifier to be set by the VDEFINE user exit.

This system option enables you to specify the message identifier that is returned by the VDEFINE user
exit returns to ISPF if an informat cannot define the input (for example, if the input is invalid).

Example
In this example, the OPTIONS statement is used to specify the message identifier.

OPTIONS ISPVIMSG = EXID;

ISPVRMSG
Specifies the ISPF message identifier to be set by the VDEFINE user exit when a variable has a null
value.

ISPVRMSG = message- id

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

message-id
The message identifier to be set by the VDEFINE user exit.

Example
In this example, the OPTIONS statement is used to specify a message identifier set by the VDEFINE
user exit for a null value.

OPTIONS ISPVRMSG = NLVID ;

Reference for language elements
Version 4.1

193

ISPVTMSG
Specifies the ISPF message identifier to be set by the VDEFINE user exit when the ISPVTRAP option
is in effect.

ISPVTMSG = message- id

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

message-id
The message identifier to be set by the VDEFINE user exit.

Example
In this example, the OPTIONS statement is used to set a message identifier.

OPTIONS ISPVTMSG = VTMSGID;

ISPVTNAM
Restricts the information returned by the ISPVTRAP option to a specified variable only.

ISPVTNAM = variable- name

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Reference for language elements
Version 4.1

194

variable-name
The variable for which to display information.

Example
In this example, the OPTIONS statement is used to restrict information displayed by the ISPVTRAP
option to the variable ISID.

OPTIONS ISPVTNAM = ISID;

ISPVTPNL
Specifies which ISPF panel the VDEFINE user exit displays when the ISPVTRAP option is in effect.

ISPVTPNL = panel- id

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

panel-id
The identifier of the panel to display.

Example
In this example, the OPTIONS statement is used to specify the ISPF panel to display.

OPTIONS ISPVTPNL = PAN1ONTR;

ISPVTRAP
Specifies whether the VDEFINE user exit writes debugging information to the WPS log each time it is
entered.

ISPVTRAP

NOISPVTRAP

Reference for language elements
Version 4.1

195

Valid in: OPTIONS statement, configuration file and command line.
Default: NOISPVTRAP

Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

ISPVTRAP
Write debugging information to the WPS log.

NOISPVTRAP
Do not write debugging information to the WPS log.

You can display information for only one variable by specifying that variable in the ISPVTNAM (page
193) system option.

Example
In this example, the OPTIONS statement is used to specify that the VDEFINE user exit does not write
debugging information to the WPS log each time it is entered.

OPTIONS NOISPVTRAP;

ISPVTVARS
Specifies the prefix for the ISPF variables to be set by the VDEFINE user exit when the ISPVTRAP
option is in effect.

ISPVTVARS = prefix

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 7
Option group: ISPF

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Reference for language elements
Version 4.1

196

prefix
The prefix for ISPF variables.

Example
In this example, the OPTIONS statement is used to specify a prefix.

OPTIONS ISPVTVARS = XVIAVD;

LANGUAGECONTROL group system options
System options that control encoding, language and date formats.

CHARTRANUNMAPPABLE
Specifies what happens when a character cannot be mapped in the session character set.

CHARTRANUNMAPPABLE = ESC

ESCAPE

SKIP

STOP

SUBST

SUBSTITUTE

Valid in: OPTIONS statement, configuration file and command line.
Default: SUBSTITUTE

Option group: LANGUAGECONTROL

Portable True
Restrictable True
Saveable True

This system option enables you to specify what happens when transcoding a character from one
character set to another character when that character cannot be represented in the target character
set.

ESC

The character is replaced with the Unicode code point for the character.

ESCAPE

The character is replaced with the Unicode code point for the character.

Reference for language elements
Version 4.1

197

SKIP

The character is skipped.

STOP

The program stops, and a message is written in the log.

SUBST

The character is replaced with the substitute character.

SUBSTITUTE

The character is replaced with the substitute character.

Example – skipping unmappable characters
In this example, the OPTIONS statement is used to specify that unmappable characters are skipped.

OPTION CHARTRANUNMAPPABLE = SKIP;

The following program is then run:

FILENAME test "c:\temp\outtext.txt";
DATA _null_;
 file test;
 format result $20.;
 result = kCVT('ca†food','utf8','latin1');
 put result;
RUN;

The resulting file contains the text cafood.

Example – replacing unmappable characters with substitute
In this example, the OPTIONS statement is used to specify that unmappable characters are replaces
with the substitution character.

OPTION CHARTRANUNMAPPABLE = SUBST;

The following program is then run:

FILENAME test "c:\temp\outtext.txt";
DATA _NULL_;
 FILE test;
 FORMAT result $20.;
 result = KCVT('ca†food','utf8','latin1');
 PUT result;
RUN;

The resulting file contains the text ca▯food, where the ▯ represents the substitution character (x1A in
Latin1).

Reference for language elements
Version 4.1

198

Example – replacing unmappable characters with escape
In this example, the OPTIONS statement is used to specify that unmappable characters are replaced
with the Unicode code point for escape.

OPTION CHARTRANUNMAPPABLE = SUBST;

The following program is then run:

FILENAME test "c:\temp\outtext.txt";
DATA _null_;
 format result $14.;
 file test;
 result = KCVT('ca†food','utf8','latin1');
 put result;
RUN;

The resulting file contains the text ca{U+FFFD}food, where {U+FFFD} is the code point for the † .

DATESTYLE
Specifies how date-like and time-like values are interpreted by the ANYDTDTEw., ANYDTDTMw., and
ANYDTTMEw. informats.

DATESTYLE = DMY

DYM

LOCALE

MDY

MYD

YDM

YMD

Valid in: OPTIONS statement, configuration file and command line.
Default: LOCALE

Option group: INPUTCONTROL
LANGUAGECONTROL

Portable True
Restrictable True
Saveable True

The ANYDTDTEw., ANYDTDTMw.and ANYDTTMEw. informats convert into a numeric date value any
input that has a format that looks like a date, time or datetime. The value you enter for this system
option specifies how dates read into a program are interpreted for these informats. For example,
10/11/12 has different meanings depending on locale; 10 November 2012 in the UK, or 11 October
2012 in the US.

Reference for language elements
Version 4.1

199

DMY
Date-like values are interpreted by the informats as day, month, year.

DYM
Date-like values are interpreted by the informats as day, year, month.

LOCALE
Date-like values are interpreted by the informats according to the current locale for the WPS
session. The current locale is specified when the session starts based on the setting of

MDY
Date-like values are interpreted by the informats as month, day, year.

MYD
Date-like values are interpreted by the informats as month, year, day.

YDM
Date-like values are interpreted by the informats as year, day, month.

YMD
Date-like values are interpreted by the informats as year, month, day.

Example
In this example, the OPTIONS statement is used to specify that input dates are interpreted as day,
month, and year.

OPTIONS DATESTYLE = MDY;
DATA _NULL_;
 INPUT dt ANYDTDTE9.;
 PUT 'Numeric output = ' dt;
 PUT 'Reformatted output based on numeric date:' dt WORDDATX18.;
CARDS;
12/10/18
;

This produces the following output:

Numeric output = 21528
Reformatted output based on numeric date: 10 December 2018

The input data could be read as either the 12th of October in UK date format, or the 10th of December
in US date format. However, because the system option is set as MDY, the input data is assumed to be
in month, day, year format (US date format). The ANYDTDTE9. informat therefore returns a numeric
date based on the US date format. The numeric date is then output as a formatted date string that has
the equivalent US date, as shown in the line that begins Reformatted output, where the date is 10
December 2018.

Reference for language elements
Version 4.1

200

DDEXLANG
Specifies the DDE triplet characters accessed through the FILENAME DDEX command.

DDEXLANG = supported- language

Valid in: OPTIONS statement, configuration file and command line.
Default: ENGLISH

Option group: LANGUAGECONTROL

Portable True
Restrictable False
Saveable True

supported-language
A string that specifies a corresponding, supported language, and must be one of:

• AFRIKAANS

• CATALAN

• CROATIAN

• CZECH

• DANISH

• DUTCH

• ENGLISH

• FINNISH

• FRENCH

• GERMAN

• HUNGARIAN

• ITALIAN

• LOCALE

• MACEDONIAN

• NORWEGIAN

• POLISH

• PORTUGUESE

• RUSSIAN

• SLOVENIAN

• SPANISH

• SWEDISH

• SWISS_FRENCH

Reference for language elements
Version 4.1

201

• SWISS_GERMAN

A DDE triplet is the three-part specification of the DDE external file; for example, somepath/
afilename.xls/r1c1:r32c1.

Example
In this example, the OPTIONS statement is used to specify the language used for DDE triplets.

OPTIONS DDEXLANG = FRENCH;

DFLANG
Specifies the language for EURDF date and time formats.

DFLANG = format- language

Valid in: OPTIONS statement, configuration file and command line.
Default: ENGLISH

Option group: LANGUAGECONTROL

Portable True
Restrictable False
Saveable True

format-language
A string that specifies a corresponding, supported language, and must be one of:

• AFRIKAANS

• CATALAN

• CROATIAN

• CZECH

• DANISH

• DUTCH

• ENGLISH

• FINNISH

• FRENCH

• GERMAN

• HUNGARIAN

• ITALIAN

• LOCALE

Reference for language elements
Version 4.1

202

• MACEDONIAN

• NORWEGIAN

• POLISH

• PORTUGUESE

• RUSSIAN

• SLOVENIAN

• SPANISH

• SWEDISH

• SWISS_FRENCH

• SWISS_GERMAN

The EURDF date and time formats are international date formats. These are described in International
date formats, and have a form that begins with xxxDF; for example, xxxDFDDw. or xxxDFDNw..
The EURDF variant of this format does not indicate a specific language; the language for the format is
instead specified by this system option.

Example
In this example, the OPTIONS statement is used to specify that Russian is the language that applies to
EURDF formats.

OPTION DFLANG = RUSSIAN;
DATA _NULL_;
d=MDY(12, 5, 2016);
 PUT "Russian " d EURDFDD10.;
RUN;

The results are written to the log.

RUSSIAN 05.12.2016

EBCDICFMTINFMTBEHAVIOUR
Specifies whether the $EBCDIC format and informat use the default behaviour, or the EBCDIC
encoding for the current locale.

EBCDICFMTINFMTBEHAVIOUR

EBCDICFMTINFMTBEHAVIOR

= DEFAULT

USELOCALE

Valid in: Configuration file and command line.
Default: DEFAULT

Option group: LANGUAGECONTROL

Portable False

Reference for language elements
Version 4.1

203

Restrictable False
Saveable True

DEFAULT
Use the default behaviour for the $EBCDIC format and informat. This uses predefined character
encodings (depending on the operating system).

USELOCALE
Use the EBCDIC encoding for the current locale for the $EBCDIC format and informat.

Example
In this example, the system specifies that any variable specified with the $EBCDIC informat or format is
formatted using the local EBCDIC encoding, rather than the predefined encoding.

wps c:\temp\test.wps -EBCDICFMTINFMTBEHAVIOUR USELOCALE

ENCODING
Specifies the default character encoding for the session.

ENCODING = encoding- name

Valid in: Configuration file and command line.
Maximum length: 32
Option group: LANGUAGECONTROL

Portable False
Restrictable True
Saveable False

encoding-name
The name of the character encoding to use. The value can be the name or alternative name
described in Encoding Values.

Example
In this example, the option is specified on the command line.

wps c:\temp\sadd.wpd -encoding us-ascii

The program sadd.wps is run using the US-ASCII encoding.

Reference for language elements
Version 4.1

204

LOCALE
Specifies the current locale for the WPS session.

LOCALE = current- locale

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32
Option group: LANGUAGECONTROL

Portable False
Restrictable True
Saveable True

current-locale
The locale to use. For a list of supported locales, see Locale values. You can specify either the
LOCALE value, or the PXLOCALE value.

Example
In this example, the OPTIONS statement is used to specify that the locale is British English.

OPTIONS LOCALE = English_UnitedKingdom;

You can also use the PXLOCALE value:

OPTIONS LOCALE = en_GB;

NLSCOMPATMODE
Specifies that programs represent variant characters in their EBCDIC 1047 code page positions.

NLSCOMPATMODE

NONLSCOMPATMODE

Valid in: Configuration file and command line.
Default: NONLSCOMPATMODE

Option group: LANGUAGECONTROL

Portable True
Restrictable True
Saveable False

Reference for language elements
Version 4.1

205

Older programs written in the language of SAS use characters from the EBCDIC 1047 code page.
Later versions of the language of SAS enabled the use of other character encodings. Some characters,
known as the variant characters, might occupy different positions in those code pages, or might not be
present in EBCDIC 1047 at all. Examples of variant characters include the commercial at (@) symbol,
and various parentheses (} and]).

For example, if you run a program created on a system using the EBCDIC 1047 code page on a system
that uses EBCDIC 0273, and that program uses the @ character, that character is instead represented
as §. This might cause the program to fail.

By specifying this system option, variant characters are represented as if they are EBCDIC 1047
characters, whatever the character set of the system on which the program is running.

NLSCOMPATMODE
Variant characters are represented using the EBCDIC 1047 code page.

NONLSCOMPATMODE
Variant characters are represented using the session encoding code page.

Example
In this example, the system option is specified on the command line:

wps c:\temp\test.wps -NLSCOMPATMODE

The program test.wps in this example contains invariant characters. These are represented using
characters on the EBCDIC 1047 code page.

TRANTAB
Specifies translation tables that control translation of character sets.

TRANTAB = (table- name)

Valid in: Configuration file and command line.
Maximum length: 1024
Option group: LANGUAGECONTROL

Portable True
Restrictable False
Saveable True

table-name

A list of translation table names.

Reference for language elements
Version 4.1

206

Translation tables names are specified in parentheses, separated by commas and positional. Each
position in the list specifies a translation table that has a particular function, such as translating
between the local character set and the transport character set, or between lower-case and upper-case
character sets. If you do not specify a particular translation table, you must still include the comma for
that position; for example:

TRANTAB=(,,WLT1_UCS,WLT1_LCS,,,,,);

There can be no more than ten translation tables. The translation table specified at each position has
the following function:

Position The translation table is used to...

1 Translate from the local encoding to a transport encoding.
This might be required for example, for WPS Communicate to
connect to a remote server.

2 Translate from the transport encoding to a local encoding.

3 Translate an encoding with lower-case characters to an
encoding with upper-case characters.

4 Translate an encoding with upper-case characters to an
encoding with lower-case characters.

5 Provide bit fields that define character attributes for every
character in the local encoding. For example, a field might
define whether a character is upper case, is alphabetic, is non-
printing, and so on.

6 Translate an encoding from local encoding to the compiler
encoding. The compiler encoding is EBCDIC 1047 on z/OS
and Latin1 on other computers.

Positions 7-10 are not currently used, and are provided for compatibility.

WPS provides various SAS language compatible translation tables in the SASHELP library, in LOCALE.

By default, the translation tables are specified as follows:

TRANTAB=(,,WLT1_UCS,WLT1_LCS,WLT1_CCL,,,,)

If you do not define a translation table at particular position, the default translation is used. For example,
if you specify:

TRANTAB=(,,myTT1_UCS,MyTT2_LCS,,,,,)

then the translation table WLT1_CCL is used at position five by default., as if you had specified:

TRANTAB=(,,myTT1_UCS,MyTT2_LCS,WLT1_CCL,,,,)

Reference for language elements
Version 4.1

207

Example
In this example, the system option is specified on the command line:

wps c:\temp\noo.wps -TRANTAB (,,E142_LCS,E142_LCS,,,,,)

The translation tables used for case translations are the EBCDIC 1142 Denmark/Norway tables found
in the SASHELP LOCALE library member.

URLENCODING
Specifies how the strings specified to the URLENCODE and URLDECODE DATA step functions are
encoded and decoded.

URLENCODING = encoding

Valid in: OPTIONS statement, configuration file and command line.
Default: SESSION

Option group: LANGUAGECONTROL

Portable True
Restrictable True
Saveable True

encoding
The encoding:

• SESSION

• UTF8

Example
In this example, the OPTIONS statement is used to specify that values specified to the URLENCODE and
URLDECODE functions are encoded and decoded as UTF-8 characters:

OPTIONS URLENCODING = UTF8;

LOG_LISTCONTROL group system options
System options that control the layout of both logs and listings.

Reference for language elements
Version 4.1

208

DATE
Specifies whether the date and time are printed at the top of each page a log or listing.

DATE

NODATE

Valid in: OPTIONS statement, configuration file and command line.
Default: NODATE

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

DATE
Print the date and time at the top.

NODATE
Do not print the date and time at the top.

Example
In this example, the OPTIONS statement is used to specify that no date is added to output listings.

OPTIONS NODATE;

If the following program is run:

LIBNAME books 'C:\temp\books';
PROC SORT DATA=books.lib_books;
BY author;

PROC REPORT DATA=_LAST_;
WHERE Dewey_Decimal_Number GT "800" AND dewey_decimal_number LT "900";
COLUMN title;
BY author;

The first page of the listing has no date, only a page number.

 The WPS System 1
---------------------------- Author=Ackroyd, Peter -----------------------------
 Title
 Chatterton
 First Light
 Hawksmoor

Reference for language elements
Version 4.1

209

If instead the option is set to DATE (the default), and the same program run, the first line of the listing is:

 The WPS System 1
 15:33 Wednesday, February 27, 2019
 ---------------------------- Author=Ackroyd, Peter -----------------------------
 Title
 Chatterton
 First Light
 Hawksmoor

DETAILS
Specifies whether to provide additional details about members in data libraries through the CONTENTS
and DATASETS procedures.

DETAILS

NODETAILS

Valid in: OPTIONS statement, configuration file and command line.
Default: NODETAILS

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

If DETAILS is set, then information is provided in logs and listings about the numbers of observations,
variables and labels in each dataset returned by the CONTENTS or DATASETS procedure. Information
on members of a library is only provided when using the CONTENTS procedure if the _ALL_ system
variable is provided as the input dataset; for example:

PROC CONTENTS DATA=mydir._ALL_

DETAILS

Show additional details.

NODETAILS

Do not show additional details.

Reference for language elements
Version 4.1

210

Example
In this example, the OPTIONS statement is used to specify that additional detail is written to the default
outputs.

LIBNAME books "c:\temp\books";
OPTIONS DETAILS;
PROC CONTENTS DATA=books._ALL_;
RUN;

This produces the following in the Members section of the HTML output:

The members section of the output lists all members of the specified library books, including datasets
and catalogs. The entries Obs or Entries, Vars and Label have been added to the table.

DTRESET
Specifies whether to update the date and time in the titles of logs and listings when a new page is
written.

DTRESET

NODTRESET

Valid in: OPTIONS statement, configuration file and command line.
Default: NODTRESET

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

DTRESET
Update the date and time.

Reference for language elements
Version 4.1

211

NODTRESET
Do not update the date and time.

If NODTRESET, the date and time is set to the date and time of the first page of the listing file.

Example
In this example, the OPTIONS statement is used to specify that the date and time are updated each
time a page of output is written.

OPTIONS DTRESET;

LINESIZE
Specifies the line length for logs and listings.

LINESIZE

LS

= l ine- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 99
Minimum value: 64
Maximum value: 256
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable False
Saveable True

line-length

The number of characters in each line. This can be specified as:

• A number; for example, if you enter 80, the maximum line length is 80 characters.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Note:
The default line length for non z/OS operating systems is 99 characters; the default line length for z/OS
operating systems is 132 characters.

Reference for language elements
Version 4.1

212

Example
In this example, the OPTIONS statement is used to specify the line length.

OPTION LINESIZE = 64;
DATA _NULL_;

 PUT "===><==========";

RUN;

This produces the following output:

===>
<==========

The output in the log has split after the 64th character, as the maximum line length is 64 characters.

MISSING
Specifies the character used to represent missing numeric values.

MISSING = character

Valid in: OPTIONS statement, configuration file and command line.
Default: .
Maximum length: 1
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

The character specified is used to represent missing numeric values in logs, listing and datasets.

character
The character to use.

Example
In this example, the OPTIONS statement is used to specify that the + (plus) is used as the missing value
character.

OPTIONS MISSING = '+';
DATA _NULL_;
 PUT x=;
RUN;

Reference for language elements
Version 4.1

213

This produces the following output:

NOTE: Variable "x" may not be initialized

x=+

NUMBER
Specifies whether to print the page number at the top of each log and listing page.

NUMBER

NONUMBER

Valid in: OPTIONS statement, configuration file and command line.
Default: NONUMBER

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

NUMBER

Print the page number at the top of each page.

NONUMBER

Do not print the page number at the top of each page.

Example
In this example, the OPTIONS statement is used to specify that page numbers are not printed at the top
of each page.

OPTIONS NONUMBER;
LIBNAME books 'C:\temp\books';
PROC REPORT DATA=books.lib_books;
WHERE Dewey_Decimal_Number GT "800" AND dewey_decimal_number LT "900";
column title;
BY author;

Reference for language elements
Version 4.1

214

This writes the following to the first page of the log. There is no page number in the header at the top of
the page.

 The WPS System
 15:33 Wednesday, February 27, 2019

----------------------------- Author=Abraham, J H ------------------------------
 Title
 Origins and Growth of Sociology, The

If the option had been set to NUMBER, the page header would contain a page number:

 The WPS System 1
 15:33 Wednesday, February 27, 2019

----------------------------- Author=Abraham, J H ------------------------------
 Title
 Origins and Growth of Sociology, The 1

PAGESIZE
Specifies the number of lines that make up a page of logs and listings.

PAGESIZE

PS

= l ine- count

Valid in: OPTIONS statement, configuration file and command line.
Default: 55
Minimum value: 15
Maximum value: 32767
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable False
Saveable True

line-count

The number of lines per page. This can be specified as:

• The number of lines; for example, if you enter 25, a page consists of 25 lines.
• The number of lines as a multiple of 1,024, by appending K to the value; for example, if the

value is 0.2K, a page consists of 205 lines. Decimal values are rounded.
• The number of lines specified in hexadecimal, by appending X. For example, if the value is

1EX, a page consists of 30 lines.
• MIN – the minimum supported value.

Reference for language elements
Version 4.1

215

• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify a page length of 30 lines.

OPTIONS PAGESIZE = 30;

LISTCONTROL group system options
System options that control the appearance of output listings.

BYLINE
Specifies whether a title line is generated for each BY group in a listing.

BYLINE

NOBYLINE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOBYLINE

Option group: LISTCONTROL

Portable True
Restrictable True
Saveable True

BYLINE

Generate a title.

NOBYLINE

Do not generate a title.

BY group titles are generated for listings by default. To switch them off, specify NOBYLINE. Using BY
group titles can make the output clearer.

Reference for language elements
Version 4.1

216

Example
In this example, the OPTIONS statement is used to specify that no titles are added for BY groups.

LIBNAME books 'c:\temp\books';
OPTIONS NOBYLINE;
PROC PRINT DATA = books.books;
BY author;

No title is written at the top of each page. A page of the output might look like this, for example:

 Obs Title Type

 1 Origins and Growth of Sociology, The Soc

When BYLINE is specified, the subject of the BY is written in the title.

------------------------------- Author=Abraham, J H -------------------------------
 Obs Title Type

 1 Origins and Growth of Sociology, The Soc

CENTER
Specifies whether listing output is centre-aligned on listings.

CENTER

CENTRE

NOCENTER

NOCENTRE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOCENTER

Option group: LISTCONTROL

Portable True
Restrictable True
Saveable True

CENTER
Centre listing output.

NOCENTER
Do not centre listing output. The output is left-aligned.

Reference for language elements
Version 4.1

217

Example
In this example, the OPTIONS statement is used to specify that output is left-aligned..

LIBNAME books 'C:\temp\books';
OPTIONS NOCENTER;
PROC REPORT DATA=books.books;
COLUMN title;
BY author;

The first page of the listing output looks like this:

The WPS System 16:41 Wednesday, February
 27, 2019 1

Author=Abraham, J H

 Title

 Origins and Growth of Sociology, The

If the system option is set to:

OPTIONS CENTER;

The first page of the listing output looks like this:

 The WPS System 16:41 Wednesday, February
 27, 2019 1

------------------------------------- Author=Abraham, J H

 Title

 Origins and Growth of Sociology, The

DATE
Specifies whether the date and time are printed at the top of each page a log or listing.

DATE

NODATE

Valid in: OPTIONS statement, configuration file and command line.
Default: NODATE

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True

Reference for language elements
Version 4.1

218

Restrictable True
Saveable True

DATE
Print the date and time at the top.

NODATE
Do not print the date and time at the top.

Example
In this example, the OPTIONS statement is used to specify that no date is added to output listings.

OPTIONS NODATE;

If the following program is run:

LIBNAME books 'C:\temp\books';
PROC SORT DATA=books.lib_books;
BY author;

PROC REPORT DATA=_LAST_;
WHERE Dewey_Decimal_Number GT "800" AND dewey_decimal_number LT "900";
COLUMN title;
BY author;

The first page of the listing has no date, only a page number.

 The WPS System 1
---------------------------- Author=Ackroyd, Peter -----------------------------
 Title
 Chatterton
 First Light
 Hawksmoor

If instead the option is set to DATE (the default), and the same program run, the first line of the listing is:

 The WPS System 1
 15:33 Wednesday, February 27, 2019
 ---------------------------- Author=Ackroyd, Peter -----------------------------
 Title
 Chatterton
 First Light
 Hawksmoor

Reference for language elements
Version 4.1

219

DETAILS
Specifies whether to provide additional details about members in data libraries through the CONTENTS
and DATASETS procedures.

DETAILS

NODETAILS

Valid in: OPTIONS statement, configuration file and command line.
Default: NODETAILS

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

If DETAILS is set, then information is provided in logs and listings about the numbers of observations,
variables and labels in each dataset returned by the CONTENTS or DATASETS procedure. Information
on members of a library is only provided when using the CONTENTS procedure if the _ALL_ system
variable is provided as the input dataset; for example:

PROC CONTENTS DATA=mydir._ALL_

DETAILS

Show additional details.

NODETAILS

Do not show additional details.

Example
In this example, the OPTIONS statement is used to specify that additional detail is written to the default
outputs.

LIBNAME books "c:\temp\books";
OPTIONS DETAILS;
PROC CONTENTS DATA=books._ALL_;
RUN;

This produces the following in the Members section of the HTML output:

Reference for language elements
Version 4.1

220

The members section of the output lists all members of the specified library books, including datasets
and catalogs. The entries Obs or Entries, Vars and Label have been added to the table.

DTRESET
Specifies whether to update the date and time in the titles of logs and listings when a new page is
written.

DTRESET

NODTRESET

Valid in: OPTIONS statement, configuration file and command line.
Default: NODTRESET

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

DTRESET
Update the date and time.

NODTRESET
Do not update the date and time.

If NODTRESET, the date and time is set to the date and time of the first page of the listing file.

Reference for language elements
Version 4.1

221

Example
In this example, the OPTIONS statement is used to specify that the date and time are updated each
time a page of output is written.

OPTIONS DTRESET;

FILESYSOUT
Specifies the default SYSOUT class for a printer file.

FILESYSOUT = output- class

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 1
Option group: LISTCONTROL

Supported platform: z/OS for System z

output-class
The default SYSOUT class to use.

Example
In this example, the OPTIONS statement is used to specify the SYSOUT class.

OPTIONS FILESYSOUT = B;

FORMCHAR
Specifies the output formatting characters.

FORMCHAR = character- list

Valid in: OPTIONS statement, configuration file and command line.
Default: |----|+|---+=|-/\<>*
Maximum length: 20
Option group: LISTCONTROL

Portable True
Restrictable True

Reference for language elements
Version 4.1

222

Saveable True

character-list
A set of characters representing drawing primitives that in combination can delineate the lines
and boxes of output tables on systems with varying levels of font support.

The position of a character in character-list determines what drawing element the character enables.
For example, position 1 in the list is the vertical rule; position 3 is the top left corner of a box. Specifying
values to this system option sets new values for all drawing primitives. Therefore, if you only specify
characters in the first three positions, all subsequent positions are treated as space characters. For
example, if you specify OPTIONS FORMCHAR = '| -+', only the vertical rule, horizontal rule and top
left corner drawing primitives are defined; all other drawing primitives are set to space characters. If you
subsequently run the following program:

LIBNAME books 'C:\temp\books';
PROC REPORT DATA=books.books_out box;
COLUMN author title;
WHERE type EQ "SF";
DEFINE author / width = 30;
DEFINE title / width = 50;

The following listing is written; in this example, just the first few lines are shown:

+------------------------------ ---
|Author | Title |
 ------------------------------ ---
|Adams, Douglas | Hitch-hiker's Guide to the Galaxy, The |
 ------------------------------ ---
|Adams, Douglas | Restaurant at the End of the Universe, The |
 ------------------------------ ---
|Adams, Douglas | Restaurant at the End of the Universe, The |
 ------------------------------ ---

A character is written for the top left-hand corner, for vertical lines, and for horizontal lines. However, no
character is written for the top right-hand corner, for the corners between rows and verticals, or for the
junction of internal verticals.

The first eleven positions of character-list define elements for tabulated data, and specify the characters
used for corners, vertical and horizontal elements, junctions, and so on. Subsequent positions define
drawing primitives used by various procedures, and the use of the characters at those positions
depends on and is defined by the procedure.

The first eleven positions of character-list define the following elements:

Position Element

1 Vertical rule

2 Horizontal rule

3 Top left corner

4 Top horizontal joint

5 Top right corner

Reference for language elements
Version 4.1

223

Position Element

6 Left vertical joint

7 Internal joint

8 Right vertical joint

9 Bottom left corner

10 Bottom horizontal joint

11 Bottom right corner

In the following diagram, a table has been annotated to indicate the position of elements. The numbers
correspond to the elements listed above.

Reference for language elements
Version 4.1

224

Example
In this example, the OPTIONS statement is used to specify the characters used to draw table frames.

OPTION PAGESIZE=20;
OPTION FORMCHAR= '|-+^+:::+~+';
LIBNAME books 'C:\temp\books';
PROC REPORT DATA=books.books_out BOX;
COLUMN author title;
WHERE TYPE EQ "SF";
DEFINE author / WIDTH = 30;
DEFINE title / WIDTH = 50;

The PAGESIZE system option has also been set in this example, so that a page of the listing can be
more easily shown here. The program creates a listing in which the frames of the tables are created
using the specified characters:

+------------------------------^---+
|Author | Title |
:------------------------------:---:
|Blish, James | Day After Judgement, The |
:------------------------------:---:
|Blish, James | Black Easter |
:------------------------------:---:
|Blish, James and Knight, Damon| Torrent of Faces, A |
:------------------------------:---:
|Bova, Ben | Colony |
:------------------------------:---:
|Bova, Ben | Mars |
:------------------------------:---:
|Bradbury, Ray | Fahrenheit 451 |
+------------------------------~---+

FORMDLIM
Specifies a character that delimits page breaks in listing output.

FORMDLIM = character

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 1
Option group: LISTCONTROL

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

225

character
Character to use as the page break delimiter.

The character you specify is repeated across the full width of the top of the page.

Example
In this example, the OPTIONS statement is used to specify that a page break delimiter is used.

OPTIONS FORMDELIM = "@";

The following is written at the top of each page:

@@@

LABEL
Specifies whether dataset variable labels are used in place of variable names in listings.

LABEL

NOLABEL

Valid in: OPTIONS statement, configuration file and command line.
Default: NOLABEL

Option group: LISTCONTROL

Portable True
Restrictable True
Saveable True

LABEL
Use variable labels.

NOLABEL
Do not use variable labels.

Example
In this example, the OPTIONS statement is used to specify that variable labels are used in listings.

OPTIONS label;
PROC REPORT DATA=books.lib_books;
COLUMN title datepurchased;
DEFINE title/width=50;
DEFINE datepurchased/width=20;

Reference for language elements
Version 4.1

226

This produces a listing in which the first few lines look like this:

 The WPS System 17:45 Wednesday, February 27, 2019
 1

 Title Date book purchased

 Hidden Histories of Science 09APR99

 Energy and the Earth Machine 01JUN89

 Origins and Growth of Sociology, The 01JUN86

 Chatterton 11JAN15

The datepurchased variable name has been replaced in the listing with the variable label Date
book purchased.

LINESIZE
Specifies the line length for logs and listings.

LINESIZE

LS

= l ine- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 99
Minimum value: 64
Maximum value: 256
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable False
Saveable True

line-length

The number of characters in each line. This can be specified as:

• A number; for example, if you enter 80, the maximum line length is 80 characters.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Reference for language elements
Version 4.1

227

Note:
The default line length for non z/OS operating systems is 99 characters; the default line length for z/OS
operating systems is 132 characters.

Example
In this example, the OPTIONS statement is used to specify the line length.

OPTION LINESIZE = 64;
DATA _NULL_;

 PUT "===><==========";

RUN;

This produces the following output:

===>
<==========

The output in the log has split after the 64th character, as the maximum line length is 64 characters.

LISTINGFILERECFM
Specifies the default record format (RECFM) to use for listing files.

LISTINGFILERECFM = recfm

Valid in: OPTIONS statement, configuration file and command line.
Default: VBA
Maximum length: 8
Option group: LISTCONTROL

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

recfm
The default RECFM.

See your IBM documentation for information on RECFM formats.

Reference for language elements
Version 4.1

228

Example
In this example, the OPTIONS statement is used to specify that the record format for a listing file is FB.

OPTIONS LISTINGFILERECFM = FB;

MISSING
Specifies the character used to represent missing numeric values.

MISSING = character

Valid in: OPTIONS statement, configuration file and command line.
Default: .
Maximum length: 1
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

The character specified is used to represent missing numeric values in logs, listing and datasets.

character
The character to use.

Example
In this example, the OPTIONS statement is used to specify that the + (plus) is used as the missing value
character.

OPTIONS MISSING = '+';
DATA _NULL_;
 PUT x=;
RUN;

This produces the following output:

NOTE: Variable "x" may not be initialized

x=+

Reference for language elements
Version 4.1

229

NUMBER
Specifies whether to print the page number at the top of each log and listing page.

NUMBER

NONUMBER

Valid in: OPTIONS statement, configuration file and command line.
Default: NONUMBER

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

NUMBER

Print the page number at the top of each page.

NONUMBER

Do not print the page number at the top of each page.

Example
In this example, the OPTIONS statement is used to specify that page numbers are not printed at the top
of each page.

OPTIONS NONUMBER;
LIBNAME books 'C:\temp\books';
PROC REPORT DATA=books.lib_books;
WHERE Dewey_Decimal_Number GT "800" AND dewey_decimal_number LT "900";
column title;
BY author;

This writes the following to the first page of the log. There is no page number in the header at the top of
the page.

 The WPS System
 15:33 Wednesday, February 27, 2019

----------------------------- Author=Abraham, J H ------------------------------
 Title
 Origins and Growth of Sociology, The

Reference for language elements
Version 4.1

230

If the option had been set to NUMBER, the page header would contain a page number:

 The WPS System 1
 15:33 Wednesday, February 27, 2019

----------------------------- Author=Abraham, J H ------------------------------
 Title
 Origins and Growth of Sociology, The 1

PAGENO
Specifies the page number to use for the next page of printed output.

PAGENO = page- number

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 1
Maximum value: 2147483647
Option group: LISTCONTROL

Portable True
Restrictable True
Saveable True

page-number

The number of the next page. This can be specified as:

• The number of the page; for example, 10.
• A number of lines multiplied by 1,024, or by 1,0242 by appending K or M to the value,

respectively. For example, if the value is 0.5K, the next page number is 512.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

If you do set page-number to MAX, page numbering behaves in ways you might not expect. The first
page number is 2147483647, the second number is -2147483648, and subsequent page numbers
increment from there (-2147483647, -2147483646, and so on).

Example
In this example, the OPTIONS statement is used to specify the next page number in the listing.

OPTIONS PAGENO = 50;

Reference for language elements
Version 4.1

231

PAGESIZE
Specifies the number of lines that make up a page of logs and listings.

PAGESIZE

PS

= l ine- count

Valid in: OPTIONS statement, configuration file and command line.
Default: 55
Minimum value: 15
Maximum value: 32767
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable False
Saveable True

line-count

The number of lines per page. This can be specified as:

• The number of lines; for example, if you enter 25, a page consists of 25 lines.
• The number of lines as a multiple of 1,024, by appending K to the value; for example, if the

value is 0.2K, a page consists of 205 lines. Decimal values are rounded.
• The number of lines specified in hexadecimal, by appending X. For example, if the value is

1EX, a page consists of 30 lines.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify a page length of 30 lines.

OPTIONS PAGESIZE = 30;

LOGCONTROL group system options
System options that control the layout of output listings.

Reference for language elements
Version 4.1

232

DATE
Specifies whether the date and time are printed at the top of each page a log or listing.

DATE

NODATE

Valid in: OPTIONS statement, configuration file and command line.
Default: NODATE

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

DATE
Print the date and time at the top.

NODATE
Do not print the date and time at the top.

Example
In this example, the OPTIONS statement is used to specify that no date is added to output listings.

OPTIONS NODATE;

If the following program is run:

LIBNAME books 'C:\temp\books';
PROC SORT DATA=books.lib_books;
BY author;

PROC REPORT DATA=_LAST_;
WHERE Dewey_Decimal_Number GT "800" AND dewey_decimal_number LT "900";
COLUMN title;
BY author;

The first page of the listing has no date, only a page number.

 The WPS System 1
---------------------------- Author=Ackroyd, Peter -----------------------------
 Title
 Chatterton
 First Light
 Hawksmoor

Reference for language elements
Version 4.1

233

If instead the option is set to DATE (the default), and the same program run, the first line of the listing is:

 The WPS System 1
 15:33 Wednesday, February 27, 2019
 ---------------------------- Author=Ackroyd, Peter -----------------------------
 Title
 Chatterton
 First Light
 Hawksmoor

DETAILS
Specifies whether to provide additional details about members in data libraries through the CONTENTS
and DATASETS procedures.

DETAILS

NODETAILS

Valid in: OPTIONS statement, configuration file and command line.
Default: NODETAILS

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

If DETAILS is set, then information is provided in logs and listings about the numbers of observations,
variables and labels in each dataset returned by the CONTENTS or DATASETS procedure. Information
on members of a library is only provided when using the CONTENTS procedure if the _ALL_ system
variable is provided as the input dataset; for example:

PROC CONTENTS DATA=mydir._ALL_

DETAILS

Show additional details.

NODETAILS

Do not show additional details.

Reference for language elements
Version 4.1

234

Example
In this example, the OPTIONS statement is used to specify that additional detail is written to the default
outputs.

LIBNAME books "c:\temp\books";
OPTIONS DETAILS;
PROC CONTENTS DATA=books._ALL_;
RUN;

This produces the following in the Members section of the HTML output:

The members section of the output lists all members of the specified library books, including datasets
and catalogs. The entries Obs or Entries, Vars and Label have been added to the table.

DTRESET
Specifies whether to update the date and time in the titles of logs and listings when a new page is
written.

DTRESET

NODTRESET

Valid in: OPTIONS statement, configuration file and command line.
Default: NODTRESET

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

DTRESET
Update the date and time.

Reference for language elements
Version 4.1

235

NODTRESET
Do not update the date and time.

If NODTRESET, the date and time is set to the date and time of the first page of the listing file.

Example
In this example, the OPTIONS statement is used to specify that the date and time are updated each
time a page of output is written.

OPTIONS DTRESET;

ECHOAUTO
Specifies whether to include in the log the contents of the program specified using AUTOEXEC.

ECHOAUTO

NOECHOAUTO

Valid in: Configuration file and command line.
Default: NOECHOAUTO

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable False

The AUTOEXEC (page 95) system option enables you to specify a SAS language program that is
run when a WPS session starts.

ECHOAUTO
Include the content of the AUTOEXEC program in the log.

NOECHOAUTO
Do not include the content of the AUTOEXEC program in the log.

Example
In this example, the option is specified on the command line. The program specified by AUTOEXEC is
included in the log.

wps c:\temp\test2.wps -autoexec "c:\temp\noo.wps" -echoauto

The log contains the following:

NOTE: AUTOEXEC processing beginning; file is c:\temp\noo.wps
NOTE: AUTOEXEC source line

Reference for language elements
Version 4.1

236

1 +
NOTE: AUTOEXEC source line
2 + DATA _NULL_;
NOTE: AUTOEXEC source line
3 + num = 1 + 2 * 3 - 6;
NOTE: AUTOEXEC source line
4 + PUT num;
NOTE: AUTOEXEC source line
5 + RUN;

1
NOTE: The data step took :
 real time : 0.013
 cpu time : 0.000

NOTE: AUTOEXEC processing completed

1
2
3 data _null_;
4
5 put "This program runs first";
6
7 run;

This program runs first
NOTE: The data step took :
 real time : 0.011
 cpu time : 0.000

8

NOTE: Submitted statements took :
 real time : 0.108
 cpu time : 0.046

ERRORS
Specifies the maximum number of observations for which error messages are output.

ERRORS

ERROR

= error- count

Valid in: OPTIONS statement, configuration file and command line.
Default: 20
Minimum value: 0
Maximum value: 2147483647
Option group: ERRORHANDLING

LOGCONTROL

Reference for language elements
Version 4.1

237

Portable True
Restrictable True
Saveable True

error-count
The number of observations for which error messages are output.

Example
In this example, the OPTIONS statement is used to specify that the program stops producing messages
if the number of errors exceeds five.

OPTIONS ERRORS=5;
LIBNAME books XLSX 'c:\temp\books\books.xlsx';
DATA out;
 SET books.books1;
 IF title EQ 6 THEN OUTPUT;
RUN;

The IF statement attempts to compare a character value to a numeric value, which causes an error.
This error is reported in the log for each observation, until the fifth is reached:

WARNING: Limit set by ERRORS= reached : No further messages of this type will be
 printed
N=5 _ERROR_=1 _IORC_=0 Title=English Common Reader, The Type=History
 Author=Altick, Richard D
Read=a Date_Read= Owned=n Y_Total=.

No more errors are reported after this observation.

FULLSTATS
Specifies whether to write more detailed performance statistics for a step on z/OS.

FULLSTATS

NOFULLSTATS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFULLSTATS

Option group: LOGCONTROL
PERFORMANCE

Supported platform: z/OS for System z

FULLSTATS
Write more detailed performance statistics.

Reference for language elements
Version 4.1

238

NOFULLSTATS
Do not write more detailed performance statistics.

By default, the information returned is file information and the amount of real time and processor time
used to execute the step. If you specify FULLSTATS, additional information is provided about the EXCP
count. This information is added after the data step timing; for example:

 real time : 0.002
 cpu time : 0.001
 EXCP count: 0

Example
In this example, the OPTIONS statement is used to specify full statistics are written to the log.

OPTIONS FULLSTATS;

If a program is then run, the following is written to the log:

The file INLINE is:

Dsname = CJH.FULLSTAT.JOB08311.D0000101.?,

Unit =,

Volume =, Disp = NEW, Blksize=80, Lrecl=80, Recfm=FB

Creation=2018/08/01

LINE
1

LINE
2

NOTE: 2 records were read from file
INLINE
NOTE: The data step took:

 real time : 0.042
 cpu time : 0.003
 EXCP count: 0

The EXCP count has been added to the log.

FULLSTIMER
Specifies whether to write more detailed performance statistics for a step.

FULLSTIMER

NOFULLSTIMER

Reference for language elements
Version 4.1

239

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFULLSTIMER

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable True

FULLSTIMER

Write additional performance statistics to the log.

NOFULLSTIMER

Do not write additional performance statistics to the log.

By default, the only information returned is the amount of real time and processor time used to execute
the step; for example:

real time : 4.816
 cpu time : 0.015

If you specify FULLSTIMER additional information is returned:

user CPU time The amount of taken by the processor to execute user code.
system CPU time The amount of taken by the processor to execute operating system

instructions.
Peak working set The peak working set allocated for the process.
Current working set The working set used by the process.
Page fault count The number of page faults that occurred.

For example:

 real time : 2.419
 user cpu time : 0.000
 system cpu time : 0.015
 Peak working set : 25580k
 Current working set : 25548k
 Page fault count : 20

Example
In this example, the OPTIONS statement is used to specify that all execution information is returned.

OPTIONS FULLSTIMER;

Reference for language elements
Version 4.1

240

LINESIZE
Specifies the line length for logs and listings.

LINESIZE

LS

= l ine- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 99
Minimum value: 64
Maximum value: 256
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable False
Saveable True

line-length

The number of characters in each line. This can be specified as:

• A number; for example, if you enter 80, the maximum line length is 80 characters.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Note:
The default line length for non z/OS operating systems is 99 characters; the default line length for z/OS
operating systems is 132 characters.

Example
In this example, the OPTIONS statement is used to specify the line length.

OPTION LINESIZE = 64;
DATA _NULL_;

 PUT "===><==========";

RUN;

This produces the following output:

===>
<==========

The output in the log has split after the 64th character, as the maximum line length is 64 characters.

Reference for language elements
Version 4.1

241

LOGPARM
Specifies log file configuration parameters.

LOGPARM = " parameter- opt ions "

Valid in: Configuration file and command line.
Option group: LOGCONTROL

Portable True
Restrictable True
Saveable False

Valid in: Configuration file and command line
Max length: 256

parameter-options
A string specifying a list of <option>=<value> configuration parameters. The string can
contain the following options:

OPEN
Specifies the action when a log file is opened, in the format:

OPEN = APPEND

REPLACE

REPLACEOLD

APPEND
Log information is appended to the existing log file. If no log file exists, a new log file
is created.

REPLACE
A new log file is created. If a log file of the same name exists, it is overwritten by the
new log file.

REPLACEOLD
A new log file is created when the last modification time for the existing log file is
more than 24 hours earlier. If a log file of the same name exists, it is overwritten by
the new log file.

If the last modification time is less than 24 hours earlier, log information is appended
to the current file.

ROLLOVER
Specifies whether a new log file is created, in the format:

Reference for language elements
Version 4.1

242

ROLLOVER = NONE

SESSION

AUTO

capacity

AUTO
Opens a new log file when the file name specified in the LOG system option
changes. A file name change only occurs if the log file name contains naming
directives, for example a file name of #H-#M.log generates a new log every
minute.

NONE
Never roll over to a new log file. This is the default. If the file name specified in the
LOG system option contains naming directives, these directives are treated as literal
characters.

SESSION
Opens a new log file when the WPS process starts, and uses the same log file for
the duration that the WPS process is running. If the file name specified in the LOG
system option contains naming directives, those directives are processed.

capacity
Defines the amount of disk space for allocated for a log file. capacity is specified as
a numeric value optionally followed by K (kibibyte), M (mebibyte), or G (gibibyte).

The new log file begins at the start of the next log page when the defined capacity
is reached, but page numbers are not reset. Any capacity value defined for z/OS
systems is an approximation.

When a log file rolls over to a new file, the existing log file name has old appended
to the base name, for example wpslog.txt becomes wpslogold.txt

Only one old version of the log file is kept; if a roll-over is required and there is an
existing old version of the log file, that file is overwritten.

TIMEZONE
Specifies the timezone used for dates and time naming directives defined in the LOG or
ALTLOG file names formats.

TIMEZONE = LOCAL

UTC

LOCAL
Use the local time zone for naming directives. This is the default.

UTC
Use UTC as the time zone for naming directives. Using UTC prevents log
information potentially being lost at daylight saving time changes.

Reference for language elements
Version 4.1

243

WRITE
Specifies the method used to write information to the log file, in the format:

WRITE = BUFFERED

IMMEDIATE

BUFFERED
Stores information to buffer memory and writes the information to the log file when
the buffer is full.

IMMEDIATE
Log information is written to the file as it is generated in WPS. This write method
may be slower than buffered writing, but no log information is lost if the system fails.

Example
In this example, the system option is specified on the command line.

wps -log "c:\temp\temp.log" -logparm "open=append write=buffered" noo.wps

This directs WPS to write the log output to the file c:\temp\temp.log. If the log already exists, log
output is appended to it. The output for the log is buffered and written to the log when the program
finishes.

LOGTITLE
Specifies whether a title line is displayed at top of each page in the log output.

LOGTITLE

NOLOGTITLE

Valid in: Configuration file and command line.
Default: NOLOGTITLE

Option group: LOGCONTROL

Portable True
Restrictable False
Saveable False

LOGTITLE
Displays a title line at top of the log output, and at the start of each page.

NOLOGTITLE
No title line is displayed in the log output.

Reference for language elements
Version 4.1

244

Example
In this example, the system option is specified on the command line.

wps -logtitle c:\temp\noo.wps

This directs WPS to write a title at the start of the log. The first few lines of the log look like this:

1 The WPS System 18:27 Thursday, February
 21, 2019

NOTE: (c) Copyright World Programming Limited 2002-2019. All rights reserved.
NOTE: World Programming System 4.01 (04.01.00.00.014673)
 Licensed to World Programming Company Ltd, 80 installations
NOTE: This session is executing on the X64_WIN10PRO platform and is running in 64
 bit mode

1 DATA _NULL_;
2 result1 = SCAN('london,,,bike,company;;A1', 3, ',;');
3 PUT result1=;
4 RUN;

⋮

The first line in the log is the title.

MEMRPT
Specifies whether to write memory usage statistics to the log when WPS starts.

MEMRPT

NOMEMRPT

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MEMORY

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

MEMRPT
Write memory usage statistics.

NOMEMRPT
Do not write memory usage statistics.

The statistics are written to the log before any text specified by the NEWS system option.

Reference for language elements
Version 4.1

245

Example
In this example, the OPTIONS statement is used to specify that memory usage statistics are not written
to the log.

OPTIONS NOMEMRPT;

MISSING
Specifies the character used to represent missing numeric values.

MISSING = character

Valid in: OPTIONS statement, configuration file and command line.
Default: .
Maximum length: 1
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

The character specified is used to represent missing numeric values in logs, listing and datasets.

character
The character to use.

Example
In this example, the OPTIONS statement is used to specify that the + (plus) is used as the missing value
character.

OPTIONS MISSING = '+';
DATA _NULL_;
 PUT x=;
RUN;

This produces the following output:

NOTE: Variable "x" may not be initialized

x=+

Reference for language elements
Version 4.1

246

MLOGIC
Specifies whether to show in the log the execution of macros.

MLOGIC

MTRACE

NOMLOGIC

NOMTRACE

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True
Restrictable True
Saveable True

If this system option is set, the log shows when macro execution starts and stops.

MLOGIC
Log the execution of macros.

NOMLOGIC
Do not log the execution of macros.

If you also want to log executed macro statements, specify MPRINT (page 248). If you want log
the execution of nested macros, also specify MLOGICNEST (page 247). If you want to log execute
macro statements in nested macros displayed in the log, also specify both MPRINT and MLOGICNEST.

Example
In this example, the OPTIONS statement is used to specify that macro execution is displayed in log. The
example shows the execution of a DATA step, and the result of the system option:

%MACRO test1;
 PUT "A test";
%MEND test1;

OPTIONS MLOGIC;
DATA _NULL_;

 b = 2 + 8;
 PUT "This test program outputs " b "and then starts a macro";

 %test1;

RUN;

Reference for language elements
Version 4.1

247

This produces the following output:

117 %MACRO test1;
118 PUT "A test";
119 %MEND test1;
120
121 OPTIONS MLOGIC;
122 DATA _NULL_;
123
124 b = 2 + 8;
125 PUT "This test program outputs " b "and then starts a macro";
126
127 %test1;
MLOGIC(TEST1): Beginning execution
MLOGIC(TEST1): Ending execution
128
129 RUN;

This test program outputs 10 and then starts a macro
A test
NOTE: The data step took :
 real time : 0.019
 cpu time : 0.015

MLOGICNEST
Specifies whether to log the execution of nested macros in MLOGIC output.

MLOGICNEST

NOMLOGICNEST

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True

MLOGICNEST

Log the execution of nested macros.

NOMLOGICNEST

Do not log the display of nested macros.

You must specify MLOGIC (page 246) if you use this option, otherwise no information on macro
execution is written to the log.

If you also want to log the macro statements that were executed, specify MPRINT (page 248).

Reference for language elements
Version 4.1

248

Example
In this example, the OPTIONS statement is used to specify that macro nesting information is written to
the log. The following macros are created and then executed from a DATA step, the execution of the
macros, and their nesting, is shown in the log.

%MACRO test;
 PUT "Output from a nested macro";
%MEND test;

%MACRO test1;
 %test;
%MEND test1;

OPTIONS MLOGIC MLOGICNEST;
DATA _NULL_;
 b = 2 + 8;
 PUT "This test program outputs " b "and then starts a macro";
 %test1;
RUN;

The following fragment from the log shows the execution of the DATA step and the result of the system
options:

164 %MACRO test;
165 PUT "Output from a nested macro";
166 %MEND test;
167
168 %MACRO test1;
169 %test;
170 %MEND test1;
171
172 OPTIONS MLOGIC MLOGICNEST;
173 DATA _NULL_;
174 b = 2 + 8;
175 PUT "This test program outputs " b "and then starts a macro";
176 %test1;
MLOGIC(TEST1): Beginning execution
MLOGIC(TEST1.TEST): Beginning execution
MLOGIC(TEST1.TEST): Ending execution
MLOGIC(TEST1): Ending execution
177 RUN;

This test program outputs 10 and then starts a macro
Output from a nested macro

MPRINT
Specifies whether to display WPS statements generated by macro execution in the log.

MPRINT

NOMPRINT

Reference for language elements
Version 4.1

249

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True
Restrictable True
Saveable True

MPRINT
Display WPS statements generated by macro execution.

NOMPRINT
Do not display WPS statements generated by macro execution.

If you want to trace the execution of macros, also specify MLOGIC (page 246). If you want to see
executed macro statements in nested macros, also specify MPRINT and MLOGICNEST (page 247).

Example
In this example, the OPTIONS statement is used to specify that macro execution is traced and
statements in the macros are written to the log, and that WPS statements generated by macro
execution are written to the log:

OPTIONS MLOGIC MLOGICNEST MPRINT;

The following fragment from the log shows the execution of the DATA step and the effect of the system
options:

%MACRO test;
 PUT "Output from a nested macro";
%MEND test;

%MACRO test1;
 %test;
%MEND test1;

OPTIONS MLOGIC MLOGICNEST MPRINT;
DATA _NULL_;
 b = 2 + 8;
 PUT "This test program outputs " b "and then starts a macro";
 %test1;
RUN;

The following fragment from the log shows the execution of the DATA step, and the result of the system
options:

8 %MACRO test;
9 PUT "Output from a nested macro";
10 %MEND test;
11
12 %MACRO test1;
13 %test;
14 %MEND test1;
15

Reference for language elements
Version 4.1

250

16 OPTIONS MLOGIC MLOGICNEST MPRINT;
17 DATA _NULL_;
18 b = 2 + 8;
19 PUT "This test program outputs " b "and then starts a macro";
20 %test1;
MLOGIC(TEST1): Beginning execution
MLOGIC(TEST1.TEST): Beginning execution
MPRINT(TEST): PUT "Output from a nested macro";
MLOGIC(TEST1.TEST): Ending execution
MPRINT(TEST1): ;
MLOGIC(TEST1): Ending execution
21 RUN;

This test program outputs 10 and then starts a macro
Output from a nested macro

MSGCASE
This system option is provided for compatibility only, and has no effect in WPS.

MSGCASE

NOMSGCASE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMSGCASE

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable True

MSGCASE

For compatibility only.

NOMSGCASE

For compatibility only.

MSGLEVEL
Specifies the amount of detail in returned messages.

MSGLEVEL = I

N

Reference for language elements
Version 4.1

251

Valid in: OPTIONS statement, configuration file and command line.
Default: N

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable True

I
Return more detailed messages for dataset activities, indexes, and some procedures.

N
Return the normal level of detail.

Example
In this example, the OPTIONS statement is used to specify that more information is returned.

OPTIONS MSGLEVEL=I

NEWS
Specifies the name of a file that contains messages to be written at the top of the log output.

NEWS = f ilepath

NONEWS

Valid in: Configuration file and command line.
Default: <empty-string>
Maximum length: 255
Option group: ENVFILES

LOGCONTROL

Portable True
Restrictable True
Saveable False

NEWS

Messages from the specified filename are written to the log.

NONEWS

News messages are not written to the log.

Reference for language elements
Version 4.1

252

The messages are written at the top of the log, after information about WPS Analytics.

Example
In this example, the NEWS system option is specified on the command line. The file specified by the
system option contains a message. The results are written to the log.

wps c:\temp\sadd.wps -news c:\temp\logmsg.txt

The file logmsg.txt contains the following:

Good day.
Remember to lock your screen when you leave your desk.

This produces the following output:

NOTE: (c) Copyright World Programming Limited 2002-2019. All rights reserved.
NOTE: World Programming System 4.01 (04.01.00.00.014673)
 Licensed to World Programming Company Ltd, 80 installations
NOTE: This session is executing on the X64_WIN10PRO platform and is running in 64
 bit mode

Good day.
Remember to lock your screen when you leave your desk.

Subsequent lines of the log contain program execution information, as usual.

NOTES
Specifies whether to display notes in the log output.

NOTES

NONOTES

Valid in: OPTIONS statement, configuration file and command line.
Default: NONOTES

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable True

NOTES
Display notes in the log output.

NONOTES
Do not display notes in the log output.

Reference for language elements
Version 4.1

253

If NONOTES is specified, only the program listing and any results written to the log are displayed in the
log. Notes supply additional information, and are prefixed with NOTE:. Notes include information about
WPS itself (version and the number of licences), and additional text that helps you understand log
outputs.

Example
In this example, the system option is specified on the command line, and disables notes.

wps c:\temp\test2.wps -nonotes

The file test2.wps is a short program that outputs a message:

DATA _NULL_;
 PUT 'Hello there!';
RUN;

The resulting log contains the following:

1 The WPS System 10:55 Friday, June 1,
 2018

1 DATA _NULL_;
2 PUT 'Hello there!';
3 RUN;
Hello there!

 real time : 0.124
 cpu time : 0.093

You can amend the command line to specify that notes are included in the log:

wps c:\temp\test2.wps -notes

The resulting log contains the following:

1 The WPS System 10:22 Friday, June 1,
 2018

NOTE: (c) Copyright World Programming Limited 2002-2018. All rights reserved.
NOTE: World Programming System 4.01 (04.01.00.00.006862)
 Licensed to World Programming Company Ltd, 80 installations
NOTE: This session is executing on the X64_WIN10PRO platform and is running in 64
 bit mode

1 DATA _NULL_;
2 PUT 'This program runs';
3 RUN;

This program runs
NOTE: The data step took :
 real time : 0.000
 cpu time : 0.000

NOTE: Submitted statements took :
 real time : 0.124

Reference for language elements
Version 4.1

254

 cpu time : 0.140

NUMBER
Specifies whether to print the page number at the top of each log and listing page.

NUMBER

NONUMBER

Valid in: OPTIONS statement, configuration file and command line.
Default: NONUMBER

Option group: LOGCONTROL
LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable True
Saveable True

NUMBER

Print the page number at the top of each page.

NONUMBER

Do not print the page number at the top of each page.

Example
In this example, the OPTIONS statement is used to specify that page numbers are not printed at the top
of each page.

OPTIONS NONUMBER;
LIBNAME books 'C:\temp\books';
PROC REPORT DATA=books.lib_books;
WHERE Dewey_Decimal_Number GT "800" AND dewey_decimal_number LT "900";
column title;
BY author;

This writes the following to the first page of the log. There is no page number in the header at the top of
the page.

 The WPS System
 15:33 Wednesday, February 27, 2019

----------------------------- Author=Abraham, J H ------------------------------
 Title
 Origins and Growth of Sociology, The

Reference for language elements
Version 4.1

255

If the option had been set to NUMBER, the page header would contain a page number:

 The WPS System 1
 15:33 Wednesday, February 27, 2019

----------------------------- Author=Abraham, J H ------------------------------
 Title
 Origins and Growth of Sociology, The 1

OPLIST
Specifies whether to list WPS command line options in the log.

OPLIST

NOOPLIST

Valid in: Configuration file and command line.
Default: NOOPLIST

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable False

OPLIST
List command line options.

NOOPLIST
Do not list command line options.

Example
In this example, the system option is specified on the command line, and causes options to be listed to
the log.

wps c:\temp\test2.wps -log -oplist

The log contains the following:

1 The WPS System 11:13 Friday, June 1,
 2018

NOTE: (c) Copyright World Programming Limited 2002-2018. All rights reserved.
NOTE: World Programming System 4.01 (04.01.00.00.006862)
 Licensed to World Programming Company Ltd, 80 installations
NOTE: This session is executing on the X64_WIN10PRO platform and is running in 64
 bit mode

NOTE: System options specified on command line are:
 LOG=c:\temp\op.log

Reference for language elements
Version 4.1

256

 OPLIST
 SYSIN=c:\temp\test2.wps

1 DATA _NULL_;
2 PUT 'Hello there!';
3 RUN;

Hello there!
NOTE: The data step took :
 real time : 0.000
 cpu time : 0.000

NOTE: Submitted statements took :
 real time : 0.140
 cpu time : 0.140

The list of options is introduced by the line:

NOTE: System options specified on command line are:

SYSIN is listed as one of the command line options. Although the program to execute it not specified
using SYSIN, the system option SYSIN is implicitly inferred from the supplied WPS program name.

OVP
Specifies whether to overprint errors and warnings for emphasis.

OVP

NOOVP

Valid in: OPTIONS statement, configuration file and command line.
Default: NOOVP

Option group: LOGCONTROL

Portable True
Restrictable False
Saveable True

OVP
Overprint errors and warnings.

NOOVP
Does not overprint errors and warnings.

Overprinting can be displayed or written on systems that support ANSI print control.

Reference for language elements
Version 4.1

257

Example
In this example, the OPTIONS statement is used to specify that log information is emphasised.

OPTIONS OVP;

PAGESIZE
Specifies the number of lines that make up a page of logs and listings.

PAGESIZE

PS

= l ine- count

Valid in: OPTIONS statement, configuration file and command line.
Default: 55
Minimum value: 15
Maximum value: 32767
Option group: LOGCONTROL

LISTCONTROL
LOG_LISTCONTROL

Portable True
Restrictable False
Saveable True

line-count

The number of lines per page. This can be specified as:

• The number of lines; for example, if you enter 25, a page consists of 25 lines.
• The number of lines as a multiple of 1,024, by appending K to the value; for example, if the

value is 0.2K, a page consists of 205 lines. Decimal values are rounded.
• The number of lines specified in hexadecimal, by appending X. For example, if the value is

1EX, a page consists of 30 lines.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify a page length of 30 lines.

OPTIONS PAGESIZE = 30;

Reference for language elements
Version 4.1

258

SOURCE
Specifies whether to list source statements in the log.

SOURCE

NOSOURCE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSOURCE

Option group: LOGCONTROL

Portable True
Restrictable False
Saveable True

SOURCE
List source statements in the log.

NOSOURCE
Do not list source statements in the log.

If you specify NOSOURCE, only the results of programs are listed in the log. No language statements
(including those set by default by WPS, by Workbench, or by system options) are written to the log.
The source of included programs is also listed. Included programs are those programs specified using
%INCLUDE. To not list included programs, specify NOSOURCE2 (page 259).

Example
In this example, the OPTIONS statement is used to specify that no source is listed in the log:

OPTIONS NOSOURCE;
DATA _NULL_;
 PUT 'Hello there!';
RUN;

Only the following is written in the log:

Hello there!

No other information, such as source code, notes, and automatically generated code is listed.

Reference for language elements
Version 4.1

259

SOURCE2
Specifies whether to show the content of included programs in the log output.

SOURCE2

NOSOURCE2

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSOURCE2

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable True

SOURCE2
Show the content included programs.

NOSOURCE2
Do not show the content included programs.

Included programs are those programs specified using %INCLUDE. To prevent listing the content of
included programs, specify NOSOURCE2 (page 259).

Example
In this example, the OPTIONS statement is used to specify that no included program content is included
in the log:

OPTIONS SOURCE2;
DATA _NULL_;
 PUT 'Hello there!';
 %INCLUDE "c:\temp\noo.wps";
RUN;

The following is written in the log:

10 OPTIONS SOURCE2;
11 DATA _NULL_;
12
13 PUT 'Hello there!';
14 %INCLUDE "c:\temp\noo.wps";

Hello there!
NOTE: The data step took :
 real time : 0.000
 cpu time : 0.000

Start of %INCLUDE(level 1) c:\temp\noo.wps
15 +
16 + DATA _NULL_;

Reference for language elements
Version 4.1

260

17 + num = 1 + 2 * 3 - 6;
18 + PUT "Value of num is = " num;
19 + RUN;

Value of num is = 1
NOTE: The data step took :
 real time : 0.000
 cpu time : 0.000

20 +
End of %INCLUDE(level 1) c:\temp\noo.wps
21
22 RUN;
23 quit; run;
24 ODS _ALL_ CLOSE;

Statements from the included program are included in the log, starting at line 15. If NOSOURCE2 is
specified, only the value returned from the program (Value of num is = 1) would be written to the
log.

STIMEFMT
Specifies the format of step timings in the log.

STIMEFMT = H

HOURS

M

MINUTES

N

NORMAL

S

SECONDS

Z

Valid in: OPTIONS statement, configuration file and command line.
Default: N

Option group: LOGCONTROL

Portable True
Restrictable True
Saveable True

H
Display step timings as hh:mm:ss.sss.

Reference for language elements
Version 4.1

261

HOURS
Display step timings as hh:mm:ss.sss.

M
Display step timings as mm:ss.sss.

MINUTES
Display step timings as mm:ss.sss.

N
The step timings display format is determined by the step duration:

• ss.sss if the time is less than one minute.
• mm:ss.sss if the time is greater than or equal to one minute, and less than one hour.
• hh:mm:ss.sss if the time is greater than or equal to one hour.

NORMAL
The step timings display format is determined by the step duration:

• ss.sss if the time is less than one minute.
• mm:ss.sss if the time is greater than or equal to one minute, and less than one hour.
• hh:mm:ss.sss if the time is greater than or equal to one hour.

S
Display step timings as ss.sss.

SECONDS
Display step timings as ss.sss.

Z
Display step timings as hh:mm:ss.sss.

For each format, hh is hours, mm is minutes, and ss.sss is seconds, including thousandth seconds.

Example
In this example, the OPTIONS statement is used to specify the format of step timings.

OPTIONS STIMEFMT=Z;
DATA _NULL_;
 DO i = 1 TO 1000;
 DO x=1 TO 1000;
 END;
 END;
RUN;

The following is output in the log:

NOTE: The data step took :
 real time : 0:00:00.003
 cpu time : 0:00:00.015

Reference for language elements
Version 4.1

262

SYMBOLGEN
Specifies whether to write the results of resolved macro variable references to the log.

SYMBOLGEN

SGEN

NOSYMBOLGEN

NOSGEN

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True
Restrictable True
Saveable True

SYMBOLGEN

Write the results to the log.

NOSYMBOLGEN

Do not write the results to the log.

Example
In this example, the OPTIONS statement is used to write resolved macro variables to the log.

OPTIONS SYMBOLGEN;

You can then run the following program:

DATA _NULL_;
 %LET xx = hello there;
 to = CAT("Well ", "&xx");
 PUT to;
RUN;

This produces the following output:

SYMBOLGEN: Macro variable xx resolved to hello there

Well hello there

Reference for language elements
Version 4.1

263

VERBOSE
Specifies whether to list the value of configuration options in the log.

VERBOSE

NOVERBOSE

Valid in: Configuration file and command line.
Default: NOVERBOSE

Option group: LOGCONTROL

Portable False
Restrictable True
Saveable False

VERBOSE
List the value of configuration options.

NOVERBOSE
Do not list the value of configuration options.

The configuration options listed are the configuration files used when WPS starts, and the system
options set. For system options, the option name and its value are listed.

Example
In this example, the system option is specified on the command line.

WPS c:\temp\testx.wps -VERBOSE

The following fragment from the log shows the format of the information listed:

==== Processed Configuration File(s) ====
c:\Program Files\World Programming\WPS\4\wps.cfg

Option Value
====== =====
BOTTOMMARGIN 1CM
BYLINE ON
CENTER ON
CHARCODE OFF
CONFIG ('c:\Program Files\World Programming\WPS\4\wps.cfg')
DATE ON
DATESTYLE MDY
DFLANG ENGLISH

Note:
The configuration file shown is the default configuration file, as no file was specified on the command
line.

Reference for language elements
Version 4.1

264

MACRO group system options
System options that control macros including how they operate, the memory available to them, log
output, and so on.

IMPLMAC
This system option is provided for compatibility only, and has no effect in WPS.

IMPLMAC

NOIMPLMAC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOIMPLMAC

Option group: MACRO

Portable True
Restrictable True
Saveable True

IMPLMAC
For compatibility only.

NOIMPLMAC
For compatibility only.

You can only specify NOIMPLMAC. If you specify IMPLMAC, a note is written to the log.

MACRO
Specifies whether the macro facility in WPS can be used.

MACRO

NOMACRO

Valid in: Configuration file and command line.
Default: NOMACRO

Option group: MACRO

Portable True
Restrictable True

Reference for language elements
Version 4.1

265

Saveable False

MACRO
The macro facility can be used.

NOMACRO
The macro facility cannot be used.

If NOMACRO is specified, and a program contains macro statements, functions or variables, these are
not recognised and an error occurs.

Example
In this example, the system option is specified on the command line.

wps c:\temp\sadd.wps -nomacro

The file sadd.wps contains macro statements. These are not recognised as statements, and error
messages are written to the log:

ERROR: Found "%" when expecting a statement
ERROR: The statement "LET" is unknown in this context

The program then fails to execute because errors have occurred.

MACROGEN
Specifies whether the execution of old-style macros is traced.

MACROGEN

MGEN

NOMACROGEN

NOMGEN

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMACROGEN

Option group: MACRO

Portable True
Restrictable False
Saveable False

MACROGEN
Trace the execution of old-style macros.

Reference for language elements
Version 4.1

266

NOMACROGEN
Do not trace the execution of old-style macros.

Example
In this example, the OPTIONS statement is used to specify that the execution is traced.

OPTIONS MACROGEN

If you then run the following statements, the log would contain information on where the old-style macro
was executed.

MACRO test vv %
OPTIONS MACROGEN;
DATA _NULL_;
 test = 1;
 put vv;
RUN;

The log contains:

macro test vv %
793 options macrogen;
794 data _null_;
795 test = 1;
NOTE: The old-style macro test is beginning resolution
796 + vv
NOTE: The old-style macro test is ending resolution
797 put vv;
798 run;

The lines identified by NOTE mark the trace of the old-style macro.

MAUTOLOCDISPLAY
Specifies whether to display the location of the autocall library.

MAUTOLOCDISPLAY

NOMAUTOLOCDISPLAY

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMAUTOLOCDISPLAY

Option group: MACRO

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

267

MAUTOLOCDISPLAY
Display the location.

NOMAUTOLOCDISPLAY
Do not display the location.

The autocall library contains stored macros. The location of the autocall library is written to the log when
a macro from the autocall library is run. The following message is written:

MAUTOLOCDISPLAY(macro): This macro was compiled from the autocall file filename

macro is the name of the macro. filename is the name of the file, including the path, that contains the
macro.

The macros in the autocall library can only be accessed if you specify that autocall macros can be used
with the MAUTOSOURCE (page 267) system option, and the location of the library has been specified
using the SASAUTOS (page 103) system option.

Example
In this example, the OPTIONS statement is used to list the location of the autocall library.

FILENAME msf "C:\temp\macros";
oPTIONS MAUTOSOURCE SASAUTOS=msf MAUTOLOCDISPLAY;

In this example, the specified folder contains a file named test.wps that contains a macro named
test. If the macro is run, the following is written in the log:

MAUTOLOCDISPLAY(TEST): This macro was compiled from the autocall file C:\temp\macros
\test.wps
"Output from a macro"

MAUTOSOURCE
Enables the macro autocall facility.

MAUTOSOURCE

NOMAUTOSOURCE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMAUTOSOURCE

Option group: MACRO

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

268

MAUTOSOURCE
Enable the facility.

NOMAUTOSOURCE
Disable the facility.

The autocall library contains stored macros. The macros in the autocall library can only be accessed if
you specify this system option. The location of the autocall library is specified using the SASAUTOS
(page 103) system option.

Example
In this example, the OPTIONS statement is used to specify that the macro autocall facility is disabled.

OPTIONS NOMAUTOSOURCE

MCOMPILE
Specifies whether to compile macros.

MCOMPILE

NOMCOMPILE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMCOMPILE

Option group: MACRO

Portable True
Restrictable True
Saveable True

MCOMPILE
Compile macros.

NOMCOMPILE
Do not compile macros.

If you specify NOMCOMPILE, macros cannot be compiled, and cannot be executed. However, this does
not affect stored compiled macros that are read from a catalog, as these are already compiled.

Note:
If a macro has already been compiled and is in memory, subsequently setting NOMCOMPILE has no
effect on that macro.

Reference for language elements
Version 4.1

269

Example
In this example, the OPTIONS statement is used to specify that macros cannot be compiled.

OPTIONS NOCOMPILE;

If you attempt to run a macro subsequent to setting this option, an error message is written to the log:

ERROR: The MCOMPILE option must be set in order to compile new macros

MCOMPILENOTE
Specifies that a note is written in the log if a macro is successfully compiled.

MCOMPILENOTE = ALL

NOAUTOCALL

NONE

Valid in: OPTIONS statement, configuration file and command line.
Default: NONE

Option group: MACRO

Portable True
Restrictable True
Saveable True

ALL
Add a note to the log for every macro that is compiled.

NOAUTOCALL
Add a note to the log for every macro that is compiled except for autocall macros.

NONE
Do not add a note to the log after compiling any macro.

The note has the format:

NOTE: The macro name completed compilation without errors
 n instructions m bytes

Where name is the name of the macro, n is the number of instructions in the macro, and m is the
number of bytes in the compiled macro.

Reference for language elements
Version 4.1

270

Example
In this example, the OPTIONS statement is used to specify that a note is written to the log when a
macro compiles successfully.

OPTIONS MCOMPILENOTE=ALL;
%MACRO test2;
DATA _NULL_;
 PUT "Hello again";
RUN;
%MEND;

This returns a note in the log:

NOTE: The macro TEST2 completed compilation without errors
 3 instructions 144 bytes

MERROR
Specifies whether to write a message to the log when an undefined macro reference occurs.

MERROR

NOMERROR

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMERROR

Option group: MACRO

Portable True
Restrictable True
Saveable True

MERROR
Write a warning message.

NOMERROR
Do not write a warning message.

If a program references a macro that has not been compiled in the current session, the macro reference
is not recognised and is treated as a syntax error. For example, if a program refers to an uncompiled
macro macro1, the following error messages are written to the log:

ERROR: Found "%" when expecting a statement
ERROR: The statement "macro1" is unknown in this context

It might, therefore, not be clear that an unresolved macro caused the error. If you set MERROR, an
additional warning message is generated:

WARNING: Apparent invocation of macro "name" not resolved

Reference for language elements
Version 4.1

271

name is the name specified for the macro.

Example
In this example, the OPTIONS statement is used to specify a warning message is written for an
unresolved macro reference.

OPTIONS MERROR;

MINDELIMITER
Specifies the character to use as the delimiter of the macro IN operator.

MINDELIMITER = delimiter- character

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1
Option group: MACRO

Portable True
Restrictable True
Saveable True

delimiter-character
The character to use.

Example
In this example, the OPTIONS statement is used to specify the macro IN delimiter.

OPTIONS MINDELIMITER = "#";

MINOPERATOR
Specifies whether the IN (#) operator can be used in macros.

MINOPERATOR

NOMINOPERATOR

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMINOPERATOR

Option group: MACRO

Reference for language elements
Version 4.1

272

Portable True
Restrictable True
Saveable True

MINOPERATOR
The IN (#) operator can be used.

NOMINOPERATOR
The IN (#) operator cannot be used.

Example
In this example, the OPTIONS statement is used to specify that the # operator cannot be used.

OPTIONS NOMINOPERATOR;

MLOGIC
Specifies whether to show in the log the execution of macros.

MLOGIC

MTRACE

NOMLOGIC

NOMTRACE

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True
Restrictable True
Saveable True

If this system option is set, the log shows when macro execution starts and stops.

MLOGIC
Log the execution of macros.

NOMLOGIC
Do not log the execution of macros.

If you also want to log executed macro statements, specify MPRINT (page 248). If you want log
the execution of nested macros, also specify MLOGICNEST (page 247). If you want to log execute
macro statements in nested macros displayed in the log, also specify both MPRINT and MLOGICNEST.

Reference for language elements
Version 4.1

273

Example
In this example, the OPTIONS statement is used to specify that macro execution is displayed in log. The
example shows the execution of a DATA step, and the result of the system option:

%MACRO test1;
 PUT "A test";
%MEND test1;

OPTIONS MLOGIC;
DATA _NULL_;

 b = 2 + 8;
 PUT "This test program outputs " b "and then starts a macro";

 %test1;

RUN;

This produces the following output:

117 %MACRO test1;
118 PUT "A test";
119 %MEND test1;
120
121 OPTIONS MLOGIC;
122 DATA _NULL_;
123
124 b = 2 + 8;
125 PUT "This test program outputs " b "and then starts a macro";
126
127 %test1;
MLOGIC(TEST1): Beginning execution
MLOGIC(TEST1): Ending execution
128
129 RUN;

This test program outputs 10 and then starts a macro
A test
NOTE: The data step took :
 real time : 0.019
 cpu time : 0.015

MLOGICNEST
Specifies whether to log the execution of nested macros in MLOGIC output.

MLOGICNEST

NOMLOGICNEST

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Reference for language elements
Version 4.1

274

Portable True

MLOGICNEST

Log the execution of nested macros.

NOMLOGICNEST

Do not log the display of nested macros.

You must specify MLOGIC (page 246) if you use this option, otherwise no information on macro
execution is written to the log.

If you also want to log the macro statements that were executed, specify MPRINT (page 248).

Example
In this example, the OPTIONS statement is used to specify that macro nesting information is written to
the log. The following macros are created and then executed from a DATA step, the execution of the
macros, and their nesting, is shown in the log.

%MACRO test;
 PUT "Output from a nested macro";
%MEND test;

%MACRO test1;
 %test;
%MEND test1;

OPTIONS MLOGIC MLOGICNEST;
DATA _NULL_;
 b = 2 + 8;
 PUT "This test program outputs " b "and then starts a macro";
 %test1;
RUN;

Reference for language elements
Version 4.1

275

The following fragment from the log shows the execution of the DATA step and the result of the system
options:

164 %MACRO test;
165 PUT "Output from a nested macro";
166 %MEND test;
167
168 %MACRO test1;
169 %test;
170 %MEND test1;
171
172 OPTIONS MLOGIC MLOGICNEST;
173 DATA _NULL_;
174 b = 2 + 8;
175 PUT "This test program outputs " b "and then starts a macro";
176 %test1;
MLOGIC(TEST1): Beginning execution
MLOGIC(TEST1.TEST): Beginning execution
MLOGIC(TEST1.TEST): Ending execution
MLOGIC(TEST1): Ending execution
177 RUN;

This test program outputs 10 and then starts a macro
Output from a nested macro

MPRINT
Specifies whether to display WPS statements generated by macro execution in the log.

MPRINT

NOMPRINT

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True
Restrictable True
Saveable True

MPRINT
Display WPS statements generated by macro execution.

NOMPRINT
Do not display WPS statements generated by macro execution.

If you want to trace the execution of macros, also specify MLOGIC (page 246). If you want to see
executed macro statements in nested macros, also specify MPRINT and MLOGICNEST (page 247).

Reference for language elements
Version 4.1

276

Example
In this example, the OPTIONS statement is used to specify that macro execution is traced and
statements in the macros are written to the log, and that WPS statements generated by macro
execution are written to the log:

OPTIONS MLOGIC MLOGICNEST MPRINT;

The following fragment from the log shows the execution of the DATA step and the effect of the system
options:

%MACRO test;
 PUT "Output from a nested macro";
%MEND test;

%MACRO test1;
 %test;
%MEND test1;

OPTIONS MLOGIC MLOGICNEST MPRINT;
DATA _NULL_;
 b = 2 + 8;
 PUT "This test program outputs " b "and then starts a macro";
 %test1;
RUN;

The following fragment from the log shows the execution of the DATA step, and the result of the system
options:

8 %MACRO test;
9 PUT "Output from a nested macro";
10 %MEND test;
11
12 %MACRO test1;
13 %test;
14 %MEND test1;
15
16 OPTIONS MLOGIC MLOGICNEST MPRINT;
17 DATA _NULL_;
18 b = 2 + 8;
19 PUT "This test program outputs " b "and then starts a macro";
20 %test1;
MLOGIC(TEST1): Beginning execution
MLOGIC(TEST1.TEST): Beginning execution
MPRINT(TEST): PUT "Output from a nested macro";
MLOGIC(TEST1.TEST): Ending execution
MPRINT(TEST1): ;
MLOGIC(TEST1): Ending execution
21 RUN;

This test program outputs 10 and then starts a macro
Output from a nested macro

Reference for language elements
Version 4.1

277

MPRINTNEST
Specifies whether to display macro nesting information in MPRINT output.

MPRINTNEST

NOMPRINTNEST

Valid in: OPTIONS statement, configuration file and command line.
Option group: MACRO

Portable True
Restrictable True
Saveable True

MPRINTNEST
Display macro nesting information.

NOMPRINTNEST
Do not display macro nesting information.

MPRINT must be specified to use this system option. When MPRINT is specified, each statement in
a macro and in any nested macros, is written to the log. The name of the macro that contains the
statement is appended to each line output to the log; for example:

MPRINT(TEST2): call symput("vc", "cheese");

If MPRINTNEST is specified and the macro is a nested macro, then the name of the macro that invoked
it is appended to the nested macro's name; for example:

MPRINT(TEST1.TEST2): call symputx("vc", "cheese");

This example shows that the macro TEST2 was executed by TEST1.

Example
In this example, the OPTIONS statement is used to specify that macro nesting information is written to
the log. MPRINT is also specified, as MPRINTNEST modifies the output generated by it.

OPTIONS MPRINT MPRINTNEST

MRECALL
Specifies whether to search the autocall libraries for an undefined macro name each time it is invoked.

MRECALL

NOMRECALL

Reference for language elements
Version 4.1

278

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMRECALL

Option group: MACRO

Portable True
Restrictable True
Saveable True

MRECALL
Searches the autocall libraries for an undefined macro name.

NOMRECALL
Does not search the autocall libraries for an undefined macro name.

If an undefined macro name is specified in a program, then:

• If NOMRECALL is specified and the macro is not found, the autocall libraries are not searched again.
• If MRECALL is specified, and the macro is not found, the autocall libraries are searched again.

Example
In this example, the OPTIONS statement is used to specify that the autocall libraries are searched
whenever an undefined macro name occurs.

OPTIONS MRECALL;

MSTORED
Specifies whether stored compiled macros can be used.

MSTORED

NOMSTORED

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMSTORED

Option group: MACRO

Portable True
Restrictable True
Saveable True

MSTORED
Stored compiled macros can be used.

Reference for language elements
Version 4.1

279

NOMSTORED
Stored compiled macros cannot be used.

Stored compiled macro are stored in catalogs. Macros can be compiled and stored in catalogs by
using the /STORE option of the MACRO statement. To successfully create a stored compiled macro,
MSTORED must be specified. If it is set to NOMSTORED, an error occurs, and the macro is not compiled.
The following messages are written to the log:

ERROR: The MSTORED option must be set to use the /STORE macro statement option
macro statements
ERROR: The macro was not compiled

MSTORED must also be set to invoke a stored compiled macro. If it is set to NOMSTORED, the specified
macro is not resolved, and an error occurs. The following messages are written to the log:

WARNING: Apparent invocation of macro "mname" not resolved
ERROR: Expected a statement keyword : found "%"

mname is the name of the macro.

To use a stored compiled macro, you also need to specify the location of the catalog that contains the
macro. You do this using the SASMSTORE (page 282) system option. Stored compiled macros are
stored in a catalog called SASMACR in the specified location.

Example
In this example, the OPTIONS statement is used to specify that stored compiled macros can be used or
generated.

OPTIONS MSTORED;

MSYMTABMAX
Specifies the maximum size of the macro variable symbol tables.

MSYMTABMAX = maximum- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 4194304
Minimum value: 0
Maximum value: 2147483647
Option group: MACRO

Portable True
Restrictable False
Saveable True

Reference for language elements
Version 4.1

280

Note:
The default above is for all operating systems except z/OS. The default on z/OS is 1,048,576 bytes.

maximum-size

The maximum table size, in bytes. This size can be specified as:

• The number of bytes; for example, you can enter 2147488.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2M, the buffer size is 2MiB.
• The number of bytes specified in hexadecimal, by appending X. For example, if the value is

BEBC2X, the buffer size is 781250 bytes.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

The symbol tables comprise the area in memory in which macro variables are stored.

This system option enables you to control the memory allowed for the use of macro variable symbol
tables.

If you attempt to create a macro variable once maximum-size is reached an error occurs.

Example
In this example, the OPTIONS statement is used to specify the maximum size of the symbol table.

OPTIONS MSYMTABMAX = 8388608;

MVARSIZE
Specifies the maximum size for in-memory macro variables.

MVARSIZE = maximum- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 4096
Minimum value: 0
Maximum value: 65534
Option group: MACRO

Portable True
Restrictable False
Saveable True

Reference for language elements
Version 4.1

281

maximum-length
The maximum variable size, in bytes. This size can be specified as:

• The number of bytes; for example, you can enter 20000.
• The number of kibibytes, by appending K to the value, respectively. For example, if the value

is 20K, the buffer size is 20KiB (20480 bytes). The number must be an integer.
• The number of bytes specified in hexadecimal, by appending X. For example, if the value is

EBC2X, the buffer size is 60,354 bytes.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify the size of macro variables.

OPTIONS MVARSIZE = 1024

SASAUTOS
Specifies the list of locations to be searched for autocall macros.

SASAUTOS = l ibrary- specif icat ion

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 2048
Option group: ENVFILES

MACRO

Appendable True
Portable True
Restrictable True
Saveable True

This system option provides a list of locations to be searched for unknown macros encountered in SAS
language programs. If an unknown macro is found in a source program, the specified locations are
searched for source files with the name of that macro. If a suitable source file is found it is read and
processed as if it had been included in the source program with the %INCLUDE statement.

You must also specify the MAUTOSOURCE (page 103) system option.

The source file does not have to contain a macro of the same name. The source file might instead
contain only non-macro statements. In this case, a message is written to the log noting that the autocall
member did not contain a macro of the same name. If you run the macro again, an error message is
returned, unless you also set the MRECALL (page 277) system option.

Reference for language elements
Version 4.1

282

library-specification

One or more locations to be searched. An autocall location can be specified as an operating
system pathname, or as an existing filename reference, or as an external DD card on z/OS.
If multiple locations are specified, enter them in parentheses. For example, to specify one
autocall location SASAUTOS = location-specification; to specify two autocall locations,
SASAUTOS = (location-specification1 location-specification2)

Enter an operating system pathname inside quotation marks.

The length of library-specification can only be 2048 bytes or less.

Example
In this example, the OPTIONS statement is used to specify that there are two autocall locations. The
SASAUTOS option must be used with the MAUTOSOURCE system option.

FILENAME ms1 'c:\temp\macros';
OPTIONS MAUTOSOURCE SASAUTOS=(ms1 'c:\temp\macros2')

If one location contained the file test.wps, and the other the file test2.wps, you could compile and
run the macros in these files by executing:

%test;
%test2;

SASMSTORE
Specifies the library location of the catalog that contains stored compiled macros.

SASMSTORE = l ibrary- reference

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32
Option group: MACRO

Portable True
Restrictable True
Saveable True

library-reference

The path to the catalog, specified as a library name. You cannot specify an operating-system
path name. The length of the path must be 32-bytes or less.

Reference for language elements
Version 4.1

283

Compiled macros can be stored in a catalog. This catalog is called SASMACR. It can be stored in any
location. You can have more than one SASMACR, stored in separate locations. You specify the location
of the SASMACR catalog you want to use through this system option. You specify the system option both
when you create an entry in the catalog, and when you want to use a macro stored in the catalog. To
create or use a stored macro, you also need to specify the MSTORED (page 278) system option.

A macro is stored in the catalog by setting the /STORE option of the %MACRO statement, the MSTORED
system option, and the SASMSTORE system option to specify the location of the SASMACR catalog.

A macro is read from the catalog by specifying the MSTORED system option, and this option to specify
the location of the SASMACR catalog.

Example
In this example, the OPTIONS statement is used to specify the location of the SASMACR catalog. The
MSTORED option is also specified, and a libname set.

LIBNAME ms "c:\temp\macros";
OPTIONS MSTORED SASMSTORE=ms;

You can then run a compiled macro stored in the SASMACR catalog in the specified library:

%test2

If the macro is not currently in memory, SASMACR is searched for it.

You can compile and store a macro in SASMACR, in the specified library:

%MACRO test3 /store;
 %test2;
 %PUT "Hello there!";
%MEND test3;

SERROR
Specifies whether to generate a warning when an undefined macro variable reference occurs.

SERROR

NOSERROR

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSERROR

Option group: MACRO

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

284

SERROR
Write a warning message in the log.

NOSERROR
Do not write a warning message in the log.

If a program contains an undefined macro variable reference, by default the program runs to the end.
The macro variable reference is treated as an unknown statement.

If SERROR is set, however, a warning message is written to the log:

WARNING: Macro variable "name" was not resolved

name is the name of the unresolved macro variable.

This can help you find problems in programs containing macro variables.

Example
In this example, the OPTIONS statement is used to specify that a warning is generated.

%MACRO test2;
DATA _NULL_;
 %put &var;
RUN;
%MEND;

OPTIONS SERROR;
%test2;

The following error message is written to the log:

WARNING: Macro variable "&var" was not resolved

If NOSERROR is set, the warning is written to the log.

SYMBOLGEN
Specifies whether to write the results of resolved macro variable references to the log.

SYMBOLGEN

SGEN

NOSYMBOLGEN

NOSGEN

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MACRO

Portable True

Reference for language elements
Version 4.1

285

Restrictable True
Saveable True

SYMBOLGEN

Write the results to the log.

NOSYMBOLGEN

Do not write the results to the log.

Example
In this example, the OPTIONS statement is used to write resolved macro variables to the log.

OPTIONS SYMBOLGEN;

You can then run the following program:

DATA _NULL_;
 %LET xx = hello there;
 to = CAT("Well ", "&xx");
 PUT to;
RUN;

This produces the following output:

SYMBOLGEN: Macro variable xx resolved to hello there

Well hello there

MEMORY group system options
System options that control how memory is used by programs, and specifies sizes for memory use.

MEMRPT
Specifies whether to write memory usage statistics to the log when WPS starts.

MEMRPT

NOMEMRPT

Valid in: OPTIONS statement, configuration file and command line.
Option group: LOGCONTROL

MEMORY

Portable False

Reference for language elements
Version 4.1

286

Restrictable True
Saveable True
Supported platform: z/OS for System z

MEMRPT
Write memory usage statistics.

NOMEMRPT
Do not write memory usage statistics.

The statistics are written to the log before any text specified by the NEWS system option.

Example
In this example, the OPTIONS statement is used to specify that memory usage statistics are not written
to the log.

OPTIONS NOMEMRPT;

MEMSIZE
Specifies a limit on the total amount of memory used by the WPS.

MEMSIZE = memory- size

Valid in: Configuration file and command line.
Default: 0
Minimum value: 0
Option group: MEMORY

Portable True
Restrictable True
Saveable False

memory-size

The total amount of memory, in bytes, used by WPS. This can be specified as:

• The number of bytes; for example, you can enter 2147483648.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2048M, the memory size is 2GiB.
• The number of bytes, specified in hexadecimal, by appending X. For example, if the value is

100011C0X, the memory size is 268440000 bytes.
• MIN – the minimum supported value.

Reference for language elements
Version 4.1

287

• MAX – the maximum supported value.

If memory-size is set to 0 (zero), then is no constraint on the amount of memory WPS can use. The
operating system on which WPS is running might have memory constraints already in place, in which
case WPS uses the memory allowed within those constraints. If memory-size is set to some other
value, then WPS uses the amount of memory specified; this might fail if other external constraints are
already in place, in which case the amount allowed by the operating system is used.

Example
In this example, the system option is specified on the command line, and specifies that 1GiB of memory
is available.

wps c:\temp\test2.wps -memsize 1G

MINSTG
This system option is provided for compatibility only, and has no effect in WPS.

MINSTG

NOMINSTG

Valid in: OPTIONS statement, configuration file and command line.
Default: NOMINSTG

Option group: MEMORY

Portable True
Restrictable True
Saveable True
Supported platform: z/OS for System z

MINSTG

For compatibility only.

NOMINSTG

For compatibility only.

Reference for language elements
Version 4.1

288

SORTSIZE
Specifies the amount of memory to use when performing a sort.

SORTSIZE = memory- amount

MAX

MIN

Valid in: OPTIONS statement, configuration file and command line.
Default: MAX
Maximum length: 32
Option group: SORT

MEMORY
PERFORMANCE

Portable True
Restrictable True
Saveable True

memory-amount

The total amount of memory used for the sort, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 2147483648.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2048M, the memory available for sorting is 2GiB.
• The number, specified in hexadecimal, by appending X. For example, if the value is

BEBC200X, the memory available for sorting is 200MB bytes.

The largest number you can enter is 32 characters long.

MAX
The maximum supported value.

MIN
The minimum supported value.

Example
In this example, the OPTIONS statement is used to specify that 100MiB of memory is available for a
sort.

OPTIONS SORTSIZE = 100M;

Reference for language elements
Version 4.1

289

SUMBUFNO
Specifies the size of the buffers to be used for summarising data.

SUMBUFNO = number- of- buffers

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 2147483647
Option group: MEMORY

Portable True
Restrictable True
Saveable True

Some procedures, such as SUMMARY or TABULATE, create summaries of data. This system option
enables you specify the number of buffers used to store temporary data while creating summaries.

number-of-buffers

The number of buffers required. This can be specified as:

• A number; for example, you can enter 2147.
• A number of buffers multiplied by 1024, by 10242 or 10243, by appending K, M or G to the

value, respectively. For example, if the value is 1M, the number of buffers is the 1,048,576.

• A number specified in hexadecimal, by appending X. For example, if the value is EBC2X, the
number of buffers is 60,354.

• MIN – the minimum supported value.
• MAX – the maximum supported value.

If number-of-buffers is set to 0 (zero), then WPS uses 500 buffers; otherwise, it uses the number
specified.

Example
In this example, the OPTIONS statement is used to specify 1024 buffers.

OPTIONS SORTBUFNO = 1K;

Reference for language elements
Version 4.1

290

SUMSIZE
Specifies the maximum amount of memory available to the SUMMARY and MEANS procedures.

SUMSIZE = memory- amount

MAX

MIN

Valid in: OPTIONS statement, configuration file and command line.
Default: MAX
Maximum length: 32
Option group: MEMORY

Portable True
Restrictable True
Saveable True

This system option specifies how much memory is available to summarisation operations in procedures
that create summary data, such as SUMMARY and MEANS.

memory-amount

The maximum memory size available, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 2147488.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2M, the amount of memory available is 2097152
bytes.

• The number of bytes specified in hexadecimal, by appending X. For example, if the value is
BEBC200X, the memory available for sorting is 200MB.

The number specified can be no longer than 32 characters.

MAX
The maximum supported value.

MIN
The minimum supported value.

Example
In this example, the OPTIONS statement is used to specify that x'21A78F' of memory is available:

OPTIONS SUMSIZE = 21A78FX;

Reference for language elements
Version 4.1

291

ODSPRINT group system options
System options that specify ODSPRINT settings.

BOTTOMMARGIN
Specifies the width of the bottom margin of PDFs created using the Output Delivery System (ODS).

BOTTOMMARGIN = margin- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0.0 in
Maximum length: 10
Option group: ODSPRINT

Appendable False
Portable False
Restrictable False
Saveable False

margin-size
The margin size. The size can be expressed in inches (in), centimetres (cm) or points (pt). The
size can be entered with or without quotes. For example, 1in, "2cm", 10pt.

This option can be overridden using the equivalent statement on the ODS PDF statement.

Example
In this example, the OPTIONS statement is used to specify that the bottom margin of the PDF output is
1cm:

OPTIONS BOTTOMMARGIN = 1cm

LEFTMARGIN
Specifies the width of the left margin in PDFs created using the Output Delivery System (ODS).

LEFTMARGIN = margin- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0.0 in

Reference for language elements
Version 4.1

292

Maximum length: 10
Option group: ODSPRINT

Appendable False
Portable False
Restrictable False
Saveable False

margin-size
The margin width. The width can be expressed in inches (in), centimetres (cm) or points (pt).
The size can be entered with or without quotes. For example, 1in, "2cm", 10pt.

This option can be overridden using the equivalent statement on the ODS PDF statement.

Example
In this example, the OPTIONS statement is used to specify that the left margin width of the PDF output
is 1cm:

OPTIONS LEFTMARGIN = 1cm;

ODSDEST
Specifies the default ODS destination to initialise.

ODSDEST = AUTO

LISTING

NONE

Valid in: Configuration file and command line.
Default: LISTING

Option group: ODSPRINT

Portable True
Restrictable True
Saveable True

AUTO

Create a listing file.

LISTING

Create a listing file.

Reference for language elements
Version 4.1

293

NONE

No default ODS destination.

AUTO and LISTING currently function the same way. If NONE is specified, a destination needs to be
specified in programs.

Example
In this example, the option is specified on the command line.

wps sadd.wps -odsdest listing

Output from the program sadd.wps is written to the ODS listing destination.

ODSHTMLDEST
Specifies the type of HTML file created when writing HTML files using ODS HTML.

ODSHTMLDEST = HTMLCSS

OLDHTML

Valid in: Configuration file and command line.
Default: HTMLCSS

Option group: ODSPRINT

Portable True

HTMLCSS

A file is created that is equivalent to specifying ODS HTMLCSS.

OLDHTML

A file is created that is equivalent to specifying ODS OLDHTML.

Example
In this example, the OPTIONS statement is used to specify that the type of HTML file generated is the
same as that generated using ODS OLDHTML:

wps sadd -odshtmldest oldhtml;

Reference for language elements
Version 4.1

294

ORIENTATION
Specifies the page orientation of the PDF created using ODS.

ORIENTATION = LANDSCAPE

PORTRAIT

Valid in: OPTIONS statement, configuration file and command line.
Default: PORTRAIT

Option group: ODSPRINT

Portable True
Restrictable True
Saveable True

LANDSCAPE

Create PDF in landscape orientation.

PORTRAIT

Create PDF in portrait orientation.

Example
In this example, the OPTIONS statement is used to specify the landscape orientation for PDF output:

OPTIONS ORIENTATION = LANDSCAPE;

PAPERSIZE
Specifies the paper size for PDFs created using ODS.

PAPERSIZE = page- format

Valid in: OPTIONS statement, configuration file and command line.
Default: A4
Maximum length: 35
Option group: ODSPRINT

Portable True
Restrictable False
Saveable False

Reference for language elements
Version 4.1

295

page-format
A string that specifies a corresponding, supported page size, and must be one of:

• A2

• A3

• A4

• A5

• LETTER

• USLETTER

Example
In this example, the OPTIONS statement is used to specify the page size for PDF output:

OPTIONS PAGESIZE = A5;

PREFERLEGACYTABLETEMPLATES
Specifies whether version 4.1 table templates are used

PREFERLEGACYTABLETEMPLATES = ALWAYS

LISTING

NO

Valid in: OPTIONS statement, configuration file and command line.
Default: LISTING

Option group: ODSPRINT

Portable False
Restrictable True
Saveable False

ALWAYS

Version 4.1 table templates are used for all ODS destinations.

LISTING

Version 4.1 tables templates are used for the ODS LISTING destination. All other destinations
use the pre-version 4.1 table templates.

NO

Pre-Version 4.1 table templates are used for all ODS destinations.

Reference for language elements
Version 4.1

296

Example
In this example, the OPTIONS statement is used to specify that version 4.1 tables templates are used
for the ODS LISTING destination.

OPTIONS PREFERLEGACYTABLETEMPLATES=LISTING

RIGHTMARGIN
Specifies the right margin width of PDFs output via the Output Delivery System (ODS).

RIGHTMARGIN = margin- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0.0 in
Maximum length: 10
Option group: ODSPRINT

Appendable False
Portable False
Restrictable False
Saveable False

margin-size
The margin width. The width can be expressed in inches (in), centimetres (cm) or points (pt).
The size can be entered with or without quotes. For example, 1in, "2cm", 10pt.

Example
In this example, the OPTIONS statement is used to specify that the right margin of the PDF output is
1cm:

OPTIONS RIGHTMARGIN = 1cm;

TOPMARGIN
Specifies the width of the top margin of PDFs created using the Output Delivery System (ODS).

TOPMARGIN = margin- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0.0 in

Reference for language elements
Version 4.1

297

Maximum length: 10
Option group: ODSPRINT

Appendable False
Portable False
Restrictable False
Saveable False

margin-size
The margin size. The size can be expressed in inches (in), centimetres (cm) or points (pt). The
size can be entered with or without quotes. For example, 1in, "2cm", 10pt.

This option can be overridden using the equivalent statement on the ODS PDF statement.

Example
In this example, the OPTIONS statement is used to specify that the top margin of the PDF output is
1cm:

OPTIONS TOPMARGIN = 1cm;

PERFORMANCE group system options
System options that affect program performance.

BUFNO
Specifies the number of buffers used for simple file operations, such as that provided by the FILE and
INFILE statements.

BUFNO = number- of- buffers

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 0
Maximum value: 2147483647
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True

Reference for language elements
Version 4.1

298

Saveable True

number-of-buffers

The number of buffers to use. This can be specified as:

• The number of buffers; for example, you can enter 2147488.
• The number of buffers as a multiple of 1,024, 1,0242 or 1,0243, by appending K, M or G to the

value, respectively. For example, if the value is 100K, the number of buffers is 102,400.
• The number of buffers specified in hexadecimal, by appending X. For example, if the value is

BEBC2X, the number of buffers available is 781,250.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Increasing the number of buffers used to read data from and write data to a file might increase the
speed with which data can be read; however, reducing the amount of memory available for other
operations might slow overall performance.

Example
In this example, the OPTIONS statement is used to specify that 32 buffers are available.

OPTIONS BUFNO = 32;

BUFSIZE
Specifies the default size of a page used when creating WPS datasets.

BUFSIZE = buffer- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 2147483647
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

This system option only affects the size of the page used when creating new WPS datasets, not when
interacting with existing datasets.

Reference for language elements
Version 4.1

299

buffer-size

The size of the page, in bytes. This size can be specified as:

• The number of bytes; for example, you can enter 2147488.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2M, the buffer size is 2MiB.
• The number of bytes, specified in hexadecimal, by appending X. For example, if the value is

BEBC2X, the buffer size is 781250 bytes.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

WPS rounds any numeric value specified to produce a useable value. If the value provided is too small
for the dataset or is 0 (zero), WPS determines a value.

The buffer size can be tailored for compressed and uncompressed datasets by also specifying the
BUFSIZECMULT and BUFSIZEUMULT system options, respectively.

Example
In this example, the OPTIONS statement is used to specify that the size of the buffer is 1MiB.

OPTIONS BUFSIZE = 1M;

BUFSIZECMULT
Specifies a multiplier that is applied to the computed minimum page size for a compressed WPS
dataset.

BUFSIZECMULT = mult iplier

Valid in: OPTIONS statement, configuration file and command line.
Default: 6
Minimum value: 1
Maximum value: 65535
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

You can, in general, leave this at the default value. However, for some datasets, increasing the value
might give better performance, but this will be at the cost of more memory.

Reference for language elements
Version 4.1

300

multiplier
The multiplier to be applied.

The value specified here is a multiplier to the value specified to BUFSIZE. For a compressed dataset,
therefore, the buffer size used is the result of the value of BUFSIZE multiplied by the value of
BUFSIZECMULT.

Example
In this example, the OPTIONS statement is used to specify that the size of the minimum computed size
of a buffer is multiplied by 5.

OPTIONS BUFSIZECMULT = 5;

BUFSIZEUMULT
Specifies a multiplier that is applied to the computed minimum page size for an uncompressed WPS
dataset.

BUFSIZEUMULT = mult iplier

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 1
Maximum value: 65535
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

You can, in general, leave this at the default value. However, for some datasets, increasing the value
might give better performance, but this will be at the cost of more memory.

multiplier

The value specified here is a multiplier to the value specified to BUFSIZE. For an uncompressed
dataset, therefore, the buffer size used is the result of the value of BUFSIZE multiplied by the value of
BUFSIZEUMULT.

Reference for language elements
Version 4.1

301

Example
In this example, the OPTIONS statement is used to specify that the size of the minimum computed size
of a page is multiplied by 5.

OPTIONS BUFSIZEUMULT = 5;

COMPRESS
Specifies whether to compress the data when WPS datasets are created.

COMPRESS = BINARY

CHAR

N

NO

ON

Y

YES

Valid in: OPTIONS statement, configuration file and command line.
Default: NO

Option group: SASFILES
PERFORMANCE

Portable True
Restrictable True
Saveable True

Compression can be useful if storage space is limited; however, there is a processing cost to
compressing and decompressing files. Similarly, it might be quicker to read and write compressed files
across networks, but the files subsequently need to be decompressed. There are, then, trade-offs that
must be considered before applying this system option.

The amount by which data can be compressed depends on the type of data to be compressed.

BINARY
Use Ross Data Compression (RDC) algorithm.

CHAR
Use run-length encoding (RLE) algorithm.

N
Do not compress.

NO
Do not compress.

Reference for language elements
Version 4.1

302

ON
Use run-length encoding (RLE) algorithm.

Y
Use run-length encoding (RLE) algorithm.

YES
Use run-length encoding (RLE) algorithm.

Example
In this example, the OPTIONS statement is used to that RDC is used to compress datasets.

OPTIONS COMPESS = BINARY;

CPUCOUNT
Specifies the number of CPUs available to programs.

CPUCOUNT = number- of- CPUs

ACTUAL

Valid in: OPTIONS statement, configuration file and command line.
Minimum value: 1
Maximum value: 1024
Option group: PERFORMANCE

Portable False
Restrictable True
Saveable False

number-of-CPUs
The number of physical or logical CPUs that are available to the application.

ACTUAL

Example
In this example, the OPTIONS statement is used to specify that two CPUs can be used.

OPTIONS CPUCOUNT = 2;

Reference for language elements
Version 4.1

303

FULLSTATS
Specifies whether to write more detailed performance statistics for a step on z/OS.

FULLSTATS

NOFULLSTATS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFULLSTATS

Option group: LOGCONTROL
PERFORMANCE

Supported platform: z/OS for System z

FULLSTATS
Write more detailed performance statistics.

NOFULLSTATS
Do not write more detailed performance statistics.

By default, the information returned is file information and the amount of real time and processor time
used to execute the step. If you specify FULLSTATS, additional information is provided about the EXCP
count. This information is added after the data step timing; for example:

 real time : 0.002
 cpu time : 0.001
 EXCP count: 0

Example
In this example, the OPTIONS statement is used to specify full statistics are written to the log.

OPTIONS FULLSTATS;

Reference for language elements
Version 4.1

304

If a program is then run, the following is written to the log:

The file INLINE is:

Dsname = CJH.FULLSTAT.JOB08311.D0000101.?,

Unit =,

Volume =, Disp = NEW, Blksize=80, Lrecl=80, Recfm=FB

Creation=2018/08/01

LINE
1

LINE
2

NOTE: 2 records were read from file
INLINE
NOTE: The data step took:

 real time : 0.042
 cpu time : 0.003
 EXCP count: 0

The EXCP count has been added to the log.

IBUFNO
Specifies the number of index file buffers used by a library engine for a dataset.

IBUFNO = buffer- number

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 10000
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

buffer-number

The total amount of file index buffers available. This can be specified as:

• The number of buffers; for example, you can enter 5000.

Reference for language elements
Version 4.1

305

• The number of buffers as a multiple of 1024, by appending K to the value. For example, if the
value is 7K, 7,168 index file buffers are used. This number must be an integer.

• The of buffers specified in hexadecimal, by appending X. For example, if the value is 1000X,
the number of buffers is 4096.

• MIN – the minimum supported value.
• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify that 5000 index file buffers are available.

OPTIONS IBUFNO = 5000;

IBUFSIZE
Specifies the size of an index page for a WPS dataset.

IBUFSIZE = buffer- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 32767
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

buffer-size

The size of index page to use, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 5000.
• The number of kibibytes, by appending K to the value. For example, if the value is 7K, the

index page size is 7,168 bytes. The number must be an integer.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Reference for language elements
Version 4.1

306

Example
In this example, the OPTIONS statement is used to specify that the index page is eight kibibytes in size.

OPTIONS IBUFNO = 8K;

SORTSIZE
Specifies the amount of memory to use when performing a sort.

SORTSIZE = memory- amount

MAX

MIN

Valid in: OPTIONS statement, configuration file and command line.
Default: MAX
Maximum length: 32
Option group: SORT

MEMORY
PERFORMANCE

Portable True
Restrictable True
Saveable True

memory-amount

The total amount of memory used for the sort, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 2147483648.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2048M, the memory available for sorting is 2GiB.
• The number, specified in hexadecimal, by appending X. For example, if the value is

BEBC200X, the memory available for sorting is 200MB bytes.

The largest number you can enter is 32 characters long.

MAX
The maximum supported value.

MIN
The minimum supported value.

Reference for language elements
Version 4.1

307

Example
In this example, the OPTIONS statement is used to specify that 100MiB of memory is available for a
sort.

OPTIONS SORTSIZE = 100M;

STIMER
Specifies whether to write performance statistics to the log after each step.

STIMER

NOSTIMER

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSTIMER

Option group: PERFORMANCE
SMF

Portable False
Restrictable True
Saveable False

STIMER
Write performance statistics after each step.

NOSTIMER
Do not write performance statistics after each step.

A step can be the execution of a procedure or DATA step.

Example
In this example, the OPTIONS statement is used to specify that performance statistics are not written to
the log.

OPTIONS NOSTIMER;

Reference for language elements
Version 4.1

308

THREADS
Specifies whether to enable multi-threaded processing.

THREADS

NOTHREADS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOTHREADS

Option group: PERFORMANCE

Portable True
Restrictable True
Saveable True

THREADS
Enable multi-threaded processing.

NOTHREADS
Disable multi-threaded processing.

You can specify THREADS on a system on which multi-threaded processing is not available; no error will
occur.

Example
In this example, the OPTIONS statement is used to specify that multi-threaded processing is not
available.

OPTIONS NOTHREADS;

WPDHUGE

Specifies whether new WPD datasets are permitted to have more than records.

WPDHUGE

NOWPDHUGE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOWPDHUGE

Option group: PERFORMANCE

Portable True

Reference for language elements
Version 4.1

309

Restrictable True
Saveable True

WPDHUGE

Allow datasets to have more than records.

NOWPDHUGE

Do not allow datasets to have more than records.

Example
In this example, the OPTIONS statement is used to specify that datasets cannot have more than
records.

OPTIONS NOWPDHUGE;

SASFILES group system options
System options that effect datasets.

LAST
Sets the system variable _LAST_ to the specified dataset name.

LAST = dataset

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: SASFILES

Portable True
Restrictable False
Saveable True

dataset
Assigns a specific dataset to the system variable _LAST_.

The system variable _LAST_ can be used in place of a dataset name:

PROC CONTENTS DATA=_LAST_;
RUN;

Reference for language elements
Version 4.1

310

The CONTENTS procedure then use the last dataset used in the session. However, you can specify
a dataset name as shown in the example below, and then instead of the last dataset, the specified
dataset is used.

Some procedures use the value of the system variable _LAST_ by default if no dataset name is
specified.

Example
In this example, the OPTIONS statement is used to specify that the system variable _LAST_ contains a
specified name.

OPTIONS _LAST_ = myDataset;

BASEENGINE
Specifies the library engine to use when the BASE option is specified in LIBNAME.

BASEENGINE = engine- name

Valid in: Configuration file and command line.
Default: WPD
Maximum length: 8
Option group: SASFILES

Portable True
Restrictable False
Saveable False

engine-name

The name of the library engine to use. This is one of the library engine names described in the
section Library engines.

BASE is a pseudo-engine name that can be used in a LIBNAME statement. If BASE is specified,
BASEENGINE must also be set.

Example
In this example, the option is specified on the command line. It specifies that the BASE pseudo-engine
refers to the Access library engine.

wps c:\temp\test2.wps -baseengine access

Reference for language elements
Version 4.1

311

The program test2.wps is:

LIBNAME be BASE "c:\temp\test1.accdb";
DATA be.table1;
 INPUT txt;
 FORMAT txt 2.;
CARDS;
6
;

This writes the data to the table table1 in the specified Access database.

BLKALLOC
Specifies whether a block size is defined when dynamically allocating storage space for a data library in
an MVS dataset.

BLKALLOC

NOBLKALLOC

Valid in: OPTIONS statement, configuration file and command line.
Default: NOBLKALLOC

Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

BLKALLOC
The default block size, set using the BLKSIZE option, is always specified when allocating storage
space for a new data library.

NOBLKALLOC
The default block size, set using the BLKSIZE option, can be zero when dynamically allocating
storage space for a new data library.

The size of a block is normally set using the BLKSIZE option of a LIBNAME statement. If that option is
not specified, then:

• If BLKALLOC is set, one of the following occurs:

‣ The block size is set to the value specified by the BLKSIZE system option.
‣ If no value is specified to the BLKSIZE system option, the block size is set to the value specified

by the BLKSIZE(OTHER) system option.
‣ If no value is specified for the BLKSIZE or BLKSIZE(OTHER) system options, the default block

size is 6164 bytes.

Reference for language elements
Version 4.1

312

• If NOBLKALLOC is set, WPS automatically chooses a block size.

Example
In this example, the OPTIONS statement is used to specify that the default block size for a new data
library is set dynamically.

OPTIONS NOBLKALLOC;

BLKSIZE
Specifies the default block size for data libraries.

BLKSIZE = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 27998
Minimum value: 1024
Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify that the block size for data libraries is 27998
bytes.

OPTIONS BLKSIZE = 27998;

BLKSIZE(3375)
Specifies the default block size for data libraries on 3375 devices.

BLKSIZE(3375) = block- size

Reference for language elements
Version 4.1

313

Valid in: OPTIONS statement, configuration file and command line.
Default: 8192
Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify that the blocksize for data libraries is 16384
bytes.

OPTIONS BLKSIZE(3375) = 16384;

BLKSIZE(3380)
Specifies the default block size for data libraries on 3380 devices.

BLKSIZE(3380) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 23476
Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Reference for language elements
Version 4.1

314

Example
In this example, the OPTIONS statement is used to specify that the blocksize for data libraries is 16384
bytes.

OPTIONS BLKSIZE(3380) = 16384;

BLKSIZE(3390)
Specifies the default block size for data libraries on 3390 devices.

BLKSIZE(3390) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 27998
Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify that the blocksize for data libraries is 16384
bytes.

OPTIONS BLKSIZE(3390) = 16384;

BLKSIZE(9345)
Specifies the default block size for data libraries on 9345 devices.

BLKSIZE(9345) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 6144

Reference for language elements
Version 4.1

315

Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify that the blocksize for data libraries is 16384
bytes.

OPTIONS BLKSIZE(9345) = 16384;

BLKSIZE(DISK)
Specifies the default block size for data libraries on DISK devices.

BLKSIZE(DISK)

BLKSIZE(DASD)

= block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

If block-size is set to 0 (zero), WPS calculates a block size based on the size of observations in the
dataset.

Reference for language elements
Version 4.1

316

Example
In this example, the OPTIONS statement is used to specify that the blocksize for data libraries is 16384
bytes.

OPTIONS BLKSIZE(DISK) = 16384;

BLKSIZE(OTHER)
Specifies the default block size for data libraries on OTHER devices.

BLKSIZE(OTHER) = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 6144
Maximum value: 32760
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size

The amount of storage space, in bytes, to allocate for each block.

Example
In this example, the OPTIONS statement is used to specify that the blocksize for data libraries is 16384
bytes.

OPTIONS BLKSIZE(OTHER) = 16384;

BUFNO
Specifies the number of buffers used for simple file operations, such as that provided by the FILE and
INFILE statements.

BUFNO = number- of- buffers

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

317

Default: 1
Minimum value: 0
Maximum value: 2147483647
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

number-of-buffers

The number of buffers to use. This can be specified as:

• The number of buffers; for example, you can enter 2147488.
• The number of buffers as a multiple of 1,024, 1,0242 or 1,0243, by appending K, M or G to the

value, respectively. For example, if the value is 100K, the number of buffers is 102,400.
• The number of buffers specified in hexadecimal, by appending X. For example, if the value is

BEBC2X, the number of buffers available is 781,250.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Increasing the number of buffers used to read data from and write data to a file might increase the
speed with which data can be read; however, reducing the amount of memory available for other
operations might slow overall performance.

Example
In this example, the OPTIONS statement is used to specify that 32 buffers are available.

OPTIONS BUFNO = 32;

BUFSIZE
Specifies the default size of a page used when creating WPS datasets.

BUFSIZE = buffer- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 2147483647
Option group: SASFILES

Reference for language elements
Version 4.1

318

PERFORMANCE

Portable True
Restrictable True
Saveable True

This system option only affects the size of the page used when creating new WPS datasets, not when
interacting with existing datasets.

buffer-size

The size of the page, in bytes. This size can be specified as:

• The number of bytes; for example, you can enter 2147488.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2M, the buffer size is 2MiB.
• The number of bytes, specified in hexadecimal, by appending X. For example, if the value is

BEBC2X, the buffer size is 781250 bytes.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

WPS rounds any numeric value specified to produce a useable value. If the value provided is too small
for the dataset or is 0 (zero), WPS determines a value.

The buffer size can be tailored for compressed and uncompressed datasets by also specifying the
BUFSIZECMULT and BUFSIZEUMULT system options, respectively.

Example
In this example, the OPTIONS statement is used to specify that the size of the buffer is 1MiB.

OPTIONS BUFSIZE = 1M;

BUFSIZECMULT
Specifies a multiplier that is applied to the computed minimum page size for a compressed WPS
dataset.

BUFSIZECMULT = mult iplier

Valid in: OPTIONS statement, configuration file and command line.
Default: 6
Minimum value: 1
Maximum value: 65535

Reference for language elements
Version 4.1

319

Option group: SASFILES
PERFORMANCE

Portable True
Restrictable True
Saveable True

You can, in general, leave this at the default value. However, for some datasets, increasing the value
might give better performance, but this will be at the cost of more memory.

multiplier
The multiplier to be applied.

The value specified here is a multiplier to the value specified to BUFSIZE. For a compressed dataset,
therefore, the buffer size used is the result of the value of BUFSIZE multiplied by the value of
BUFSIZECMULT.

Example
In this example, the OPTIONS statement is used to specify that the size of the minimum computed size
of a buffer is multiplied by 5.

OPTIONS BUFSIZECMULT = 5;

BUFSIZEUMULT
Specifies a multiplier that is applied to the computed minimum page size for an uncompressed WPS
dataset.

BUFSIZEUMULT = mult iplier

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 1
Maximum value: 65535
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

You can, in general, leave this at the default value. However, for some datasets, increasing the value
might give better performance, but this will be at the cost of more memory.

Reference for language elements
Version 4.1

320

multiplier

The value specified here is a multiplier to the value specified to BUFSIZE. For an uncompressed
dataset, therefore, the buffer size used is the result of the value of BUFSIZE multiplied by the value of
BUFSIZEUMULT.

Example
In this example, the OPTIONS statement is used to specify that the size of the minimum computed size
of a page is multiplied by 5.

OPTIONS BUFSIZEUMULT = 5;

COMPRESS
Specifies whether to compress the data when WPS datasets are created.

COMPRESS = BINARY

CHAR

N

NO

ON

Y

YES

Valid in: OPTIONS statement, configuration file and command line.
Default: NO

Option group: SASFILES
PERFORMANCE

Portable True
Restrictable True
Saveable True

Compression can be useful if storage space is limited; however, there is a processing cost to
compressing and decompressing files. Similarly, it might be quicker to read and write compressed files
across networks, but the files subsequently need to be decompressed. There are, then, trade-offs that
must be considered before applying this system option.

The amount by which data can be compressed depends on the type of data to be compressed.

BINARY
Use Ross Data Compression (RDC) algorithm.

Reference for language elements
Version 4.1

321

CHAR
Use run-length encoding (RLE) algorithm.

N
Do not compress.

NO
Do not compress.

ON
Use run-length encoding (RLE) algorithm.

Y
Use run-length encoding (RLE) algorithm.

YES
Use run-length encoding (RLE) algorithm.

Example
In this example, the OPTIONS statement is used to that RDC is used to compress datasets.

OPTIONS COMPESS = BINARY;

CPORTVER
Specifies the type of CPORT file that is generated by default by the CPORT procedure.

CPORTVER = SAS82

SAS91

SAS92

SAS93

Valid in: OPTIONS statement, configuration file and command line.
Default: SAS92

Option group: SASFILES

Portable True
Restrictable True
Saveable True

SAS82
Generate a file in SAS version 8.2 format.

Reference for language elements
Version 4.1

322

SAS91
Generate a file in SAS version 9.1 format.

SAS92
Generate a file in SAS version 9.2 format.

SAS93
Generate a file in SAS version 9.3 format.

Example
In this example, the OPTIONS statement is used to specify that a version 8.2 transport file is created.

OPTIONS CPORTVER = SAS82;

DIRECTIO
Specifies whether to use direct input and output, where possible.

DIRECTIO

NODIRECTIO

Valid in: OPTIONS statement, configuration file and command line.
Default: NODIRECTIO

Option group: SASFILES

Portable True
Restrictable True
Saveable True
Supported platform: AIX for pSeries

64-bit Linux for ARM
Linux for pSeries
Linux (LE) for pSeries
Linux for System z
64-bit Linux for System z
64-bit Linux
32-bit Linux
64-bit Mac O/S
Solararis for SPARC
Solaris for 64-bit x86
Solaris for 32-bit x86
64-bit Windows
32-bit Windows

Reference for language elements
Version 4.1

323

DIRECTIO
Use direct input and output.

NODIRECTIO
Do not use direct input and output.

Example
In this example, the OPTIONS statement is used to specify that direct I/O is not used.

OPTIONS NODIRECTIO

DKRICOND
Specifies the action to take for DROP, KEEP, and RENAME error conditions on input datasets.

DKRICOND = ERROR

NOWARN

NOWARNING

WARN

WARNING

Valid in: OPTIONS statement, configuration file and command line.
Default: ERROR

Option group: SASFILES

Portable True
Restrictable True
Saveable True

ERROR

The program stops, and an error message is written to the log.

NOWARN

The program continues, and no warning message is written to the log.

NOWARNING

The program continues, and no warning message is written to the log.

WARN

The program continues, but a warning message is written to the log.

Reference for language elements
Version 4.1

324

WARNING

The program continues, but a warning message is written to the log.

Example
In this example, the OPTIONS statement is used to specify that a warning is generated on DROP, KEEP,
and RENAME error conditions, but the program continues to run.

OPTION DKRICOND=WARN;

If you then run the following program, in which the specified input dataset has no variable named C, no
error occurs, but a warning is written to the log

LIBNAME test "c:\temp" ;
DATA testout;
 SET test.books (drop = C);
RUN;

The log contains the following lines:

49 data testout;
150 set test.books (drop = C);
WARNING: Variable "C" referenced in the KEEP or DROP list is not known
151 run;

DKROCOND
Specifies the action to take for DROP, KEEP, and RENAME error conditions on output datasets.

DKROCOND = ERROR

NOWARN

NOWARNING

WARN

WARNING

Valid in: OPTIONS statement, configuration file and command line.
Default: WARN

Option group: SASFILES

Portable True
Restrictable True
Saveable True

ERROR

The program stops, and an error message is written to the log.

Reference for language elements
Version 4.1

325

NOWARN

The program continues, and no warning message is generated.

NOWARNING

The program continues ,and no warning message is generated.

WARN

The program continues, but a warning message is written to the log.

WARNING

The program continues, but a warning message is written to the log.

Example
In this example, the OPTIONS statement is used to specify that a warning is generated on DROP, KEEP,
and RENAME error conditions, but the program continues to run.

OPTION DKRICOND=WARN;

If you then run the following program, in which the specified output dataset has no variable named C, no
error will occur, but a warning is written to the log

LIBNAME test "c:\temp" ;
DATA testout (rename = (C = D));
 SET test.books;
RUN;

The log contains the following:

WARNING: The variable "C" in the RENAME list has never been referenced

DLCREATEDIR
Specifies that a folder is created when a libname is assigned, if the folder does not already exist.

DLCREATEDIR

NODLCREATEDIR

Valid in: OPTIONS statement, configuration file and command line.
Default: NODLCREATEDIR

Option group: SASFILES

Portable False
Restrictable True
Saveable False

Reference for language elements
Version 4.1

326

DLCREATEDIR
Create a folder.

NODLCREATEDIR
Do not create a folder.

Basic example
In this example, the OPTIONS statement is used to specify that a new folder is created for a libname if
the folder does not exist.

OPTIONS DLCREATEDIR;
LIBNAME moretemp 'c:\temp\newtemp';

The folder newtemp is created in c:\temp.

DLDSNTYPE
Specifies the default value to use for the DSNTYPE option of a LIBNAME connection statement.

DLDSNTYPE = BASIC

LARGE

NONE

Valid in: OPTIONS statement, configuration file and command line.
Default: NONE

Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

BASIC

Specifies a basic format dataset.

LARGE

Specifies a large format dataset.

NONE

The library is allocated without specifying DSNTYPE

Reference for language elements
Version 4.1

327

Example
In this example, the OPTIONS statement is used to specify a DSNTYPE of LARGE.

OPTIONS DLDSNTYPE = LARGE;

DLEXCPCOUNT
Specifies whether to report the EXCP count for WPS data libraries.

DLEXCPCOUNT

NODLEXCPCOUNT

Valid in: OPTIONS statement, configuration file and command line.
Default: NODLEXCPCOUNT

Option group: SASFILES

Portable False
Restrictable True
Saveable False
Supported platform: z/OS for System z

DLEXCPCOUNT
Report EXCP count.

NODLEXCPCOUNT
Do not report EXCP count.

Example
In this example, the OPTIONS statement is used to specify that the EXCP count is not reported.

OPTIONS NODLEXCPCOUNT;

ENCRYPT
Specifies whether datasets are encrypted.

ENCRYPT = AES

NO

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

328

Default: NO

Maximum length: 10
Option group: SASFILES

Portable True
Restrictable True
Saveable True

File are encrypted using the Advanced Encryption Standard (AES256). AES encryption requires a key,
which can be specified using the ENCRYPTKEY system option.

AES
Encrypt datasets using AES.

NO
Do not encrypt datasets.

To encrypt a file you need to specify both ENCRYPT and ENCRYPTKEY. To decrypt a file you need only
specify ENCRYPTKEY. You can then read the contents of the dataset and manipulate the values. If you
want to read an encrypted file and write the contents of that file to a dataset unencrypted, you need
to specify ENCRYPTKEY with the corresponding key, and ENCRYPT = NO. ENCRYPT = NO is set by
default when you start a WPS session.

Note:
This system option provides the same functionality as the ENCRYPT dataset option.

Basic example
In this example, the OPTIONS statement is used to specify that files are encrypted.

OPTIONS ENCRYPT=AES ENCRYPTKEY = 'xxyy99';
LIBNAME books XLSX "c:\temp\books\books.xlsx";
LIBNAME books2 "c:\temp\books";
DATA books2.booksout;
 SET books.books1;
RUN;

The dataset booksout is encrypted using the key xxyy99.

Example – read encrypted dataset, write unencrypted dataset
In this example, the OPTIONS statement is used to specify that files are decrypted. This example uses
the encrypted file created in the previous example, and assumes the session has not been restarted. To
write an unencrypted dataset you therefore need to specify ENCRYPT = NO.

OPTIONS ENCRYPT=NO;
DATA temp;
 SET books2.booksout;
 IF author = 'Wilson, Colin' THEN OUTPUT;
RUN;

Reference for language elements
Version 4.1

329

The specified dataset booksout is decrypted using the key xxyy99 which is available throughout the
session. The working dataset temp is unencrypted.

ENCRYPTKEY
Specifies the key used to encrypt and decrypt WPD datasets.

ENCRYPTKEY = encrypt ion- key

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 32000
Option group: SASFILES

Portable True
Restrictable True
Saveable True

encryption-key
The encryption key. This can contain up to 32,000 characters.

The characters in encryption-key are represented using the current character encoding for the session.
You cannot, therefore, decrypt an encrypted dataset in a session that uses a different character
encoding if the key contains characters whose representation differs in that encoding. If you need to
transfer an encrypted dataset between machines with different session encodings, we recommend you
use a hexadecimal-encoded encryption key to ensure the key is the same in all session encodings.

Note:
If the encryption-key is lost you cannot recover encrypted data. You must therefore ensure the
encryption key is securely stored. WPS does not record the encryption key and is unable to recover a
key that has been lost.

Note:
This system option provides the same functionality as the ENCRYPTKEY dataset option.

Basic example
In this example, the OPTIONS statement is used to specify that datasets are encrypted.

OPTIONS ENCRYPT=AES ENCRYPTKEY = 'xxyy99';
LIBNAME books XLSX "c:\temp\books\books.xlsx";
LIBNAME books2 "c:\temp\books";
DATA books2.booksout;
 SET books.books1;
RUN;

Reference for language elements
Version 4.1

330

The dataset booksout is encrypted using the key xxyy99.

Example – read encrypted dataset
In this example, the OPTIONS statement is used to specify that datasets are decrypted. This example
uses the file that was encrypted in the previous example.

OPTIONS ENCRYPTKEY = 'xxyy99';
LIBNAME books2 "c:\temp\books";
DATA _NULL_;
 SET books2.booksout;
 IF author = 'Wilson, Colin' THEN PUT title;
RUN;

The specified dataset booksout is decrypted using the key xxyy99.

ENGINE
Specifies the default library engine or data engine to use.

ENGINE = engine- name

Valid in: Configuration file and command line.
Default: WPD
Maximum length: 8
Option group: SASFILES

Portable True
Restrictable False
Saveable False

engine-name
The name of an engine. This can contain up to eight characters.

The available engines are listed in Library engines and Data Engines.

Example
In this example, the option is specified on the command line, and sets the library engine as ACCESS.

wps c:\temp\test.wps -engine access

Reference for language elements
Version 4.1

331

The program test.wps is:

LIBNAME betest "c:\temp\test1.accdb";
DATA betest.table1;
 INPUT txt;
 FORMAT txt 2.;
CARDS;
6
;

This writes the data to the table table1 in the specified Microsoft Access database.

FILEDEV
Specifies the default device to be used for new physical files on z/OS.

FILEDEV = device- name

Valid in: OPTIONS statement, configuration file and command line.
Default: SYSDA
Maximum length: 8
Option group: EXTFILES

SASFILES

Supported platform: z/OS for System z

device-name
The name of the default device. This can be up to eight characters long.

Example
In this example, the OPTIONS statement is used to specify that the default device is VIO.

OPTIONS FILEDEV=VIO;

FILEMSGS
Specifies whether to write messages to the log about the results of dynamic allocations using DDNAME.

FILEMSGS

NOFILEMSGS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFILEMSGS

Reference for language elements
Version 4.1

332

Option group: EXTFILES
SASFILES

Supported platform: z/OS for System z

FILEMSGS
Write messages to the log.

NOFILEMSGS
Do not write messages to the log.

A message written to the log during dynamic allocation has the following form:

1 message from dynalloc
1GD103I SMS ALLOCATED TO DDNAME CAT SYS0008

Example
In this example, the OPTIONS statement is used to specify that dynamic allocation log messages are
not display.

OPTIONS NOFILEMSGS;

FILESPPRI
Specifies the default primary space allocation for new physical files.

FILESPPRI = default- space

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 1
Maximum value: 32760
Option group: EXTFILES

SASFILES

Supported platform: z/OS for System z

default-space

The default primary space allocation.

The space is allocated in the units specified by the system option FILEUNIT (page 147).

Reference for language elements
Version 4.1

333

Example
In these examples, the OPTIONS statement is used to specify the size of the primary space allocation.

OPTIONS FILEUNIT = CYL FILESPPRI = 2;

This sets the default primary space allocation to two cylinders.

OPTIONS FILEUNIT = 1024 FILESPPRI = 56;

This sets the default primary space allocation to 56 units of 1024 bytes, or 57,344 bytes.

FILESPSEC
Specifies the default secondary space allocation for new physical files.

FILESPSEC = default- space

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 0
Maximum value: 32760
Option group: EXTFILES

SASFILES

Supported platform: z/OS for System z

default-space

The default secondary space allocation.

The space is allocated in the units specified by the system option FILEUNIT (page 147).

Example
In these examples, the OPTIONS statement is used to specify the size of the secondary space
allocation.

OPTIONS FILEUNIT = CYL FILESPPRI = 1;

This sets the default secondary space allocation to one cylinders.

OPTIONS FILEUNIT = 1024 FILESPPRI = 56;

This sets the default secondary space allocation to 57,344 bytes.

Reference for language elements
Version 4.1

334

FILEUNIT
Specifies the default unit of allocation for new physical files.

FILEUNIT = block- size

Valid in: OPTIONS statement, configuration file and command line.
Default: CYL
Maximum length: 8
Option group: EXTFILES

SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

block-size
The default block-size. The size can be specified as a number of bytes, or as a string. The string
can be:

BLKS or BLK Blocks

CYLS or CYL Cylinders

TRKS or TRK Tracks

This option enables you to specify the default unit of allocation as either a number of bytes or as an
element of disk storage, such as a cylinder or track. These units can then be specified to other system
options, such as FILESPPRI and FILESPSEX. For example, you might set the default unit of allocation
as blocks. You can then use this as the unit to when specifying FILESPPRI. Setting FILESPPRI = 16
would then set the primary space allocation for new physical files to 16 blocks. The number of bytes
that this specifies depends on the type of device to which the allocation applies. If you specify the
default unit as a number of bytes, that number of bytes is used as the unit. For example, you might set
the default unit of allocation as 1024 bytes; specifying FILESPPRI = 24 would then set the primary
space allocation for new physical files to 24576 bytes.

Example
In this example, the OPTIONS statement is used to specify the default unit of allocation.

OPTIONS FILEUNIT = TRK;

The default unit of allocation is tracks.

OPTIONS FILEUNIT = 2048;

The default unit of allocation is 2048 bytes.

Reference for language elements
Version 4.1

335

FIRSTOBS
Sets the number of the first observation to process in a dataset.

FIRSTOBS = observat ion- number

Valid in: OPTIONS statement, configuration file and command line.
Default: 1
Minimum value: 1
Maximum value: Maximum integer value supported by the system.
Option group: SASFILES

Portable True
Restrictable True
Saveable True

observation-number

The number of the first observation to process. This can be specified as:

• The number of the observation; for example, you can enter 5.
• The number of the observation as a multiple of 1,024, 1,0242 or 1,0243, by appending K, M or

G to the value, respectively. For example, if the value is 0.5K, the first observation read is the
512th in the dataset.

• The number of the observation specified in hexadecimal, by appending X. For example, if the
value is BBX, the first observation is 187th in the dataset.

• MIN – the minimum supported value.
• MAX – the maximum supported value.

You can use OBS and FIRSTOBS to specify a range of observations to read from a dataset. For
example, if you set OPTIONS FIRSTOBS=10 OBS=30, twenty observations are read, starting at the
tenth observation of the dataset and ending at the 30th.

Example
In this example, the OPTIONS statement is used to specify that the dataset is read from the fifth
observation onward.

OPTIONS FIRSTOBS = 5;

Reference for language elements
Version 4.1

336

IBUFNO
Specifies the number of index file buffers used by a library engine for a dataset.

IBUFNO = buffer- number

Valid in: OPTIONS statement, configuration file and command line.
Default: 0
Minimum value: 0
Maximum value: 10000
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

buffer-number

The total amount of file index buffers available. This can be specified as:

• The number of buffers; for example, you can enter 5000.
• The number of buffers as a multiple of 1024, by appending K to the value. For example, if the

value is 7K, 7,168 index file buffers are used. This number must be an integer.
• The of buffers specified in hexadecimal, by appending X. For example, if the value is 1000X,

the number of buffers is 4096.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify that 5000 index file buffers are available.

OPTIONS IBUFNO = 5000;

IBUFSIZE
Specifies the size of an index page for a WPS dataset.

IBUFSIZE = buffer- size

Valid in: OPTIONS statement, configuration file and command line.
Default: 0

Reference for language elements
Version 4.1

337

Minimum value: 0
Maximum value: 32767
Option group: SASFILES

PERFORMANCE

Portable True
Restrictable True
Saveable True

buffer-size

The size of index page to use, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 5000.
• The number of kibibytes, by appending K to the value. For example, if the value is 7K, the

index page size is 7,168 bytes. The number must be an integer.
• MIN – the minimum supported value.
• MAX – the maximum supported value.

Example
In this example, the OPTIONS statement is used to specify that the index page is eight kibibytes in size.

OPTIONS IBUFNO = 8K;

MERGENOBY
Specifies whether to generate an error, issue a warning, or not issue a warning when no BY statement
is provided with a MERGE statement.

MERGENOBY = ERROR

NOWARN

WARN

Valid in: OPTIONS statement, configuration file and command line.
Default: NOWARN

Option group: SASFILES

Portable True
Restrictable True
Saveable True

ERROR
Generate an error. The program stops, and a message is written to the log.

Reference for language elements
Version 4.1

338

NOWARN
No warning is issued, and no error generated.

WARN
Write a warning to the log.

If you set WARN or ERROR, and no BY statement is specified for the MERGE, the following message is
written to the log:

The MERGE statement at line nnn column cc has no corresponding BY statement.

nnn is the line number and cc is the column number of the MERGE statement. The message is prefixed
with WARNING or ERROR appropriately.

Example
In this example, the OPTIONS statement is used to specify that the program stops and a message is
written to the log if no BY statement is specified.

OPTIONS MERGENOBY=ERROR;
LIBNAME books "c:\temp\books";
DATA test;
 MERGE books.books books.sortedbks;
RUN;

The following error message is written to the log:

ERROR: The MERGE statement at line 220 column 5 has no corresponding BY statement.
NOTE: DATA step was not executed because of errors detected

OBS
Specifies the number of the last observation to process in a dataset.

OBS = observat ion- number

Valid in: OPTIONS statement, configuration file and command line.
Default: 9.223372036854776e+18
Minimum value: 0
Maximum value: Maximum integer value supported by the system.
Option group: SASFILES

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

339

observation-number

The number of the observation. This can be specified as:

• The number of the observation; for example, you can enter 2147488.
• The number of the observation as a multiple by 1024, by 10242 or 10243, by appending K,

M or G to the value, respectively. For example, if the value is 1M, the observation read is the
1,048,576th in the dataset. Decimal values are rounded.

• A number of the observation specified in hexadecimal, by appending X. For example, if the
value is BEBC2X, the number of lines read is 781250.

• MIN – the minimum supported value.
• MAX – the maximum supported value.

You can use OBS and FIRSTOBS to specify a range of observations to read from a dataset. For
example, if you set OPTIONS FIRSTOBS=11 OBS=30, twenty observations are read, starting at the
11th observation of the dataset and ending at the 30th.

If you set OBS to 0 (zero) or MIN, any subsequent DATA step that reads a dataset does not execute any
instructions in that step. Any output dataset is created with appropriate variables, but no data is written
to it.

Example
In this example, the OPTIONS statement that the dataset is read from the first observation until the
tenth.

OPTIONS OBS = 10;

REPLACE
Specifies whether a permanent dataset can be replaced.

REPLACE

NOREPLACE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOREPLACE

Option group: SASFILES

Portable True
Restrictable True
Saveable True

REPLACE
Allow dataset replacement.

Reference for language elements
Version 4.1

340

NOREPLACE
Do not allow dataset replacement.

A permanent dataset is a dataset created anywhere except the WPS Work library.

If NOREPLACE is set and the dataset to which you are writing already exists, a warning message is
written to the log. This has the format:

WARNING: The dataset "dsname" was not replaced because of the NOREPLACE option

dsname is the name of the dataset.

Example
In this example, the OPTIONS statement is used to specify that datasets cannot be replaced.

OPTIONS NOREPLACE;

REPORTSTEPMEMORYUSAGE
Specifies whether to report memory usage for a program step.

REPORTSTEPMEMORYUSAGE

NOREPORTSTEPMEMORYUSAGE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOREPORTSTEPMEMORYUSAGE

Option group: SASFILES

Portable True
Restrictable True
Saveable True
Supported platform: z/OS for System z

REPORTSTEPMEMORYUSAGE
Report memory usage after each step.

NOREPORTSTEPMEMORYUSAGE
Do not report memory usage after each step.

If this option is set, the memory usage for a preceding program step and the amount of time used is
reported.

Reference for language elements
Version 4.1

341

Example
In this example, the OPTIONS statement is used to specify that memory use is not reported.

OPTIONS NOREPORTSTEPMEMORYUSAGE;

S99NOMIG
Specifies whether to restore migrated datasets.

S99NOMIG

NOS99NOMIG

Valid in: OPTIONS statement, configuration file and command line.
Default: NOS99NOMIG

Option group: EXTFILES
SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

S99NOMIG
Restore migrated data sets.

NOS99NOMIG
Do not restore migrated data sets.

Example
In this example, the OPTIONS statement is used to specify that migrated datasets are not restored.

OPTIONS NOS99NOMIG;

SEQENGINE
Specifies the default library engine for sequential dataset files.

SEQENGINE = l ibrary- engine

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

342

Default: WPDSEQ
Maximum length: 8
Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

library-engine
The name of the library engine.

The library engine names are described in Library engines.

Example
In this example, the OPTIONS statement is used to specify that the SASSEQ data engine is used.

OPTIONS SEQENGINE=SASSEQ;

SYNCIO
Specifies whether to use synchronous input and output to access datasets.

SYNCIO

NOSYNCIO

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSYNCIO

Option group: SASFILES

Portable True
Restrictable True
Saveable True

SYNCIO

Use operating system synchronous input or output.

NOSYNCIO

Do not use operating system synchronous input or output.

Reference for language elements
Version 4.1

343

Example
In this example, the OPTIONS statement is used to specify operating system input or output is not used.

OPTIONS NOSYNCIO;

TAPECLOSE
Specifies the default behaviour of sequential access boundaries for tape libraries when a library dataset
is closed.

TAPECLOSE = DISP

FREE

LEAVE

REREAD

REWIND

Valid in: OPTIONS statement, configuration file and command line.
Default: REREAD

Option group: SASFILES

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

DISP

Dispose of a tape volume as specified by the DD statement associated with the dataset.

FREE

Free the current dataset when it is closed, rather than at the end of the job step. The volume can
be used by other tasks or can be demounted.

LEAVE

Position the current volume at the logical end of the dataset. If processing was forward, this is the
end of the portion of the dataset residing on the current volume. If processing was backward this
is at the beginning of the portion of the dataset residing on the current volume. If FREE=CLOSE is
specified in the JCL, the dataset is not unallocated until the end of the job step.

Reference for language elements
Version 4.1

344

REREAD

Position the current volume for reprocessing. If processing was forward, the volume is positioned
at the beginning of the dataset. If processing was backward the volume is positioned at the end
of the dataset. If FREE=CLOSE is specified in the JCL, the dataset is not unallocated until the end
of the job step.

REWIND

Position the volume at the load point, whatever the direction of processing.

For more information on these options, see your IBM z/OS documentation.

Example
In this example, the OPTIONS statement is used to specify that tape volumes are freed when the
dataset is closed.

OPTIONS TAPECLOSE=FREE;

TAPEENGINE
Specifies the library engine to use when the TAPE option is specified in LIBNAME.

TAPEENGINE = l ibrary- engine

Valid in: Configuration file and command line.
Default: WPSTAPE
Maximum length: 8
Option group: SASFILES

Portable True
Restrictable False
Saveable False

library-engine

The engine name to use.

TAPE is a pseudo-engine name that can be used in a LIBNAME statement. If TAPE is specified,
TAPEENGINE must also be set.

Example
In this example, the option is specified on the command line.

wps c:\temp\test.wps -tapeengine access

Reference for language elements
Version 4.1

345

The program test.wps is:

LIBNAME te TAPE "c:\temp";
DATA te.test_out;
 INPUT txt $10.;
CARDS;
Helloworld
;

This writes the data to the dataset test_out.sas7bdat in the specified folder.

VALIDVARNAME
Specifies how to treat variable names in data sources that have invalid names.

VALIDVARNAME = ANY

UPCASE

V6

V7

Valid in: OPTIONS statement, configuration file and command line.
Default: V7

Option group: SASFILES

Portable True
Restrictable True
Saveable True

Data sources such as datasets, spreadsheets and database tables might contain variable names that
were created using characters not allowed in SAS-language variable names. For example, a dataset
might contain variables that contain spaces as separators: Book Title or Number of Cases. By
specifying this system option, you specify how input variables are treated in programs.

ANY

Any text can be a valid variable name.

If you specify this option, any characters, including reserved characters, can be specified in
variable names. The variable names are written as specified to a dataset. However, if you want to
work with the variable in a program, you need to specify the variable as a string literal.

For example, if you specify this option, and an input dataset variable is named Type/of/
Book, the variable is written to an output dataset with this name. However, if you want to set the
variable in the DATA step, you have to specify it as a string literal; for example:

IF 'Type/of/Book'n = 'SF' THEN OUTPUT;

Reference for language elements
Version 4.1

346

UPCASE

A variable name containing invalid characters is replaced with a valid V7 variable name. Lower
case alphabetic characters are replaced with upper case.

To create a valid V7 variable name, any invalid characters are replaced with an underscore.
A valid V7 variable name can be longer than eight characters, so the variable name is not
truncated.

For example, if you specify this option, and an input dataset variable is named Type of Book,
the variable is written to an output dataset with the name TYPE_OF_BOOK. Spaces are invalid in
a V7 variable name. If you want to set the variable in the DATA step, you can specify it in either
upper case or lower case, as the SAS language ignores the case of variables, and include the
underscores. For example:

IF type_of_book = 'SF' THEN OUTPUT;

V6

A variable name containing invalid characters is replaced with a valid V6 variable name. To
create a valid V6 variable name, any invalid characters are replaced with an underscore. A valid
V6 variable name cannot be longer than eight characters; if the variable name is longer than this,
it is truncated. If the final character of the truncated name is an invalid character, it is removed. A
variable name longer than eight characters might, therefore be truncated so that it is shorter than
eight characters. If the final character of the truncated name is an invalid character, but is the last
of a series of invalid characters, the name is truncated to eight characters.

For example, if you specify this option, and an input dataset variable is named Type of Book,
the variable is written to an output dataset with the name Type_of. Spaces are invalid in
a V6 variable name. If you want to set the variable in the DATA step, you must include the
underscores. For example:

IF type_of = 'SF' THEN OUTPUT;

V7

For both V6 and V7, if the first character of a variable name is a numeral, an underscore is appended to
the name. For example, if the variable name is 1Type of Book, the V6 variable name is _1Type_o,
and the V7 variable name is _1Type_of_Book.

Example
In this example, the OPTIONS statement is used to specify that any text string can be used as a variable
name.

LIBNAME NEWBOOKS XLSX "c:\temp\books\books_new.xlsx";
OPTIONS VALIDVARNAME='any';
DATA temp;
 SET newbooks.books;
 if '1type of book'n = 'SF' then output;
run;

Reference for language elements
Version 4.1

347

In this example, the variable 1Type of Book in the Excel worksheet is written to the dataset temp. In
the DATA step the variable is specified as a literal string.

VARLENCHK
Controls the behaviour in the DATA step when variables from different input datasets have different
lengths.

VARLENCHK = ERROR

NOWARN

WARN

Valid in: OPTIONS statement, configuration file and command line.
Default: NOWARN

Option group: SASFILES

Portable True
Restrictable True
Saveable True

This system option specifies what happens if datasets that are being merged or concatenated contain
the same variable, but that variable has different lengths in the datasets. Whether an error occurs is
firstly dependent on the order in which the datasets are specified, secondly on this system option. For
example, if the variable is longer in the first dataset defined than it is in the second dataset defined,
no error occurs. However, if the variable is shorter in the first dataset defined than it is in the second
dataset defined, you can specify that an error or warning occurs using this system option.

ERROR
An error occurs. A message is written to the log and the program stops.

NOWARN
No messages are written to the log; the program continues running.

WARN
A warning message is written to the log but the program continues running.

For both WARN and ERROR, a message is written to the log:

Multiple lengths were specified for the variable author by input data set(s). This
may cause truncation

Reference for language elements
Version 4.1

348

Example
In this example, the OPTIONS statement is used to specify that a warning is generated if the variable in
the first dataset is shorter than the corresponding variable in the second.

OPTIONS VARLENCHK=WARN;
DATA OUT;
 SET temp2 temp;
RUN;

SMF group system options
SMF related settings

STIMER
Specifies whether to write performance statistics to the log after each step.

STIMER

NOSTIMER

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSTIMER

Option group: PERFORMANCE
SMF

Portable False
Restrictable True
Saveable False

STIMER
Write performance statistics after each step.

NOSTIMER
Do not write performance statistics after each step.

A step can be the execution of a procedure or DATA step.

Example
In this example, the OPTIONS statement is used to specify that performance statistics are not written to
the log.

OPTIONS NOSTIMER;

Reference for language elements
Version 4.1

349

SORT group system options
System options that specify options the control the SORT procedure and external programs.

DYNALLOC
Specifies whether a host utility is assumed to support dynamic allocation of work files.

DYNALLOC

NODYNALLOC

Valid in: OPTIONS statement, configuration file and command line.
Default: NODYNALLOC

Option group: SORT

Portable True
Restrictable True
Saveable True
Supported platform: z/OS for System z

DYNALLOC
Assume the host utility supports work file dynamic allocation.

NODYNALLOC
Assume the host utility does not support work file dynamic allocation.

If you specify DYNALLOC and the host utility doesn't support it, an error occurs.

Example
In this example, the OPTIONS statement is used to specify the host utility does not support work file
dynamic allocation.

OPTIONS NODYNALLOC;

FILSZ
Specifies whether to use FILSZ in the host sort control string.

FILSZ

NOFILSZ

Reference for language elements
Version 4.1

350

Valid in: OPTIONS statement, configuration file and command line.
Default: NOFILSZ

Option group: SORT

Portable False
Restrictable True
Saveable False
Supported platform: z/OS for System z

FILSZ
Use FILSZ.

NOFILSZ
Do not use FILSZ.

Example
In this example, the OPTIONS statement is used to specify that FILSZ is not used.

OPTIONS NOFILSZ;

SORTBLKMODE
Specifies whether the sort program supports a block mode interface.

SORTBLKMODE

NOSORTBLKMODE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTBLKMODE

Option group: SORT

Portable False
Restrictable True
Saveable True

SORTBLKMODE
The sort program supports a block mode interface.

NOSORTBLKMODE
The sort program does not support a block mode interface.

If you specify this option but the sort program does not support a block mode interface, an error occurs.

Reference for language elements
Version 4.1

351

Example
In this example, the OPTIONS statement is used to specify that the sort program does not support a
block mode interface.

OPTIONS NOSORTBLKMODE;

SORTCHECK
Specifies whether the sort program checks that its output is correctly ordered.

SORTCHECK

NOSORTCHECK

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTCHECK

Option group: SORT

Portable True
Restrictable True
Saveable True

SORTCHECK
Check the output.

NOSORTCHECK
Do not check the output.

If the output is checked and it is not ordered correctly, an error occurs.

Example
In this example, the OPTIONS statement is used to specify that the sort order is not checked.

OPTIONS NOSORTCHECK;

SORTCONFIG
Specifies the configuration parameters used by the external sort program.

SORTCONFIG = sort- parm

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

352

Maximum length: 1024
Option group: SORT

Portable True
Restrictable True
Saveable True

sort-parm
The configuration parameters used by the external sort program. The parameters are names, or
a combination of names and values. The parameters are separated by spaces.

SORTCUTP
Specifies the amount of storage above which the host sort utility is used.

SORTCUTP = maximum- storage

Valid in: OPTIONS statement, configuration file and command line.
Default: 4194304
Minimum value: 0
Maximum value: 2147483647
Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

maximum-storage

The number of bytes to use. This can be specified as:

• The number of bytes; for example, you can enter 2147488.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 100M, the number of bytes is 100MiB. The number
specified must be an integer.

• The number of bytes specified in hexadecimal, by appending X. For example, if the value is
BEBC2X, the number of bytes is 781250.

• MIN – the minimum supported value.
• MAX – the maximum supported value.

Reference for language elements
Version 4.1

353

The default sort utility used by the SORT procedure is used until the value specified by
maximum-storage is exceeded. The host sort utility will then be used instead.

Example
In this example, the OPTIONS statement is used to specify that the host sort utility is used once more
than 1GiB of memory is used.

OPTIONS SORTCUTP = 1G;

SORTDEV
Specifies the device on which WPS allocates sort work files before calling the host sort.

SORTDEV = device- name

Valid in: OPTIONS statement, configuration file and command line.
Default: <empty-string>
Maximum length: 8
Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

When the sort utility of the host is used, and WPS is configured to allocate work files, the device
specified by this option is used for work files.

device-name
The name of the device to use.

Example
In this example, the OPTIONS statement is used to specify the that the SYSDA device is used for work
files.

OPTIONS SORTDEV = SYSDA;

Reference for language elements
Version 4.1

354

SORTDEVWARN
Specifies whether to write a warning to the log if the SORTDEV system option contains the name of a
device group rather than a specific device.

SORTDEVWARN

NOSORTDEVWARN

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTDEVWARN

Option group: SORT

Portable True
Restrictable True
Saveable True
Supported platform: z/OS for System z

SORTDEVWARN
Write warning.

NOSORTDEVWARN
Do not write warning.

Example
In this example, the OPTIONS statement is used to specify that a warning is not written.

OPTIONS NOSORTDEVWARN;

SORTDUP
Specifies whether the NODUP option to the SORT is applied to physical or logical records

SORTDUP = LOGICAL

PHYSICAL

Valid in: OPTIONS statement, configuration file and command line.
Default: PHYSICAL

Option group: SORT

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

355

LOGICAL
Remove only duplicates that remain after any DROP and/or KEEP dataset options are processed.

PHYSICAL
Remove duplicates based on all the variables present.

Example
In this example, the OPTIONS statement is used to specify that logical duplicates are removed.

OPTIONS SORTDUP = PHYSICAL;

SORTEQOP
Specifies whether the host sort routine implements the EQUAL option.

SORTEQOP

NOSORTEQOP

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTEQOP

Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Enabling the source routine to implement the EQUALS option can improve performance.

SORTEQOP
The host sort routine implements the option.

NOSORTEQOP
The host sort routine does not implement the option.

Example
In this example, the OPTIONS statement is used to specify that the host sort routine implements the
option.

OPTIONS SORTEQOP;

Reference for language elements
Version 4.1

356

SORTEQUALS
Specifies whether the order of observations with the same BY value is maintained in the SORT
procedure.

SORTEQUALS

NOSORTEQUALS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTEQUALS

Option group: SORT

Portable True
Restrictable True
Saveable True

SORTEQUALS
The order of observations is maintained.

NOSORTEQUALS
The order of observations is not maintained.

Example
In this example, the OPTIONS statement is used to specify that the order of observations is not
maintained.

OPTIONS NOSORTEQUALS;

SORTLIST
Specifies whether the LIST option is to be specified to the host sort utility.

SORTLIST

NOSORTLIST

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTLIST

Option group: SORT

Portable False
Restrictable True
Saveable True

Reference for language elements
Version 4.1

357

Supported platform: z/OS for System z

SORTLIST
Specify the LIST option.

NOSORTLIST
Do not specify the LIST option.

Specifying this system option to the host sort utility determines whether the list of directives defined for
the host sort utility is performed.

Example
In this example, the OPTIONS statement is used to specify that the LIST option is not sent the host sort
utility.

OPTIONS NOSORTLIST;

SORTLOCALE
Specifies whether the host sort routine implements the LOCALE option.

SORTLOCALE

NOSORTLOCALE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTLOCALE

Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

SORTLOCALE
Implement the option.

NOSORTLOCALE
Do not implement the option

Example
In this example, the OPTIONS statement is used to specify that the option is not implemented.

OPTIONS NOSORTLOCALE;

Reference for language elements
Version 4.1

358

SORTMAXKEY
Specifies the maximum key length for the host sort routine.

SORTMAXKEY = maximum- key- length

Valid in: OPTIONS statement, configuration file and command line.
Default: 4084
Minimum value: 1
Maximum value: 32767
Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

Total key field length must be less than this value, otherwise the WPS sort is used.

maximum-key-length
The maximum key length to use.

Example
In this example, the OPTIONS statement is used to specify the maximum key length for the host sort
routine,

OPTION SORTMAXKEY=1024;

SORTMAXOFF
Specifies the maximum key offset permitted for the host sort routine.

SORTMAXOFF = maximum- key- offset

Valid in: OPTIONS statement, configuration file and command line.
Default: 4092
Minimum value: 1
Maximum value: 32767
Option group: SORT

Portable False
Restrictable True

Reference for language elements
Version 4.1

359

Saveable True
Supported platform: z/OS for System z

maximum-key-offset
The maximum key offset permitted for the host sort routine, in bytes.

Example
In this example, the OPTIONS statement is used to specify that the maximum key offset permitted for
the host sort routine is 8184 bytes.

OPTIONS SORTMAXOFF = 8184;

SORTMMAP
This system option is provided for compatibility only, and has no effect in WPS.

SORTMMAP

NOSORTMMAP

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTMMAP

Option group: SORT

Portable True
Restrictable True
Saveable True

SORTMMAP

For compatibility only.

NOSORTMMAP

For compatibility only.

SORTMSG
Specifies the MSG option value passed to the host sort utility.

SORTMSG

NOSORTMSG

Reference for language elements
Version 4.1

360

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTMSG

Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

SORTMSG
Pass MSG=AP.

NOSORTMSG
Pass MSG=CP.

Example
In this example, the OPTIONS statement is used to specify that MSG=CP is passed to the host sort utility.

OPTIONS NOSORTMSG;

SORTNAME
Specifies the name of the host sort utility.

SORTNAME = host- sort- name

Valid in: OPTIONS statement, configuration file and command line.
Default: SORT
Maximum length: 8
Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

host-sort-name
The name of the host sort utility.

Reference for language elements
Version 4.1

361

Example
In this example, the OPTIONS statement is used to specify that the name of the host sort routine.

OPTIONS SORTNAME = DFSORT;

SORTOPTS
Specifies whether an OPTIONS statement is generated for the host sort utility.

SORTOPTS

NOSORTOPTS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTOPTS

Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

This system option specifies that parameters defined to the SORTPARM (page 361) system option
are set in an OPTIONS statement for the host sort utility.

SORTOPTS
Generate an OPTIONS statement.

NOSORTOPTS
Do not generate an OPTIONS statement.

Example
In this example, the OPTIONS statement is used to specify that an OPTIONS statement is not generated
for the host sort utility.

OPTIONS NOSORTOPTS;

SORTPARM
Specifies additional options to be passed to the host sort utility.

SORTPARM = sort- opt ions

Reference for language elements
Version 4.1

362

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

sort-options
Parameters to pass to the host sort utility. You specify the parameters as a string that is passed
unchanged to the utility.

The parameters are only passed to the utility if you specify SORTOPTS.

Example
In this example, the OPTIONS statement is used to specify sort utility options.

OPTIONS SORTPARM = "DYNALLOC, ZDPRINT";

SORTPGM
Specifies the sort program to be used by the SORT procedure.

SORTPGM = sort- name

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 8
Option group: SORT

Portable False
Restrictable True
Saveable True

Although this system option can be used on any operating system, it currently only has an effect on z/
OS for System z.

sort-name
A string that specifies the sort program, and is one of:

• sort-name – Specifies the name of an alternative sort program.
• BEST – Specifies that the host or internal sort program is used, depending on the setting of

the SORTCUTP (page 352) system option.

Reference for language elements
Version 4.1

363

• HOST – Specifies that the host sort program is used.
• SAS – Specifies that the internal sort program is used.
• WPS – Specifies that the internal sort program is used.

The default value for z/OS operating systems is BEST; for all other operating systems the default value
is WPS.

Example
In this example, the OPTIONS statement is used to specify the sort program.

OPTIONS SORTPGM = HOST;

SORTSEQ
Specifies the default collation sequence for the SORT procedure.

SORTSEQ = collat ion- sequence

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 32
Option group: SORT

Portable True
Restrictable True
Saveable True

collation-sequence
A string that specifies a sequence. This must be one of the strings specified in the SORTSEQ
option of the SORT procedure.

Example
In this example, the OPTIONS statement is used to specify that the EBCDIC collation sequence is used
for sorting.

OPTIONS SORTSEQ = EBCDIC;

Reference for language elements
Version 4.1

364

SORTSIZE
Specifies the amount of memory to use when performing a sort.

SORTSIZE = memory- amount

MAX

MIN

Valid in: OPTIONS statement, configuration file and command line.
Default: MAX
Maximum length: 32
Option group: SORT

MEMORY
PERFORMANCE

Portable True
Restrictable True
Saveable True

memory-amount

The total amount of memory used for the sort, in bytes. This can be specified as:

• The number of bytes; for example, you can enter 2147483648.
• The number of kibibytes, mebibytes or gibibytes, by appending K, M or G to the value,

respectively. For example, if the value is 2048M, the memory available for sorting is 2GiB.
• The number, specified in hexadecimal, by appending X. For example, if the value is

BEBC200X, the memory available for sorting is 200MB bytes.

The largest number you can enter is 32 characters long.

MAX
The maximum supported value.

MIN
The minimum supported value.

Example
In this example, the OPTIONS statement is used to specify that 100MiB of memory is available for a
sort.

OPTIONS SORTSIZE = 100M;

Reference for language elements
Version 4.1

365

SORTSTATS
Specifies whether to write to the log statistics from the SORT procedure steps.

SORTSTATS

NOSORTSTATS

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTSTATS

Option group: SORT

Portable True
Restrictable True
Saveable True

SORTSTATS
Write statistics to log.

NOSORTSTATS
Do not write statistics to log.

The following statistics are written to the log:

NOTE: Block size : bsize
 Run formation:
 Runs created : n
 Time reading input dataset : hh:mm:ss.xxxxx
 Time sorting batches : hh:mm:ss
 Time outputting batches : hh:mm:ss
 Total duration : hh:mm:ss.003989
 Intermediate IO stats:
 Total read volume : trv B
 Total write volume : trw B

 Merge/output:
 Total duration : hh:mm:ss.000996
 Intermediate IO stats:
 Total read volume : trv B
 Total write volume : trv B

 Intermediate file space used : is

Where:

bsize The block size used during the sort
n The number of runs required to sort the data
hh:mm:ss The time in hours, minutes and seconds
xxxxx The number of milliseconds
trv The total amount of data read in bytes

Reference for language elements
Version 4.1

366

trv The total amount of data written in bytes
is The amount of space used for intermediate files

Example
In this example, the OPTIONS statement is used to specify that PROC SORT statistics are written to the
log.

OPTIONS SORTSTATS;

SORTSUMF
Specifies whether the host sort utility supports the SUM FIELDS=NONE option.

SORTSUMF

NOSORTSUMF

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTSUMF

Option group: SORT

Portable False
Restrictable True
Saveable True
Supported platform: z/OS for System z

SORTSUMF
WPS supports the SUM FIELDS=NONE option.

NOSORTSUMF
WPS does not support the SUM FIELDS=NONE.

Use this option to specify whether the sort utility provided by the operating system supports the SUM
FIELDS=NONE option. By specifying this option, you define how WPS uses the host sort utility.

If you specify SORTSUMF but the host sort utility does not support SUM FIELDS=NONE, an error occurs.

Example
In this example, the OPTIONS statement is used to specify that the SUM FIELDS=NONE option is not
supported by the host sort utility.

OPTIONS NOSORTSUMF;

Reference for language elements
Version 4.1

367

SORTVALIDATE
Specifies whether to validate the sort order on datasets with user-defined sort options.

SORTVALIDATE

NOSORTVALIDATE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSORTVALIDATE

Option group: SORT

Portable True
Restrictable True
Saveable True

SORTVALIDATE
Validate sort order.

NOSORTVALIDATE
Do not validate sort order.

You might want to use this option to ensure a sort is correct; for example, to check that the user-defined
sort options were sensible, or if a sort has been performed externally using a different collation order.

Example
In this example, the OPTIONS statement is used to specify that the sort order is not validated.

OPTIONS NOSORTVALIDATE;

SORTWKNO
Specifies the maximum number of work files to be allocated for sort.

SORTWKNO = maximum- work- f iles

Valid in: OPTIONS statement, configuration file and command line.
Default: 3
Minimum value: 0
Maximum value: 99
Option group: SORT

Portable True

Reference for language elements
Version 4.1

368

Restrictable True
Saveable True
Supported platform: z/OS for System z

maximum-work-files
The number of work files to be allocated.

Work files are used to store data if the sort process requires more memory than is available.

Example
In this example, the OPTIONS statement is used to specify that five workfiles are allocated for sorting.

OPTIONS SORTWKNO = 5;

SORTWORK
Specifies the location to put SORT procedure work files.

SORTWORK = f ilepath

Valid in: OPTIONS statement, configuration file and command line.
Maximum length: 1024
Option group: SORT

Portable True
Restrictable True
Saveable True

filepath
The pathname of the location used to store the work files.

SQL group system options
Specify default values for some SQL options.

Reference for language elements
Version 4.1

369

DQUOTE
This system option is provided for compatibility only, and has no effect in WPS.

DQUOTE

NODQUOTE

Valid in: OPTIONS statement, configuration file and command line.
Default: NODQUOTE

Option group: SQL

Portable True
Restrictable True
Saveable True

DQUOTE

NODQUOTE

If you specify NODQUOTE a warning message is written to the log.

Example
In this example, the OPTIONS statement is used to specify that DQUOTE is not supported.

OPTIONS NODQUOTE;

SQLCONSTDATETIME
Specifies whether the SQL DATE(), TIME() and DATETIME() functions are evaluated only once in an
SQL query. This option can be restricted.

SQLCONSTDATETIME

NOSQLCONSTDATETIME

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSQLCONSTDATETIME

Option group: SQL

Portable True
Restrictable True
Saveable True

Reference for language elements
Version 4.1

370

SQLCONSTDATETIME
Evaluate functions only once.

NOSQLCONSTDATETIME
Evaluate functions every time.

Example
In this example, the OPTIONS statement is used to specify that functions are evaluated every time.

OPTIONS NOSQLCONSTDATETIME;

SQLGENERATION
Specifies whether summary statistics produced by the MEANS and SUMMARY procedures are created
by an SQL query on the DBMS, or by WPS.

SQLGENERATION = DBMS

NONE

Valid in: OPTIONS statement, configuration file and command line.
Default: NONE

Option group: SQL

Portable True
Restrictable True
Saveable True

DBMS
Summary statistics are produced by the DBMS using SQL statements.

NONE
Summary statistics are produced by WPS.

Example
In this example, the OPTIONS statement is used to hand off summarisation activity to a DBMS via an
SQL query.

OPTIONS SQLGENERATION = DBMS;

Reference for language elements
Version 4.1

371

SQLREMERGE
Specifies whether aggregated data can be remerged with the original dataset within the SQL procedure.

SQLREMERGE

NOSQLREMERGE

Valid in: OPTIONS statement, configuration file and command line.
Default: NOSQLREMERGE

Option group: SQL

Portable True
Restrictable True
Saveable True

SQLREMERGE
Remerge aggregated data.

NOSQLREMERGE
Do not remerge aggregated data.

The SQL query planner identifies data to be remerged; if the remerge cannot be performed, the
operation stops with an appropriate message.

Example
In this example, the OPTIONS statement is used to specify that aggregated data cannot be remerged
with the original dataset.

OPTIONS NOSQLREMERGE;

TLS group system options

TLS_CACERTS
Specifies the location of the SSL Trusted Authorities certificate.

TLS_CACERTS = t lscacerts

Valid in: OPTIONS statement, configuration file and command line.

Reference for language elements
Version 4.1

372

Default: <empty-string>
Maximum length: 256
Option group: TLS

Appendable False
Portable True
Restrictable True
Saveable True
Supported platform: AIX for pSeries

64-bit Linux for ARM
Linux for pSeries
Linux (LE) for pSeries
Linux for System z
64-bit Linux for System z
64-bit Linux
32-bit Linux
64-bit Mac O/S
Solararis for SPARC
Solaris for 64-bit x86
Solaris for 32-bit x86
64-bit Windows
32-bit Windows

The Trust Authorities certificates can be used with WPS Hub and SMTP.

tlscacerts
The path to the location.

Example
In this example, the OPTIONS statement is used to specify the path to the library.

OPTIONS TLS_CACERTS = "/etc/ssl/certs/cacert";

TLS_HOSTVALIDATION
Specifies whether SSL host key validation is performed.

TLS_HOSTVALIDATION = t lshostvalidat ion

Valid in: OPTIONS statement, configuration file and command line.
Default: SYSTEM

Option group: TLS

Reference for language elements
Version 4.1

373

Portable True

SSL host key validation method can be used with SMTP and WPS Hub.

tlshostvalidation
The validation method:

• NONE

• SYSTEM

Example
In this example, the OPTIONS statement is used to specify the system method for host key validation.

OPTIONS TLS_CACERTS = SYSTEM;

Formats
Formats define how output from a SAS language program is displayed.

Formats help WPS understand how to write data values for display. For example, the SAS language
represents dates internally as the number of days since 01-January-1960. To display a date as "17-
Aug-2015" (or a variation thereof) is much more helpful to a user than to present it as "20317". Formats
handle this conversion, and many other kinds of conversion as well.

There are two types of format

Character formats

Transform standard character data into an alternative character form for display or output.

Character formats have the pattern: $<format-name>w. w is the total width of the output field
and the terminating period is mandatory. The w is optional and if omitted, a default value will be
used.

Numeric formats

Transforms standard numeric data into an alternative numeric form for display or output.

Numeric formats have the pattern: <format-name>w.d. w is the total width of the output field
and d is usually the number of decimal places required within the total width of the field.

Note:
The period following the output name is mandatory.

The default numeric format – w.d – does not have a rendered name. Both w and d are optional,
if omitted, default values are used.

Reference for language elements
Version 4.1

374

With all formats, specifying w guarantees that w characters are always produced – output will be
truncated or padded as necessary. As well as giving you access to hundreds of built-in formats, WPS
allows you to create your own custom formats with PROC FORMAT.

Example format use cases
The following example uses the $w. character format to process a string:

data _null_;
 d="World Programming";
 put d $5. ;
run;

Producing the following output:

World

In this example, the w.d numeric format is used to format a decimal:

data _null_;
 d=12345.678;
 put d 8.2;
run;

Which produces the following output:

12345.68

Core formats
Details some of the most widely-used formats, all of which are fundamental to the SAS language.

w.d
Reads in numeric data of length w with d decimal places.

The format restricts the number of decimal places to be smaller than the format width. If the number is
too big to fit in the available space, an attempt is made to express it in scientific notation.

min max default
Variable width 1 32767 1
Decimal digits 0 31 0

Reference for language elements
Version 4.1

375

Example
DATA _null_;
 n = 13.45;
 PUT n = 4.1;
 r = 123456;
 PUT r = 4.1;
RUN;

Which produces the following output in the log:

n=13.5
r=12E4

$w.
Passes its input string through untransformed, retaining trailing blanks.

Truncation occurs if the available output space is too small. It is exactly the same as the $CHARw. and
$Fw. formats.

min max default
Variable width 1 32767 *1

Example
This example reads a string and truncates to the first character; truncates the string to the first six
characters; finally, as the string is 20 characters long, pads the string to the required 32 characters .

DATA _null_;
 s = "World Programming #";
 PUT s $1.;
 PUT s $6. "*";
 PUT s $32. "*";
RUN;

Which produces the following output in the log:

W
World *
World Programming # *

$CHARw.
Writes its input string, padding to the specified width if its input string is shorter.

The format truncates the output when the number of spaces specified is insufficient to contain the full
input string. This format is the same as the $w. and $Fw. formats.

Reference for language elements
Version 4.1

376

minimum maximum default
Variable width 1 32767 8

Example
This example reads a string and truncates to the first character; truncates the string to the first six
characters; finally, as the string is 20 characters long, pads the string to the required 32 characters .

DATA _null_;
 s = "World Programming #";
 PUT s $CHAR1.;
 PUT s $CHAR6. "*";
 PUT s $CHAR32. "*";
RUN;

Which produces the following output in the log:

W
World *
World Programming # *

$Fw.
Passes its input string through untransformed, padding as required to match any specified width.

Truncation occurs if the defined output width is too small. This format is identical to the $w. and
$CHARw. formats.

min max default
Variable width 1 32767 *1

Example
This example reads a string and truncates to the first character; truncates the string to the first six
characters; finally, as the string is 20 characters long, pads the string to the required 32 characters .

DATA _null_;
 s = "World Programming #";
 PUT s $F1.;
 PUT s $F6. "*";
 PUT s $F32. "*";
RUN;

Which produces the following output in the log:

W
World *
World Programming # *

Reference for language elements
Version 4.1

377

$VARYINGw.
This format can contain a varying number of characters up to the maximim width specified in the format
definition.

This character format can be used in procedures where it behaves exactly like $CHARw. and $Fw.
Within DATA steps, the $VARYINGw. format can be followed with the name of a variable that contains
the actual, runtime-determined width to use. It is limited in length to the format-specified width.

min max default
Variable width 1 32767 *1

Example
DATA _null_;
 name="World Programming";
 DO n = 1,2,30,100;
 PUT name $VARYING50. n "*";
 END;
RUN;

Which produces the following output in the log:

W*
Wo*
World Programming *
World Programming *

BESTw.
The default numeric format, this attempts to create the optimal numeric representation of its input.

Although a numeric format, it does not require a d modifier, because determining the number of decimal
places is part of the work it undertakes itself. This format restricts the requested number of decimal
places to be smaller than the format width. If the space available is insufficient to represent the
number, an attempt is made to use scientific notation. If the number simply cannot be represented in
the available space, asterisks are returned.

min max default
Variable width 1 32767 12
Decimal digits 0 31 0

Reference for language elements
Version 4.1

378

Example
DATA _null_;
 n=1234.5678;
 PUT n= BEST1.;
 PUT n= BEST2.;
 PUT n= BEST3.;
 PUT n= BEST4.;
 PUT n= BEST6.;
 PUT n= BEST10.;
run;

Which produces the following output in the log:

n=*
n=**
n=1E3
n=1235
n=1234.6
n=1234.5678

Basic character formats
Fundamental character formats for different platforms.

$ASCIIw.
On an ASCII platform, this format behaves like the $CHARw. format. On EBCDIC platforms, it converts
EBCDIC data to ASCII first.

min max default
Variable width 1 32767 *1

$BASE64Xw.
This character format converts character data to a base64 encoded form – it may be padded with
blanks to the specified number of characters.

This encoding scheme is commonly used when there is a need to encode data in a way that can be
transferred over media designed to deal with textual data rather than binary data.

min max default
Variable width 1 32767 *4/3

Reference for language elements
Version 4.1

379

Example
DATA _null_;
 s="a";
 PUT s $base64x. "*";
 PUT s $base64x50. "*";
RUN;

Which produces the following output in the log:

YQ==*
YQ== *

$BINARYw.
This format converts input character data to a textual representation of its binary value – a string of 1s
and 0s.

min max default
Variable width 1 32767 *8

Example
DATA _null_;
 s="a";
 t="World Programming";
 PUT s $binary. "*";
 PUT t $binary. "*";
RUN;

Which produces the following output in the log:

01100001*
0101011101101111011100100110110001100100001000000101000001110010011011
110110011101110010011000010110110101101101011010010110111001100111*

$BYVALw.
This format is for use by CALL MODULE. It is a character format that allows you to pass a single
character to a module as an integer.

min max default
Variable width 1 32767 2

Reference for language elements
Version 4.1

380

$CSTRw.
This format strips trailing blanks then null-terminates its input character data, and is useful when
interfacing with the C-family of programming languages.

If the specified length of the output is less than the length of the input data, truncation occurs,
giving precedence to the terminating null. A terminating null is always generated, even if this means
overwriting part of the input. If the specified length of the output is longer than the length of the input
data plus null, the remaining spaces are undefined.

min max default
Variable width 1 32767 1

Example
DATA _null_;
 s="World Programming";
 r=put(s, $cstr.);
 PUT r $hex36. ;
RUN;

Which produces the following output in the log:

576F726C642050726F6772616D6D696E00

$EBCDICw.
On an EBCDIC platform, this behaves like the $CHARw. format. On an ASCII platform, input data is
converted to EBCDIC first.

min max default
Variable width 1 32767 *1

$HEXw.
Converts character data into a hexadecimal form, padding with blanks where relevant.

The output is textual, and it prints the hexadecimal representation of each input character using the
characters 0–9A–F, generating two output characters for each input character.

min max default
Variable width 1 32767 *2

Reference for language elements
Version 4.1

381

Example
DATA _null_;
s="World Programming";
PUT s $HEX.;
RUN;

Which produces the following output in the log:

576F726C642050726F6772616D6D696E67

$MSGCASEw.
Converts character data to the same case as is determined by the MSGCASE system option.

min max default
Variable width 1 32767 1

Example
OPTION MSGCASE;
DATA _null_;
 s="World Programming";
 PUT s $MSGCASE17.;
RUN;

OPTION NOMSGCASE;
DATA _null_;
 s="World Programming";
 PUT s $MSGCASE17.;
RUN;

Which produces the following output in the log:

WORLD PROGRAMMING
...
World Programming

$OCTALw.
Converts character data into an octal form, padding with blanks where relevant.

The output is textual, and it prints the octal representation of each input character using the characters
0–7, generating three output characters for each input character.

min max default
Variable width 1 32767 *3

Reference for language elements
Version 4.1

382

Example
DATA _null_;
s="World Programming";
PUT s $OCTAL.;
RUN;

Which produces the following output in the log:

127157162154144040120162157147162141155155151156147

$QUOTEw.
Surrounds character data with double quotation marks, padding with blanks after the final output quote
where required.

Output is only generated if there is sufficient space – that is, either both sets of quotation marks are
added, or the output will consist of all blanks. Embedded quotes are not doubled up, which means that
this format cannot be used to reliably create string literals for the SAS language.

min max default
Variable width 2 32767 +2

Example
DATA _null_;
 s="World Programming";
 PUT s $QUOTE40. "*";
RUN;

Which produces the following output in the log:

"World Programming" *

$REVERJw.
Converts character data into a visually reversed form without trimming blanks.

min max default
Variable width 1 32767 *1

Reference for language elements
Version 4.1

383

Example
DATA _null_;
 s = "World Programming ";
 PUT s $REVERJ20. "*";
RUN;

Which produces the following output in the log:

 gnimmargorP dlroW*

$REVERSw.
Converts character data into a visually reversed form, stripping trailing blanks first.

min max default
Variable width 1 32767 *1

Example
DATA _null_;
 s = "World Programming ";
 PUT s $REVERS17.;
RUN;

Which produces the following output in the log:

gnimmargorP dlroW

$UPCASEw.
Converts lowercase character data into their uppercase equivalent.

min max default
Variable width 1 32767 *1

Example
DATA _null_;
 s = "World Programming";
 PUT s $UPCASE.;
RUN;

Which produces the following output in the log:

WORLD PROGRAMMING

Reference for language elements
Version 4.1

384

Bidirectional formats
Character formats that deal with data written from left to right and from right to left.

$BIDIw.
Takes a string in logical order and applies the Unicode bidi algorithm described in http://
www.unicode.org/reports/tr9/ .

min max default
Variable width 1 32767 200

Example
DATA _null_;
 LENGTH str $ 16;
 LENGTH logical $ 16;
 logical=UNICODE(
 '\u0063\u0061\u0072\u0020\u006d\u0061\u0065\u006e\u0073\u0020\u05db\u05d0\u05e8',
 'esc');
 PUT "Logical unicode utf8";
 PUT logical $HEX32.;
 str=PUT(logical, $BIDI16.);
 PUT "bidi";
 PUT str $HEX32.;
run;

Which produces the following output in the log:

Logical unicode utf8
636172206D61656E73201A1A1A202020
bidi
2020201A1A1A206D61656E7320636172

$LOGVSw.
Takes a string in logical order and returns a string in visual order.

min max default
Variable width 1 32767 200

http://www.unicode.org/reports/tr9/

Reference for language elements
Version 4.1

385

Example
DATA logvs;
 LENGTH str $ 16;
 LENGTH logical $ 16;
 logical=UNICODE(
 '\u0063\u0061\u0072\u0020\u006d\u0061\u0065\u006e\u0073\u0020\u05db\u05d0\u05e8',
 'esc');
 PUT "Logical unicode utf8";
 PUT logical $HEX32.;
 str=PUT(logical, $LOGVS16.);
 PUT "logvs";
 PUT str $HEX32.;
RUN;

The logvs dataset contains the encoded output, and the following is output in the log.

Logical unicode utf8
636172206D61656E7320D79BD790D7A8
logvs
636172206D61656E7320D7A8D790D79B

$LOGVSRw.
Reads a string in a right-to-left logical order and returns it in a visual order.

min max default
Variable width 1 32767 200

Example
DATA logvsr;
 LENGTH str $ 16;
 LENGTH logicalr $ 16;
 logicalr=UNICODE(
 '\u05db\u05d0\u05e8\u0020\u0063\u0061\u0072\u0020\u006d\u0065\u0061\u006e\u0073',
 'esc');
 PUT "Logical RTL unicode utf8";
 PUT logicalr $HEX32.;
 str=PUT(logicalr, $LOGVSR16.);
 PUT "logvsr";
 PUT str $HEX32.;
RUN;

The logvsr dataset contains the encoded output, and the following is output in the log.

Logical RTL unicode utf8
D79BD790D7A820636172206D61656E73
logvsr
636172206D61656E7320D7A8D790D79B

Reference for language elements
Version 4.1

386

$VSLOGw.
Takes a string in visual order and returns it in logical order.

min max default
Variable width 1 32767 200

Example
DATA _null_;
 LENGTH str $ 16;
 LENGTH visual $ 16;
 visual=UNICODE(
 '\u0063\u0061\u0072\u0020\u006d\u0061\u0065\u006e\u0073\u0020\u05e8\u05d0\u05db',
 'esc');
 PUT "Visual unicode utf8";
 PUT visual $HEX32.;
 str=put(visual, $VSLOGR16.);
 PUT "vslogr";
 PUT str $HEX32.;
RUN;

Which produces the following output in the log:

Visual unicode utf8
636172206D61656E7320D7A8D790D79B
vslog
636172206D61656E7320D79BD790D7A8

$VSLOGRw.
Takes a string in visual order and returns it in logical right-to-left order.

min max default
Variable width 1 32767 200

Reference for language elements
Version 4.1

387

Example
data _null_;
 length str $ 16;
 length visual $ 16;
 visual=unicode(
 /* car means RAC */
 /* car means resh alef kaf */
 '\u0063\u0061\u0072\u0020\u006d\u0061\u0065\u006e\u0073\u0020\u05e8\u05d0\u05db',
 'esc');
 put "Visual unicode utf8";
 put visual $hex32.;
 str=put(visual, $vslogr16.);
 put "vslogr";
 put str $hex32.;
run;

Which produces the following output in the log:

Visual unicode utf8
636172206D61656E7320D7A8D790D79B
vslogr
D79BD790D7A820636172206D61656E73

Unicode formats
Character formats for different variants of the Unicode encoding.

$UCS2Bw.
Converts character data to big-endian, 16-bit UCS2 Unicode encoding.

The input string is converted from session encoding into Unicode, then for each Unicode character,
two bytes are written out in big-endian order, yielding the big-endian UCS2 encoding of that character.
UCS2 always produces two bytes of output for each character.

min max default
Variable width 2 32767 8

Example
DATA _null_;
 s="World Programming";
 r=PUT(s, $UCS2B34.);
 PUT r $HEX.;
RUN;

Reference for language elements
Version 4.1

388

Which produces the following output in the log:

0057006F0072006C0064002000500072006F006700720061006D006D0069006E0067

$UCS2BEw.
Converts character strings in big-endian, 16-bit UCS2 Unicode encoding to the same strings in the
session encoding. It performs the reverse of $UCS2B.

min max default
Variable width 2 32767 8

Example
DATA _null_;
 s="World Programming";
 t=put(s, $UCS2B34.);
 PUT t;
 u=PUT(t, $UCS2BE17.);
 PUT u;
RUN;

Which produces the following output in the log:

 W o r l d P r o g r a m m i n g
World Programming

$UCS2Lw.
Converts character data to little-endian, 16-bit UCS2 Unicode encoding.

The input string is converted from session encoding into Unicode, then for each Unicode character, two
bytes are written out in little-endian order, yielding the little-endian UCS2 encoding of that character.
UCS2 always produces two bytes of output for each character.

min max default
Variable width 2 32767 8

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS2l34.);
 PUT t $HEX.;
RUN;

Reference for language elements
Version 4.1

389

Which produces the following output in the log:

57006F0072006C0064002000500072006F006700720061006D006D0069006E006700

$UCS2LEw.
This format converts character strings in little-endian, 16-bit UCS2 Unicode encoding to the same
strings in the session encoding. It performs the reverse of $UCS2L.

min max default
Variable width 2 32767 8

Example
DATA _null_;
 a = "World Programming";
 b = PUT(a, $UCS2l34.);
 PUT b;
 t = PUT(b, $UCS2lE17.);
 PUT t;
RUN;

Which produces the following output in the log:

W o r l d P r o g r a m m i n g
World Programming

$UCS2Xw.
This format converts character data to a 16-bit UCS2 Unicode machine-endian encoding.

This format operates exactly the same as $UCS2B or $UCS2L, as appropriate to the endianness of the
executing machine.

min max default
Variable width 2 32767 8

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCX2X34.);
 PUT t $hex.;
RUN;

Reference for language elements
Version 4.1

390

Which produces the following output in the log (if executed on an x86 machine):

57006F0072006C0064002000500072006F006700720061006D006D0069006E006700

$UCS2XEw.
This format converts character data from a 16-bit UCS2 Unicode machine-endian encoding to a
session-encoded form.

It operates exactly the same as $UCS2BE or $UCS2LE as is appropriate to the endianness of the
executing machine.

min max default
Variable width 2 32767 8

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS2X34.);
 PUT t;
 u = PUT(t, $UCS2XE17.);
 PUT u;
RUN;

Which produces the following output in the log (if executed on an x86 machine):

W o r l d P r o g r a m m i n g
World Programming

$UCS4Bw.
This format converts character data to big-endian, 32-bit UCS4 Unicode encoding.

The input string is converted from session encoding into Unicode, then for each Unicode character,
four bytes are written out in big-endian order, yielding the big-endian UCS4 encoding of that character.
UCS4 always produces four bytes of output for each character.

min max default
Variable width 4 32767 8

Reference for language elements
Version 4.1

391

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS4B68.);
 PUT t $HEX.;
RUN;

Which produces the following output in the log:

000000570000006F000000720000006C000000640000002000000050000000720000006F000000
6700000072000000610000006D0000006D000000690000006E00000067

$UCS4BEw.
This format converts character strings in big-endian, 32-bit UCS4 Unicode encoding to the same
strings in the session encoding. It performs the reverse of $UCS4B.

min max default
Variable width 4 32767 8

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS4B68.);
 PUT t $HEX.;
 u = PUT(t, $UCS4BE34.);
 PUT u;
RUN;

Which produces the following output in the log:

000000570000006F000000720000006C00000064000000200000005000000072000000
6F0000006700000072000000610000006D0000006D000000690000006E00000067
 W o r l d P r o g r a m m i n g

$UCS4Lw.
This format converts character data to little-endian, 32-bit UCS4 Unicode encoding.

The input string is converted from session encoding into Unicode, then for each Unicode character,
four bytes are written out in little-endian order, yielding the little-endian UCS4 encoding of that
character. UCS4 always produces four bytes of output for each character.

min max default
Variable width 4 32767 8

Reference for language elements
Version 4.1

392

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS4l68.);
 PUT t $HEX.;
RUN;

Which produces the following output in the log:

570000006F000000720000006C000000640000002000000050000000720000006F000000
6700000072000000610000006D0000006D000000690000006E00000067000000

$UCS4LEw.
This format converts character strings in big-endian, 32-bit UCS4 Unicode encoding to the same
strings in the session encoding. It performs the reverse of $UCS4L.

min max default
Variable width 4 32767 8

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS4l68.);
 PUT t $HEX.;
 u = PUT(t, $UCS4LE34.);
 PUT u;
RUN;

Which produces the following output in the log:

570000006F000000720000006C000000640000002000000050000000720000006F000000
6700000072000000610000006D0000006D000000690000006E00000067000000
W o r l d P r o g r a m m i n g

$UCS4Xw.
This format converts character data to a 32-bit UCS4 Unicode machine-endian encoding. It operates
exactly the same as $UCS4B or $UCS4L, as appropriate to the endianness of the executing machine.

min max default
Variable width 4 32767 8

Reference for language elements
Version 4.1

393

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS4X68.);
 PUT t $HEX.;
RUN;

Which produces the following output in the log (if executed on an x86 machine):

570000006F000000720000006C000000640000002000000050000000720000006F000000
6700000072000000610000006D0000006D000000690000006E00000067000000

$UCS4XEw.
This format converts character data from a a 32-bit UCS4 Unicode machine-endian encoding to a
session-encoded form. It operates exactly the same as $UCS4BE or $UCS4LE as is appropriate to the
endianness of the executing machine.

Example
OPTIONS ENCODING='UTF-8';
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UCS4X68.);
 PUT t $HEX.;
 u = PUT(t, $UCS4XE34.);
 PUT u;
RUN;

Which produces the following output in the log (if executed on an x86 machine):

570000006F000000720000006C000000640000002000000050000000720000006F000000
6700000072000000610000006D0000006D000000690000006E00000067000000
W o r l d P r o g r a m m i n g

$UESCw.
This format converts all but the 0–9, A–Z, a–z and space characters (in session encoding) to Unicode
universal character names in the \uXXXX notation.

min max default
Variable width 1 32767 8

Reference for language elements
Version 4.1

394

Example
DATA _null_;
 s = "#World Programming&";
 t = PUT(s, $UESC30.);
 PUT t ;
RUN;

Which produces the following output in the log:

\u0023World Programming\u0026

$UESCEw.
This format decodes universal character names in the \uXXXX format, leaving other characters alone.

min max default
Variable width 1 32767 8

Example
DATA _null_;
 s = "\u0023World Programming\u0026";
 t = PUT(s, $UESCE30.);
 PUT t ;
RUN;

Which produces the following output in the log:

#World Programming&

$UNCRw.
This format converts all but 0–9, A–Z, a–z and space to the Unicode numeric character reference
format (the &#ddddd notation). This notation is described in http://www.w3.org/TR/html4/
charset.html#h-5.3.1 .

min max default
Variable width 1 32767 8

http://www.w3.org/TR/html4/charset.html#h-5.3.1

Reference for language elements
Version 4.1

395

Example
DATA _null_;
 s = "#World Programming&";
 t = PUT(s, $UNCR40.);
 PUT t ;
RUN;

Which produces the following output in the log:

#World Programming&

$UNCREw.
This format decodes numeric character references in the &#ddddd; notation, leaving other characters
alone.

min max default
Variable width 1 32767 8

Example
DATA _null_;
 s = "#World Programming&";
 t = PUT(s, $UNCRE40.);
 PUT t ;
RUN;

Which produces the following output in the log:

#World Programming&

$UPARENw.
This format converts each character in a string to the format <uXXXX> where XXXX is the Unicode
code point for the character in hexadecimal.

min max default
Variable width 1 32767 8

Example
DATA _null_;
 s = "World Programming";
 t = PUT(s, $UPAREN200.);
 PUT t ;
RUN;

Reference for language elements
Version 4.1

396

Which produces the following output in the log:

<u0057><u006F><u0072><u006C><u0064><u0020><u0050><u0072><u006F><u0067>
<u0072><u0061><u006D><u006D><u0069><u006E><u0067>

$UPARENEw.
This format decodes a string of UPAREN-encoded sequences.

min max default
Variable width 1 32767 8

Example
DATA _null_;
 s = "<u0057><u006F><u0072><u006C><u0064><u0020><u0050><u0072><u006F>
 <u0067><u0072><u0061><u006D><u006D><u0069><u006E><u0067>";
 t = PUT(s, $UPARANE20.);
 PUT t ;
RUN;

Which produces the following output in the log:

World Programming

$UTF8Xw.
This format converts a string from session encoding to UTF-8.

min max default
Variable width 1 32767 8

$UTF8XEw.
This format converts character data from UTF-8 to session encoding. The input to this format is always
in UTF-8, regardless of the session encoding. It is then converted to session encoding and output.

min max default
Variable width 1 32767 8

Reference for language elements
Version 4.1

397

Simple numeric formats
Fundamental formats for numeric data.

BESTXw.
This numeric format is the same as the Fw. format, but with a different default width.

min max default
Variable width 1 32 12

Example
DATA _null;
 d=0.7;
 e=1.5;
 PUT d bestx. "*";
 PUT e bestx. "*";
 PUT d bestx8.1 "*";
 PUT d bestx8.2 "*";
RUN;

Which produces the following output in the log:

 1*
 2*
 0.7*
 0.70*

BINARYw.
This format converts numeric data to a binary representation – a textual representation of a binary
number consisting of a string of 1s and 0s.

The format width determines whether the number is considered an integer or a double. For widths of
59 or more, the output consists of the bits of the double floating point number – 'digits' is ignored. For
widths of less than 59, the number is considered to be an integer and the 'digits' field is a scaling power
of 10.

min max default
Variable width 1 64 8

Reference for language elements
Version 4.1

398

Example
DATA _null_;
 s=1;
 t=8;
 PUT s binary. "*";
 PUT s binary20. "*";
 PUT t binary. "*";
 PUT t binary20. "*";
RUN;

Which produces the following output in the log:

00000001*
00000000000000000001*
00001000*
00000000000000001000*

COMMAw.d
This format decorates numeric data by inserting commas every three digits, counting from the right.

When using this format, the decimal point is represented by a period. Commas are only inserted if the
specified output length is sufficient to accommodate them.

min max default
Variable width 1 32 6

Example
DATA _null_;
 s = 1234567.89;
 PUT s COMMA.3 "*";
 PUT s COMMA12.3 "*";
 PUT s COMMA20.3 "*";
RUN;

Which produces the following output in the log:

1.23E6*
 1234567.890*
 1,234,567.890*

Reference for language elements
Version 4.1

399

COMMAXw.d
This format behaves like COMMAw.d except that it inserts periods, not commas. The decimal point is
represented by a comma.

min max default
Variable width 1 32 6

Example
DATA _null_;
 s=1234567.89;
 PUT s COMMAX.3;
 PUT s COMMAX12.3;
 PUT s COMMAX20.3;
RUN;

Which produces the following output in the log:

1,23E6
 1234567,890
 1.234.567,890

Dw.d
This format converts numeric values into a form where, when output, the decimal points are likely to
line up.

min max default
Variable width 1 32 12

Example
DATA _null_;
 s=1234567.89;
 t=22.323;
 PUT s D20.3;
 PUT t D20.3;
RUN;

Which produces the following output in the log:

 1234567.8900000000
 22.3230000000

Reference for language elements
Version 4.1

400

DOLLARw.d
This format prepends a dollar sign to a numeric value.

In addition to the dollar sign, commas are inserted between sets of three digits to improve readability
(just like COMMAw.d). These actions are only taken if there is sufficient room for the output. This format
is not locale-sensitive, a dollar character is always output.

min max default
Variable width 2 32 6

Example
DATA _null_;
 s=1096543.123;
 PUT s DOLLAR20.3;
RUN;

Which produces the following output in the log:

 $1,096,543.123

DOLLARXw.d
This format prepends a dollar sign to a numeric value.

In addition to the dollar sign, periods between sets of three digits to improve readability (just like
COMMAXw.d). These actions are only taken if there is sufficient room for the output.

min max default
Variable width 2 32 6

Example
DATA _null_;
 s=1096543.123;
 PUT s DOLLARX20.3;
RUN;

Which produces the following output in the log:

 $1.096.543,123

Reference for language elements
Version 4.1

401

Ew.
This format converts its numeric input to scientific notation.

min max default
Variable width 7 32 12

Example
DATA _null_;
 s=1096543.123;
 PUT s E20.;
RUN;

Which produces the following output in the log:

 1.0965431230000E+06

EUROw.d
This format prepends an 'E' character to a numeric value to represent the Euro (€) character.

In addition to the 'E' character, the thousand separators are formatted as a comma, and the decimal
separator as a period.

min max default
Variable width 2 32 6

Example
DATA _null_;
 s=1096543.123;
 PUT s EURO20.3;
RUN;

Which produces the following output in the log:

 E1,096,543.123

EUROXw.d
This format prepends an 'E' character to a numeric value to represent the Euro (€) character.

In addition to the 'E' character, the thousand separators are formatted as a period, and the decimal
separator as a comma.

Reference for language elements
Version 4.1

402

min max default
Variable width 2 32 6

Example
DATA _null_;
 s=1096543.123;
 PUT s EUROX20.3;
RUN;

Which produces the following output in the log:

 E1.096.543,123

Fw.d
F is an alternative name for the standard numeric format.

In practice, it is unusual to specify the format fully – for example, 7.4 is generally used, rather than
F7.4. The number of decimal places is restricted to be smaller than the format width.

min max default
Variable width 1 32 1

Example
DATA _null_;
 s = 123.456;
 PUT s F7.3;
 PUT s 7.3;
RUN;

Which produces the following output in the log:

123.456
123.456

FLOATw.d
This format converts numeric data to a 4-byte single precision floating point value, outputting the result
as a binary value. The decimal part is a power of 10 by which the value part is multiplied.

min max default
Variable width 4 4 4

Reference for language elements
Version 4.1

403

Example
DATA _null_;
 s = 1;
 r = PUT(s, FLOAT.);
 PUT r $HEX.;
RUN;

Which produces the following hex representation of the format in the log:

0000803F

FRACTw.
This format finds the nearest fraction to the input numeric value – it uses the method of continued
fractions.

min max default
Variable width 4 32 10

Example
DATA _null_;
 s = 1.333;
 PUT s FRACT. "*";
RUN;

Which produces the following output in the log:

1+333/1000*

HEXw.
This format converts a numeric value to a hexadecimal representation, outputting the result in a textual
form consisting of the characters 0–9, A–F.

If the width is 16, the floating point representation is output. For lesser widths, the output is converted
to an integer and the hex representation of that output.

min max default
Variable width 1 16 8

Reference for language elements
Version 4.1

404

Example
DATA _null_;
 s = 15;
 PUT s HEX.;
RUN;

Which produces the following output in the log:

0000000F

IBw.d
This format converts a number into a native-endian integer in binary format.

On Intel platforms, it converts the number 42 into 2A 00 00 00, while on big-endian platforms, the
output would be 00 00 00 2A. The number of digits represents a scaling power of 10.

A double floating point value is converted into a signed 64-bit integer. Input values outside the range
of a signed, 64-bit integer take the largest positive or negative value as appropriate. As many of the
bytes of the integer are output as requested by the length, truncating on the most significant end if
necessary.

Missing input values are output as 0.

min max default
Variable width 1 8 4

Example
DATA _null_;
 n = 42;
 s = PUT(n,IB.);
 PUT s $HEX.;
RUN;

Which produces the following hex representation of the format output in the log (on Intel platforms):

2A000000

IBRw.d
This format converts a number into a little-endian integer in binary format.

when converting, the number of digits represents a scaling power of 10; for example the number 42 is
converted to 2A 00 00 00.

Reference for language elements
Version 4.1

405

min max default
Variable width 1 8 4

Example
DATA _null_;
 n = 42;
 s = PUT(n,IBR.);
 PUT s $HEX.;
RUN;

Which produces the following output in the log:

2A000000

IEEEw.d
This format converts numeric input to an IEEE floating point representation.

If present, the number of digits is a scaling power of 10.

If w is 1–4, the result is a single-precision IEEE floating point number. On IEEE platforms, for widths
of 1–4, the number is first converted to single precision if possible, and then the bytes of the float are
output, truncating at the least significant end of the fraction if necessary.

If w is 5–8, the result is a double-precision IEEE floating point number. On IEEE platforms, for widths of
5–8, this format outputs a (potentially truncated) double precision floating point number in binary format,
copying bytes from memory to the output. If necessary, truncation occurs at the least significant end of
the fraction of the number, so some precision is lost.

On z/OS, a similar process occurs, except that the input number is first converted from IBM hex floating
point to IEEE.

min max default
Variable width 1 8 8

Reference for language elements
Version 4.1

406

Example
DATA _null_;
 LENGTH s1 $ 8 s2 $ 16;
 DO n = 1, 1234567.95, ., .A,1E60;
 PUT n @;
 DO w = 3, 4, 7;
 DO d = 0, 4;
 s1 = PUTN(n,'IEEE',w,d);
 s2 = PUTC(s1,'$HEX',w*2);
 PUT @20 ': IEEE' w +(-1) '.' d s2;
 END;
 END;
 END;
RUN;

Which produces the following output in the log:

1 : ieee3.0 3F8000
 : ieee3.4 461C40
 : ieee4.0 3F800000
 : ieee4.4 461C4000
 : ieee7.0 3FF00000000000
 : ieee7.4 40C38800000000
1234567.95 : ieee3.0 4996B4
 : ieee3.4 5037F7
 : ieee4.0 4996B43F
 : ieee4.4 5037F707
 : ieee7.0 4132D687F33333
 : ieee7.4 4206FEE0F46000
. : ieee3.0 FFE880
 : ieee3.4 FFE880
 : ieee4.0 FFE88000
 : ieee4.4 FFE88000
 : ieee7.0 FFFFD100000000
 : ieee7.4 FFFFD100000000
A : ieee3.0 FFE880
 : ieee3.4 FFE880
 : ieee4.0 FFE88000
 : ieee4.4 FFE88000
 : ieee7.0 FFFFBE00000000
 : ieee7.4 FFFFBE00000000
1E60 : ieee3.0 FFE880
 : ieee3.4 FFE880
 : ieee4.0 FFE88000
 : ieee4.4 FFE88000
 : ieee7.0 4C63E9E4E4C2F3
 : ieee7.4 4D384F03E93FF9

Reference for language elements
Version 4.1

407

NEGPARENw.d
This format places commas after every three digits to improve readibility.

If the value is negative, the minus sign is replaced by surrounding parentheses as is the style in the
finance industry. For correct operation, sufficient space must be specified in the width of the output to
include the parentheses.

min max default
Variable width 1 32 6

Example
The following example formats the two supplied negative numbers, but does not attempt to format the
number where the default length is insufficient.

DATA _null_;
 d = -10;
 e = -1000;
 PUT d NEGPARAN. "*";
 PUT e NEGPARAN. "*";
 PUT d NEGPARAN10.2 "*";
 PUT e NEGPARAN10.2 "*";
RUN;

Which produces the following output in the log:

 (10)*
-1,000*
 (10.00)*
(1,000.00)*

NUMXw.d
This format converts a decimal point in a numeric variable into a comma.

This format is the same as the regular blank numeric format, except that it uses a comma instead of a
decimal point.

min max default
Variable width 1 32 12

Example
DATA _null_;
 s = 123456.789;
 t = PUT(s, NUMX12.4);
 PUT t;
RUN;

Reference for language elements
Version 4.1

408

Which produces the following output in the log:

123456,7890

OCTALw.d
This format converts a numeric input to its octal representation.

If present, the number of digits (d) is a scaling power of 10; the input is multiplied by the scaling factor,
and the format applied to the output. The formatted output will be truncated if the width is too narrow to
contain the converted value, any truncation occurs on the left.

min max default
Variable width 1 24 3

Example
The following outputs the default octal value for the input value of 8. This value is then scaled by
to 800 decimal (1440 octal), and by to generate a result that is too large to fit the format width.

DATA _null_;
 d = 8;
 PUT d OCTAL. "*";
 PUT d OCTAL4.2 "*";
 PUT d OCTAL4.3 "*";
RUN;

Which produces the following output in the log:

010*
1440*
7500*

ODDSRw.d
This format transforms its numeric argument into an odds ratio.

min max default
Variable width 2 32 8

Reference for language elements
Version 4.1

409

Example
DATA _null;
 d = 1.34;
 e = -1.34;
 PUT d ODDSR. "*";
 PUT e ODDSR. "*";
 PUT d ODDSR5.2 "*";
 PUT e ODDSR5.2 "*";
RUN;

Which produces the following output in the log:

 1.340*
 <0.001*
 1.34*
 <0.01*

PDw.d
This format converts numeric input arguments to a packed decimal form where two digits are encoded
into one byte with one digit per four-byte nibble.

The representation is platform-dependent – its mainframe representation differs from its representation
on other architectures. If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 1 16 1

Example
DATA _null_;
 s = 12.0;
 r = PUT(s, PD4.2);
 PUT r $HEX.;
RUN;

Which produces the following output in the log (on Intel platforms):

00001200

PERCENTw.d
This format converts its numeric input into a percentage – for example, an input of 0.5 would produce
an output of 50%.

If present, the number of digits (d) is a scaling power of 10. Negative numbers are surrounded with
parentheses and the format leaves space in the output to allow for this.

Reference for language elements
Version 4.1

410

min max default
Variable width 4 32 6

Example
DATA _null;
 d = 0.7;
 e = 1.5;
 f = -2.1;
 PUT d PERCENT. "*";
 PUT e PERCENT. "*";
 PUT d PERCENT8.1 "*";
 PUT d PERCENT8.2 "*";
 PUT f PERCENT. "*";
RUN;

Which produces the following output in the log:

 70% *
 150% *
 70.0% *
 70.00% *
(210%)*

PERCENTNw.d
This format converts its numeric input into a percentage – for example, an input of 0.25 would produce
an output of 25%.

If present, the number of digits (d) is a scaling power of 10. Negative numbers have a minus sign in
front of them and the format leaves space in the output to allow for this. Additionally, PERCENTN also
leaves a space at the end, similar to PERCENT.

min max default
Variable width 4 32 6

PIBw.d
This format converts its numeric input into a positive integer binary representation – the output is binary,
not textual.

For negative inputs, the output is set to a maximum binary value. The number of digits (d), if present, is
a scaling power of 10.

min max default
Variable width 1 8 1

Reference for language elements
Version 4.1

411

Example
DATA _null_;
 LENGTH s1 $ 8 s2 $ 16;
 DO n = -10, 1, 1234567.95, ., .A,1E60;
 PUT n @;
 DO w = 3, 4, 7;
 DO d = 0, 4;
 s1 = PUTN(n,'PIB',w,d);
 s2 = PUTC(s1,'$HEX',w*2);
 PUT @20 ': PIB' w +(-1) '.' d s2;
 END;
 END;
 END;
RUN;

Which produces the following output in the log:

-10 : pib3.0 FFFFFF
 : pib3.4 FFFFFF
 : pib4.0 FFFFFFFF
 : pib4.4 FFFFFFFF
 : pib7.0 FFFFFFFFFFFFFF
 : pib7.4 FFFFFFFFFFFFFF
1 : pib3.0 010000
 : pib3.4 102700
 : pib4.0 01000000
 : pib4.4 10270000
 : pib7.0 01000000000000
 : pib7.4 10270000000000
1234567.95 : pib3.0 88D612
 : pib3.4 FFFFFF
 : pib4.0 88D61200
 : pib4.4 FFFFFFFF
 : pib7.0 88D61200000000
 : pib7.4 8C1EDCDF020000
. : pib3.0 000000
 : pib3.4 000000
 : pib4.0 00000000
 : pib4.4 00000000
 : pib7.0 00000000000000
 : pib7.4 00000000000000
A : pib3.0 000000
 : pib3.4 000000
 : pib4.0 00000000
 : pib4.4 00000000
 : pib7.0 00000000000000
 : pib7.4 00000000000000
1E60 : pib3.0 FFFFFF
 : pib3.4 FFFFFF
 : pib4.0 FFFFFFFF
 : pib4.4 FFFFFFFF
 : pib7.0 FFFFFFFFFFFFFF
 : pib7.4 FFFFFFFFFFFFFF

Reference for language elements
Version 4.1

412

PIBRw.d
This format converts its numeric input into a positive integer binary representation, guaranteeing that its
output will be in a little-endian format.

For negative inputs, the output is set to a maximum binary value. If present, the number of digits (d) is a
scaling power of 10.

min max default
Variable width 1 8 1

Example
DATA _null_;
 LENGTH s1 $ 8 s2 $ 16;
 DO n = -10, 1, 1234567.95, ., .A,1E60;
 PUT n @;
 DO w = 3, 4, 7;
 DO d = 0, 4;
 s1 = PUTN(n,'PIBR',w,d);
 s2 = PUTC(s1,'$HEX',w*2);
 PUT @20 ': PIBR' w +(-1) '.' d s2;
 END;
 END;
 END;
RUN;

Which produces the following output in the log:

-10 : pibr3.0 FFFFFF
 : pibr3.4 FFFFFF
 : pibr4.0 FFFFFFFF
 : pibr4.4 FFFFFFFF
 : pibr7.0 FFFFFFFFFFFFFF
 : pibr7.4 FFFFFFFFFFFFFF
1 : pibr3.0 010000
 : pibr3.4 102700
 : pibr4.0 01000000
 : pibr4.4 10270000
 : pibr7.0 01000000000000
 : pibr7.4 10270000000000
1234567.95 : pibr3.0 88D612
 : pibr3.4 FFFFFF
 : pibr4.0 88D61200
 : pibr4.4 FFFFFFFF
 : pibr7.0 88D61200000000
 : pibr7.4 8C1EDCDF020000
. : pibr3.0 000000
 : pibr3.4 000000
 : pibr4.0 00000000
 : pibr4.4 00000000
 : pibr7.0 00000000000000
 : pibr7.4 00000000000000
A : pibr3.0 000000
 : pibr3.4 000000
 : pibr4.0 00000000

Reference for language elements
Version 4.1

413

 : pibr4.4 00000000
 : pibr7.0 00000000000000
 : pibr7.4 00000000000000
1E60 : pibr3.0 FFFFFF
 : pibr3.4 FFFFFF
 : pibr4.0 FFFFFFFF
 : pibr4.4 FFFFFFFF
 : pibr7.0 FFFFFFFFFFFFFF
 : pibr7.4 FFFFFFFFFFFFFF

PKw.d
This format converts its numeric argument into a machine-independent packed decimal form.

When converting, two digits are encoded into one byte with one digit per 4-byte nibble. If present, the
number of digits (d) is a scaling power of 10.

min max default
Variable width 1 16 1

Example
DATA _null_;
 LENGTH s1 $ 8 s2 $ 16;
 DO n = -10, 1, 1234567.95, ., .A,1E60;
 PUT n @;
 DO w = 3, 4, 7;
 DO d = 0, 4;
 s1 = PUTN(n,'PK',w,d);
 s2 = PUTC(s1,'$HEX',w*2);
 PUT @20 ': IEEE' w +(-1) '.' d s2;
 END;
 END;
 END;
RUN;

Which produces the following output in the log:

-10 : ieee3.0 000010
 : ieee3.4 100000
 : ieee4.0 00000010
 : ieee4.4 00100000
 : ieee7.0 00000000000010
 : ieee7.4 00000000100000
1 : ieee3.0 000001
 : ieee3.4 010000
 : ieee4.0 00000001
 : ieee4.4 00010000
 : ieee7.0 00000000000001
 : ieee7.4 00000000010000
1234567.95 : ieee3.0 999999
 : ieee3.4 999999
 : ieee4.0 01234568
 : ieee4.4 99999999

Reference for language elements
Version 4.1

414

 : ieee7.0 00000001234568
 : ieee7.4 00012345679500
. : ieee3.0 000000
 : ieee3.4 000000
 : ieee4.0 00000000
 : ieee4.4 00000000
 : ieee7.0 00000000000000
 : ieee7.4 00000000000000
A : ieee3.0 000000
 : ieee3.4 000000
 : ieee4.0 00000000
 : ieee4.4 00000000
 : ieee7.0 00000000000000
 : ieee7.4 00000000000000
1E60 : ieee3.0 999999
 : ieee3.4 999999
 : ieee4.0 99999999
 : ieee4.4 99999999
 : ieee7.0 99999999999999
 : ieee7.4 99999999999999

PVALUEw.d
This format converts probabilities (especially small ones) into a form in which the specified number of
digits determines the smallest number it can output.

Output values less than this minimum (including negative numbers) are rendered with the < symbol. If
the number of decimal points is 2, then the smallest number it can render is 0.01. If 3, then it is 0.001,
and so on.

min max default
Variable width 3 32 6

Example
DATA _null_;
 d = 0.002;
 d1 = 0.0002;
 d2= 0.00003;
 PUT d PVALUE7.2;
 PUT d1 PVALUE7.3;
 PUT d2 PVALUE7.4;
RUN;

Which produces the following output in the log:

 <.01
 <.001
 <.0001

Reference for language elements
Version 4.1

415

RBw.d
This format simply outputs the requested number of bytes of the double floating point in memory,
truncating so as to lose precision from the fraction if necessary.

If present, digits represent a scaling power of 10. There is no conversion to single precision for narrow
widths. RB stands for 'real binary'.

min max default
Variable width 2 8 4

Example
data _null_;
length s1 $ 8 s2 $ 16;
do n = -10, 1, 1234567.95, ., .A,1E60;
 put n @;
 do w = 3, 4, 7;
 do d = 0, 4;
 s1 = putn(n,'rb',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': rb' w +(-1) '.' d s2;
 end;
 end;
 end;
run;

Which produces the following output in the log:

-10 : rb3.0 0024C0
 : rb3.4 6AF8C0
 : rb4.0 000024C0
 : rb4.4 006AF8C0
 : rb7.0 000000000024C0
 : rb7.4 000000006AF8C0
1 : rb3.0 00F03F
 : rb3.4 88C340
 : rb4.0 0000F03F
 : rb4.4 0088C340
 : rb7.0 0000000000F03F
 : rb7.4 0000000088C340
1234567.95 : rb3.0 D63241
 : rb3.4 FE0642
 : rb4.0 87D63241
 : rb4.4 E0FE0642
 : rb7.0 3333F387D63241
 : rb7.4 0060F4E0FE0642
. : rb3.0 D1FFFF
 : rb3.4 D1FFFF
 : rb4.0 00D1FFFF
 : rb4.4 00D1FFFF
 : rb7.0 00000000D1FFFF
 : rb7.4 00000000D1FFFF
A : rb3.0 BEFFFF
 : rb3.4 BEFFFF
 : rb4.0 00BEFFFF

Reference for language elements
Version 4.1

416

 : rb4.4 00BEFFFF
 : rb7.0 00000000BEFFFF
 : rb7.4 00000000BEFFFF
1E60 : rb3.0 E9634C
 : rb3.4 4F384D
 : rb4.0 E4E9634C
 : rb4.4 034F384D
 : rb7.0 F3C2E4E4E9634C
 : rb7.4 F93FE9034F384D

ROMANw.
This format converts its numeric input to a Roman numeral form, after first converting into an integer.

min max default
Variable width 2 32 6

Example
data _null_;
d=50;
d1 = 121;
put d roman. "*";
put d1 roman. "*";
run;

Which produces the following output in the log:

L *
CXXI *

S370FFw.d
First, this format performs a conversion identical to that of the F format, the standard numeric format.

If on a non-z/OS machine, it converts that into open edition 1047 EBCDIC. It has no further effect on z/
OS machines, which are native EBCDIC. The output of this format is always in EBCDIC.

min max default
Variable width 1 32 12

Reference for language elements
Version 4.1

417

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
d=0;
n=10;
put n @;
s1 = putn(n,'s370ff',w,d);
s2 = putc(s1,'$hex',w*2);
put @20 ': s370ff' w +(-1) '.' d s2;
run;

Which produces the following output in the log:

10 : s370ff5.0 404040F1F0

S370FIBw.d
This format converts a number into a big-endian integer in binary format.

If present, the number of digits (d) is a scaling power of 10. A double floating point value is converted
into a signed 64-bit integer. Input values outside the range of a signed, 64-bit integer take the largest
positive or negative value as appropriate. As many of the bytes of the integer are output as requested
by the length, truncating on the most significant end if necessary.

Missing input values are output as 0.

On an IBM mainframe, this format is identical to the IBw.d format.

min max default
Variable width 1 8 4

Example
data _null_;
r=42;
s=put(r,s370fib4.);
put s $hex8.;
run;

Which produces the following output in the log:

0000002A

Reference for language elements
Version 4.1

418

S370FIBUw.d
This format transforms numeric data, taking its absolute value and converting it into big-endian positive
integer binary IBM mainframe format.

If present, the number of digits (d) is a scaling power of 10. A double floating point value is converted
into a signed 64-bit integer. Input values outside the range of a signed, 64-bit integer take the largest
positive or negative value as appropriate. As many of the bytes of the integer are output as requested
by the length, truncating on the most significant end if necessary.

Missing input values are output as 0, and negative input values are first converted to their absolute
value.

min max default
Variable width 1 8 4

Example
data _null_;
x=-42;
y=put(x,s370fibu4.);
put y $hex8.;
run;

Which produces the following output in the log:

0000002A

S370FPDw.d
This format converts numeric data into z/OS packed decimal format where two digits are encoded into
one byte with one digit per 4-byte nibble.

If present, the number of digits (d) is a scaling power of 10. This representation of this format is
machine-independent, as it always returns the IBM mainframe format in which the sign is signified by
the terminating nibble.

min max default
Variable width 1 16 1

Reference for language elements
Version 4.1

419

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fpd',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fpd' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fpd5.0 000000010D
-10 : s370fpd5.1 000000100D
10 : s370fpd5.0 000000010C
10 : s370fpd5.1 000000100C

S370FPDUw.d
This format transforms its numeric input, taking its absolute value and converting it into z/OS unsigned
packed decimal format.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 1 16 1

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fpdu',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fpdu' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fpdu5.0 000000010F
-10 : s370fpdu5.1 000000100F
10 : s370fpdu5.0 000000010F
10 : s370fpdu5.1 000000100F

Reference for language elements
Version 4.1

420

S370FPIBw.d
This format converts numeric data into z/OS big-endian positive integer binary format.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 1 8 4

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fpib',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fpib' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fpib5.0 FFFFFFFFFF
-10 : s370fpib5.1 FFFFFFFFFF
10 : s370fpib5.0 000000000A
10 : s370fpib5.1 0000000064

S370FRBw.d
This format converts a native representation of floating point numeric data into a z/OS big-endian
binary representation.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 2 8 4

Reference for language elements
Version 4.1

421

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370frb',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370frb' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370frb5.0 C1A0000000
-10 : s370frb5.1 C264000000
10 : s370frb5.0 41A0000000
10 : s370frb5.1 4264000000

S370FZDw.d
This format converts numeric data into z/OS zoned decimal format with one digit (or character) per
byte.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 1 32 8

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fzd',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fzd' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fzd5.0 F0F0F0F1D0
-10 : s370fzd5.1 F0F0F1F0D0
10 : s370fzd5.0 F0F0F0F1C0
10 : s370fzd5.1 F0F0F1F0C0

Reference for language elements
Version 4.1

422

S370FZDLw.d
This format converts numeric data into z/OS zoned decimal format with a sign nibble at the beginning.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 1 32 8

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fzdl',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fzdl' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fzdl5.0 D0F0F0F1F0
-10 : s370fzdl5.1 D0F0F1F0F0
10 : s370fzdl5.0 C0F0F0F1F0
10 : s370fzdl5.1 C0F0F1F0F0

S370FZDSw.d
This format converts numeric data into z/OS zoned decimal format with a sign byte at the beginning.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 2 32 8

Reference for language elements
Version 4.1

423

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fzds',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fzds' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fzds5.0 60F0F0F1F0
-10 : s370fzds5.1 60F0F1F0F0
10 : s370fzds5.0 4EF0F0F1F0
10 : s370fzds5.1 4EF0F1F0F0

S370FZDTw.d
This format converts numeric data into z/OS zoned decimal format with a sign byte at the end.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 2 32 8

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fzdt',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fzdt' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fzdt5.0 F0F0F1F060
-10 : s370fzdt5.1 F0F1F0F060
10 : s370fzdt5.0 F0F0F1F04E
10 : s370fzdt5.1 F0F1F0F04E

Reference for language elements
Version 4.1

424

S370FZDUw.d
This format converts numeric data into z/OS zoned decimal format with no sign byte.

If present, the number of digits (d) is a scaling power of 10.

min max default
Variable width 1 32 8

Example
data _null_;
length s1 $ 8 s2 $ 16;
w=5;
do n=-10,10;
 do d=0,1;
 put n @;
 s1 = putn(n,'s370fzdu',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': s370fzdu' w +(-1) '.' d s2;
 end;
end;
run;

Which produces the following output in the log:

-10 : s370fzdu5.0 F0F0F0F1F0
-10 : s370fzdu5.1 F0F0F1F0F0
10 : s370fzdu5.0 F0F0F0F1F0
10 : s370fzdu5.1 F0F0F1F0F0

SSNw.
This format converts its numeric input to US social security number format.

min max default
Variable width 11 11 11

Example
data _null_;
d=10;
d1=123456789;
put d ssn. "*";
put d1 ssn. "*";
run;

Reference for language elements
Version 4.1

425

Which produces the following output in the log:

000-00-0010*
123-45-6789*

WORDFw.
The format converts its numeric input into English words, assuming the output width is specified as
sufficiently large. Fractions are shown as a number of one-hundredths.

min max default
Variable width 5 32767 10

Example
data _null_;
d=10.2;
d1=12345.3;
put d wordf. "*";
put d1 wordf. "*";
put d wordf40. "*";
put d1 wordf80. "*";
run;

Which produces the following output in the log:

ten and 2**
twelve th**
ten and 20/100 *
twelve thousand three hundred forty-five and 30/100 *

WORDSw.
This format converts its numeric input to English words, assuming the output width is specified as
sufficiently large.

min max default
Variable width 5 32767 10

Reference for language elements
Version 4.1

426

Example
data _null_;
d=10;
d1=12345;
put d words. "*";
put d1 words. "*";
put d words40. "*";
put d1 words80. "*";
run;

Which produces the following output in the log:

ten *
twelve th**
ten *
twelve thousand three hundred forty-five *

Zw.d
This format pads its numeric input with leading zeroes rather than blanks, if enough output space is
available.

min max default
Variable width 1 32 1

Example
data _null_;
d=10;
d1=12345;
put d z5. "*";
put d1 z5. "*";
put d z20. "*";
put d1 z20. "*";
run;

Which produces the following output in the log:

00010*
12345*
00000000000000000010*
00000000000000012345*

Reference for language elements
Version 4.1

427

ZDw.d
This format converts a numeric input into a zoned decimal format with one digit (or character) per byte.
The result is ultimately platform-dependent.

min max default
Variable width 1 32 1

Example
data _null_;
length s1 $ 8 s2 $ 16;
do n = -10, 1, 1234567.95, ., .A,1E60;
 put n @;
 do w = 3, 4, 7;
 do d = 0, 4;
 s1 = putn(n,'zd',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': zd' w +(-1) '.' d s2;
 end;
 end;
 end;
run;

Which produces the following output in the log

-10 : zd3.0 30317D
 : zd3.4 393952
 : zd4.0 3030317D
 : zd4.4 39393952
 : zd7.0 3030303030317D
 : zd7.4 3031303030307D
1 : zd3.0 303041
 : zd3.4 393949
 : zd4.0 30303041
 : zd4.4 39393949
 : zd7.0 30303030303041
 : zd7.4 3030313030307B
1234567.95 : zd3.0 393949
 : zd3.4 393949
 : zd4.0 39393949
 : zd4.4 39393949
 : zd7.0 31323334353648
 : zd7.4 39393939393949
. : zd3.0 30307D
 : zd3.4 30307D
 : zd4.0 3030307D
 : zd4.4 3030307D
 : zd7.0 3030303030307D
 : zd7.4 3030303030307D
A : zd3.0 30307D
 : zd3.4 30307D
 : zd4.0 3030307D
 : zd4.4 3030307D
 : zd7.0 3030303030307D
 : zd7.4 3030303030307D

Reference for language elements
Version 4.1

428

1E60 : zd3.0 393949
 : zd3.4 393949
 : zd4.0 39393949
 : zd4.4 39393949
 : zd7.0 39393939393949
 : zd7.4 39393939393949

Numeric date formats
Formats that convert a numeric date into a formatted character representation.

DATEw.
This format converts a numeric date into a DDMMM, DDMMMYY, DDMMMYYYY or DD-MMM-YYYY
form, depending upon the specified output width.

min max default
Variable width 5 11 7

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with white space.

data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d date.;
 put explanation "5 " d date5.;
 put explanation "7 " d date7.;
 put explanation "9 " d date9.;
 put explanation "11 " d date11.;
run;

Which produces the following output in the log:

Output length: default 29SEP14
Output length: 5 29SEP
Output length: 7 29SEP14
Output length: 9 29SEP2014
Output length: 11 29-SEP-2014

Reference for language elements
Version 4.1

429

DATEAMPMw.d
This format converts a numeric datetime into a visual form that depends upon the specified output
length.

When the format is set to more than 19 characters, the output is padded at the front of the string with
whitespace. If sufficient room is available, an AM or PM suffix is added to the result.

min max default
Variable width 7 40 19

Example
data _null_;
 d=1727610480;
 explanation = "Output length: ";
 put explanation "default " d dateampm.;
 put explanation "7 " d dateampm7.;
 put explanation "9 " d dateampm9.;
 put explanation "10 " d dateampm10.;
 put explanation "13 " d dateampm13.;
 put explanation "16 " d dateampm16.;
 put explanation "19 " d dateampm19.;
 put explanation "40 " d dateampm40.;
run;

Which produces the following output in the log:

Output length: default 29SEP14:11:48:00 AM
Output length: 7 29SEP14
Output length: 9 29SEP2014
Output length: 10 29SEP14:11
Output length: 13 29SEP14:11 AM
Output length: 16 29SEP14:11:48 AM
Output length: 19 29SEP14:11:48:00 AM
Output length: 40 29SEP2014:11:48:00 AM

DATETIMEw.d
This format converts a numeric datetime into a visual form that depends upon the specified output
length. Time is expressed in the 24-hour clock format.

min max default
Variable width 7 40 16

Reference for language elements
Version 4.1

430

Example
data _null_;
 d=1727610480;
 explanation = "Output length: ";
 put explanation "default " d datetime.;
 put explanation "7 " d datetime7.;
 put explanation "9 " d datetime9.;
 put explanation "10 " d datetime10.;
 put explanation "13 " d datetime13.;
 put explanation "16 " d datetime16.;
 put explanation "40 " d datetime40.;
run;

Which produces the following output in the log:

Output length: default 29SEP14:11:48:00
Output length: 7 29SEP14
Output length: 9 29SEP2014
Output length: 10 29SEP14:11
Output length: 13 29SEP14:11:48
Output length: 16 29SEP14:11:48:00
Output length: 40 29SEP2014:11:48:00

DAYw.
This format converts a numeric date into a number representing the day of the month on which it
occurred.

min max default
Variable width 2 32 2

Example
data _null_;
 d=19995; /* 29 Sept 2014 */
 put d day.;
run;

Which produces the following output in the log:

29

Reference for language elements
Version 4.1

431

DDMMYYw.
This format converts a numeric date into a DD/MM/YY representation, with variations dependent upon
the required output length.

min max default
Variable width 2 10 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d ddmmyy.;
 put explanation "2 " d ddmmyy2.;
 put explanation "4 " d ddmmyy4.;
 put explanation "5 " d ddmmyy5.;
 put explanation "6 " d ddmmyy6.;
 put explanation "8 " d ddmmyy8.;
 put explanation "10 " d ddmmyy10.;
run;

Which produces the following output in the log:

Output length: default 29/09/14
Output length: 2 29
Output length: 4 2909
Output length: 5 29/09
Output length: 6 290914
Output length: 8 29/09/14
Output length: 10 29/09/2014

DDMMYYBw.
This format converts a numeric date into a DD MM YY or DD MM YYYY representation, with variations
depending on the available output space.

min max default
Variable width 2 10 8

Reference for language elements
Version 4.1

432

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with white space.

data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d ddmmyyb.;
 put explanation "2 " d ddmmyyb2.;
 put explanation "4 " d ddmmyyb4.;
 put explanation "5 " d ddmmyyb5.;
 put explanation "6 " d ddmmyyb6.;
 put explanation "8 " d ddmmyyb8.;
 put explanation "10 " d ddmmyyb10.;
run;

Which produces the following output in the log:

Output length: default 29 09 14
Output length: 2 29
Output length: 4 2909
Output length: 5 29 09
Output length: 6 290914
Output length: 8 29 09 14
Output length: 10 29 09 2014

DDMMYYDw.
This format converts a numeric date into a DD-MM-YY or DD-MM-YYYY representation, with variations
according to the available space.

min max default
Variable width 2 10 8

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with whitespace.

data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d ddmmyyd.;
 put explanation "2 " d ddmmyyd2.;
 put explanation "4 " d ddmmyyd4.;
 put explanation "5 " d ddmmyyd5.;
 put explanation "6 " d ddmmyyd6.;
 put explanation "8 " d ddmmyyd8.;
 put explanation "10 " d ddmmyyd10.;
run;

Reference for language elements
Version 4.1

433

Which produces the following output in the log:

Output length: default 29-09-14
Output length: 2 29
Output length: 4 2909
Output length: 5 29-09
Output length: 6 290914
Output length: 8 29-09-14.
Output length: 10 29-09-2014

DDMMYYCw.
This format converts a numeric date into a DD:MM:YY or DD:MM:YYYY representation, with variations
depending on the required output length.

min max default
Variable width 2 10 8

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with whitespace.

data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d ddmmyyc.;
 put explanation "2 " d ddmmyyc2.;
 put explanation "4 " d ddmmyyc4.;
 put explanation "5 " d ddmmyyc5.;
 put explanation "6 " d ddmmyyc6.;
 put explanation "8 " d ddmmyyc8.;
 put explanation "10 " d ddmmyyc10.;
run;

Which produces the following output in the log:

Output length: default 29:09:14
Output length: 2 29
Output length: 4 2909
Output length: 5 29:09
Output length: 6 290914
Output length: 8 29:09:14
Output length: 10 29:09:2014

Reference for language elements
Version 4.1

434

DDMMYYNw.
This format converts a numeric date into a DDMMYY or DDMMYYYY representation, with variations
depending on the specified output length.

min max default
Variable width 2 8 8

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with whitespace.

data _null_;
d=19995;
explanation = "Output length: ";
put explanation "default " d ddmmyyn.;
put explanation "2 " d ddmmyyn2.;
put explanation "4 " d ddmmyyn4.;
put explanation "6 " d ddmmyyn6.;
put explanation "8 " d ddmmyyn8.;
run;

Which produces the following output in the log:

Output length: default 29092014
Output length: 2 29
Output length: 4 2909
Output length: 6 290914
Output length: 8 29092014

DDMMYYPw.
This format converts a numeric date into a DD.MM.YY representation, with variations depending on the
available output space.

min max default
Variable width 2 10 8

Reference for language elements
Version 4.1

435

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with whitespace.

data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d ddmmyyp. "*";
 put explanation "2 " d ddmmyyp2. "*";
 put explanation "4 " d ddmmyyp4. "*";
 put explanation "5 " d ddmmyyp5. "*";
 put explanation "6 " d ddmmyyp6. "*";
 put explanation "8 " d ddmmyyp8. "*";
run;

Which produces the following output in the log:

Output length: default 29092014
Output length: 2 29
Output length: 4 2909
Output length: 6 290914
Output length: 8 29092014

DDMMYYSw.
This format converts a numeric date into a DD/MM/YY or DD/MM/YYYY representation, with variations
depending on the specified output length.

min max default
Variable width 2 10 8

Example
This example shows the points where the format width selected changes the presentation of a date
format. Using other format output widths pads the start of the date presentation with white space.

data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "default " d ddmmyys.;
 put explanation "2 " d ddmmyys2.;
 put explanation "4 " d ddmmyys4.;
 put explanation "5 " d ddmmyys5.;
 put explanation "6 " d ddmmyys6.;
 put explanation "8 " d ddmmyys8.;
 put explanation "10 " d ddmmyys10.;
run;

Reference for language elements
Version 4.1

436

Which produces the following output in the log:

Output length: default 29/09/14
Output length: 2 29
Output length: 4 2909
Output length: 5 29/09
Output length: 6 290914
Output length: 8 29/09/14
Output length: 10 29/09/2014

DOWNAMEw.
This format converts a numeric date into a spelled-out day of the week. It always produces the result in
English – 'Monday', 'Tuesday' and so on. When the complete result is longer than the available space,
it is simply truncated.

min max default
Variable width 1 32 9

Example
data _null_;
 d=19995;
 put d downame. ;
 put d downame2. ;
run;

Which produces the following output in the log:

 Monday
Mo

DTDATEw.
This format converts a numeric datetime into a DDMMMYY or DDMMMYYYY representation of the
date component of its input value.

min max default
Variable width 5 9 7

Example
data _null_;
 dt=1727610480;
 put dt dtdate9.;
run;

Reference for language elements
Version 4.1

437

Which produces the following output in the log:

29SEP2014

DTMONYYw.
This format converts a numeric datetime into a MMMYY or MMMYYYY representation of the date part.

min max default
Variable width 5 7 5

Example
data _null_;
 d=1727610480;
 put d dtmonyy7. ;
 put d dtmonyy. ;
run;

Which produces the following output in the log:

SEP2014
SEP14

DTWKDATXw.
This format converts a numeric datetime into day-of-week, day-number month-name YYYY or day-of-
week, day-number MMM YYYY.

min max default
Variable width 3 37 29

Example
data _null_;
 d=1727610480;
 put d dtwkdatx25.;
 put d dtwkdatx.;
run;

Which produces the following output in the log:

Monday, 29 Sep 2014
Monday, 29 September 2014

Reference for language elements
Version 4.1

438

DTYEARw.
This format converts the date part of a numeric datetime into a YYYY representation. If the output
space is less than 4, the last two digits of the year are displayed.

min max default
Variable width 2 4 4

Example
data _null_;
 d=1727610480;
 put d dtyear2.;
 put d dtyear3.;
 put d dtyear4.;
run;

Which produces the following output in the log

14
 14
2014

DTYYQCw.
This format converts the date part of a numeric datetime into a YY:Q or YYYY:Q representation where
Q is the quarter in which the date component of the input value falls.

min max default
Variable width 4 6 4

Example
data _null_;
d=1727610480;
put d dtyyqc6.;
put d dtyyqc4.;
run;

Which produces the following output in the log:

2014:3
14:3

Reference for language elements
Version 4.1

439

HHMMw.d
This format converts a numeric time into an HH:MM representation.

min max default
Variable width 2 20 5

Example
data _null_;
 d=0;
 d1=3601;
 d2=3600*15;
 put d hhmm. "*";
 put d1 hhmm20. "*";
 put d2 hhmm. "*";
run;

Which produces the following output in the log:

 0:00*
 1:00*
15:00*

HOURw.d
This format converts a numeric time into a number representing the hour of the day.

min max default
Variable width 2 20 2

Example
data _null_;
d=0;
d1=3601;
d2=3600*15;
put d hour. "*";
put d1 hour20. "*";
put d2 hour. "*";
run;

Which produces the following output in the log:

 0*
 1*
15*

Reference for language elements
Version 4.1

440

JULDAYw.
This format converts a numeric date into a number representing the Julian day of the year.

min max default
Variable width 3 32 3

Example
data _null_;
d=19995;
put d julday. ;
run;

Which produces the following output in the log:

272

JULIANw.
This format converts a numeric date into a YYDDD or YYYYDDD Julian day format.

min max default
Variable width 5 7 5

Example
data _null_;
d=19995;
put d julian7.;
put d julian5.;
run;

Which produces the following output in the log:

2014272
14272

JULDATEw.
Converts a numeric date into YYDDD or YYYYDDD Julian day format.

This format is an alias of JULIAN.

Reference for language elements
Version 4.1

441

min max default
Variable width 5 7 5

Example
data _null_;
d=19995;
put d julian7.;
run;

Which produces the following output in the log:

2014272

MDYAMPMw.d
This format converts a numeric datetime value into a MM/DD/YYYY form, or MM/DD/YY if the available
output space is too short.

min max default
Variable width 8 40 19

Example
data _null_;
 n=1727610480;
 explanation = "Output length: ";
 put explanation "8 " n mdyampm8.;
 put explanation "10 " n mdyampm10.;
 put explanation "19 " n mdyampm19.;
 put explanation "30 " n mdyampm30.;
 put explanation "40 " n mdyampm40.;
run;

Which produces the following output in the log:

Output length: 8 09/29/14
Output length: 10 09/29/2014
Output length: 19 09/29/2014 11:48 AM
Output length: 30 09/29/2014 11:48 AM
Output length: 40 09/29/2014 11:48 AM

Reference for language elements
Version 4.1

442

MINGUOw.
This format converts a numeric date into a Taiwanese date format (which counts years from a start in
1911), with visual variations depending on the specified output width.

min max default
Variable width 6 10 8

Example
data _null_;
d=19995;
put d minguo.;
put d minguo7.;
put d minguo10.;
run;

Which produces the following output in the log:

1030929
1030929
0103/09/29

MMDDYYw.
This format converts a numeric date into a MM/DD/YY or MM/DD/YYYY format with variations
according to the specified output width.

min max default
Variable width 2 10 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyy2.;
 put explanation "4 " d mmddyy4.;
 put explanation "5 " d mmddyy5.;
 put explanation "6 " d mmddyy6.;
 put explanation "8 " d mmddyy8.;
 put explanation "10 " d mmddyy10.;
run;

Reference for language elements
Version 4.1

443

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 09/29
Output length: 6 092914
Output length: 8 09/29/14
Output length: 10 09/29/2014

MMDDYYBw.
This format converts a numeric date into a MM DD YY or MM DD YYYY format with variations
depending on the specified output width.

min max default
Variable width 2 10 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyyb2.;
 put explanation "4 " d mmddyyb4.;
 put explanation "5 " d mmddyyb5.;
 put explanation "6 " d mmddyyb6.;
 put explanation "8 " d mmddyyb8.;
 put explanation "10 " d mmddyyb10.;
run;

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 09 29
Output length: 6 092914
Output length: 8 09 29 14
Output length: 10 09 29 2014

MMDDYYCw.
This format converts a numeric date into a MM:DD:YY or MM:DD:YYYY form with variations depending
on the specified output width.

min max default
Variable width 2 10 8

Reference for language elements
Version 4.1

444

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyyc2.;
 put explanation "4 " d mmddyyc4.;
 put explanation "5 " d mmddyyc5.;
 put explanation "6 " d mmddyyc6.;
 put explanation "8 " d mmddyyc8.;
 put explanation "10 " d mmddyyc10.;
run;

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 09:29
Output length: 6 092914
Output length: 8 09:29:14
Output length: 10 09:29:2014

MMDDYYDw.
This format converts a numeric date into a MM-DD-YY or MM-DD-YYYY form with variations
depending on the specified output width.

min max default
Variable width 2 10 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyyd2.;
 put explanation "4 " d mmddyyd4.;
 put explanation "5 " d mmddyyd5.;
 put explanation "6 " d mmddyyd6.;
 put explanation "8 " d mmddyyd8.;
 put explanation "10 " d mmddyyd10.;
run;

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 09-29
Output length: 6 092914
Output length: 8 09-29-14
Output length: 10 09-29-2014

Reference for language elements
Version 4.1

445

MMDDYYNw.
This format converts a numeric date into a MMDDYY or MMDDYYYY form with variations depending
on the specified output width.

min max default
Variable width 2 8 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyyn2.;
 put explanation "4 " d mmddyyn4.;
 put explanation "5 " d mmddyyn5.;
 put explanation "6 " d mmddyyn6.;
 put explanation "8 " d mmddyyn8.;
run;

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 0929
Output length: 6 092914
Output length: 8 09292014

MMDDYYPw.
This format converts a numeric date into a MM.DD.YY or MM.DD.YYYY form with variations depending
on the specified output width.

min max default
Variable width 2 10 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyyp2.;
 put explanation "4 " d mmddyyp4.;
 put explanation "5 " d mmddyyp5.;
 put explanation "6 " d mmddyyp6.;
 put explanation "8 " d mmddyyp8.;
 put explanation "10 " d mmddyyp10.;
run;

Reference for language elements
Version 4.1

446

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 09.29
Output length: 6 092914
Output length: 8 09.29.14
Output length: 10 09.29.2014

MMDDYYSw.
This format converts a numeric date into a MM/DD/YY or MM/DD/YYYY form with variations depending
on the specified output width.

min max default
Variable width 2 10 8

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "2 " d mmddyys2.;
 put explanation "4 " d mmddyys4.;
 put explanation "5 " d mmddyys5.;
 put explanation "6 " d mmddyys6.;
 put explanation "8 " d mmddyys8.;
 put explanation "10 " d mmddyys10.;
run;

Which produces the following output in the log:

Output length: 2 09
Output length: 4 0929
Output length: 5 09/29
Output length: 6 092914
Output length: 8 09/29/14
Output length: 10 09/29/2014

MMSSw.d
This format converts a numeric time into a MM:SS form.

min max default
Variable width 2 20 5

Reference for language elements
Version 4.1

447

Example
data _null_;
 t=0;
 t1= 3601;
 put t mmss.;
 put t mmss19.;
 put t mmss19.5;
 put t1 mmss.;
run;

Which produces the following output in the log

 0:00
 0:00
 0:00.00000
60:01

MMYYw.
This format converts a numeric date into a nnMyyyy form where nn is the month number.

min max default
Variable width 5 32 7

Example
data _null_;
 d=19995;
 put d mmyy8.;
 put d mmyy7.;
 put d mmyy5.;
run;

Which produces the following output in the log:

 09M2014
09M2014
09M14

MMYYCw.
This format converts a numeric date into a MM:YY or MM:YYYY form.

min max default
Variable width 5 32 7

Reference for language elements
Version 4.1

448

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "5 " d mmyyc5.;
 put explanation "7 " d mmyyc7.;
 put explanation "8 " d mmyyc8.;
run;

Which produces the following output in the log:

Output length: 5 09:14
Output length: 7 09:2014
Output length: 8 09:2014

MMYYDw.
This format converts a numeric date into a MM-YY or MM-YYYY form.

min max default
Variable width 5 32 7

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "5 " d mmyyd5.;
 put explanation "7 " d mmyyd7.;
 put explanation "8 " d mmyyd8.;
run;

Which produces the following output in the log:

Output length: 5 09-14
Output length: 7 09-2014
Output length: 8 09-2014

MMYYNw.
This format converts a numeric date into a MMYY or MMYYYY form.

min max default
Variable width 4 32 6

Reference for language elements
Version 4.1

449

Example
data _null_;
d=19995;
put d mmyyn8.;
put d mmyyn7.;
put d mmyyn6.;
put d mmyyn5.;
put d mmyyn4.;
run;

Which produces the following output in the log:

 092014
 092014
092014
 0914
0914

MMYYPw.
This format converts a numeric date into a MM.YY or MM.YYYY form.

min max default
Variable width 5 32 7

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "5 " d mmyyp5.;
 put explanation "7 " d mmyyp7.;
run;

Which produces the following output in the log:

Output length: 5 09.14
Output length: 7 09.2014

MMYYSw.
This format converts a numeric date into a MM/YY or MM/YYYY form.

min max default
Variable width 5 32 7

Reference for language elements
Version 4.1

450

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "5 " d mmyys5.;
 put explanation "7 " d mmyys7.;
run;

Which produces the following output in the log:

Output length: 5 09/14
Output length: 7 09/2014

MONNAMEw.
This format converts a numeric date into a spelled-out month - sufficient output space must be
available if truncation is to be avoided. The output is not locale-sensitive – it always generates
'January', 'February' and so on.

min max default
Variable width 1 32 9

Example
data _null_;
 d=19995;
 put "Default: " d monname.;
 put "Output length 9: " d monname9.;
run;

Which produces the following output in the log:

Default: September
Output length 9: September

MONTHw.
This format extracts the month number from a numeric date.

min max default
Variable width 1 32 2

Reference for language elements
Version 4.1

451

Example
data _null_;
d=19995;
put d month.;
run;

Which produces the following output in the log:

9

MONYYw.
This format converts a numeric date into a MMMYY or MMMYYYY format.

min max default
Variable width 5 7 5

Example
data _null_;
 d=19995;
 explanation = "Output length: ";
 put explanation "5 " d monyy5.;
 put explanation "7 " d monyy7.;
run;

Which produces the following output in the log:

Output length: 5 SEP14
Output length: 7 SEP2014

NENGOw.
This format converts a numeric date into a Japanese date format including an initial era signifier.
Variations in presentation depend on the specified output width.

min max default
Variable width 2 10 8

Reference for language elements
Version 4.1

452

Example
data _null_;
 d=19995;
 put "Default: " d nengo.;
 put "Output length 5: " d nengo5.;
 put "Output length 10: " d nengo10.;
run;

Which produces the following output in the log:

Default: H.260929
Output length 5: H26
Output length 10: H.26/09/29

PDJULGw.
This format converts a numeric date into a packed decimal representation of a Julian date.

min max default
Variable width 3 16 4

Example
data _null_;
length s1 $ 8 s2 $ 16;
do n = 19995;
 put n @;
 do w = 3,7,15;
 do d = 0;
 s1 = putn(n,'pdjulg',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': pdjulg' w +(-1) '.' d s2;
 end;
 end;
 end;
run;

Which produces the following output in the log:

19995 : pdjulg3.0 99992F
 : pdjulg7.0 0000002014272F
 : pdjulg15.0 000000002014272F

Reference for language elements
Version 4.1

453

PDJULIw.
This format converts a numeric date into a packed decimal representation of a Julian date. When
space permits, it also prepends a numeric representation of the century to the output, rebased to 1900.

min max default
Variable width 3 16 4

Example
data _null_;
length s1 $ 8 s2 $ 16;
do n = 19995, 50000;
 put n @;
 do w = 3,7,15;
 do d = 0;
 s1 = putn(n,'pdjuli',w,d);
 s2 = putc(s1,'$hex',w*2);
 put @20 ': pdjuli' w +(-1) '.' d s2;
 end;
 end;
 end;
run;

Which produces the following output in the log:

19995 : pdjuli3.0 99992F
 : pdjuli7.0 0000000114272F
 : pdjuli15.0 000000000114272F
50000 : pdjuli3.0 99997F
 : pdjuli7.0 0000000196327F
 : pdjuli15.0 000000000196327F

QTRw.
This format converts a numeric date value into an integer representing the quarter in which the date
occurs.

min max default
Variable width 1 32 1

Example
data _null_;
 n=19995;
 put n qtr.;
run;

Reference for language elements
Version 4.1

454

Which produces the following output in the log:

3

QTRRw.
This format converts a numeric date value into a Roman numeral representing the quarter in which the
date occurs.

min max default
Variable width 3 32 3

Example
data _null_;
 n=19995;
 put n qtrr.;
run;

Which produces the following output in the log:

III

TIMEw.d
This format converts a numeric time value into a representation of a time interval in HH:MM:SS format,
with small variations according to the available space.

min max default
Variable width 2 20 8

Example
data _null_;
 d=19995;
 put "Default: " d time.;
 put "Output length 2: " d time2.;
 put "Output length 5: " d time5.;
run;

Which produces the following output in the log:

Default: 5:33:15
Output length 2: 5
Output length 5: 5:33

Reference for language elements
Version 4.1

455

TIMEAMPMw.d
This format converts a numeric time value into a representation of the time of day in HH:MM:SS AM or
HH:MM:SS PM formats. Small variations adjust for the available space.

min max default
Variable width 2 20 8

Example
data _null_;
 n=3000;
 put "Default: " n timeampm.;
 put "Output length 5: " n timeampm5.;
 put "Output length 8: " n timeampm8.;
run;

Which produces the following output in the log:

Default: 12:50:00 AM
Output length 5: 12 AM
Output length 8: 12:50 AM

TODw.d
This format converts a numeric time value into a representation of the time of day in HH:MM:SS format
using the 24-hour clock.

min max default
Variable width 2 20 8

Example
data _null_;
n=3000;
put "Default: " n tod.;
put "Output length 2: " n tod2.;
put "Output length 4: " n tod4.;
put "Output length 5: " n tod5.;
put "Output length 7: " n tod7.;
put "Output length 8: " n tod8.;
run;

Reference for language elements
Version 4.1

456

Which produces the following output in the log:

Default: 00:50:00
Output length 2: 00
Output length 4: 0:50
Output length 5: 00:50
Output length 7: 0:50:00
Output length 8: 00:50:00

WEEKUw.
Converts a numeric date value into a yyyy-Wxx-nn form, where xx is the number of the week in the
year starting at 00, and nn is the number of the day within the week, starting with 01 on Sunday.

min max default
Variable width 3 200 11

Example
data _null_;
n=19995;
put n weeku.;
run;

Which produces the following output in the log:

2014-W39-02

WEEKVw.
Converts a numeric date value into an ISO week date yyyy-Wxx-nn format, where xx is the number of
the week in the year starting at 01, and nn is the number of the day within the week, starting with 01 on
Monday.

min max default
Variable width 3 200 11

Example
data _null_;
n = 19995;
put n weekv.;
run

Reference for language elements
Version 4.1

457

Which produces the following output in the log:

2014-W40-01

WEEKWw.
Converts a numeric date value into a yyyy-Wxx-nn format, where xx is the number of the week in the
year starting at 00, and nn is the number of the day within the week, starting with 01 on Monday.

min max default
Variable width 3 200 11

Example
data _null_;
n=19995;
put n weekw.;
run;

Which produces the following output in the log:

2014-W39-01

WEEKDATEw.
Converts a numeric date into a spelled-out representation such as: Friday, January 1, 1960.

Variations will occur in relation to the available output space. It differs only slightly from the WEEKDATE
format, which displays typical output as: Friday, 1 January, 1960.

min max default
Variable width 3 37 29

Example
data _null_;
n=19995;
put n weekdate3.;
put n weekdate13.;
put n weekdate14.;
put n weekdate21.;
put n weekdate22.;
put n weekdate29.;
run;

Reference for language elements
Version 4.1

458

Which produces the following output in the log:

Mon
 Monday
 Monday
 Mon, Sep 29, 2014
 Mon, Sep 29, 2014
 Monday, September 29, 2014

WEEKDATXw.
Converts a numeric date into a spelled-out representation such as: Friday, 1 January, 1960.

The format differs only slightly from the WEEKDATE format, which displays typical output as: Friday,
January 1, 1960.

min max default
Variable width 3 37 29

Example
data _null_;
 n=19995;
 put "Default output length: " n weekdatx.;
 put "Output length 15: " n weekdatx15.;
 put "Output length 17: " n weekdatx17.;
 put "Output length 23: " n weekdatx23.;
run;

Which produces the following output in the log:

Default output length: Monday, 29 September 2014
Output length 15: Mon, 29 Sep 14
Output length 17: Mon, 29 Sep 2014
Output length 23: Monday, 29 Sep 2014

WEEKDAYw.
Converts a numeric date into a number representing the day of the week starting on Sunday.

min max default
Variable width 1 32 1

Reference for language elements
Version 4.1

459

Example
data _null_;
n=19995;
put n weekday.;
run;

Which produces the following output in the log:

2

WORDDATEw.
Converts a numeric date into a spelled-out representation such as: January 1, 1960, with
presentational variations according to the available output space.

The format differs only slightly from the WORDDATX format, in which the output takes the form: 29
September 2014.

min max default
Variable width 3 32 18

Example
data _null_;
n=19995;
put n worddate3.;
put n worddate13.;
put n worddate14.;
put n worddate21.;
put n worddate22.;
put n worddate29.;
run;

Which produces the following output in the log:

Sep
 Sep 29, 2014
 Sep 29, 2014
 September 29, 2014
 September 29, 2014
 September 29, 2014

Reference for language elements
Version 4.1

460

WORDDATXw.
Converts a numeric date into a spelled-out representation such as: 1 January 1960, with presentational
variations according to the available output space.

The format differs only slightly from the WORDDATE format, in which the output takes the form:
September 29, 2014. This format is not locale-sensitive and the output will always be in English.

min max default
Variable width 3 32 18

Example
data _null_;
n=19995;
put n worddatx3.;
put n worddatx13.;
put n worddatx14.;
put n worddatx21.;
put n worddatx22.;
put n worddatx29.;
run;

Which produces the following output in the log:

Sep
 29 Sep 2014
 29 Sep 2014
 29 September 2014
 29 September 2014
 29 September 2014

YEARw.
Transforms a numeric date into a representation of the year.

min max default
Variable width 2 32 4

Example
data _null_;
n=19995;
put n year.;
run;

Which produces the following output in the log:

2014

Reference for language elements
Version 4.1

461

YYMMw.
Transforms a numeric date into a yyyyMxx form, where xx is the month number.

min max default
Variable width 5 32 7

Example
data _null_;
n=19995;
put n yymm5.;
put n yymm.;
run;

Which produces the following output in the log:

14M09
2014M09

YYMMCw.
Transforms a numeric date into a colon-separated YYYY:MM form, where MM is the month number.

min max default
Variable width 5 32 7

Example
data _null_;
n=19995;
put n yymmc5.;
put n yymmc6.;
put n yymmc7.;
put n yymmc8.;
put n yymmc9.;
put n yymmc10.;
put n yymmc11.;
put n yymmc12.;
run;

Reference for language elements
Version 4.1

462

Which produces the following output in the log:

14:09
 14:09
2014:09
 2014:09
 2014:09
 2014:09
 2014:09
 2014:09

YYMMDw.
Converts a numeric date into a dash-separated YYYY-MM form, where MM is the month number.

min max default
Variable width 5 32 7

Example
data _null_;
n=19995;
put n yymmd5.;
put n yymmd6.;
put n yymmd7.;
put n yymmd8.;
put n yymmd9.;
put n yymmd10.;
put n yymmd11.;
put n yymmd12.;
run;

Which produces the following output in the log:

14-09
 14-09
2014-09
 2014-09
 2014-09
 2014-09
 2014-09
 2014-09

YYMMNw.
This format transforms a numeric date into a YYYYMM form.

min max default
Variable width 4 32 6

Reference for language elements
Version 4.1

463

Example
data _null_;
n=19995;
put n yymmn4.;
put n yymmn5.;
put n yymmn6.;
put n yymmn7.;
put n yymmn8.;
put n yymmn9.;
put n yymmn10.;
run;

Which produces the following output in the log:

1409
 1409
201409
 201409
 201409
 201409
 201409

YYMMPw.
This format transforms a numeric date into a period-separated YYYY.MM form where MM is the month
number within the year.

min max default
Variable width 5 32 7

Example
data _null_;
 n=19995;
 put n yymmp5.;
 put n yymmp7.;
run;

Which produces the following output in the log:

14.09
2014.09

Reference for language elements
Version 4.1

464

YYMMSw.
This format transforms a numeric date into a slash-separated YYYY/MM form where MM is the month
number within the year.

min max default
Variable width 5 32 7

Example
data _null_;
 n=19995;
 put n yymms5.;
 put n yymms7.;
run;

Which produces the following output in the log:

14/09
2014/09

YYMMDDw.
This format transforms a numeric date into a YY-MM-DD or YYYY-MM-DD form, depending on the
available space.

min max default
Variable width 2 10 8

Example
data _null_;
 n=19995;
 put n yymmdd2.;
 put n yymmdd4.;
 put n yymmdd5.;
 put n yymmdd6.;
 put n yymmdd8.;
 put n yymmdd10.;
run;

Which produces the following output in the log:

14
1409
14-09
140929
14-09-29
2014-09-29

Reference for language elements
Version 4.1

465

YYMMDDBw.
Transforms a numeric date into a space-separated YY MM DD or YYYY MM DD form, depending on
the available space

min max default
Variable width 2 10 8

Example
data _null_;
n=19995;
put n yymmddb2.;
put n yymmddb4.;
put n yymmddb5.;
put n yymmddb6.;
put n yymmddb8.;
put n yymmddb10.;
run;

Which produces the following output in the log:

14
1409
14 09
140929
14 09 29
2014 09 29

YYMMDDCw.
Transforms a numeric date into a colon-separated YY:MM:DD or YYYY:MM:DD form, depending on
the available space.

min max default
Variable width 2 10 8

Example
data _null_;
 n=19995;
 put n yymmddc2.;
 put n yymmddc4.;
 put n yymmddc5.;
 put n yymmddc6.;
 put n yymmddc8.;
 put n yymmddc10.;
run;

Reference for language elements
Version 4.1

466

Which produces the following output in the log:

14
1409
14:09
140929
14:09:29
2014:09:29

YYMMDDDw.
Transforms a numeric date into a dash-separated YY-MM-DD or YYYY-MM-DD form, depending on
the available space.

min max default
Variable width 2 10 8

Example
data _null_;
n=19995;
put n yymmddd2.;
put n yymmddd4.;
put n yymmddd5.;
put n yymmddd6.;
put n yymmddd8.;
put n yymmddd10.;
run;

Which produces the following output in the log:

14
1409
14-09
140929
14-09-29
2014-09-29

YYMMDDNw.
Transforms a numeric date into a YYMMDD or YYYYMMDD form, depending on the available space.

min max default
Variable width 2 8 8

Reference for language elements
Version 4.1

467

Example
data _null_;
 n=19995;
 put n yymmddn2.;
 put n yymmddn4.;
 put n yymmddn6.;
 put n yymmddn8.;
run;

Which produces the following output in the log:

14
1409
140929
20140929

YYMMDDPw.
Transforms a numeric date into a period-separated YY.MM.DD or YYYY.MM.DD form, depending on
the available space.

min max default
Variable width 2 10 8

Example
data _null_;
 n=19995;
 put n yymmddp2.;
 put n yymmddp4.;
 put n yymmddp5.;
 put n yymmddp6.;
 put n yymmddp8.;
 put n yymmddp10.;
run;

Which produces the following output in the log:

14
1409
14.09
140929
14.09.29
2014.09.29

Reference for language elements
Version 4.1

468

YYMMDDSw.
Transforms a numeric date into a slash-separated YY/MM/DD or YYYY/MM/DD form, depending on
the available space.

min max default
Variable width 2 10 8

Example
data _null_;
 n=19995;
 put n yymmdds2.;
 put n yymmdds4.;
 put n yymmdds5.;
 put n yymmdds6.;
 put n yymmdds8.;
 put n yymmdds10.;
run;

Which produces the following output in the log:

14
1409
14/09
140929
14/09/29
2014/09/29

YYMONw.
Transforms a numeric date into a YYYYMMM form.

min max default
Variable width 5 32 7

Example
data _null_;
 n=19995;
 put n yymon5.;
 put n yymon7.;
run;

Which produces the following output in the log:

14SEP
2014SEP

Reference for language elements
Version 4.1

469

YYQw.
Transforms a numeric date into a YYYYQxx form, where xx is the quarter in which the original date
falls.

min max default
Variable width 4 32 6

Example
data _null_;
 n=19995;
 put n yyq4.;
 put n yyq6.;
run;

Which produces the following output in the log:

14Q3
2014Q3

YYQCw.
Transforms a numeric date into a YYYY:Q form, where Q is the number of the quarter in which the
original date falls.

min max default
Variable width 4 32 6

Example
data _null_;
 n=19995;
 put n yyqc4.;
 put n yyqc6.;
run;

Which produces the following output in the log:

14:3
2014:3

Reference for language elements
Version 4.1

470

YYQDw.
Tansforms a numeric date into a YYYY-Q form, where Q is the number of the quarter in which the
original date falls.

min max default
Variable width 4 32 6

Example
data _null_;
 n=19995;
 put n yyqd4.;
 put n yyqd6.;
run;

Which produces the following output in the log:

14-3
2014-3

YYQNw.
Converts a numeric date into a YYYYQ form, where Q is the number of the quarter in which the original
date falls.

min max default
Variable width 3 32 5

Example
data _null_;
 n=19995;
 put n yyqn.;
run;

Which produces the following output in the log:

20143

Reference for language elements
Version 4.1

471

YYQPw.
Transforms a numeric date into a YYYY.Q form, where Q is the number of the quarter in which the date
falls.

min max default
Variable width 4 32 6

Example
data _null_;
 n=19995;
 put n yyqp.;
run;

Which produces the following output in the log:

2014.3

YYQRw.
Converts a numeric date into a YYYYQr form, where r is the Roman numeral representation of the
quarter in which the original date falls.

min max default
Variable width 6 32 8

Example
data _null_;
n=19995;
put n yyqr.;
run;

Which produces the following output in the log:

2014QIII

Reference for language elements
Version 4.1

472

YYQSw.
Transforms a numeric date into a YYYY/Q form, where Q is the number of the quarter in which the
original date falls.

min max default
Variable width 4 32 6

Example
data _null_;
 n=19995;
 put n yyqs.;
run;

Which produces the following output in the log:

2014/3

YYQRCw.
Transforms a numeric date into a YYYY:r form, where r is the Roman numeral representation of the
number of the quarter in which the date falls.

min max default
Variable width 6 32 8

Example
data _null_;
 n=19995;
 put n yyqrc.;
run;

Which produces the following output in the log:

2014:III

Reference for language elements
Version 4.1

473

YYQRDw.
Converts a numeric date into a YYYY-r form, where r is the Roman numeral representation of the
number of the quarter in which the date falls.

min max default
Variable width 6 32 8

Example
data _null_;
 n=19995;
 put n yyqrd.;
run;

Which produces the following output in the log:

2014-III

YYQRNw.
Transforms a numeric date into a YYYYr form, where r is the Roman numeral representation of the
number of the quarter in which the date falls.

min max default
Variable width 5 32 7

Example
data _null_;
 n=19995;
 put n yyqrn.;
run;

Which produces the following output in the log:

2014III

Reference for language elements
Version 4.1

474

YYQRPw.
Transforms a numeric date into a YYYY.r form, where r is the Roman numeral representation of the
number of the quarter in which the date falls.

min max default
Variable width 6 32 8

Example
data _null_;
 n=19995;
 put n yyqrp.;
run;

Which produces the following output in the log:

2014.III

YYQRSw.
Transforms a numeric date into a YYYY/r form, where r is the Roman numeral representation of the
number of the quarter in which the date falls.

min max default
Variable width 6 32 8

Example
data _null_;
 n=19995;
 put n yyqrs.;
run;

Which produces the following output in the log:

2014/III

YYWEEKUw.
Transforms a numeric date into a YYYYWxx or YYYY-Wxx form, where xx is the week number.

min max default
Variable width 3 8 7

Reference for language elements
Version 4.1

475

Example
data _null_;
 n=19995;
 put n yyweeku.;
 put n yyweeku8.;
run;

Which produces the following output in the log:

2014W39
2014-W39

YYWEEKVw.
Converts a numeric date value into an ISO week date YYYYWxx or YYYY-Wxx form, where xx is the
number of the week in the year starting at 01.

min max default
Variable width 3 8 7

Example
data _null_;
 n=19995;
 put n yyweekv.;
 put n yyweekv8.;
run;

Which produces the following output in the log:

2014W40
2014-W40

YYWEEKWw.
Converts a numeric date value into a YYYYWxx or YYYY-Wxx form, where xx is the number of the
week in the year starting at 00.

min max default
Variable width 3 8 7

Reference for language elements
Version 4.1

476

Example
data _null_;
 n=19995;
 put n yyweekw.;
 put n yyweekw8.;
run;

Which produces the following output in the log:

2014W39
2014-W39

ISO8601 date formats
Formats that represent date-time data according to the ISO 8601 standard.

$N8601Bw.
Taking input in an encoded form (an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 basic forms PnYnMnDTnHnMnS and yyyymmddThhmmss.

min max default
Variable width 1 200 55

Example
In the following example, the DATA step function is8601_convert is used to convert sample textual
data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30:21'dt;
fin='08apr2014:13:32:22'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601b50.;
put datim=$n8601b50.;
put intval=$n8601b50.;
run;

Which produces the following output in the log:

dur=P2Y3M6DT2H2M1S
datim=20120102T113021
intval=20120102T113021/20140408T133222

Reference for language elements
Version 4.1

477

$N8601BAw.
Taking input in an encoded form (i.e. an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms PyyyymmddThhmmss and yyyymmddThhmmss.

min max default
Variable width 1 200 55

Example
In the example below, the DATA step function is8601_convert is used to convert sample textual
data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30:21'dt;
fin='08apr2014:13:32:22'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601ba50.;
put datim=$n8601ba50.;
put intval=$n8601ba50.;
run;

Which produces the following output in the log:

dur=P00020306T020201
datim=20120102T113021
intval=20120102T113021/20140408T133222

$N8601Ew.
Taking input in an encoded form (an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms PnYnMnDTnHnMnS and yyyy-mmddThh:mm:ss.

min max default
Variable width 1 200 55

Reference for language elements
Version 4.1

478

Example
In the example below, the DATA step function is8601_convert is used to convert sample textual
data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30:21'dt;
fin='08apr2014:13:32:22'dt;
call is8601_convert('dt/dt','du',beg,fin,dur); /* Convert to a duration */
call is8601_convert('dt','dt',beg,datim); /* Convert to a datetime */
call is8601_convert('dt/dt', 'intvl', beg, fin, intval); /* Convert to an interval
 */
put dur=$n8601e50.;
put datim=$n8601e50.;
put intval=$n8601e50.;
run;

Which produces the following output in the log:

dur=P2Y3M6DT2H2M1S
datim=2012-01-02T11:30:21
intval=2012-01-02T11:30:21/2014-04-08T13:32:22

$N8601EAw.
Taking input in an encoded form (an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

min max default
Variable width 1 200 55

Example
In the example below, the DATA step function is8601_convert is used to convert sample textual
data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30:21'dt;
fin='08apr2014:13:32:22'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601ea50.;
put datim=$n8601ea50.;
put intval=$n8601ea50.;
run;

Reference for language elements
Version 4.1

479

Which produces the following output in the log:

dur=P0002-03-06T02:02:01
datim=2012-01-02T11:30:21
intval=2012-01-02T11:30:21/2014-04-08T13:32:22

$N8601EHw.
Taking input in an encoded form (an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.
This is the same as the $N8601EAw. format, except that it uses a hyphen for missing components.

min max default
Variable width 1 200 55

Example
In the following example below, the DATA step function is8601_convert is used to convert sample
textual data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30'dt;
fin='08apr2014:13:32'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601eh50.;
put datim=$n8601eh50.;
put intval=$n8601eh50.;
run;

Which produces the following output in the log:

dur=P0002-03-06T02:02:-
datim=2012-01-02T11:30:00
intval=2012-01-02T11:30:00/2014-04-08T13:32:00

$N8601EXw.
Taking input in an encoded form (an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

Reference for language elements
Version 4.1

480

This is the same as the $N8601EAw. format, except that it uses x for each digit of a missing
component.

min max default
Variable width 1 200 55

Example
In the example below, the DATA step function is8601_convert is used to convert sample textual
data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30'dt;
fin='08apr2014:13:32'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601ex50.;
put datim=$n8601ex50.;
put intval=$n8601ex50.;
run;

Which produces the following output in the log

dur=P0002-03-06T02:02:x
datim=2012-01-02T11:30:00
intval=2012-01-02T11:30:00/2014-04-08T13:32:00

$N8601Hw.
Taking input in an encoded form (i.e. an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

This format is the same as the $N8601EAw. format, except that it suppresses omitted components in
durations and uses a hyphen for omitted components in datetime values.

min max default
Variable width 1 200 55

Reference for language elements
Version 4.1

481

Example
In the following example below, the DATA step function is8601_convert is used to convert sample
textual data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30'dt;
fin='08apr2014:13:32'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601h50.;
put datim=$n8601h50.;
put intval=$n8601h50.;
run;

Which produces the following output in the log:

dur=P2Y3M6DT2H2M-S
datim=2012-01-02T11:30:00
intval=2012-01-02T11:30:00/2014-04-08T13:32:00

$N8601Xw.
Taking input in an encoded form (i.e. an internal representation), this format generates datetimes,
durations and intervals as ISO 8601 forms Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

This format is the same as the $N8601EAw. format, except that it drops omitted components in
durations and uses an x for each digit of an omitted component in datetime values.

min max default
Variable width 1 200 55

Reference for language elements
Version 4.1

482

Example
In the following example, the DATA step function is8601_convert is used to convert sample textual
data to an encoded form prior to it being transformed by the format itself.

data _null_;
length dur $25;
length datim $25;
length intval $50;
beg='02jan2012:11:30'dt;
fin='08apr2014:13:32'dt;
call is8601_convert('dt/dt','du',beg,fin,dur);
call is8601_convert('dt','dt',beg,datim);
call is8601_convert('dt/dt', 'intvl', beg, fin, intval);
put dur=$n8601x50.;
put datim=$n8601x50.;
put intval=$n8601x50.;
run;

Which produces the following output in the log:

dur=P2Y3M6DT2H2MxS
datim=2012-01-02T11:30:00
intval=2012-01-02T11:30:00/2014-04-08T13:32:00

B8601DAw.
Converts a numeric date into a basic ISO 8601 YYYYMMDD form.

min max default
Variable width 10 10 10

Example
data _null_;
d = 19995;
put d b8601da10.;
run;

Which produces the following output in the log:

 20140929

Reference for language elements
Version 4.1

483

E8601DAw.
Converts a numeric date into an extended ISO 8601 YYYY-MM-DD form.

min max default
Variable width 10 10 10

Example
data _null_;
d=19995;
put d e8601da.;
run;

Which produces the following output in the log:

2014-09-29

B8601DNw.
Converts a numeric datetime into a basic ISO 8601 YYYYMMDD form.

This format extracts and writes the date from the specified numeric datetime,omitting the time
component.

min max default
Variable width 10 10 10

Example
data _null_;
d = 1727610480;
put d b8601dn.;
run;

Which produces the following output in the log:

 20140929

E8601DNw.
Converts a numeric datetime into an extended ISO 8601 YYYY-MM-DD form.

This format extracts and writes the date from the specified numeric datetime, omitting the time
component.

Reference for language elements
Version 4.1

484

min max default
Variable width 10 10 10

Example
data _null_;
d = 1727610480;
put d e8601dn10.;
run;

Which produces the following output in the log:

2014-09-29

B8601DTw.d
Converts a numeric datetime into a basic ISO 8601 YYYYMMDDTHHMMSS datetime form.

min max default
Variable width 15 26 19

Example
data _null_;
d = 1727610480;
put d b8601dt.;
run;

Which produces the following output in the log:

 20140929T114800

E8601DTw.d
Converts a numeric datetime into an extended ISO 8601 YYYY-MM-DDTHH:MM:SS datetime form.

min max default
Variable width 19 26 19

Example
data _null_;
d = 1727610480;
put d e8601dt.;
run;

Reference for language elements
Version 4.1

485

Which outputs the following in the log:

2014-09-29T11:48:00

B8601DZw.
Converts a numeric datetime into a UTC ISO 8601 YYYYMMDDTHHMMSS+|=HHMM datetime and
timezone form.

min max default
Variable width 20 35 26

Example
data _null_;
d = 1727610480;
put d b8601dz35.;
run;

Which produces the following output in the log:

 20140929T114800+0000

E8601DZw.
Converts a numeric datetime into an extended UTC ISO 8601 YYYY-MM-DDTHH:MM:SS+|-HH:MM
datetime and timezone form.

The SAS language does not have any concept of 'timezone', the timezone is either printed 00:00 or 'Z'
for 'zulu'.

min max default
Variable width 20 35 26

Example
data _null_;
d = 1727610480;
put d e8601dz35.;
run;

Which produces the following output in the log:

 2014-09-29T11:48:00+00:00

Reference for language elements
Version 4.1

486

B8601LZw.
Converts a numeric time into the basic ISO 8601 form: HHMMSS+|-HHMM, by writing the time and a
time-zone offset.

min max default
Variable width 9 20 14

Example
data _null_;
d = 3000;
put d b8601lz.;
run;

Which produces the following output in the log:

 005000+0100

E8601LZw.
Converts a numeric time into the extended ISO 8601 form: HH:MM:SS+|-HH:MM, by writing the time
and a time-zone offset.

min max default
Variable width 9 20 14

Example
data _null_;
d = 3000;
put d e8601lz.;
run;

Which produces the following output in the log:

00:50:00+01:00

B8601TMw.d
Converts a numeric time into the basic ISO 8601 form: HHMMSS.

min max default
Variable width 6 15 8

Reference for language elements
Version 4.1

487

Example
data _null_;
d = 3000;
put d b8601tm.;
run;

Which produces the following output in the log:

 005000

E8601TMw.d
Converts a numeric time into the extended ISO 8601 form: HH:MM:SS.

min max default
Variable width 8 15 8

Example
data _null_;
d = 3000;
put d e8601tm.;
run;

Which produces the following output in the log:

00:50:00

B8601TZw.
Converts a numeric time to UTC and writes it using the ISO 8601 basic time notation HHMMSS+|-
HHMM.

min max default
Variable width 7 20 14

Example
data _null_;
d = 3000;
put d b8601tz.;
run;

Which produces the following output in the log:

 005000+0000

Reference for language elements
Version 4.1

488

E8601TZw.
Converts a numeric time to UTC and writes it using the ISO 8601 extended time notation HH:MM:SS+|-
HH:MM.

min max default
Variable width 9 20 14

Example
data _null_;
d = 3000;
put d e8601tz.;
run;

Which produces the following output in the log:

00:50:00+00:00

IS8601DAw.
Converts a numeric date into an extended ISO 8601 YYYY-MM-DD form.

This format is an alias of E8601DAw.

min max default
Variable width 10 10 10

Example
data _null_;
d = 19995;
put d is8601da.;
run;

Which produces the following output in the log.

2014-09-29

IS8601DNw.
Converts a numeric datetime into an extended ISO 8601 YYYY-MM-DD form - it extracts and writes the
date from the specified numeric datetime, omitting the time component.

This format is an alias of E8601DNw.

Reference for language elements
Version 4.1

489

min max default
Variable width 10 10 10

Example
data _null_;
d = 1727610480;
put d is8601dn.;
run;

Which produces the following output in the log:

2014-09-29

IS8601LZw.
Converts a numeric time into the extended ISO 8601 form: HH:MM:SS+|-HH:MM, by writing the time
and a time-zone offset.

This format is an alias of E8601LZw.

min max default
Variable width 9 20 14

Example
data _null_;
d=3000;
put d is8601lz.;
run;

Which produces the following output in the log:

00:50:00+01:00

IS8601TMw.d
Converts a numeric time into the extended ISO 8601 form: HH:MM:SS.

This format is an alias of E8601TMw.d.

min max default
Variable width 8 15 8

Reference for language elements
Version 4.1

490

Example
data _null_;
d=3000;
put d is8601tm.;
run;

Which produces the following output in the log:

00:50:00

IS8601TZw.
Converts a numeric time to UTC, writing it using the ISO 8601 extended time notation HH:MM:SS+|-
HH:MM.

This format is an alias of E8601TZw.

min max default
Variable width 9 20 14

Example
data _null_;
d=3000;
put d is8601tz.;
run;

Which produces the following output in the log:

 00:50:00+00:00

IS8601DTw.d
Converts a numeric datetime into an extended ISO 8601 YYYY-MM-DDTHH:MM:SS datetime form.

This format is an alias of E8601DTw.d.

min max default
Variable width 19 26 19

Example
data _null_;
d=1727610480;
put d is8601dt.;
run;

Reference for language elements
Version 4.1

491

Which produces the following output in the log:

2014-09-29T11:48:00

IS8601DZw.
Converts a numeric datetime into an extended UTC ISO 8601 YYYY-MM-DDTHH:MM:SS+|=HH:MM
datetime and timezone form.

This format is an alias of E8601DZw.

min max default
Variable width 20 35 26

Example
data _null_;
d=1727610480;
put d is8601dz.;
run;

Which produces the following output in the log:

 2014-09-29T11:48:00+00:00

International date formats
Formats that represent date-time data in a specified language.

HDATEw.
Converts a numeric date into a Hebrew form, using the default 'Long Date' and 'Medium Date' patterns
for the locale, resulting in an output form of d MMM y, with variations as imposed by the available
space.

When displayed, it may appear rearranged in the output log according to whether or not the configured
locale embodies left-to-right or right-to-left reading conventions. See http://demo.icu-project.org/icu-bin/
locexp?d_=en&_=he_IL for further information about Hebrew date formats.

min max default
Variable width 9 17 17

http://demo.icu-project.org/icu-bin/locexp?d_=en&_=he_IL

Reference for language elements
Version 4.1

492

Example
data _null_;
d=19995;
put d hdate17.;
r=put(d, hdate17.);
put r $hex.;
run;

Which produces the following output in the log:

בספט 2014 29
323920D791D7A1D7A4D798203230313420

HEBDATEw.
Converts a numeric date into a form consistent with the Hebrew calendar.

min max default
Variable width 11 45 16

Example
data _null_;
 d=19995;
 put d hebdate20.;
 put d hebdate25.;
 put d hebdate34.;
 put d hebdate45.;
run;

Which produces the following output in the log:

ה׳/א׳/תשע״ה
ה׳ תשרי תשע״ה
ה׳ תשרי תשע״ה
 שני ה׳ תשרי ה׳ תשע״ה

xxxDFDDw.
Converts a numeric date into a form that contains the same calendar elements as DDMMYY, in a
specific target language/dialect.

xxx denotes the target language/dialect and is specified using one of:

• AFR for Afrikaans
• CAT for Catalan
• CRO for Croatian

Reference for language elements
Version 4.1

493

• CSY for Czech
• DAN for Danish
• DES for Swiss_German
• DEU for German
• ENG for English
• ESP for Spanish
• FIN for Finnish
• FRA for French
• FRS for Swiss_French
• HUN for Hungarian
• ITA for Italian
• MAC for Macedonian
• NLD for Dutch
• NOR for Norwegian
• POL for Polish
• PTG for Portuguese
• RUS for Russian
• SLO for Slovenian
• SVE for Swedish

The EURDFDDw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

min max default
Output widths for all
languages/dialects except
those listed below

2 10 8

English 2 10 10
Finnish 2 10 10

Reference for language elements
Version 4.1

494

Example
data _null_;
d=0;
put "AFR " d afrdfdd10.;
put "CAT " d catdfdd10.;
put "CRO " d crodfdd10.;
put "CSY " d csydfdd10.;
put "DAN " d dandfdd10.;
put "DES " d desdfdd10.;
put "DEU " d deudfdd10.;
put "ENG " d engdfdd10.;
put "ESP " d espdfdd10.;
put "FIN " d findfdd10.;
put "FRA " d fradfdd10.;
put "FRS " d frsdfdd10.;
put "HUN " d hundfdd10.;
put "ITA " d itadfdd10.;
put "MAC " d macdfdd10.;
put "NLD " d nlddfdd10.;
put "NOR " d nordfdd10.;
put "POL " d poldfdd10.;
put "PTG " d ptgdfdd10.;
put "RUS " d rusdfdd10.;
put "SLO " d slodfdd10.;
put "SVE " d svedfdd10.;
run;

Which produces the following output in the log:

AFR 01.01.1960
CAT 01/01/1960
CRO 01.01.1960
CSY 01/01/1960
DAN 01.01.1960
DES 01.01.1960
DEU 01.01.1960
ENG 01.01.1960
ESP 01.01.1960
FIN 01.01.1960
FRA 01/01/1960
FRS 01/01/1960
HUN 60.1.1.
ITA 01/01/1960
MAC 01.01.1960
NLD 01-01-1960
NOR 01.01.1960
POL 01-01-1960
PTG 01/01/1960
RUS 01.01.1960
SLO 01.01.1960
SVE 01.01.1960

Reference for language elements
Version 4.1

495

xxxDFDEw.
Converts a numerical date into a form that contains the same calendar elements as DATE, in a specific
target language/dialect.

xxx denotes the target language/dialect and is specified using one of:

• AFR for Afrikaans
• CAT for Catalan
• CRO for Croatian
• CSY for Czech
• DAN for Danish
• DES for Swiss_German
• DEU for German
• ENG for English
• ESP for Spanish
• FIN for Finnish
• FRA for French
• FRS for Swiss_French
• HUN for Hungarian
• ITA for Italian
• MAC for Macedonian
• NLD for Dutch
• NOR for Norwegian
• POL for Polish
• PTG for Portuguese
• RUS for Russian
• SLO for Slovenian
• SVE for Swedish

The EURDFDEw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

min max default
Output widths for all
languages/dialects except
those listed below

5 9 7

Czech 10 14 12
Finnish 9 10 9
Hungarian 12 14 12

Reference for language elements
Version 4.1

496

Example
data _null_;
d=0;
put "AFR " d afrdfde9.;
put "CAT " d catdfde9.;
put "CRO " d crodfde9.;
put "CSY " d csydfde10.;
put "DAN " d dandfde9.;
put "DES " d desdfde9.;
put "DEU " d deudfde9.;
put "ENG " d engdfde9.;
put "ESP " d espdfde9.;
put "FIN " d findfde9.;
put "FRA " d fradfde9.;
put "FRS " d frsdfde9.;
put "HUN " d hundfde12.;
put "ITA " d itadfde9.;
put "MAC " d macdfde9.;
put "NLD " d nlddfde9.;
put "NOR " d nordfde9.;
put "POL " d poldfde9.;
put "PTG " d ptgdfde9.;
put "RUS " d rusdfde9.;
put "SLO " d slodfde9.;
put "SVE " d svedfde9.;
run;

Which produces the following output in the log:

AFR 01Jan1960
CAT 01Gen1960
CRO 01sij1960
CSY 01leden60
DAN 01jan1960
DES 01Jan1960
DEU 01Jan1960
ENG 01JAN1960
ESP 01ene1960
FIN 1.1.-60
FRA 01jan1960
FRS 01jan1960
HUN 60.jan.1.
ITA 01Gen1960
MAC 01jan1960
NLD 01jan1960
NOR 01jan1960
POL 01sty1960
PTG 01jan1960
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS 01Янв1960
SLO 01jan1960
SVE 01jan1960

Reference for language elements
Version 4.1

497

xxxDFDNw.
Converts a numerical date into a form that contains the same calendar elements as WEEKDAY (that is,
a number representing the day of the week), in a specific target language/dialect.

xxx denotes the target language/dialect and is specified using one of:

• AFR for Afrikaans
• CAT for Catalan
• CRO for Croatian
• CSY for Czech
• DAN for Danish
• DES for Swiss_German
• DEU for German
• ENG for English
• ESP for Spanish
• FIN for Finnish
• FRA for French
• FRS for Swiss_French
• HUN for Hungarian
• ITA for Italian
• MAC for Macedonian
• NLD for Dutch
• NOR for Norwegian
• POL for Polish
• PTG for Portuguese
• RUS for Russian
• SLO for Slovenian
• SVE for Swedish

The EURDFDNw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

min max default
Variable width 1 32 1

Reference for language elements
Version 4.1

498

Example
data _null_;
d=0;
put "AFR " d afrdfdn9.;
put "CAT " d catdfdn9.;
put "CRO " d crodfdn9.;
put "CSY " d csydfdn9.;
put "DAN " d dandfdn9.;
put "DES " d desdfdn9.;
put "DEU " d deudfdn9.;
put "ENG " d engdfdn9.;
put "ESP " d espdfdn9.;
put "FIN " d findfdn9.;
put "FRA " d fradfdn9.;
put "FRS " d frsdfdn9.;
put "HUN " d hundfdn9.;
put "ITA " d itadfdn9.;
put "MAC " d macdfdn9.;
put "NLD " d nlddfdn9.;
put "NOR " d nordfdn9.;
put "POL " d poldfdn9.;
put "PTG " d ptgdfdn9.;
put "RUS " d rusdfdn9.;
put "SLO " d slodfdn9.;
put "SVE " d svedfdn9.;
run;

Which produces the following output in the log:

AFR 5
CAT 5
CRO 5
CSY 5
DAN 5
DES 5
DEU 5
ENG 5
ESP 5
FIN 5
FRA 5
FRS 5
HUN 5
ITA 5
MAC 5
NLD 5
NOR 5
POL 5
PTG 5
RUS 5
SLO 5
SVE 5

Reference for language elements
Version 4.1

499

xxxDFDTw.
Converts a numerical date into a form that contains the same calendar elements as DATETIME, in
aspecific target language/dialect.

xxx denotes the target language/dialect and is specified using one of:

• AFR for Afrikaans
• CAT for Catalan
• CRO for Croatian
• CSY for Czech
• DAN for Danish
• DES for Swiss_German
• DEU for German
• ENG for English
• ESP for Spanish
• FIN for Finnish
• FRA for French
• FRS for Swiss_French
• HUN for Hungarian
• ITA for Italian
• MAC for Macedonian
• NLD for Dutch
• NOR for Norwegian
• POL for Polish
• PTG for Portuguese
• RUS for Russian
• SLO for Slovenian
• SVE for Swedish

The EURDFDTw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

min max default
Output widths for all
languages/dialects except
those listed below

7 40 16

Czech 12 40 21
Hungarian 12 40 19

Reference for language elements
Version 4.1

500

Example
data _null_;
d=0;
put "AFR " d afrdfdt20.;
put "CAT " d catdfdt20.;
put "CRO " d crodfdt20.;
put "CSY " d csydfdt20.;
put "DAN " d dandfdt20.;
put "DES " d desdfdt20.;
put "DEU " d deudfdt20.;
put "ENG " d engdfdt20.;
put "ESP " d espdfdt20.;
put "FIN " d findfdt20.;
put "FRA " d fradfdt20.;
put "FRS " d frsdfdt20.;
put "HUN " d hundfdt20.;
put "ITA " d itadfdt20.;
put "MAC " d macdfdt20.;
put "NLD " d nlddfdt20.;
put "NOR " d nordfdt20.;
put "POL " d poldfdt20.;
put "PTG " d ptgdfdt20.;
put "RUS " d rusdfdt20.;
put "SLO " d slodfdt20.;
put "SVE " d svedfdt20.;
run;

Which produces the following output in the log:

AFR 01Jan1960:00:00:00
CAT 01Gen1960:00:00:00
CRO 01sij1960:00:00:00
CSY 01leden60:00:00:00
DAN 01jan1960:00:00:00
DES 01Jan1960:00:00:00
DEU 01Jan1960:00:00:00
ENG 01JAN1960:00:00:00
ESP 01ene1960:00:00:00
FIN 1.1.1960:00:00:00
FRA 01jan1960:00:00:00
FRS 01jan1960:00:00:00
HUN 60.jan.1. 00:00:00
ITA 01Gen1960:00:00:00
MAC 01jan1960:00:00:00
NLD 01jan1960:00:00:00
NOR 01jan1960:00:00:00
POL 01sty1960:00:00:00
PTG 01jan1960:00:00:00
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS 01Янв1960:00:00:00
SLO 01jan1960:00:00:00
SVE 01jan1960:00:00:00

Reference for language elements
Version 4.1

501

xxxDFDWNw.
Converts a numerical date into a form that contains the same calendar elements as DOWNAME (that
is, the name of the day of the week), into a specific language/dialect.

xxx denotes the target language/dialect and is specified using one of:

• AFR for Afrikaans
• CAT for Catalan
• CRO for Croatian
• CSY for Czech
• DAN for Danish
• DES for Swiss_German
• DEU for German
• ENG for English
• ESP for Spanish
• FIN for Finnish
• FRA for French
• FRS for Swiss_French
• HUN for Hungarian
• ITA for Italian
• MAC for Macedonian
• NLD for Dutch
• NOR for Norwegian
• POL for Polish
• PTG for Portuguese
• RUS for Russian
• SLO for Slovenian
• SVE for Swedish

The EURDFDWNw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

min width max width default width
Output widths for all
languages/dialects except
those listed below

1 32 9

Croatian 1 32 10
Czech 1 32 7
Danish 1 32 7

Reference for language elements
Version 4.1

502

min width max width default width
Swiss_German 1 32 10
German 1 32 10
English 1 32 11
Finnish 1 32 11
French 1 32 8
Macedonian 1 32 10
Norwegian 1 32 7
Polish 1 32 12
Russian 1 32 11
Swedish 1 32 7

Example
data _null_;
d=0;
put "AFR " d afrdfdwn20.;
put "CAT " d catdfdwn20.;
put "CRO " d crodfdwn20.;
put "CSY " d csydfdwn20.;
put "DAN " d dandfdwn20.;
put "DES " d desdfdwn20.;
put "DEU " d deudfdwn20.;
put "ENG " d engdfdwn20.;
put "ESP " d espdfdwn20.;
put "FIN " d findfdwn20.;
put "FRA " d fradfdwn20.;
put "FRS " d frsdfdwn20.;
put "HUN " d hundfdwn20.;
put "ITA " d itadfdwn20.;
put "MAC " d macdfdwn20.;
put "NLD " d nlddfdwn20.;
put "NOR " d nordfdwn20.;
put "POL " d poldfdwn20.;
put "PTG " d ptgdfdwn20.;
put "RUS " d rusdfdwn20.;
put "SLO " d slodfdwn20.;
put "SVE " d svedfdwn20.;
run;

Which produces the following output in the log:

AFR Vrydag
CAT Divendres
CRO petak
CSY ptek
DAN fredag
DES Freitag
DEU Freitag
ENG Friday
ESP viernes
FIN Perjantai

Reference for language elements
Version 4.1

503

FRA Vendredi
FRS Vendredi
HUN péntek
ITA Venerd
MAC petok
NLD vrijdag
NOR fredag
POL pitek
PTG Sexta-feira
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS Пятница
SLO petek
SVE Fredag

xxxDFMNw.
Converts a numerical date into a form that contains the same calendar elements as MONNAME (that
is, the name of the month), into a specific language/dialect.

xxx denotes the target language/dialect and is specified using one of:

• AFR for Afrikaans
• CAT for Catalan
• CRO for Croatian
• CSY for Czech
• DAN for Danish
• DES for Swiss_German
• DEU for German
• ENG for English
• ESP for Spanish
• FIN for Finnish
• FRA for French
• FRS for Swiss_French
• HUN for Hungarian
• ITA for Italian
• MAC for Macedonian
• NLD for Dutch
• NOR for Norwegian
• POL for Polish
• PTG for Portuguese
• RUS for Russian
• SLO for Slovenian

Reference for language elements
Version 4.1

504

• SVE for Swedish

min max default
Output widths for all
languages/dialects except
those listed below

1 32 8

Afrikaans 1 32 9
Danish 1 32 9
Swiss German 1 32 9
German 1 32 9
English 1 32 11
Spanish 1 32 10
Finnish 1 32 11
French 1 32 9
Swiss French 1 32 9
Hungarian 1 32 10
Italian 1 32 9
Macedonian 1 32 9
Dutch 1 32 9
Norwegian 1 32 9
Polish 1 32 12
Portuguese 1 32 9
Slovenian 1 32 9

The EURDFMNw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

Reference for language elements
Version 4.1

505

Example
data _null_;
d=0;
put "AFR " d afrdfmn20.;
put "CAT " d catdfmn20.;
put "CRO " d crodfmn20.;
put "CSY " d csydfmn20.;
put "DAN " d dandfmn20.;
put "DES " d desdfmn20.;
put "DEU " d deudfmn20.;
put "ENG " d engdfmn20.;
put "ESP " d espdfmn20.;
put "FIN " d findfmn20.;
put "FRA " d fradfmn20.;
put "FRS " d frsdfmn20.;
put "HUN " d hundfmn20.;
put "ITA " d itadfmn20.;
put "MAC " d macdfmn20.;
put "NLD " d nlddfmn20.;
put "NOR " d nordfmn20.;
put "POL " d poldfmn20.;
put "PTG " d ptgdfmn20.;
put "RUS " d rusdfmn20.;
put "SLO " d slodfmn20.;
put "SVE " d svedfmn20.;
run;

Which produces the following output in the log:

AFR Januarie
CAT Gener
CRO sijeanj
CSY leden
DAN januar
DES Januar
DEU Januar
ENG January
ESP enero
FIN tammikuuta
FRA janvier
FRS janvier
HUN január
ITA Gennaio
MAC januari
NLD januari
NOR januar
POL stycze
PTG janeiro
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS Январь
SLO januar
SVE januari

Reference for language elements
Version 4.1

506

xxxDFMYw.
Converts a numerical date into a form that contains the same calendar elements as MMMYY into a
specific language/dialect.

The language/dialect code in the following table replaces xxx in the format name. For example, to
convert to the default width Spanish, the format name is ESPDFDFMY5.

language/dialect min width max width default width
Afrikaans AFR 5 7 5
Catalan CAT 5 32 5
Croatian CRO 5 32 5
Czech CSY 10 32 10
Danish DAN 5 7 5
Dutch NLD 5 7 5
English ENG 5 7 5
Finnish FIN 8 8 8
French FRA 5 7 5
Swiss French FRS 5 7 5
German DEU 5 7 5
Swiss German DES 5 7 5
Hungarian HUN 9 32 9
Italian ITA 5 7 5
Macedonian MAC 5 32 5
Norwegian NOR 5 7 5
Polish POL 5 32 5
Portuguese PTG 5 7 5
Russian RUS 5 32 5
Slovenian SLO 5 32 5
Spanish ESP 5 7 5
Swedish SVE 5 7 5

The EURDFMYw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

Reference for language elements
Version 4.1

507

Example
data _null_;
d=0;
put "AFR " d afrdfmy.;
put "CAT " d catdfmy.;
put "CRO " d crodfmy.;
put "CSY " d csydfmy.;
put "DAN " d dandfmy.;
put "DES " d desdfmy.;
put "DEU " d deudfmy.;
put "ENG " d engdfmy.;
put "ESP " d espdfmy.;
put "FIN " d findfmy.;
put "FRA " d fradfmy.;
put "FRS " d frsdfmy.;
put "HUN " d hundfmy.;
put "ITA " d itadfmy.;
put "MAC " d macdfmy.;
put "NLD " d nlddfmy.;
put "NOR " d nordfmy.;
put "POL " d poldfmy.;
put "PTG " d ptgdfmy.;
put "RUS " d rusdfmy.;
put "SLO " d slodfmy.;
put "SVE " d svedfmy.;
run;

Which produces the following output in the log:

AFR Jan60
CAT Gen60
CRO sij60
CSY leden1960
DAN jan60
DES Jan60
DEU Jan60
ENG JAN60
ESP ene60
FIN tammi60
FRA jan60
FRS jan60
HUN 1960.jan.
ITA Gen60
MAC jan60
NLD jan60
NOR jan60
POL sty60
PTG jan60
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS Янв1960
SLO jan60
SVE jan60

Reference for language elements
Version 4.1

508

xxxDFWDXw.
Converts a numerical date into a form that contains the same calendar elements as WORDDATX, into
a specifc language/dialect.

The language/dialect code in the following table replaces xxx in the format name. For example, to
convert to the default width Spanish, the format name is ESPDFWDX24.

language/dialect min width max width default width
Afrikaans AFR 3 37 29
Catalan CAT 3 40 16
Croatian CRO 3 40 16
Czech CSY 8 40 16
Danish DAN 3 18 18
Dutch NLD 2 38 28
English ENG 3 32 28
Finnish FIN 3 20 20
French FRA 3 18 18
Swiss French FRS 3 18 18
German DEU 3 18 18
Swiss German DES 3 18 18
Hungarian HUN 6 40 18
Italian ITA 3 17 17
Macedonian MAC 3 40 17
Norwegian NOR 3 17 17
Polish POL 3 40 17
Portuguese PTG 3 37 23
Russian RUS 3 40 16
Slovenian SLO 3 40 17
Spanish ESP 3 24 24
Swedish SVE 3 17 17

The EURDFWDXw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

Example
data _null_;
d=0;
put "AFR " d afrdfwdx15.;
put "CAT " d catdfwdx15.;

Reference for language elements
Version 4.1

509

put "CRO " d crodfwdx15.;
put "CSY " d csydfwdx25.;
put "DAN " d dandfwdx15.;
put "DES " d desdfwdx15.;
put "DEU " d deudfwdx15.;
put "ENG " d engdfwdx15.;
put "ESP " d espdfwdx15.;
put "FIN " d findfwdx15.;
put "FRA " d fradfwdx15.;
put "FRS " d frsdfwdx15.;
put "HUN " d hundfwdx15.;
put "ITA " d itadfwdx15.;
put "MAC " d macdfwdx15.;
put "NLD " d nlddfwdx15.;
put "NOR " d nordfwdx15.;
put "POL " d poldfwdx15.;
put "PTG " d ptgdfwdx25.;
put "RUS " d rusdfwdx15.;
put "SLO " d slodfwdx15.;
put "SVE " d svedfwdx15.;
run;

Which produces the following output in the log:

AFR 1 Jan 1960
CAT 1 Gen 1960
CRO 1. sij 1960
CSY 1 leden 1960
DAN 1. jan 1960
DES 1. Jan 1960
DEU 1. Jan 1960
ENG 1 Jan 1960
ESP 1 ene 1960
FIN 1. tammi 1960
FRA 1er jan 1960
FRS 1er jan 1960
HUN 1960.jan.1.
ITA 01 Gen 1960
MAC 1. jan 1960
NLD 1 jan 1960
NOR 1 jan 1960
POL 1 sty 1960
PTG 1 de janeiro de 1960
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS 1 Янв 1960
SLO 1. jan 1960
SVE 1 jan 1960

xxxDFWKXw.
Converts a numerical date into a form that contains the same calendar elements as WEEKDATX, into
a specific language/dialect.

The language/dialect code in the following table replaces xxx in the format name. For example, to
convert to the default width Spanish, the format name is ESPDFWKX29.

Reference for language elements
Version 4.1

510

language/dialect min max default
Variable width 3 40 29
Afrikaans AFR 2 38 28
Catalan CAT 2 40 27
Czech CRO 2 40 25
Croation CSY 2 40 25
Danish DAN 2 31 31
Dutch NLD 7 40 16
English ENG 3 37 37
Finnish FIN 2 37 37
French FRA 3 27 27
Swiss French FRS 3 27 27
German DEU 2 30 30
Swiss German DES 2 30 30
Hungarian HUN 3 40 28
Italian ITA 3 28 28
Macedonian MAC 3 40 29
Norwegian NOR 3 26 26
Polish POL 2 40 34
Portuguese PTG 3 38 38
Russian RUS 2 40 29
Slovenian SLO 3 40 29
Spanish ESP 1 35 35
Swedish SVE 3 26 26

The EURDFWKXw. format does not indicate any specific language. Instead, it lets you set the language
of the format by using a system option, DFLANG.

Example
data _null_;
d=0;
put "AFR " d afrdfwkx25.;
put "CAT " d catdfwkx25.;
put "CRO " d crodfwkx25.;
put "CSY " d csydfwkx25.;
put "DAN " d dandfwkx25.;
put "DES " d desdfwkx25.;
put "DEU " d deudfwkx25.;
put "ENG " d engdfwkx25.;
put "ESP " d espdfwkx25.;
put "FIN " d findfwkx25.;
put "FRA " d fradfwkx25.;

Reference for language elements
Version 4.1

511

put "FRS " d frsdfwkx25.;
put "HUN " d hundfwkx25.;
put "ITA " d itadfwkx25.;
put "MAC " d macdfwkx25.;
put "NLD " d nlddfwkx25.;
put "NOR " d nordfwkx25.;
put "POL " d poldfwkx25.;
put "PTG " d ptgdfwkx38.;
put "RUS " d rusdfwkx25.;
put "SLO " d slodfwkx25.;
put "SVE " d svedfwkx25.;
run;

Which outputs the following in the log:

AFR Vrydag, 1 Jan 1960
CAT Divendres, 1 Gen 1960
CRO petak, 1. sij 1960
CSY ptek, 1 leden 1960
DAN fredag, den 1. jan 1960
DES Freitag, 1. Jan 1960
DEU Freitag, 1. Jan 1960
ENG Friday, 1 Jan 1960
ESP viernes, 1 ene 1960
FIN Pe, 1. tammi 1960
FRA Vendredi 1er jan 1960
FRS Vendredi 1er jan 1960
HUN 1960.jan.1., péntek
ITA Venerd, 01 Gen 1960
MAC petok, 1. jan 1960
NLD vrijdag, 1 jan 1960
NOR fredag, 1 jan 1960
POL pitek, 1 sty 1960
PTG Sexta-feira, 1 de janeiro de 1960
/* Server encoding of WCYRILLIC required for RUSDFWKX */
RUS Пятница, 1 Янв 1960
SLO petek, 1. jan 1960
SVE Fredag, 1 jan 1960

NLS-sensitive date formats
Formats that represent date-time data based on a specified locale value.

NLDATEw.
Converts a date into a representation based upon the specified locale including the day number, the
month and the year.

min max default
Variable width 1 200 20

Reference for language elements
Version 4.1

512

Example
data _null_;
d=19995;
options locale=en_GB;
put d nldate.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d nldate.;
run;

Which produces the following output in the log:

29 September 2014
...
29 septembre 2014

NLDATEMDw.
Converts a date into a representation based upon the specified locale, writing it out as the day of the
month followed by the name of the month.

min max default
Variable width 1 200 20

Example
data _null_;
d=19995;
options locale=en_GB;
put d nldatemd.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d nldatemd.;
run;

Which produces the following output in the log:

29 September
...
29 septembre

Reference for language elements
Version 4.1

513

NLDATEMNw.
Converts a date into a representation based upon the specified locale, writing it out as the name of the
month.

min max default
Variable width 1 200 20

Example
data _null_;
d=19995;
options locale=en_GB;
put d nldatemn.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d nldatemn.;
run;

Which produces the following output in the log:

September
...
septembre

NLDATEWw.
Converts a date into a representation based upon the specified locale, writing the name of the day, the
day of the month, the name of the month and the year.

min max default
Variable width 1 200 20

Example
data _null_;
d=19995;
options locale=en_GB;
put d nldatew.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d nldatew.;
run;

Reference for language elements
Version 4.1

514

Which produces the following output in the log:

Mon, 29 Sep 2014
...
lun. 29 sept. 2014

NLDATEWNw.
Converts a date into a representation based upon the specified locale, writing the name of the day.

min max default
Variable width 1 200 20

Example
data _null_;
d=19995;
options locale=en_GB;
put d nldatewn.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d nldatewn.;
run;

Which produces the following output in the log:

Monday
...
lundi

NLDATEYMw.
Converts a date into a representation based upon the specified locale, writing the name of the month
and the year.

min max default
Variable width 1 200 20

Reference for language elements
Version 4.1

515

Example
data _null_;
d=19995;
options locale=en_GB;
put d mandate.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d mandate.;
run;

Which produces the following output in the log:

September 2014
...
septembre 2014

NLDATEYRw.
Converts a date into a representation based upon the specified locale, just writing the year.

min max default
Variable width 1 200 10

Example
data _null_;
d=19995;
options locale=en_GB;
put d nldateyr.;
run;

data _null_;
d=19995;
options locale=fr_FR;
put d nldateyr.;
run;

Which produces the following output in the log:

2014
...
2014

Reference for language elements
Version 4.1

516

NLDATMw.
Converts a datetime into a representation based upon the specified locale, writing it as day number,
month name, year and time.

min max default
Variable width 1 50 30

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatm.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatm.;
run;

Which produces the following output in the log:

29 September 2014 11:48:00
...
29 septembre 2014 11:48:00

NLDATMAPw.
Converts a datetime into a representation based upon the specified locale, writing it as day number,
month name, year, and time AM or PM.

min max default
Variable width 1 50 30

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmap.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmap.;
run;

Reference for language elements
Version 4.1

517

Which produces the following output in the log:

29 September 2014 11:48:00 am
...
29 septembre 2014 11:48:00 AM

NLDATMDTw.
Converts a datetime into a representation based upon the specified locale, writing it as day number,
month name and year.

min max default
Variable width 1 50 20

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmdt.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmdt.;
run;

Which produces the following output in the log:

29 September 2014
...
29 septembre 2014

NLDATMMDw.
Converts a datetime into a representation based upon the specified locale, writing it as day number
and the month name.

min max default
Variable width 1 50 20

Reference for language elements
Version 4.1

518

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmmd.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmmd.;
run;

Which produces the following output in the log:

29 September
...
29 septembre

NLDATMMNw.
Converts a datetime into a representation based upon the specified locale, writing the name of the
month.

min max default
Variable width 1 50 20

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmmn.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmmn.;
run;

Which produces the following output in the log:

September
...
septembre

Reference for language elements
Version 4.1

519

NLDATMTMw.
Converts a datetime into a representation based upon the specified locale, writing the time of day.

min max default
Variable width 1 50 20

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmtm.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmtm.;
run;

Which produces the following output in the log:

11:48:00
...
11:48:00

NLDATMTZw.
Converts a datetime into a representation based upon the specified locale, writing a time and a
timezone.

min max default
Variable width 1 50 30

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmtz.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmtz.;
run;

Reference for language elements
Version 4.1

520

Which produces the following output in the log:

11:48 BST
...
11:48 UTC+1

NLDATMWw.
Converts a datetime into a representation based upon the specified locale, writing out a day, date
number, year and time.

min max default
Variable width 1 50 32

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmw.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmw.;
run;

Which produces the following output in the log:

Mon, 29 Sep 2014 11:48
...
lundi 29 septembre 2014 11:48:00

NLDATMWZw.
Converts a datetime into a representation based upon the specified locale, writing out a day, date
number, year, time and timezone.

min max default
Variable width 1 50 36

Reference for language elements
Version 4.1

521

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmwz.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmwz.;
run;

Which produces the following output in the log:

Monday, 29 September 2014 11:48 BST
...
lundi 29 septembre 2014 11:48 UTC+1

NLDATMYMw.
Converts a datetime into a representation based upon the specified locale, writing the name of the
month and a year.

min max default
Variable width 1 50 20

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmym.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmym.;
run;

Which produces the following output in the log:

September 2014
...
septembre 2014

Reference for language elements
Version 4.1

522

NLDATMYRw.
Converts a datetime into a representation based upon the specified locale, writing just the year.

min max default
Variable width 1 50 20

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmyr.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmyr.;
run;

Which produces the following output in the log:

2014
...
2014

NLDATMZw.
Converts a datetime into a representation based upon the specified locale and including a time zone,
writing it as shown below.

min max default
Variable width 1 50 30

Example
data _null_;
d=1727610480;
options locale=en_GB;
put d nldatmz.;
run;

data _null_;
d=1727610480;
options locale=fr_FR;
put d nldatmz.;
run;

Reference for language elements
Version 4.1

523

Which produces the following output in the log:

29 September 2014 11:48 BST
...
29 septembre 2014 11:48 UTC+1

NLSTRMONw.
Converts a number representing the month of the year into a locale-specific string.

min max default
Variable width 1 50 10

Example
data _null_;
d=1;
options locale=en_GB;
put d nlstrmon.;
run;

data _null_;
d=1;
options locale=fr_FR;
put d nlstrmon.;
run;

Which produces the following output in the log:

JAN
...
JANV.

NLSTRQTRw.
Converts a number representing an annual quarter into a locale-specific string.

min max default
Variable width 1 50 20

Reference for language elements
Version 4.1

524

Example
data _null_;
d=1;
options locale=en_GB;
put d nlstrqtr.;
run;

data _null_;
d=1;
options locale=fr_FR;
put d nlstrqtr.;
run;

Which produces the following output in the log:

1st quarter
...
1er trimestre

NLSTRWKw.
Converts a number representing a day of the week into a locale-specific string.

min max default
Variable width 1 50 20

Example
data _null_;
d=1;
options locale=en_GB;
put d nlstrwk.;
run;

data _null_;
d=1;
options locale=fr_FR;
put d nlstrwk.;
run;

Which produces the following output in the log:

Monday
...
lundi

Reference for language elements
Version 4.1

525

NLTIMAPw.
Converts a numeric time into a locale-specific string which includes a representation of AM or PM.

min max default
Variable width 1 50 10

Example
data _null_;
d=3900;
options locale=en_GB;
put d nltimap20.;
run;

data _null_;
d=3900;
options locale=fr_FR;
put d nltimap20.;
run;

Which produces the following output in the log:

1:05:00 am
...
1:05:00 AM

NLTIMEw.
Converts a numeric time into a locale-relative string representation of the time.

min max default
Variable width 1 50 10

Example
data _null_;
d=3900;
options locale=en_GB;
put d nltime.;
run;

data _null_;
d=3900;
options locale=fr_FR;
put d nltime.;
run;

Reference for language elements
Version 4.1

526

Which produces the following output in the log:

01:05:00
...
01:05:00

NLS-sensitive money formats
Formats that represent numeric data as monetary values for a specified locale.

NLMNYw.d
Converts a numeric amount of money into a money-format representation in the locale currency.

min max default
Variable width 1 50 20

Example
data _null_;
d=10.51;
options locale=en_US;
put d nlmny9.2;
run;

data _null_;
d=10.51;
options locale=fr_FR;
put d nlmny9.2;
run;

Which produces the following output in the log:

$10.51
...
10,51 €

NLMNYIw.d
Converts a numeric amount of money into a money-format representation containing a string locale
currency code.

min max default
Variable width 1 50 20

Reference for language elements
Version 4.1

527

Example
data _null_;
d=10.51;
options locale=en_US;
put d nlmnyi9.2;
run;

data _null_;
d=10.51;
options locale=fr_FR;
put d nlmnyi9.2;
run;

Which produces the following output in the log:

USD10.51
...
10,51 EUR

NLMNIxxxw.d
Formats a numeric input as a currency; the final appearance of the value to display is informed by the
session locale.

xxx in the format denotes the currency, and is specified using one of:

• AED UAE Dirham
• AUD Australia Dollar
• BGN Bulgaria Lev
• BRL Brazil Real
• CAD Canada Dollar
• CHF Switzerland Franc
• CNY China Yuan Renminbi
• CZK Czech Republic Koruna
• DKK Denmark Krone
• EGP Egypt Pound
• EUR Euro
• GBP Great Britain Pound
• HKD Hong Kong Dollar
• HRK Croatia Kuna
• HUF Hungary Forint
• IDR Indonesia Rupiah
• ILS Israel Shekel

Reference for language elements
Version 4.1

528

• INR India Rupee
• JPY Japan Yen
• KRW South Korea Won
• LTL Lithuania Litas
• LVL Latvia Lat
• MOP Macau Pataca
• MXN Mexico Peso
• MYR Malaysia Ringgit
• NOK Norway Krone
• NZD New Zealand Dollar
• PLN Poland Zloty
• RUB Russia, Ruble
• SEK Sweden Krona
• SGD Singapore Dollar
• THB Thailand Baht
• TRY Turkey Lira
• TWD Taiwan New Dollar
• USD United States Dollar
• ZAR South Africa Rand

min max default
Variable width 1 50 20

Example
data _null_;
options locale=en_GB;
d = 10.51;
put d nlmniaed10.2;
put d nlmniaud10.2;
put d nlmnibgn10.2;
put d nlmnibrl10.2;
put d nlmnicad10.2;
put d nlmnichf10.2;
put d nlmnicny10.2;
put d nlmniczk10.2;
put d nlmnidkk10.2;
put d nlmniegp10.2;
put d nlmnieur10.2;
put d nlmnigbp10.2;
put d nlmnihkd10.2;
put d nlmnihrk10.2;
put d nlmnihuf10.2;
put d nlmniidr10.2;
put d nlmniils10.2;
put d nlmniinr10.2;

Reference for language elements
Version 4.1

529

put d nlmnijpy10.2;
put d nlmnikrw10.2;
put d nlmniltl10.2;
put d nlmnilvl10.2;
put d nlmnimop10.2;
put d nlmnimxn10.2;
put d nlmnimyr10.2;
put d nlmninok10.2;
put d nlmninzd10.2;
put d nlmnipln10.2;
put d nlmnirub10.2;
put d nlmnisek10.2;
put d nlmnisgd10.2;
put d nlmnithb10.2;
put d nlmnitry10.2;
put d nlmnitwd10.2;
put d nlmniusd10.2;
put d nlmnizar10.2;
run;

Which produces the following output in the log:

AED10.51
AUD10.51
BGN10.51
BRL10.51
CAD10.51
CHF10.51
CNY10.51
CZK10.51
DKK10.51
EGP10.51
EUR10.51
GBP10.51
HKD10.51
HRK10.51
HUF10.51
IDR10.51
ILS10.51
INR10.51
JPY10.51
KRW10.51
LTL10.51
LVL10.51
MOP10.51
MXN10.51
MYR10.51
NOK10.51
NZD10.51
PLN10.51
RUB10.51
SEK10.51
SGD10.51
THB10.51
TRY10.51
TWD10.51
USD10.51
ZAR10.51

Reference for language elements
Version 4.1

530

NLMNLxxxw.d
Converts the numeric input into a local form for a currency; the final appearance of the value to display
is informed by the session locale.

xxx in the format denotes the currency, and is specified using one of:

• AED UAE Dirham
• AUD Australia Dollar
• BGN Bulgaria Lev
• BRL Brazil Real
• CAD Canada Dollar
• CHF Switzerland Franc
• CNY China Yuan Renminbi
• CZK Czech Republic Koruna
• DKK Denmark Krone
• EGP Egypt Pound
• EUR Euro
• GBP Great Britain Pound
• HKD Hong Kong Dollar
• HRK Croatia Kuna
• HUF Hungary Forint
• IDR Indonesia Rupiah
• ILS Israel Shekel
• INR India Rupee
• JPY Japan Yen
• KRW South Korea Won
• LTL Lithuania Litas
• LVL Latvia Lat
• MOP Macau Pataca
• MXN Mexico Peso
• MYR Malaysia Ringgit
• NOK Norway Krone
• NZD New Zealand Dollar
• PLN Poland Zloty
• RUB Russia, Ruble
• SEK Sweden Krona
• SGD Singapore Dollar

Reference for language elements
Version 4.1

531

• THB Thailand Baht
• TRY Turkey Lira
• TWD Taiwan New Dollar
• USD United States Dollar
• ZAR South Africa Rand

min max default
Variable width 1 50 20

Example
data _null_;
options locale=en_GB;
d = 10.51;
put d nlmnlaed10.2;
put d nlmnlaud10.2;
put d nlmnlbgn10.2;
put d nlmnlbrl10.2;
put d nlmnlcad10.2;
put d nlmnlchf10.2;
put d nlmnlcny10.2;
put d nlmnlczk10.2;
put d nlmnldkk10.2;
put d nlmnlegp10.2;
put d nlmnleur10.2;
put d nlmnlgbp10.2;
put d nlmnlhkd10.2;
put d nlmnlhrk10.2;
put d nlmnlhuf10.2;
put d nlmnlidr10.2;
put d nlmnlils10.2;
put d nlmnlinr10.2;
put d nlmnljpy10.2;
put d nlmnlkrw10.2;
put d nlmnlltl10.2;
put d nlmnllvl10.2;
put d nlmnlmop10.2;
put d nlmnlmxn10.2;
put d nlmnlmyr10.2;
put d nlmnlnok10.2;
put d nlmnlnzd10.2;
put d nlmnlpln10.2;
put d nlmnlrub10.2;
put d nlmnlsek10.2;
put d nlmnlsgd10.2;
put d nlmnlthb10.2;
put d nlmnltry10.2;
put d nlmnltwd10.2;
put d nlmnlusd10.2;
put d nlmnlzar10.2;
run;

Reference for language elements
Version 4.1

532

Which produces the following output in the log:

AED10.51
AU$10.51
BGN10.51
R$10.51
CA$10.51
CHF10.51
CN¥10.51
CZK10.51
DKK10.51
EGP10.51
€10.51
£10.51
HK$10.51
HRK10.51
HUF10.51
IDR10.51
₪10.51
#10.51
¥10.51
₩10.51
LTL10.51
LVL10.51
MOP10.51
MX$10.51
MYR10.51
NOK10.51
NZ$10.51
PLN10.51
RUB10.51
SEK10.51
SGD10.51
#10.51
TRY10.51
NT$10.51
$10.51
ZAR10.51

YENw.d
Converts a numeric amount into a corresponding representation in the Yen currency.

min max default
Variable width 2 32 6

NLS-sensitive numeric formats
Formats that represent numeric data according to a specified locale.

Reference for language elements
Version 4.1

533

NLNUMw.d
Converts its numeric input into a number formatted using the session locale's number format, in which
the decimal place and the 'thousands' separators are determined by the locale itself.

min max default
Variable width 1 32 6

Example
data _null_;
options locale=en_GB;
d = 1025.989;
put d nlnum8.3;
run;

data _null_;
options locale=fr_FR;
d = 1025.989;
put d nlnum8.3;
run;

data _null_;
options locale=de_DE;
d = 1025.989;
put d nlnum8.3;
run;

Which produces the following output in the log:

1,025.99
...
1 026,0
...
1.025,99

NLNUMIw.d
Converts its numeric input into an international number format, using commas and periods as
separators.

This format differs from the NLNUM format, in which the separators are locale-determined. It also
differs from the COMMA format, which rounds more aggressively (losing precision) when attempting to
accommodate smaller output widths.

min max default
Variable width 1 32 6

Reference for language elements
Version 4.1

534

Example
data _null_;
options locale=en_GB;
d = 1025.989;
put d nlnumi9.3;
run;

data _null_;
options locale=fr_FR;
d = 1025.989;
put d nlnumi9.3;
run;

data _null_;
options locale=de_DE;
d = 1025.989;
put d nlnumi9.3;
run;

Which produces the following output in the log:

1,025.989
...
1,025.989
...
1,025.989

NLPCTw.d
Converts its numeric input into a percentage using the locale's number format.

min max default
Variable width 1 32 6

Example
The second example below demonstrates how the number 1.7767 is expressed as a percentage using
the French locale – by using a comma as the decimal point and placing a space before the percentage
symbol.

data _null_;
options locale=en_GB;
d = 1.7767;
put d nlpct10.2;
run;

data _null_;
options locale=fr_FR;
d = 1.7767;
put d nlpct10.2;
run;

Reference for language elements
Version 4.1

535

Which produces the following output in the log:

177.67%
...
177,67 %

NLPCTIw.d
Converts its numeric input into a percentage form using an international number format, in which the
decimal point is represented by a period, but some locale-specific conventions are preserved (for
example, the insertion of a space before the percentage symbol in certain locales).

min max default
Variable width 1 32 6

Example
data _null_;
options locale=en_GB;
d = 1.7767;
put d nlpcti10.2;
run;

data _null_;
options locale=fr_FR;
d = 1.7767;
put d nlpcti15.2;
run;

data _null_;
options locale=de_DE;
d =1.7767;
put d nlpcti10.2;
run;

Which produces the following output in the log:

177.67%
...
177.67 %
...
177.67 %

Reference for language elements
Version 4.1

536

NLPCTNw.d
Converts its numeric input into a percentage, prepending a minus sign to negative values.

min max default
Variable width 1 32 6

Example
data _null_;
d = 1.7767;
e = -1.7767;
put d nlpctn10.2;
put e nlpctn10.2;
run;

Which produces the following output in the log:

177.67%
-177.67%

NLPCTPw.d
Converts its numeric input into a percentage form using locale specific separators for thousands and
the decimal point.

min max default
Variable width 1 32 6

Example
data _null_;
options locale=en_GB;
d = 1.7767;
e = -1.7767;
put d nlpctp10.2;
put e nlpctp10.2;
run;

data _null_;
options locale=fr_FR;
d = 1.7767;
e = -1.7767;
put d nlpctp10.2;
put e nlpctp10.2;
run;

Reference for language elements
Version 4.1

537

Which produces the following output in the log:

177.67%
-177.67%
...
177,67%
-177,67%

NLBESTw.d
Converts its numeric input into the best locale-specific representation.

min max default
Variable width 1 32 12

Example
data _null_;
options locale=en_GB;
d = 1111.7767;
e = -1111.7767;
put d nlbest10.2;
put e nlbest10.2;
run;

data _null_;
options locale=fr_FR;
d = 1111.7767;
e = -1111.7767;
put d nlbest10.2;
put e nlbest10.2;
run;

Which produces the following output in the log:

 1111.7767
-1111.7767
...
 1111,7767
-1111,7767

NLPVALUEw.d
Converts its numeric input into a p-value represented according to the session locale.

min max default
Variable width 3 32 6

Reference for language elements
Version 4.1

538

Example
data _null_;
options locale=en_GB;
d = 1.11;
e = 0.11;
put d nlpvalue10.2;
put e nlpvalue10.2;
run;

data _null_;
options locale=fr_FR;
d = 1.11;
e = 0.11;
put d nlpvalue10.2;
put e nlpvalue10.2;
run;

Which produces the following output in the log:

 1.11
 0.11
...
 1,11
 0,11

Informats
Informats define display representation of the input dataset.

Informats are used when you need to acquire formatted, non-standard data and bring it into a SAS
language program. Their function is suggested in the name - informat – they facilitate formatted input,
essentially informing WPS how to read variables. The SAS language only supports two types of data
– standard character and standard numeric – but it is possible that you may wish to process external
data that isn't presented as either standard character or standard numeric. This is what informats are
for, and they are often employed as part of INPUT statements. Informats are usually classified into
three broad categories:

Character informats
Character informats transform external character data into a standard character form. Character
informats have the pattern: $<informat-name>w. - w is the total width of the input field and
the terminating period is mandatory. The $w. informat, which omits an informat name, is used for
reading standard character data values.

Numeric informats
These transform external numeric data into a standard numeric form. Numeric informats have
the pattern: <informat-name>w.d - w is the total width of the input field and d is an optional
power of 10 by which the result is divided (but only if the input does not contain a decimal
point, in which case it is ignored). The period following the width is, again, mandatory. The w.d
informat, which omits a name, is used for reading standard numeric data.

Reference for language elements
Version 4.1

539

Date informats
These transform character representations of dates into a standard form - a number
representing the number of days since the SAS language epoch date - 1st Jan 1960. Closely-
related, datetime formats perform similar services, returning the number of elapsed seconds
since 00:00:00 on the epoch date. Date and datetime informats have the pattern: $<informat-
name>w. - w is the total width of the input field and the terminating period is mandatory.

Example informat use cases
The following example uses the $w. informat to read character data - by default, it trims leading blanks
and left-aligns the input:

data _null_;
input s $20.;
put s;
cards;
 World Programming
;
run;

The output:

World Programming

Next, the w.d informat is used to read standard numeric data - note how the second item has been
divided by 10,000:

data _null_;
input s 9.4;
put s;
cards;
123456.78
12345678
;
run;

Which produces the output:

123456.78
1234.5678

Finally, an example of reading non-standard character data - a representation of a date. The
ANYDTDTE. informat converts a variety of date-like and time-like values into a numeric date value

data _null_;
input d anydtdte11.;
put d;
cards;
29 SEP 2014
;
run;

This informat has transformed a non-standard representation of a date into a standard, numeric,
epoch-based value:

19995

Reference for language elements
Version 4.1

540

Core informats
Some of the most widely used informats, fundamental to the SAS language.

BESTw.d
This informat reads numeric data. Trailing blanks on input data are ignored and its default length is 12.
It is identical to Dw.d. and Ew.d.

Example
data _null_;
input s best7.2;
put s;
cards;
123456
1234.56
;
run;

Which produces the following output in the log:

1234.56
1234.56

Dw.d
This informat reads numeric data. Trailing blanks on input data are ignored and its default length is 12.
It is identical to BESTw.d. and Ew.d.

Example
data _null_;
input s d7.2;
put s;
cards;
123456
1234.56
;
run;

Which produces the following output in the log:

1234.56
1234.56

Reference for language elements
Version 4.1

541

Ew.d
This informat reads numeric data. Trailing blanks on input data are ignored and its default length is 12.
It is identical to BESTw.d. and Dw.d.

Example
data _null_;
input s e7.2;
put s;
cards;
123456
1234.56
;
run;

Which produces the following output in the log:

1234.56
1234.56

Fw.d
This format reads external numeric data – trailing blanks on input data are ignored.

min max default
Variable width 1 32 1

Example
data _null_;
input s f7.2;
put s;
cards;
123456
1234.56
;
run;

Which produces the following output in the log:

1234.56
1234.56

Basic character informats
Fundamental character informats for different platforms.

Reference for language elements
Version 4.1

542

$ASCIIw.
This informat reads ASCII data into a native-format string. On an ASCII platform, this has no effect.

min max default
Variable width 1 32767 1

$BASE64Xw.
This informat reads base64-encoded ASCII text into character data.

min max default
Variable width 1 32767 1

Example
data _null_;
s="World Programming";
t=put(s, $base64x100.); /* Convert to base64 */
put t;
r=input(t, $base64x100.); /* Read in from base64 */
put r;
run;

Which produces the following output in the log:

V29ybGQgUHJvZ3JhbW1pbmc=
World Programming

$BINARYw.
This informat reads a string containing a sequence of binary characters into a character representation.

min max default
Variable width 1 32767 8,*8

Example
data _null_;
s="010101110101000001010011";
r=input(s, $binary24.);
put r;
run;

Reference for language elements
Version 4.1

543

Which produces the following output in the log:

WPS

$CHARw.
This informat reads character data into a string. If enough space is available, leading and trailing
blanks are retained.

min max default
Variable width 1 32767 8

Example
data _null_;
s=" World Programming ";
r=input(s, $char30.);
put r $30. "*";
run;

Which produces the following output in the log:

 World Programming *

$CHARZBw.
This informat reads hex-encoded character data into a string. Binary zeroes are converted to blanks.

min max default
Variable width 1 32767 1

Example
data _null_;
s="0000575053"x;
r=input(s,$charzb20.);
put r $20.;
run;

Which produces the following output in the log:

 WPS

Reference for language elements
Version 4.1

544

$CSTRw.
This informat reads a null-terminated string into a blank-padded string.

min max default
Variable width 1 32767 1

Example
data _null_;
s="57505300"x;
r=input(s,$cstr8.);
put r "*";
put r $hex. "*";
run;

Which produces the following output in the log:

WPS *
57505320202020*

$EBCDICw.
On an EBCDIC platform, this informat has no effect. On an ASCII platform, it transforms EBCDIC input
data into an ASCII representation.

min max default
Variable width 1 32767 1

Example
data _null_;
s="WPS";
r=put(s,$ebcdic20.);
t=input(r, $ebcdic20.);
put t;
run;

Which produces the following output in the log:

WPS

Reference for language elements
Version 4.1

545

$Fw.
This informat reads character data into a string, trimming leading and trailing blanks.

min max default
Variable width 1 32767 1

Example
data _null_;
s=" World Programming ";
t=input(s, $f100.);
put t "*";
run;

Which produces the following output in the log:

World Programming *

$HEXw.
This informat reads hex-encoded character data into a session-encoded string.

min max default
Variable width 1 32767 2,*2

Example
data _null_;
s="575053";
r=input(s,$hex20.);
put r;
run;

Which produces the following output in the log:

WPS

$PHEXw.
This informat reads packed hexadecimal character data into a session-encoded string.

min max default
Variable width 1 32767 2,/2

Reference for language elements
Version 4.1

546

$QUOTEw.
This informat reads character data, removing pairs of quotation marks.

min max default
Variable width 1 32767 8

Example
data _null_;
s='"WPS"';
r=input(s,$quote.);
put r;
put s;
run;

Which produces the following output in the log:

WPS
"WPS"

$REVERJw.
This informat reads character data into a visually reversed form, retaining leading and trailing blanks.

min max default
Variable width 1 32767 1

Example
data _null_;
s=" gnimmargorP dlroW ";
r=input(s,$reverj30.);
put r $30. "*";
run;

Which produces the following output in the log:

 World Programming *

Reference for language elements
Version 4.1

547

$REVERSw.
This informat reads character data into a visually reversed form, stripping trailing blanks first, so that
the output is left-aligned.

min max default
Variable width 1 32767 1

Example
data _null_;
s=" gnimmargorP dlroW ";
r=input(s,$revers30.);
put r $30. "*";
run;

Which produces the following output in the log:

World Programming *

$UPCASEw.
This informat reads character data into an upper case form.

min max default
Variable width 1 32767 8

Example
data _null_;
s="world programming";
r=input(s,$upcase30.);
put r;
run;

Which produces the following output in the log:

WORLD PROGRAMMING

Reference for language elements
Version 4.1

548

$VARYINGw.
This informat reads character strings of varying length. Its second parameter sets the maximum length
of the variable being processed.

Example
data _null_ ;
 length c $ 15 ;
 input len 2. c $varying15. len date date9. ;
 put c date;
cards ;
 777777777nov2014
1211111111111111oct2014
;

Which produces the following output in the log:

7777777 20034
111111111111 20007

Bidirectional informats
Character informats that deal with data written from left to right and from right to left.

$LOGVSw.
This informat reads a string in left-to-right logical order into a string in visual order.

min max default
Variable width 1 32767 200

Example
data _null_;
s='#####';
r=input(s, $logvs20.);
put r;
run;

Which produces the following output in the log:

/* System encoding needs to be set to ARABIC for correct behaviour */
 #####

Reference for language elements
Version 4.1

549

$LOGVSRw.
This informat reads a string in right-to-left logical order into a string in visual order.

min max default
Variable width 1 32767 200

Example
data _null_;
s="#####";
r=input(s, $logvsr20.);
put r;
run;

Which produces the following output in the log:

/* System encoding needs to be set to ARABIC for correct behaviour */
 #####

$VSLOGw.
This informat reads a string in visual order into a string in left-to-right logical order.

min max default
Variable width 1 32767 200

Example
data _null_;
s="#####";
r=input(s, $vslog20.);
put r;
run;

Which produces the following output in the log:

/* System encoding needs to be set to ARABIC for correct behaviour */
 #####

Reference for language elements
Version 4.1

550

$VSLOGRw.
This informat reads a string in visual order into a string in right-to-left logical order.

min max default
Variable width 1 32767 200

Example
data _null_;
s='#####';
r=input(s, $vslogr20.);
put r;
run;

Which produces the following output in the log:

/* System encoding needs to be set to ARABIC for correct behaviour */
 #####

Unicode informats
Character informats for different variants of the Unicode encoding.

$UCS2Bw.
This informat reads data in big-endian, 16-bit UCS2 Unicode encoding into a session-encoded
character data form.

min max default
Variable width 2 32000 8

Example
data _null_;
s="0057006F0072006C0064002000500072006F006700720061006D006D0069006E0067"x;
r=input(s, $ucs2b60.);
put r;
run;

Which produces the following output in the log:

World Programming

Reference for language elements
Version 4.1

551

$UCS2BEw.
This informat reads session-encoded character strings into a big-endian, 16-bit UCS2 Unicode
encoding.

min max default
Variable width 2 32000 8

Example
data _null_;
s="World Programming";
r=input(s, $ucs2be60.);
put r;
run;

Which produces the following output in the log:

 W o r l d P r o g r a m m i n g

$UCS2Lw.
This informat reads little-endian, 16-bit UCS2 Unicode encoded data into session-encoded character
form.

min max default
Variable width 2 32000 8

Example
data _null_;
s="57006F0072006C0064002000500072006F006700720061006D006D0069006E006700"x;
r=input(s, $ucs2l60.);
put r;
run;

Which produces the following output in the log:

World Programming

Reference for language elements
Version 4.1

552

$UCS2LEw.
This informat reads a session-encoded character string into a little-endian 16-bit UCS2 form.

min max default
Variable width 2 32000 8

Example
data _null_;
s="World Programming";
r=input(s, $ucs2le100.);
put r;
run;

Which produces the following output in the log:

W o r l d P r o g r a m m i n g

$UCS2Xw.
This informat reads 16-bit UCS2 machine-endian unicode data into a character string.

min max default
Variable width 2 32000 8

Example
/* If executed on an x86 machine */
data _null_;
s="57006F0072006C0064002000500072006F006700720061006D006D0069006E006700"x;
r=input(s, $ucs2x100.);
put r;
run;

Which produces the following output in the log:

World Programming

Reference for language elements
Version 4.1

553

$UCS2XEw.
This informat reads session-encoded character data into a 16-bit UCS2 Unicode encoding in the
endianness of the executing machine.

min max default
Variable width 2 32000 8

Example
data _null_;
s="World Programming";
r=input(s, $ucs2xe100.);
put r;
run;

Which produces the following output in the log:

/* If executed on an x86 machine */
W o r l d P r o g r a m m i n g
World Programming

$UCS4Bw.
This informat reads big-endian, 32-bit UCS4 Unicode encoded data into a session-encoded character
form.

min max default
Variable width 4 32000 8

Example
data _null_;
s="000000570000006F000000720000006C00000064000000200000005000000072
0000006F0000006700000072000000610000006D0000006D000000690000006E00000067"x;
t=input(s, $ucs4b100.);
put t;
run;

Which produces the following output in the log:

World Programming

Reference for language elements
Version 4.1

554

$UCS4Lw.
This informat reads little-endian, 32-bit UCS4 Unicode-encoded data into a session-encoded character
form.

min max default
Variable width 4 32000 8

Example
data _null_;
s="570000006F000000720000006C00000064000000200000005000000072000000
6F0000006700000072000000610000006D0000006D000000690000006E00000067000000"x;
t=input(s, $ucs4l100.);
put t;
run;

Which produces the following output in the log:

World Programming

$UCS4Xw.
This informat converts 32-bit UCS4 Unicode machine-endian encoded data into a session-encoded
character form.

min max default
Variable width 4 32000 8

Example
/* If executed on an x86 machine */
data _null_;
s="570000006F000000720000006C000000640000002000000050000000720000006F000000
6700000072000000610000006D0000006D000000690000006E00000067000000"x;
t=input(s, $ucs4x100.);
put t;
run;

Which produces the following output in the log:

World Programming

Reference for language elements
Version 4.1

555

$UCS4XEw.
This informat reads a session-encoded character string into machine-endian 32-bit UCS4 Unicode
encoded data.

min max default
Variable width 4 32000 8

Example
data _null_;
s="World Programming";
t=input(s, $ucs4xe100.);
put t;
run;

Which produces the following output in the log:

/* If executed on an x86 machine */
W o r l d P r o g r a m m i n g

$UESCw.
This informat reads a UESC character string into a session-encoded character string.

min max default
Variable width 1 32767 8

Example
data _null_;
s="\u0023World Programming\u0024";
t=input(s, $uesc50.);
put t;
run;

Which produces the following output in the log:

#World Programming$

Reference for language elements
Version 4.1

556

$UESCEw.
This informat reads character data converting all but the 0–9, A–Z, a–z and space characters to
Unicode universal character names in the \uXXXX notation.

min max default
Variable width 1 32767 8

Example
data _null_;
s="#World Programming$";
t=input(s, $uesce50.);
put t;
run;

Which produces the following output in the log:

\u0023World Programming\u0024

$UNCRw.
This informat reads character data, converting characters in the Unicode numeric character reference
format (&#ddddd; notation) into a session-encoded character form. This notation is described in http://
www.w3.org/TR/html4/charset.html#h-5.3.1

min max default
Variable width 1 32767 8

Example
data _null_;
s="#World Programming&";
t=input(s, $uncr100.);
put t;
run;

Which produces the following output in the log:

#World Programming&

http://www.w3.org/TR/html4/charset.html#h-5.3.1

Reference for language elements
Version 4.1

557

$UNCREw.
This informat reads character data, converting all but 0–9, A–Z, a–z and space to the Unicode numeric
character reference format (&#ddddd notation). This notation is described in http://www.w3.org/TR/
html4/charset.html#h-5.3.1 .

min max default
Variable width 1 32767 8

Example
data _null_;
s="&World Programming#";
t=input(s, $uncre50.);
put t;
run;

Which produces the following output in the log:

&World Programming#

$UPARENw.
This informat reads a sequence of characters encoded individually as <uxxxx> (where xxxx is the
Unicode code point for the character in hexadecimal) into a session-encoded string.

min max default
Variable width 1 32767 8

Example
data _null_;
s="<u0057><u006F><u0072><u006C><u0064><u0020><u0050><u0072><u006F>
<u0067><u0072><u0061><u006D><u006D><u0069><u006E><u0067>";
t=input(s, $uparen200.);
put t;
run;

Which produces the following output in the log:

World Programming

http://www.w3.org/TR/html4/charset.html#h-5.3.1

Reference for language elements
Version 4.1

558

$UPARENEw.
This informat reads a session-encoded string into a string representation in which each character is
encoded as <uxxxx> where xxxx is the Unicode code point for the character concerned.

min max default
Variable width 1 32767 8

Example
data _null_;
s="World Programming";
t=input(s, $uparene200.);
put t;
run;

Which produces the following output in the log:

<u0057><u006F><u0072><u006C><u0064><u0020><u0050><u0072><u006F>
<u0067><u0072><u0061><u006D><u006D><u0069><u006E> lt;u0067>

$UTF8Xw.
This informat transforms UTF-8 data into session-encoded data.

min max default
Variable width 1 32000 8

$UTF8XEw.
This informat transforms session-encoded data into UTF-8.

min max default
Variable width 1 32000 8

Simple numeric informats
Fundamental informats for numeric data.

Reference for language elements
Version 4.1

559

BINARYw.d
This informat reads a binary value into a numeric value.

min max default
Variable width 1 64 8

Example
data _null_;
d=3;
b=put(d, binary10.);
put b;
r=input(b, binary10.);
put r;
run;

Which produces the following output in the log:

0000000011
3

BITSw.d
This informat reads a specified number of bits from its argument, converting them into a numeric
variable. The number of bits is determined by the width and the process starts at an offset determined
by the specified number of decimal digits.

min max default
Variable width 1 64 1

Example
data _null_;
d="Z"; /* ASCII 90 = BINARY 01011010 */
r=input(d, bits4.1);
put r;
run;

Which produces the following output in the log:

11

Reference for language elements
Version 4.1

560

BZw.d
This informat reads numeric values converting spaces to zeroes. The decimal part, if present, denotes
a power of 10 to divide the value provided.

min max default
Variable width 1 32 1

Example
data _null_;
d="1000";
r=input(d, bz6.2);
put r;
run;

Which produces the following output in the log:

10

COMMAw.d
This informat reads numeric data, removing embedded commas and currency signs. The decimal part,
if present, denotes a power of 10 to divide the value provided.

min max default
Variable width 1 32 1

Example
data _null_;
d="123,456,789";
r=input(d, comma10.3);
put r;
run;

Which produces the following output in the log:

12345.678

Reference for language elements
Version 4.1

561

COMMAXw.d
This informat reads numeric data, removing embedded periods and currency signs. The decimal part, if
present, denotes a power of 10 to divide the value provided.

min max default
Variable width 1 32 1

Example
data _null_;
d="123.456.789";
r=input(d, commax10.3);
put r;
run;

Which produces the following output in the log:

12345.678

DOLLARw.d
This informat reads numeric data, removing embedded commas and currency signs. The decimal part,
if present, denotes a power of 10 to divide the value provided.

This informat is an alias of COMMAw.d

min max default
Variable width 1 32 1

DOLLARXw.d
This informat reads numeric data, removing embedded commas and currency signs. The decimal part,
if present, denotes a power of 10 to divide the value provided.

This informat is an alias of COMMAw.d

min max default
Variable width 1 32 1

Reference for language elements
Version 4.1

562

EUROw.d
This informat reads numeric data removing embedded Euro currency symbols, commas and other
characters.

min max default
Variable width 1 32 1

Example
data _null_;
s=1096543.123;
t= put(s, euro20.3);
r= input(t, euro20.3);
put t;
put r;
run;

Which produces the following output in the log:

E1,096,543.123
1096543.123

EUROXw.d
This informat reads numeric data removing embedded Euro currency characters.

min max default
Variable width 1 32 1

Example
data _null_;
s="E1096543.123";
r= input(s, eurox20.3);
put r;
run;

Which produces the following output in the log:

1096543.123

Reference for language elements
Version 4.1

563

FLOATw.d
This informat reads a floating point value. If present, the decimal part represents a power of 10 by
which the result is divided.

min max default
Variable width 4 4 4

Example
data _null_;
s=123.456;
t=put(s,float4.);
r=input(t, float4.2);
put r;
run;

Which produces the following output in the log:

1.2345600128

HEXw.
This informat reads hexadecimal character data into a numeric form.

min max default
Variable width 1 16 8

Example
data _null_;
s="FF";
r=input(s, hex.);
put r;
run;

Which produces the following output in the log:

255

Reference for language elements
Version 4.1

564

IBw.d
This informat reads integer binary data, converting to session form.

min max default
Variable width 1 8 4

IBRw.d
This informat reads integer binary data in a machine-specific form and converts it to a session form.

min max default
Variable width 1 8 4

NUMXw.d
This informat reads numeric values converting commas to periods.

min max default
Variable width 1 32 12

Example
data _null_;
s=123456.789;
t=put(s, numx12.4);
put t;
r=input(t, numx12.);
put r;
run;

Which produces the following output in the log:

123456,7890
123456.789

Reference for language elements
Version 4.1

565

PDw.d
This informat reads packed decimal data into a numeric value.

min max default
Variable width 1 16 1

Example
data _null_;
s=123;
t=put(s, pd3.);
put t $hex.;
r=input(t,pd3.);
put r;
run;

Which produces the following output in the log:

000123
123

PERCENTw.d
This informat reads percentages into a numeric value.

min max default
Variable width 1 32 6

Example
data _null_;
s=0.28;
t=put(s,percent.);
put t;
r=input(t,percent.);
put r;
run;

Which produces the following output in the log:

28%
0.28

Reference for language elements
Version 4.1

566

PIBw.d
This informat reads a positive integer binary representation into a numeric value.

min max default
Variable width 1 8 1

Example
data _null_;
s="88D612"x;
r=input(s,pib8.0);
put r;
run;

Which produces the following output in the log:

1234568

PIBRw.d
This informat reads a little-endian positive integer representation into a numeric value.

min max default
Variable width 1 8 1

Example
data _null_;
s="88D612"x;
r=input(s,pibr8.0);
put r;
run;

Which produces the following output in the log:

1234568

PKw.d
This informat reads a packed decimal representation into a numeric form.

min max default
Variable width 1 16 1

Reference for language elements
Version 4.1

567

Example
data _null_;
s=1234567.95;
r=put(s, pk7.4);
put r $hex.;
t=input(r, pk7.4);
put t;
run;

Which produces the following output in the log:

00012345679500
1234567.95

RBw.d
This informat reads a real binary representation into a numeric value.

min max default
Variable width 2 8 4

Example
data _null_;
s=1234567.95;
r=put(s, rb4.0);
put r $hex.;
t=input(r, rb5.0);
put t;
run;

Which produces the following output in the log:

87D63241
1234567

S370FFw.d
This informat reads open edition 1047 EBCDIC (IBM mainframe) format on non-z/OS machines into a
numeric value. It has no effect on z/OS machines.

min max default
Variable width 1 32 12

Reference for language elements
Version 4.1

568

Example
data _null_;
s=10;
r=put(s, s370ff.);
put r $hex.;
t=input(r, s370ff.);
put t;
run;

Which produces the following output in the log:

40404040404040404040F1F0
10

S370FIBw.d
This informat reads big-endian integer-binary IBM mainframe format data into a numeric form.

min max default
Variable width 1 8 4

Example
data _null_;
s=10;
r=put(s, s370fib8.);
put r $hex.;
t=input(r, s370fib8.);
put t;
run;

Which produces the following output in the log:

000000000000000A
10

S370FIBUw.d
This informat reads unsigned big-endian positive integer binary IBM mainframe format into a numeric
value.

min max default
Variable width 1 8 4

Reference for language elements
Version 4.1

569

Example
data _null_;
s=10;
r=put(s, s370fibu8.);
put r $hex.;
t=input(r, s370fibu8.);
put t;
run;

Which produces the following output in the log:

000000000000000A
10

S370FPDw.d
This informat reads z/OS packed decimal format data into a numeric value.

min max default
Variable width 1 16 1

Example
data _null_;
s=10;
r=put(s, s370fpd8.);
put r $hex.;
t=input(r,s370fpd8.);
put t;
run;

Which produces the following output in the log:

000000000000010C
10

S370FPDUw.d
This informat reads z/OS unsigned packed decimal format into a numeric value.

min max default
Variable width 1 16 1

Reference for language elements
Version 4.1

570

Example
data _null_;
s=10;
r=put(s, s370fpdu8.);
put r $hex.;
t=input(r,s370fpdu8.);
put t;
run;

Which produces the following output in the log:

000000000000010F
10

S370FPIBw.d
This informat reads z/OS big-endian positive integer binary format into a numeric form.

min max default
Variable width 1 8 4

Example
data _null_;
s=10;
r=put(s, s370fpib8.);
put r $hex.;
t=input(r,s370fpib8.);
put t;
run;

Which produces the following output in the log:

000000000000000A
10

S370FRBw.d
This informat reads z/OS real binary format into a numeric value.

min max default
Variable width 2 8 6

Reference for language elements
Version 4.1

571

Example
data _null_;
s=10;
r=put(s, s370frb8.);
put r $hex.;
t=input(r,s370frb8.);
put t;
run;

Which produces the following output in the log:

41A0000000000000
10

S370FZDw.d
This informat reads z/OS zoned decimal format into a numeric value.

min max default
Variable width 1 32 8

Example
data _null_;
s=10;
r=put(s, s370fzd8.);
put r $hex.;
t=input(r,s370fzd8.);
put t;
run;

Which produces the following output in the log:

F0F0F0F0F0F0F1C0
10

S370FZDBw.d
This informat reads z/OS zoned decimal format into a numeric value.

min max default
Variable width 1 32 8

Reference for language elements
Version 4.1

572

S370FZDLw.d
This informat reads z/OS zoned decimal format with a sign nibble at the beginning into a numeric form.

min max default
Variable width 1 32 8

Example
data _null_;
s=10;
r=put(s, s370fzdl8.);
put r $hex.;
t=input(r,s370fzdl8.);
put t;
run;

Which produces the following output in the log:

C0F0F0F0F0F0F1F0
10

S370FZDSw.d
This informat reads z/OS zoned decimal format with a sign byte at the beginning into a numeric value.

min max default
Variable width 2 32 8

Example
data _null_;
s=10;
r=put(s, s370fzds8.);
put r $hex.;
t=input(r,s370fzds8.);
put t;
run;

Which produces the following output in the log:

4EF0F0F0F0F0F1F0
10

Reference for language elements
Version 4.1

573

S370FZDTw.d
This informat reads z/OS zoned decimal format with a sign byte at the end into a numeric form.

min max default
Variable width 2 32 8

Example
data _null_;
s=10;
r=put(s, s370fzdt8.);
put r $hex.;
t=input(r,s370fzdt8.);
put t;
run;

Which produces the following output in the log:

F0F0F0F0F0F1F04E
10

S370FZDUw.d
This informat reads z/OS zoned decimal format with no sign byte into a numeric value.

min max default
Variable width 1 32 8

Example
data _null_;
s=10;
r=put(s, s370fzdu8.);
put r $hex.;
t=input(r,s370fzdu8.);
put t;
run;

Which produces the following output in the log:

F0F0F0F0F0F0F1F0
10

Reference for language elements
Version 4.1

574

TRAILSGNw.d
This informat reads a character representation of a number with a trailing sign into a numeric value. If
present, the decimal part represents a power of 10 by which the result is divided.

min max default
Variable width 1 32 6

Example
data _null_;
s="123+";
t="456-";
r1=input(s,trailsgn10.0);
r2=input(t,trailsgn10.4);
put r1;
put r2;
run;

Which produces the following output in the log:

123
-0.0456

YENw.d
This informat reads numeric data, removing embedded commas and yen signs. The decimal part, if
present, denotes a power of 10 to divide the value provided.

min max default
Variable width 1 32 1

ZDw.d
This informat reads a platform-dependent zoned decimal format into a numeric value.

min max default
Variable width 1 32 1

Reference for language elements
Version 4.1

575

Example
data _null_;
s=123456;
r=put(s,zd10.2);
put r $hex.;
t=input(r,zd10.2);
put t;
run;

Which produces the following output in the log:

3030313233343536307B
123456

ZDBw.d
This informat converts platform-dependent zoned decimal data in which zeros are blank into a numeric
value.

min max default
Variable width 1 32 1

Numeric date informats
Informats that convert a numeric date into a formatted character representation.

ANYDTDTEw.
This informat reads a variety of date-like and time-like values into a numeric date value.

min max default
Variable width 5 60 9

Reference for language elements
Version 4.1

576

Example
data _null_;
input checkdate : anydtdte.;
put checkdate;
put checkdate=: date9.;
cards;
18SEP2014
18SEP2014 12:24:32.8
SEP2014
;
run;

Which produces the following output in the log:

19984
checkdate=18SEP2014
19984
checkdate=18SEP2014
19967
checkdate=01SEP2014

ANYDTDTMw.
This informat reads a range of date-like and time-like values into a numeric datetime value.

min max default
Variable width 1 60 19

Example
data _null_;
input checkdatetime : anydtdtm20.;
put checkdatetime;
put checkdatetime=: datetime25.;
cards;
18SEP2014
18SEP2014 12:24:32.8
SEP2014
;
run;

Which produces the following output in the log:

1726617600
checkdatetime=18SEP2014:00:00:00
1726617600
checkdatetime=18SEP2014:00:00:00
1725148800
checkdatetime=01SEP2014:00:00:00

Reference for language elements
Version 4.1

577

ANYDTTMEw.
This informat reads a variety of time-like values into a numeric time value.

min max default
Variable width 1 60 8

Example
data _null_;
input checktime : anydttme20.;
put checktime;
put checktime=: time12.;
cards;
12:24:32.8
;
run;

Which produces the following output in the log:

44672.8
checktime=12:24:33

DATEw.
This informat reads date values in the form DDMMMYY or DDMMMYYYY or DD-MMM-YYYY into a
numeric date.

min max default
Variable width 7 32 7

Example
data _null_;
e="01-JAN-1960";
d="18-SEP-2014";
r1=input(e,date20.);
r2=input(d,date20.);
put r1;
put r2;
run;

Which produces the following output in the log:

0
19984

Reference for language elements
Version 4.1

578

DATETIMEw.
This informat reads datetime values in the form DDMMMYY:HH:MM:SS or DDMMMYYYY:HH:MM:SS
or DD-MMM-YYYY:HH:MM:SS into a numeric datetime.

min max default
Variable width 13 40 18

Example
data _null_;
e="01JAN60:00:00:00";
d="18-SEP-14:15:27:20";
r1=input(e,datetime20.);
r2=input(d,datetime20.);
put r1;
put r1 datetime20.;
put r2;
put r2 datetime20.;
run;

Which produces the following output in the log:

0
 01JAN1960:00:00:00
1726673240
 18SEP2014:15:27:20

DDMMYYw.
This informat reads a date in a DD/MM/YY or DD/MM/YYYY representation into a numeric date.

min max default
Variable width 6 32 6

Example
data _null_;
d="19/09/2014";
r=input(d, ddmmyy20.);
put r;
run;

Which produces the following output in the log:

19985

Reference for language elements
Version 4.1

579

HHMMSSw.
This informat reads a time expressed as HH:MM:SS into a numeric time format.

min max default
Variable width 1 20 8

Example
data _null_;
d="09:43:00";
r=input(d, hhmmss20.);
put r;
run;

Which produces the following output in the log:

34980

JULIANw.
This informat reads a YYDDD or YYYYDDD Julian date into a numeric format.

min max default
Variable width 5 32 5

Example
data _null_;
d="2014034";
r=input(d, julian20.);
put r;
run;

Which produces the following output in the log:

19757

MDYAMPMw.
This informat reads datetimes expressed as MM-DD-YY HH.MM AM|PM or MM-DD-YYYY HH.MM AM|
PM into a numeric datetime form.

min max default
Variable width 8 40 16

Reference for language elements
Version 4.1

580

Example
data _null_;
d="09-15-14 4.45 pm";
r=input(d,mdyampm20.);
put r;
run;

Which produces the following output in the log:

1726418700

MINGUOw.
This informat reads a Taiwanese date form into a numeric date.

min max default
Variable width 6 10 6

Example
data _null_;
d="49/01/01";
e="0490101";
r=input(d,minguo10.);
s=input(e,minguo10.);
put r;
put s;
run;

Which produces the following output in the log:

0
0

MMDDYYw.
This informat reads a date in a MM/DD/YY or MM/DD/YYYY representation into a numeric date.

min max default
Variable width 6 32 6

Reference for language elements
Version 4.1

581

Example
data _null_;
d="09/19/2014";
r=input(d,mmddyy10.);
put r;
run;

Which produces the following output in the log:

19985

MONYYw.
This informat converts a date expressed as MMMYY or MMMYYYY into a numeric date format.

min max default
Variable width 5 32 5

Example
data _null_;
d="SEP2014";
r=input(d,monyy20.);
put r;
run;

Which produces the following output in the log:

19967

MSECw.
MSEC reads the output of the z/OS TIME macro, or equivalently the STCK instruction.

The STCK instruction produces a 64 bit big-endian value where bit position 51 (where the first bit is
position 0) is incremented every microsecond. It returns the value as a time of day.

min max default
Variable width 1 8 8

Reference for language elements
Version 4.1

582

NENGOw.
This informat reads a Japanese date format (including an initial era signifier) into a numeric date.

min max default
Variable width 10 16 10

Example
data _null_;
d="H.26/08/15";
r=input(d,nengo10.);
put r;
run;

Which produces the following output in the log:

19950

PDJULGw.
This informat reads a packed decimal representation of a Julian date into a numeric date.

min max default
Variable width 3 4 4

Example
data _null_;
d=0;
r=put(d,pdjulg4.); /* Convert date to packed decimal form */
put r $hex.; /* Examine it */
s=input(r,pdjulg4.); /* Read and format it as (original) date */
put s;
run;

Which produces the following output in the log:

1960001F
0

Reference for language elements
Version 4.1

583

PDJULIw.
This informat reads a packed decimal representation (CCYYDDDF) of a Julian date into a numeric
date.

min max default
Variable width 4 4 4

Example
data _null_;
d=0;
r=put(d,pdjuli4.);
put r $hex.;
s=input(r,pdjuli4.);
put s;
run;

Which produces the following output in the log:

0060001F
0

PDTIMEw.
This informat reads a packed decimal representation of a time into a numeric time.

min max default
Variable width 4 4 4

Example
data _null_;
d="0112825F"x;
r=input(d,pdtime4.);
put r;
put r $time.;
run;

Which produces the following output in the log:

41305
11:28:25

Reference for language elements
Version 4.1

584

RMFDURw.
Reads durations stored in z/OS RMF (Resource Management Facility) records.

min max default
Variable width 4 4 4

RMFSTAMPw.
Reads time values stored in z/OS RMF (Resource Management Facility) records.

min max default
Variable width 8 8 8

SHRSTAMPw.
Reads timestamps from z/OS SHR records.

min max default
Variable width 8 8 8

SMFSTAMPw.
Reads timestamps from z/OS SMF records.

min max default
Variable width 8 8 8

TIMEw.
Reads a representation of a time in HH:MM:SS format into a numeric time.

min max default
Variable width 5 32 8

Reference for language elements
Version 4.1

585

Example
data _null_;
t="01:01:01";
r=input(t,time9.);
put r;
run;

Which produces the following output in the log:

3661

TODSTAMPw.
Reads the output of the z/OS STCK instruction and produces a datetime value, rather than a time of
day value.

min max default
Variable width 1 8 8

TUw.
Reads the output of the z/OS TIME macro with the TU option.

This informat produces a time of day as an unsigned 32 bit number. The low order bit is equal to one
timer unit. There are exactly 38,400 timer units per second, so a timer unit is approximately 26.041667
microseconds.

min max default
Variable width 4 4 4

YMDDTTMw.d
Reads datetimes in the form YY-MM-DD HH:SS or YYYY-MM-DD HH:SS into numeric datetime
objects.

min max default
Variable width 13 40 18

Reference for language elements
Version 4.1

586

Example
data _null_;
d="2014-09-19 14:33";
r=input(d, ymddttm20.);
put r;
run;

Which produces the following output in the log:

1726756380

YYMMDDw.
Reads dates in the form YY-MM-DD or YYYY-MM-DD into numeric date objects.

min max default
Variable width 6 32 6

Example
data _null_;
d="2014-09-19";
r=input(d, yymmdd20.);
put r;
run;

Which produces the following output in the log:

19985

YYMMNw.
Reads dates in the form YYYYMM or YYMM into numeric date objects.

min max default
Variable width 4 6 4

Example
data _null_;
d="201409";
r=input(d, yymmn6.);
put r;
run;

Reference for language elements
Version 4.1

587

Which produces the following output in the log:

19967

YYQw.
Reads yearly quarters in the form YYQn or YYYYQn into a numeric date, where n is 1,2,3 or 4.

min max default
Variable width 4 32 6

Example
data _null_;
d="2014Q1";
r=input(d, yyq6.);
put r;
run;

Which produces the following output in the log:

19724

ISO8601 date informats
Informats that represent date-time data according to the ISO 8601 standard.

$N8601Bw.d
Reads ISO 8601 datetimes, durations and intervals expressed in basic or extended form.

min max default
Variable width 1 32767 50

Example
data _null_;
input d $n8601b.;
put d;
cards;
P20140915T134200
;
run;

Reference for language elements
Version 4.1

588

Which produces the following output in the log:

2014915134200FFD

$N8601Ew.d
Reads ISO 8601 datetimes, durations and intervals expressed in extended form only.

min max default
Variable width 1 32767 50

Example
data _null_;
d="P2014-09-15T13:42:00"; /* Extended notation */
conv = input(d, $n8601e.);
put conv;
run;

Which produces the following output in the log:

2014915134200FFD

B8601DAw.
Converts a basic ISO 8601 YYYYMMDD form into a numeric date.

min max default
Variable width 10 10 10

Example
data _null_;
d="19600101";
conv=input(d,b8601da.);
put conv;
run;

Which produces the following output in the log:

0

Reference for language elements
Version 4.1

589

B8601DNw.
Reads a basic ISO 8601 YYYYMMDD form into a numeric datetime in which the time component is set
to zero.

min max default
Variable width 10 10 10

Example
data _null_;
d="19600101";
conv=input(d,b8601dn.);
put conv;
run;

Which produces the following output in the log:

0

B8601DTw.
Converts a basic ISO 8601 YYYYMMDDTHHMMSS form into a numeric datetime.

min max default
Variable width 19 26 19

Example
data _null_;
dt="19600101T000001";
conv=input(dt,b8601dt.);
put conv;
run;

Which produces the following output in the log:

1

Reference for language elements
Version 4.1

590

B8601DZw.
Reads a UTC ISO 8601 YYYYMMDDTHHMMSS+|=HHMM datetime and timezone form into a numeric
datetime.

min max default
Variable width 20 35 26

Example
data _null_;
dt="19600101T000000+0000";
conv=input(dt,b8601dz.);
put conv;
run;

Which produces the following output in the log:

0

B8601LZw.
Converts an input in ISO 8601 basic UTC time notation: HHMMSS+|-HHMM to a numeric time.

This informat is an alias of B8601TZ.

min max default
Variable width 9 20 14

B8601TMw.
Reads a basic ISO 8601 time form: HHMMSS into a numeric time.

min max default
Variable width 6 15 8

Example
data _null_;
t="010000";
conv=input(t,b8601tm.);
put conv;
run;

Reference for language elements
Version 4.1

591

Which produces the following output in the log:

3600

B8601TZw.
Converts an input in ISO 8601 basic UTC time notation: HHMMSS+|-HHMM to a numeric time.

min max default
Variable width 9 20 14

Example
data _null_;
t="152001-0500";
conv=input(t,b8601tz20.20);
put conv;
run;

Which produces the following output in the log:

73201

E8601DAw.
Reads an extended ISO 8601 YYYY-MM-DD form into a numeric date.

min max default
Variable width 10 10 10

Example
data _null_;
d="2014-09-18";
e="1960-01-01";
r=input(d, E8601DA.);
s=input(e, E8601DA.);
put r;
put s;

Which produces the following output in the log:

19984
0

Reference for language elements
Version 4.1

592

E8601DNw.
Reads an extended ISO 8601 YYYY-MM-DD form into a numeric datetime.

min max default
Variable width 10 10 10

Example
data _null_;
d="2014-09-18";
e="1960-01-01";
r=input(d, E8601DN.);
s=input(e, E8601DN.);
put r;
put s;

Which produces the following output in the log:

1726617600
0

E8601DTw.
Reads an extended ISO 8601 YYYY-MM-DDTHH:MM:SS datetime form into a numeric datetime.

min max default
Variable width 19 26 19

Example
data _null_;
d="2014-09-17T09:25:00";
e="1960-01-01T00:00:00";
r=input(d, E8601DT.);
s=input(e, E8601DT.);
put r;
put s;
run;

Which produces the following output in the log:

1726565100
0

Reference for language elements
Version 4.1

593

E8601DZw.
Reads an extended UTC ISO 8601 YYYY-MM-DDTHH:MM:SS+|=HH:MM datetime and timezone form
into a numeric datetime.

min max default
Variable width 20 35 26

Example
data _null_;
d="2014-09-17T09:25:00+09:00";
e="1960-01-01T00:00:00+00:00";
r=input(d, E8601DZ.);
s=input(e, E8601DZ.);
put r;
put s;
run;

Which produces the following output in the log:

1726532700
0

E8601TMw.
Reads an extended ISO 8601 form: HH:MM:SS into a numeric time.

min max default
Variable width 8 15 8

Example
data _null_;
d="06:45:00";
r=input(d, E8601TM.);
put r;
run;

Which produces the following output in the log:

24300

Reference for language elements
Version 4.1

594

E8601TZw.
Reads an ISO 8601 extended time notation HH:MM:SS+|-HH:MM form into a numeric time.

min max default
Variable width 9 20 14

Example
data _null_;
d="06:45:00+01:15";
r=input(d, E8601TZ.);
put r;
run;

Which produces the following output in the log:

19800

E8601LZw.
Reads an ISO 8601 extended time notation HH:MM:SS+|-HH:MM form into a numeric time.

This informat is an alias of E8601TZ.

min max default
Variable width 9 20 14

IS8601DAw.
Reads an extended ISO 8601 YYYY-MM-DD form into a numeric date.

This informat is an alias of E8601DA.

min max default
Variable width 10 10 10

IS8601DNw.
Reads an extended ISO 8601 YYYY-MM-DD form into a numeric datetime.

This informat is an alias of E8601DN.

Reference for language elements
Version 4.1

595

min max default
Variable width 10 10 10

IS8601DTw.
Reads an extended ISO 8601 YYYY-MM-DDTHH:MM:SS datetime form into a numeric datetime.

This informat is an alias of E8601DT.

min max default
Variable width 19 26 19

IS8601DZw.
Reads an extended UTC ISO 8601 YYYY-MM-DDTHH:MM:SS+|=HH:MM datetime and timezone form
into a numeric datetime.

This informat is an alias of E8601DZ.

min max default
Variable width 20 35 26

IS8601LZw.
Reads an ISO 8601 extended time notation HH:MM:SS+|-HH:MM form into a numeric time.

This informat is an alias of E8601LZ.

min max default
Variable width 9 20 14

IS8601TMw.
Reads an extended ISO 8601 form: HH:MM:SS into a numeric time.

This informat is an alias of E8601TM.

min max default
Variable width 8 15 8

Reference for language elements
Version 4.1

596

IS8601TZw.
Reads an ISO 8601 extended time notation HH:MM:SS+|-HH:MM form into a numeric time.

This informat is an alias of E8601TZ.

min max default
Variable width 9 20 14

ND8601DAw.
Reads an extended ISO 8601 YYYY-MM-DD form into a numeric date.

This informat is an alias of B8601DA.

min max default
Variable width 10 10 10

ND8601DNw.
Reads a basic ISO 8601 YYYYMMDD form into a numeric datetime in which the time component is set
to zero.

This informat is an alias of B8601DN.

min max default
Variable width 10 10 10

ND8601DTw.
Converts a basic ISO 8601 YYYYMMDDTHHMMSS form into a numeric datetime.

This informat is an alias of B8601DT.

min max default
Variable width 19 26 19

Reference for language elements
Version 4.1

597

ND8601DZw.
Reads an extended UTC ISO 8601 YYYY-MM-DDTHH:MM:SS+|=HH:MM datetime and timezone form
into a numeric datetime.

This informat is an alias of B8601DZ.

min max default
Variable width 20 35 26

ND8601LZw.
Converts an input in ISO 8601 basic UTC time notation: HHMMSS+|-HHMM to a numeric time.

This informat is an alias of B8601LZ.

min max default
Variable width 9 20 14

ND8601TMw.
Reads a basic ISO 8601 time form: HHMMSS into a numeric time.

This informat is an alias of B8601TM.

min max default
Variable width 6 15 8

ND8601TZw.
Converts an input in ISO 8601 basic UTC time notation: HHMMSS+|-HHMM to a numeric time.

This is an alias of B8601TZ.

min max default
Variable width 9 20 14

Reference for language elements
Version 4.1

598

NLS-sensitive date informats
Informats that represent date-time data based on a specified locale value.

NLDATEw.
Reads a locale-specific date representation into a numeric date value.

min max default
Variable width 1 32 12

Example
options locale=en_GB;
data _null_;
d=input("23 September 2014", nldate19.);
put d=;
run;

options locale=fr_FR;
data _null_;
e=input("23 septembre 2014", nldate19.);
put e=;
run;

Which produces the following output in the log:

d=19989
...
e=19989

NLDATMw.
Reads a locale-specific datetime representation into a numeric datetime.

min max default
Variable width 1 50 20

Reference for language elements
Version 4.1

599

Example
options locale=en_GB;
data _null_;
d=input("23 September 2014 11:06:00", nldatm26.);
put d=;
run;

options locale=fr_FR;
data _null_;
e=input("23 septembre 2014 11:06:00", nldatm26.);
put e=;
run;

Which produces the following output in the log:

d=1727089560
...
e=1727089560

NLTIMEw.
Reads a locale-specific time representation into a time value.

min max default
Variable width 1 32 10

Example
options locale=en_GB;
data _null_;
d=input("11:06:00", nltime26.);
put d=;
run;

options locale=fr_FR;
data _null_;
e=input("11:06:00", nltime26.);
put e=;
run;

Which produces the following output in the log:

d=39960
...
e=39960

Reference for language elements
Version 4.1

600

NLS-sensitive money informats
Informats that represent numeric data as monetary values for a specified locale.

NLMNYw.d
Reads a locale-specific money-format representation into a numeric amount of money.

min max default
Variable width 1 32 8

Example
data _null_;
options locale=en_US;
am="$10.51";
r=input(am, nlmny.);
put r;
run;

Which produces the following output in the log:

10.51

NLMNYIw.d
Reads a money-format representation containing a string locale currency code into a numeric money
value.

min max default
Variable width 1 32 8

Example
data _null_;
options locale=en_US;
am="USD10.51";
r=input(am, nlmnyi.);
put r;
run;

Which produces the following output in the log:

10.51

Reference for language elements
Version 4.1

601

NLMNIXXXw.d
Reads a country-specific currency form into a numeric amount.

xxx in the format denotes the currency, and is specified using one of:

• AED UAE Dirham
• AUD Australia Dollar
• BGN Bulgaria Lev
• BRL Brazil Real
• CAD Canada Dollar
• CHF Switzerland Franc
• CNY China Yuan Renminbi
• CZK Czech Republic Koruna
• DKK Denmark Krone
• EGP Egypt Pound
• EUR Euro
• GBP Great Britain Pound
• HKD Hong Kong Dollar
• HRK Croatia Kuna
• HUF Hungary Forint
• IDR Indonesia Rupiah
• ILS Israel Shekel
• INR India Rupee
• JPY Japan Yen
• KRW South Korea Won
• LTL Lithuania Litas
• LVL Latvia Lat
• MOP Macau Pataca
• MXN Mexico Peso
• MYR Malaysia Ringgit
• NOK Norway Krone
• NZD New Zealand Dollar
• PLN Poland Zloty
• RUB Russia, Ruble
• SEK Sweden Krona
• SGD Singapore Dollar

Reference for language elements
Version 4.1

602

• THB Thailand Baht
• TRY Turkey Lira
• TWD Taiwan New Dollar
• USD United States Dollar
• ZAR South Africa Rand

min max default
Variable width 1 32 8

Example
data _null_;
am="AED10.51";
r=input(am, nlmniaed.);
put r;
run;

Which produces the following output in the log:

10.51

NLMNLXXXw.d
Reads a local form of a country-specific currency into a numeric amount.

xxx in the format denotes the currency, and is specified using one of:

• AED UAE Dirham
• AUD Australia Dollar
• BGN Bulgaria Lev
• BRL Brazil Real
• CAD Canada Dollar
• CHF Switzerland Franc
• CNY China Yuan Renminbi
• CZK Czech Republic Koruna
• DKK Denmark Krone
• EGP Egypt Pound
• EUR Euro
• GBP Great Britain Pound
• HKD Hong Kong Dollar
• HRK Croatia Kuna
• HUF Hungary Forint

Reference for language elements
Version 4.1

603

• IDR Indonesia Rupiah
• ILS Israel Shekel
• INR India Rupee
• JPY Japan Yen
• KRW South Korea Won
• LTL Lithuania Litas
• LVL Latvia Lat
• MOP Macau Pataca
• MXN Mexico Peso
• MYR Malaysia Ringgit
• NOK Norway Krone
• NZD New Zealand Dollar
• PLN Poland Zloty
• RUB Russia, Ruble
• SEK Sweden Krona
• SGD Singapore Dollar
• THB Thailand Baht
• TRY Turkey Lira
• TWD Taiwan New Dollar
• USD United States Dollar
• ZAR South Africa Rand

min max default
Variable width 1 32 8

Example
data _null_;
am="€10.51";
r=input(am, nlmnleur.);
put r;
run;

Which produces the following output in the log:

10.51

NLS-sensitive numeric informats
Informats that represent numeric data according to a specified locale.

Reference for language elements
Version 4.1

604

NLNUMw.d
Reads locale-specific numeric data into a numeric form.

min max default
Variable width 1 32 8

Example
data _null_;
options locale="en_GB";
am="1,254,234";
r=input(am, nlnum32.);
put r;
run;

Which produces the following output in the log:

1254234

NLNUMIw.d
Reads locale-specific international format numbers into a numeric value.

min max default
Variable width 1 32 8

Example
data _null_;
options locale="en_GB";
am="1,254,234";
r=input(am, nlnumi32.);
put r;
run;

Which produces the following output in the log:

1254234

Reference for language elements
Version 4.1

605

NLPCTw.d
Reads a locale-specific percentage expression into a numeric value.

min max default
Variable width 1 32 8

Example
data _null_;
options locale="en_GB";
am="10 %";
r=input(am, nlpct3.2);
put r;
run;

Which produces the following output in the log:

0.1

NLPCTI
Reads an international, session-locale percentage into a numeric value.

min max default
Variable width 1 32 8

Example
data _null_;
options locale="en_GB";
am="10 %";
r=input(am, nlpcti3.2);
put r;
run;

Which produces the following output in the log:

0.1

Global statements
Statements that can be used anywhere in a SAS language program

Reference for language elements
Version 4.1

606

 Comment
* comment- tex t ;

/* comment- tex t */

CATNAME
CATNAME _ALL_ CLEAR

ALL LIST

name

CLEAR

name LIST

name (element)

;

element

l ibrary . member

(ACCESS = READONLY)

DSNEXST
DSNEXST f ilename ;

ENDSAS
ENDSAS ;

ENDWPS
ENDWPS ;

Reference for language elements
Version 4.1

607

FILENAME statements

FILENAME

FILENAME _ALL_ CLEAR

ALL LIST

name CLEAR

name LIST

name "physical- locat ion"

access- method opt ions...

EXPDT = "value" LABEL = "value" RECFM = "value" RETPD = "value" ;

On z/OS only, a further ENGINE= option is supported to specify the INFILE/FILE user exit that will be
used when accessing the file reference through the INFILE/FILE statements in a DATA step.

FILENAME, DDE Access Method

FILENAME name DDE "DDE- triplet"

dde- option

;

dde-option

HOTLINK

NOTAB

COMMAND

LRECL = "n"

RECFM = "F"

"N"

"P"

"S370V"

"S370VB"

"S370VBS"

"V"

"D"

Reference for language elements
Version 4.1

608

FILENAME, DDEX Access Method

FILENAME name DDEX "DDEX- triplet"

ddex- option

;

ddex-option

DATE_FORMAT = "EXCEL- FORMAT- STRING"

DATETIME_FORMAT = "EXCEL- FORMAT- STRING"

FORMAT_CELLS

DLM = "delimiter- character"

LRECL = "n"

RECFM = "F"

"N"

"P"

"S370V"

"S370VB"

"S370VBS"

"V"

"D"

TERMSTR = "line- terminat ion- string"

TIME_FORMAT = "EXCEL- FORMAT- STRING"

FILENAME, DISK Access Method

FILENAME name DISK physical- locat ion

(physical- locat ion)

BLKSIZE = n

LRECL = n

RECFM = format

MOD

OLD

;

Reference for language elements
Version 4.1

609

FILENAME, EMAIL Access Method

FILENAME name EMAIL

address email- option

;

email-option

CONTENT_TYPE

CT

TYPE

= "content- type"

TO = address- list

CC = address- list

BCC = address- list

DELIVERYRECEIPT

ENVELOPE_FROM = address

FROM = address

MIME_WARNING = "mime support warning string"

READRECEIPT

REPLYTO = address

SUBJECT = "subject"

X_MAILER = "xmailer string"

ATTACH = "f ilename.ext"

("f ilename.ext" attachment- option)

address-list

(address)

address

address

"user@host"

"Real Name < user@host> "

Reference for language elements
Version 4.1

610

attachment-option

CONTENT_TYPE

CT

TYPE

= "content- type"

ENCODING = "encoding"

EXTENSION

EXT

= "extension"

NAME = "displayed- name"

OUTENCODING = "encoding"

FILENAME, FTP Access Method

FILENAME name FTP remote- f ile

ftp- option

;

Reference for language elements
Version 4.1

611

ftp-option

BINARY

BLOCKSIZE = blocksize

CD = "directory"

DEBUG

DIR

ENCODING = encoding

FILEEXT

HOST = "hostname"

HOSTREPONSELEN = length

LIST

LOWCASE_MEMNAME

LRECL = length

LS

MGET

NEW

PASS = "password"

PASV

PORT = port

RCMD = "command"

RECFM = recfm

S370V

S370VS

TERMSTR = "eol- char"

USER = "user"

FILENAME, HADOOP Access Method

FILENAME name HADOOP external f ile

hadoop- option

;

Reference for language elements
Version 4.1

612

hadoop-option

BUFFERLEN = bufferlen

CFG = f ile or f ileref

CONCAT

DIR

ENCODING = encoding

FILEEXT

LRECL = length

PASS = password

RECFM = recfm

USER = "user"

FILENAME, HTTP Access Method

FILENAME name HTTP url ;

FILENAME, PIPE Access Method

FILENAME name PIPE command

pipe- option

;

pipe-option

BLOCKSIZE = blocksize

BLKSIZE = blocksize

LRECL = length

RECFM = recfm

CONSOLE = MAX

MIN

NORMAL

Reference for language elements
Version 4.1

613

FILENAME, SOCKET Access Method

FILENAME name SOCKET hostname:portno

socket- option

;

socket-option

BLOCKSIZE = blocksize

ENCODING = encoding

LRECL = length

RECFM = recfm

RECONN = server- connect ion- limit

SERVER

TERMSTR = "eol- char"

USER = "user"

FILENAME, SYSOUT Access Method

FILENAME name SYSOUT

= class option

;

Reference for language elements
Version 4.1

614

option

ALIGN

BURST

CHAR1 = table- name

CHAR2 = table- name

CHAR3 = table- name

CHAR4 = table- name

CLOSE

COPIES = n

DEST = node

FCB = fcb- name

FLASH = overlay- name

FLASHC = copies

FOLD

FORMS = form- name

HOLD

ID = userid

MODIFY = module- name

MODIFYT = table- reference- character

OUTLIM = l imit

PGM = writer- name

UCS = character- set- code

UCSVER

VERIFY

FILENAME, URL Access Method

FILENAME name URL url

url- option

;

Reference for language elements
Version 4.1

615

url-option

BLOCKSIZE = blocksize

DEBUG

ENCODING = encoding

LRECL = length

PASS = "password"

PPASS = "password"

PROXY = "url"

PUSER = "username"

RECFM = recfm

TERMSTR = "eol- char"

USER = "user"

FILENAME, z/OS Datasets Access Method

FILENAME name dataset- name

option

;

Reference for language elements
Version 4.1

616

option
BLKSIZE = nnnnn

BUFNO = n

DATACLASS = data- class

DISP = status

(status
,

normal- disp ,

abnormal- disp

)

DSORG = organisat ion

DSNTYPE = type

EXPDT = yyddd

yyyy/ ddd

LABEL= (label- subparameters)

LIKE = data- set- name

LRECL = nnnnn

MGMTCLAS = "management- class"

NOMOUNT

OPTCD = value

RECFM = value

RECORG = organisat ion

RETPD = days

REUSE

SPACE = (TRK

CYL

blksize

, primary- space

(primary- space

, secondary- space

, directory- blocks

)

)

STORCLAS = "storage- class"

VOLCOUNT = count

VOLSEQ = seqno

VOLSER = volser

(

,

volser)

WAIT = n

FOOTNOTE

FOOTNOTEn

footnote- options tex t

"tex t"

" styled text "

;

Reference for language elements
Version 4.1

617

footnote-options

ANGLE = angle

BCOLOR = color

BLANK = YES

NO

color

BOX = n

BSPACE = n

units

COLOR = color

FONT = font

HEIGHT = n

units

LANGLE = n

LSPACE = n

units

JUSTIFY = CENTER

C

LEFT

L

RIGHT

R

ROTATE = n

UNDERLIN = n

units

CELLS

CM

IN

PCT

%

PT

Reference for language elements
Version 4.1

618

styled text

tex t

ods- escape- character { nbspace

newline

raw string

style

style- element- name

[style- attribute = style- value] tex t

sub

super

dagger

sigma

unicode n

tagset- event- name

footnote- options

}

%INCLUDE

%INCLUDE

%INC

external- file
i

/ S2 = n

S2 = S

SOURCE2

NOSOURCE2

;

i See External Files (page 29).

LIBNAME
LIBNAME

ALL CLEAR

LIST

name CLEAR

LIST

engine- name physical- locat ion engine- opt ion

;

Reference for language elements
Version 4.1

619

MISSING

character ;

OPTIONS
Enables you to set and modify system options.

OPTIONS opt ions ;

System options are settings that to the environment in which you run SAS language programs. The
system options are described in System options (page 42).

Options
options can be one of more of:

APPEND
Append a string to the value of a specified system option.

APPEND = (system- opt ion = string)

Use APPEND to add information to a system option that has already set. The appended string is
separated from any already existing string in the system option by a space. You can only append
information to system options that have the appendable attribute . See System options for more
information.

system-option is the system option to be modified. string is the string to be appended. This can
be any string appropriate to the system option.

INSERT
Insert a string at the start of the value of a specified system option.

INSERT = (system- opt ion = string)

Use INSERT to add information to a system option that has already been set. The inserted string
is separated from any already existing string in the system option by a space. You can only insert
information in system options that have the attribute appendable. See System options for more
information.

system-option is the system option to be modified. string is the string to be inserted. This can be
any string appropriate to the system option.

Reference for language elements
Version 4.1

620

RESTRICT
Restrict a specified system option.

RESTRICT = (system- opt ion)

Use RESTRICT to restrict changes to system options. A restricted system option cannot be
changed during the session in which it is restricted. You can only restrict system options that
have the attribute restrictable. For information on restricting system options, see Restricting
system options (page 46). If you only specify one system option, you do not need the
parentheses.

system-option
Specify a system option.

system- opt ion

The structure of a system option depends on the option. Some system options are switches;
for example, CAPS and NOCAPS. Some system options enable you to set values; for example,
DATESTYLE = DMY.

For information on the available system options, see System options (page 42).

Basic example
In this example, the OPTIONS statement is used to specify the amount of memory used to sort data.

OPTIONS SORTSIZE = 2G;
LIBNAME books 'c:\temp\books';
PROC SORT DATA=books.lib_books OUT=temp;
BY author title;

Example – restricting a system option
In this example, the OPTIONS statement is used to set a folder to be searched for macros, and then that
system option is restricted so that the location cannot be changed during the rest of the WPS session.

OPTIONS SASAUTOS = 'C:\macros' RESTRICT= SASAUTOS;

Example – adding information to a system option
In this example, the INSERT option of the OPTIONS statement is used to add a location to the
SASAUTOS system option. This example assumes that SASAUTOS has been set to c:\macros in a
configuration file.

LIBNAME ms 'c:\temp';
OPTIONS INSERT=(SASAUTOS = ms);

This inserts the library reference ms before the current location specified in SASAUTOS; therefore ms
will be searched first for autocall macros.

Reference for language elements
Version 4.1

621

You can use the OPTIONS procedure to display the current setting of the SASAUTOS system option:

PROC OPTIONS OPTION = SASAUTOS SHORT

In this example, this would display the following in the log:

 SASAUTOS=(ms "C:\macros")

PAGE
PAGE ;

RUN
RUN

CANCEL

;

SKIP
SKIP

n
;

SYSTASK statements

SYSTASK COMMAND

SYSTASK COMMAND "operat ing system command"

option

;

Reference for language elements
Version 4.1

622

option

WAIT

NOWAIT

TASKNAME = name

MNAME = var- namem

STATUS = var- name

SHELL

= "shell- path"

CLEANUP

SYSTASK LIST

SYSTASK LIST _ALL_

task- name STATE STATVAR

;

SYSTASK KILL

SYSTASK KILL task- name ;

TITLE

TITLEn

title- options tex t

"tex t"

" styled text "

;

Reference for language elements
Version 4.1

623

title-options

ANGLE = angle

BCOLOR = color

BLANK = YES

NO

color

BOX = n

BSPACE = n

units

COLOR = color

FONT = font

HEIGHT = n

units

LANGLE = n

LSPACE = n

units

JUSTIFY = CENTER

C

LEFT

L

RIGHT

R

ROTATE = n

UNDERLIN = n

units

CELLS

CM

IN

PCT

%

PT

Reference for language elements
Version 4.1

624

styled text

tex t

ods- escape- character { nbspace

newline

raw string

style

style- element- name

[style- attribute = style- value] tex t

sub

super

dagger

sigma

unicode n

tagset- event- name

title- options

}

WAITFOR

WAITFOR

ANY

ALL

remote- id

task- name TIMEOUT = seconds

;

The WAITFOR _ALL_ statement suspends execution of the current session until processing is
complete for all of the task-names (or for all of the server remote-ids in the case of WPS
Communicate), or until the TIMEOUT interval, if specified, has expired.

If you use WAITFOR _ANY_, or simply WAITFOR, instead of WAITFOR _ALL_, then execution of the
session will only be suspended until processing is complete on one of the server task-names or
remote-ids (or until the TIMEOUT interval, if specified, has expired).

Note:
As implied above, the default is _ANY_ rather than _ALL_ if no argument is supplied between WAITFOR
and the remote-ids or task-names.

X statements

X (on UNIX platforms)

X command- text ;

Reference for language elements
Version 4.1

625

X (on Windows)

X command- text ;

X (on z/OS)

X command- text ;

DATA step statements

NEW

name = _NEW_ component- type (

,

component-argument : value

) ;

ABORT
ABORT

ABEND

RETURN

ex it- code NOLIST

;

ARRAY
ARRAY array- name { *

,

dimension

}

$ default- length

temporary

variable- list
i

;

Reference for language elements
Version 4.1

626

i See Variable Lists (page 32).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CALL

CALL rout ine (

,

argument

) ;

CONTINUE
CONTINUE ;

Reference for language elements
Version 4.1

627

DATA
DATA

NULL

output- data- set- with- options
i

;

i See Output dataset (page 16).

DELETE
DELETE ;

DESCRIBE
DESCRIBE ;

This data step statement is only valid for data step views or stored compiled data steps and instructs
WPS to print the source of a stored compiled data step or data step view to the system log. It prevents
the implicit execution of a stored compiled data step.

DO
DO ; statements END ;

DO, iterative

DO index- variable =

,

do- specification ; statements END ;

Reference for language elements
Version 4.1

628

do-specification

start

TO stop BY increment
WHILE (expression

i
)

UNTIL (expression
i i

)

i See SAS Language expressions (page 24).

ii See SAS Language expressions (page 24).

DO UNTIL

DO UNTIL (expression
i

) ; statements END ;

i See SAS Language expressions (page 24).

DO WHILE

DO WHILE (expression
i

) ; statements END ;

i See SAS Language expressions (page 24).

DROP

DROP variable- list
i

;

i See Variable Lists (page 32).

END
END ;

Reference for language elements
Version 4.1

629

ERROR
ERROR

message

EXECUTE
EXECUTE ;

This data step statement is only valid for stored compiled data steps and instructs WPS to execute a
stored compiled dataset. It is implicit unless the DESCRIBE data step statement has been specified.

FILE
In general terms, a FILE statement identifies an external file to be used by the DATA step into which to
write output from a corresponding PUT (page 639) statement.

When used with ODS (FILE PRINT ODS), it lists the variables to include in the ODS output, and must
be used if you have specified the _ODS_ option in the PUT statement.

Note:
The _ODS_ option determines that values are written to the data component for each of the variables
defined as columns via the COLUMNS statement below, using the number of lines specified via N =
Number below.

Caution:
The FILE-PRINT-ODS statement must precede the PUT _ODS_ statement in the DATA step.

When the FILE statement tries to write beyond the final column, the resultant behaviour can be
controlled using the following overflow controls:

• DROPOVER. This discards those values that would otherwise be written beyond the final column.
• FLOWOVER. This creates new lines for those values that would otherwise be written beyond the final

column.
• STOPOVER. This immediately terminates processing of the DATA step, and generates an error

message.

Syntax:

Reference for language elements
Version 4.1

630

FILE LOG

PRINT

ODS = (file- print- ods)

external- file
i

option ;

i See External Files (page 29).

file-print-ods

N = number

DROPOVER

FLOWOVER

STOPOVER

COLUMNS = (column- name

= variable- name

(variable- output- options)

)

DYNAMIC = (dynamic- value- name =

variable- name

constant

)

GENERIC = ON

OFF

LABEL = column- label

OBJECT = object- name

OBJECTLABEL = object- label

TEMPLATE = table- definit ion- name

VARIABLES = (variable- name

= column- name

(variable- output- options)

)

variable-output-options

DYNAMIC = dynamic- value- name

= variable- name

constant

FORMAT = format- name

GENERIC = ON

OFF

LABEL = column- label

Reference for language elements
Version 4.1

631

option
BLKSIZE

BLK

= block- size

BUFND = bufnd

BUFNI = bufni

CLOSE = disposit ion

COLUMN

COL

= variable

DCB = f ileref

DELIMITER

DLM

= "delimiter- char"

character- variable

DEVTYPE = variable

DLMSOPT = "T"

"t"

DLMSTR = "delimiter- string"

character- variable

DROPOVER

DSCB = variable

DSD

FEEDBACK

FDBK

= variable

FILENAME = variable

FILEVAR = variable

FLOWOVER

FOOTNOTES

FOOTNOTE

NOFOOTNOTES

NOFOOTNOTE

HEADER = label

IGNOREDOSEOF

JFCB = variable

KEYLEN = variable

KEYPOS = variable

LINE = variable

LINESIZE = l inesize

LINESLEFT = variable

LRECL = record- length

MOD

N = available- lines

PAGESIZE

PS

OLD

PAD

NOPAD

PAGESIZE = pagesize

PASSWD = "delimiter- string"

PRINT

NOPRINT

RECFM = D

F

FB

N

P

S

S370V

S370VB

S370VS

S370VBS

S370VSTREAM

S370VSSTREAM

U

V

VB

RECORDS = variable

RESET

RRN = variable

STOPOVER

TERMSTR = CR

CRLF

LF

NL

NULL

TITLES

TITLE

NOTITLES

NOTITLE

UCBNAME = variable

VOLUME

VOLUMES

= variable

VSAM

FILE = variable

Reference for language elements
Version 4.1

632

FORMAT

FORMAT variable- list
i

format

DEFAULT = format_name

;

i See Variable Lists (page 32).

GO TO
GO TO

GOTO

label ;

IF, subsetting

IF condition
i

;

i See SAS Language expressions (page 24).

IF-THEN/ELSE

IF condition
i

THEN t rue- executable- statement

ELSE false- executable- statement

i See SAS Language expressions (page 24).

Reference for language elements
Version 4.1

633

INFILE

INFILE CARDS

DATALINES

CARDS4

DATALINES4

external- file
i

option ;

i See External Files (page 29).

Reference for language elements
Version 4.1

634

option
BACKWARD

BWD

BLKSIZE

BLK

= block- size

BUFND = bufnd

BUFNI = bufnd

CARDS

CARDS4

DATALINES

DATALINES4

CCHHR = variable

COLUMN

COL

= variable

CONTROLINTERVAL

CTLINTV

CNV

DCB = f ileref

DELIMITER

DLM

= "delimiter- char"

DLMSOPT = " I

i

T

t

"

DLMSTR = "delimiter- string"

character- variable

DSCB = variable

DSD

END = variable

EOF = label

EOV = variable

ERASE = variable

EXPANDTABS

NOEXPANDTABS

FEEDBACK

FDBK

= variable

FILENAME = variable

FILEVAR = variable

FIRSTOBS = n

FLOWOVER

GENKEY

IGNOREDOSEOF

JFCB = variable

KEY = variable

KEYGE

KEYLEN = variable

KEYPOS = variable

LENGTH = variable

LINE = variable

LINESIZE = l inesize

LRECL = record- length

MISSOVER

NORLS

NRLS

RLS

N = available- lines

OBS = observat ion- number

MAX

PAD

NOPAD

PASSWD = "delimiter- string"

PRINT

NOPRINT

RBA = variable

RECFM = record- format

RECORDS = variable

RESET

RLS

RLSREAD = NRI

CR

CRE

RRN = variable

SCANOVER

SEQUENTIAL

SEQ

SHAREBUFFERS

SHAREBUFS

SKIP

START = variable

STOPOVER

TERMSTR = CR

CRLF

LF

NL

NULL

TRUNCOVER

UNBUFFERED

UNBUF

UPDATE = variable

VOLUME

VOLUMES

= variable

VSAM

INFILE = variable

Reference for language elements
Version 4.1

635

INFORMAT

INFORMAT variable- list
i

informat ;

i See Variable Lists (page 32).

INPUT

INPUT pointer- control

column- input

list- input

formatted- input

informat- list

@

@@

;

pointer-control

@ n

numeric- variable

(expression
i

)

+ n

numeric- variable

(expression
i i

)

n

numeric- variable

(expression
i i i

)

/

i See SAS Language expressions (page 24).

ii See SAS Language expressions (page 24).

iii See SAS Language expressions (page 24).

Reference for language elements
Version 4.1

636

column-input

variable

$

start- column

- end- column

formatted-input

variable informat
iv

(variable- list
v

) (informat- list)

iv See INFORMAT (page 635).

v See Variable Lists (page 32).

informat-list

n *

informat
vi

pointer- control

vi See INFORMAT (page 635).

list-input

variable

$

variable : informat
vii

variable &

informat
viii

variable ~

informat
ix

vii See INFORMAT (page 635).

viii See INFORMAT (page 635).

ix See INFORMAT (page 635).

Reference for language elements
Version 4.1

637

KEEP

KEEP variable- list
i

;

i See Variable Lists (page 32).

LABEL

LABEL variable- list
i
= "label" ;

i See Variable Lists (page 32).

Labels,Statement
label: statement ;

LEAVE
LEAVE ;

LENGTH

LENGTH variable- list
i

$

length

DEFAULT = default_length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

638

LINK
LINK label ;

LIST
LIST ;

MERGE

MERGE input- data- set- with- options
i

END = variable

;

i See Input dataset (page 16).

MODIFY

MODIFY master- ds
i

option1

option2

option3

option4

;

i See Input dataset (page 16).

option1

trans- ds
i i

NOBS = variable

END = variable

UPDATEMODE = MISSINGCHECK

NOMISSINGCHECK

Reference for language elements
Version 4.1

639

ii See Input dataset (page 16).

option2

KEY = index

NOBS = variable

END = variable

option3

POINT = index

NOBS = variable

option4

NOBS = variable

END = variable

OUTPUT

OUTPUT data- set- name ;

PUT
In general terms, a PUT statement determines which lines are written, and controls how and where they
are written. When output is to be written to an external file, this is specified in a corresponding FILE
(page 629) statement.

When used with the _ODS_ option, it writes values to the data component for each of the variables
defined as columns via the COLUMNS statement in the FILE-PRINT-ODS statement (refer to the
FILE (page 629) statement).

Caution:
The FILE-PRINT-ODS statement must precede the PUT _ODS_ statement in the DATA step.

Syntax:

Reference for language elements
Version 4.1

640

PUT _ALL_

ODS

n *

"character- string"

"character- string"

column- output

format- list

formatted- output

list- output

named- output

pointer- control

@

@@

;

pointer-control

@ n

numeric- variable

(expression
i

)

+ n

numeric- variable

(expression
i i

)

n

numeric- variable

(expression
i i i

)

/

BLANKPAGE

PAGE

i See SAS Language expressions (page 24).

ii See SAS Language expressions (page 24).

iii See SAS Language expressions (page 24).

column-output

variable start- column

- end- column

Reference for language elements
Version 4.1

641

formatted-output

variable
~

format
iv

(variable- list
v

) (format- list)

iv See FORMAT (page 632).

v See Variable Lists (page 32).

format-list

n *

format
vi

"character- string"

pointer- control

vi See FORMAT (page 632).

list-output

variable

: format
vii

: ~ format
viii

~ : format
ix

& format
x

& ~ format
x i

~ & format
x ii

vii See FORMAT (page 632).

viii See FORMAT (page 632).

ix See FORMAT (page 632).

x See FORMAT (page 632).

xi See FORMAT (page 632).

xii See FORMAT (page 632).

Reference for language elements
Version 4.1

642

named-output

variable =

start- column

- end- column

format
x iii

xiii See FORMAT (page 632).

PUTLOG
PUTLOG

message

REDIRECT

REDIRECT INPUT

OUTPUT

old- dataset- name = new- dataset- name ;

This data step statement is only valid for stored compiled data steps and changes which datasets the
stored compiled data step will use for input or output. It may be used multiple times in a data step.

REMOVE

REMOVE data- set- name ;

RENAME

RENAME old- variable- name = new- variable- name ;

Reference for language elements
Version 4.1

643

REPLACE

REPLACE data- set- name ;

RETAIN

RETAIN variable- list
i

init ial- value

(init ial- value)

;

i See Variable Lists (page 32).

RETURN
RETURN ;

SELECT

SELECT

(expression
i

)

; when- clause

otherwise- clause

END

;

i See SAS Language expressions (page 24).

when-clause

WHEN (

,

expression
i i

) statement

ii See SAS Language expressions (page 24).

Reference for language elements
Version 4.1

644

otherwise-clause

OTHERWISE

OTHER

statement

SET

SET input- data- set- with- options
i

option ;

i See Input dataset (page 16).

option

END = variable

KEY = index

/ UNIQUE

NOBS = variable

POINT = variable

SKIP
SKIP n ;

STOP
STOP ;

Sum
variable + expression ;

Reference for language elements
Version 4.1

645

UPDATE

UPDATE input- data- set- with- options
i

transaction- dataset- with- options
i i

END = variable UPDATEMODE = MISSINGCHECK

NOMISSINGCHECK

BY by- variable ;

i See Input dataset (page 16).

ii See Input dataset (page 16).

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Describing data in a DATA step

CARDS

CARDS ;

CARDS4

CARDS4 ;

DATALINES

DATALINES ; data- lines

Reference for language elements
Version 4.1

646

DATALINES4

DATALINES4 ; data- lines

DATA step functions and CALL routines
The DATA step functions and CALL routines enable you to read data from and write data to a variety of
sources, such as datasets and files in formats external to WPS. The data can be manipulated in various
ways to make it ready for use by other functions or procedures.

You can, for example, use mathematical and statistical functions to operate on numeric data before
presenting the data in graphs or writing it to other files. You can manipulate character-based data to find
strings and replace strings, or concatenate data to make other strings. You can find and remove data
not required by other operations, such as separators or quotation marks, or you can add separators or
quotation marks.

If a DATA step function returns a character value to an unformatted specified variable, the variable is
created with a default length of 200 characters.

DATA step functions and CALL routines available are grouped by operation.

Array functions .. 648
Return the dimensions and bounds of an array.

Bitwise functions ... 652
Manipulate bits in variables using bitwise operations.

Combination functions and CALL routines ... 658
Perform combination and permutation operations on specified item.

Comparison functions ... 671
Compare strings and numbers and return values based on whether the result is true or false.

Cryptographic functions .. 674
Create cryptographic hashes.

Date and time functions and CALL routine .. 684
Select, convert and calculate dates and times; for example, you can convert dates to Julian
dates, get the current date, count completed time intervals, or return the weekday number.

Dataset input and output functions and CALL routines ..723
Open and close datasets, get information about datasets, and get observations from them.

Decision forest functions and CALL routines ... 764
Access decision forest functionality.

Difference and lag functions ... 768
Find the difference or lag between two variables.

Reference for language elements
Version 4.1

647

Distribution-based functions and CALL routines .. 775
Perform statistical operations on various probability distributions, including density, survival,
quantile and deviance calculations, and drawing random numbers.

External file functions ..1367
Open and close files that have formats external to WPS, and perform other operations using
those files.

External module functions and CALL routines ... 1420
Execute code stored in external modules.

Financial functions .. 1434
Get information about various kinds of financial transactions, such as investments, assets, risk
and so on.

Internet functions ...1578
Send and receive information from internet-based resources. These functions can only be used
in programs executed by an Application Server with a WPS Web application.

List functions and CALL routines ..1593
Manipulate variables in lists. Lists contain values identified either by their position in the list, or by
names.

ISPF CALL routines .. 1741
Use the ISPF service to perform tasks.

Macro functions and CALL routines ... 1743
Manipulate macro variables and execute macros in the DATA step.

Mathematical functions and CALL routines .. 1757
Perform mathematical operations on the data.

Memory manipulation functions .. 1880
Manipulate memory.

Miscellaneous functions .. 1894
Miscellaneous functions.

National language support functions .. 1899
Acquire and set information relating to locales.

Regular expression functions and CALL routines .. 1913
Find and manipulate strings using regular expressions.

Sequence manipulation functions ... 1932
Operate on sequences (lists) of items in variables.

String functions and CALL routines ..1941
Manipulate strings and characters. Strings are sequences of one or more characters.

System command function and CALL routine .. 2109
Execute system commands and run executable files.

System information functions ..2112
Return information about the operating system and WPS.

Truncation and rounding functions ... 2119
Define how numbers will be truncated or rounded.

Reference for language elements
Version 4.1

648

Unicode functions ..2145
Convert strings and characters to Unicode format.

Value formatting and assignment functions ..2150
Format and assign data to variables.

Variable information functions and CALL routines ... 2162
These functions return information about variables assigned in the DATA step, either explicitly or
from a dataset.

Web functions ... 2214
Convert the text in URLs and HTML files to different forms.

Zipcode functions .. 2220
Accesses information in the ZIPCODE dataset and returns city names, state numbers, state
codes, state names, and distances between locations.

Array functions
Return the dimensions and bounds of an array.

DIM .. 648
Returns the size of the specified dimension for an array.

HBOUND ... 649
Returns the upper bound of a specified dimension for an array.

LBOUND ..651
Returns the lower bound of a specified dimension for an array.

DIM
Returns the size of the specified dimension for an array.

DIMn (array

, dimension

)

You can specify the dimension for which you want information in two ways:

• By using the dimension argument, described below.
• By appending a value n to DIM.

You can only use one method. If you supply both n and dimension, an error occurs.

If no dimension is specified, the size of the first dimension is returned.

Return type: Numeric

Reference for language elements
Version 4.1

649

array

Type: Array

The name of the array.

dimension
Optional argument

Type: Numeric

The dimension for which the size is returned. By default, this is 1 (the first dimension).

Example
In this example, the function is used to find the number of elements of the specified array dimensions.
The result is written to the log.

data _null_;

 array a1 {1, 3, 2} a b c d e f;

 rc = dim(a1);
 put "Number of elements: " rc;

 rc = dim(a1,2);
 put "Number of elements: " rc;

 rc = dim3(a1);
 put "Number of elements: " rc;

run;

This produces the following output:

Number of elements: 1
Number of elements: 3
Number of elements: 2

In the first use of DIM no dimension is specified, so the number of elements in the first dimension is
returned.

HBOUND
Returns the upper bound of a specified dimension for an array.

HBOUNDn (array

, dimension

)

You can specify the dimension for which you want information in two ways:

• By using the dimension argument, described below.

Reference for language elements
Version 4.1

650

• By appending a value n to HBOUND.

You can only use one method. If you supply both n and dimension, an error occurs.

If no dimension is specified, the upper bound of the first dimension is returned.

Return type: Numeric

array

Type: Array

The name of the array for which you want information.

dimension
Optional argument

Type: Numeric

The dimension for which the upper bound is to be returned. By default, this is 1 (the first
dimension).

Example
In this example, the function is used to find the upper bounds of the three specified dimensions of an
array. The result is written to the log.

DATA _NULL_;

 ARRAY a1 {1, 3, 2} a b c d e f;

 ubv = HBOUND(a1);
 PUT "Upper bound of first dimension: " ubv;

 ubv2 = HBOUND(a1,2);
 PUT "Upper bound of second dimension: " ubv2;

 ubv3 = HBOUND3(a1);
 PUT "Upper bound of third dimension: " ubv3;

run;

This produces the following output:

Upper bound of first dimension: 1
Upper bound of second dimension: 3
Upper bound of third dimension: 2

In the first use of HBOUND no dimension is specified, so the upper bound of the first dimension is
returned.

Reference for language elements
Version 4.1

651

LBOUND
Returns the lower bound of a specified dimension for an array.

LBOUNDn (array

, dimension

)

You can specify the dimension for which you want information in two ways:

• By using the dimension argument, described below.
• By appending a value n to LBOUND.

You can only use one method. If you supply both n and dimension, an error occurs.

If no dimension is specified, the lower bound of the first dimension is returned.

Return type: Numeric

array

Type: Array

The name of the array.

dimension
Optional argument

Type: Numeric

The dimension for which the lower bound is to be returned. By default, this is 1 (the first
dimension).

Example
In this example, the function is used to find the lower bounds of the three specified dimensions of an
array. The result is written to the log.

DATA _NULL_;

 ARRAY a1 {1, 3, 2} a b c d e f;

 lbv = LBOUND(a1);
 PUT "Lower bound of first dimension: " lbv;

 lbv2 = LBOUND(a1,2);
 PUT "Lower bound of second dimension: " lbv2;

 lbv3 = LBOUND3(a1);
 PUT "Lower bound of third dimension: " lbv3;

run;

Reference for language elements
Version 4.1

652

This produces the following output:

Lower bound of first dimension: 1
Lower bound of second dimension: 1
Lower bound of third dimension: 1

In the first use of LBOUND no dimension is specified, so the lower bound of the first dimension is
returned.

Bitwise functions
Manipulate bits in variables using bitwise operations.

You might need to use these functions with datasets that contain bit-like data in variables; for example,
where Yes and No are represented by 1 and 0.

BAND ...652
Returns the result of combining arguments using a bitwise AND.

BOR ...653
Returns the result of combining two arguments using a bitwise OR.

BXOR .. 654
Returns the result of combining two arguments using a bitwise XOR.

BNOT ...655
Returns the result of swapping bit values using a bitwise NOT.

BLSHIFT ..656
Returns the result of shifting the bits of an argument to the left.

BRSHIFT ... 657
Returns the result of shifting the bits of an argument to the right.

BAND
Returns the result of combining arguments using a bitwise AND.

BAND (number1 , number2)

Each corresponding bit in the arguments is compared, and if two corresponding bits are 1, the resulting
bit is 1. Any other combination of corresponding bits results in a bit value of 0.

Return type: Numeric

number1

Type: Numeric

Reference for language elements
Version 4.1

653

The first value to be combined.

number2

Type: Numeric

The second value to be combined.

Each number is interpreted as a 32-bit integer. If you pass a number that is not an integer, any fraction
is ignored and the number converted to an integer. A runtime error is returned if the integer is less than
zero or greater than 232-1.

Example
In this example, two numbers are combined using the BAND function. The result is written to the log.

DATA _NULL_;
 result=BAND(10, 12);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 8

The numbers are combined as the binaries 1010 and 1100; the function creates the binary 1000,
which is returned as the corresponding decimal 8.

BOR
Returns the result of combining two arguments using a bitwise OR.

BOR (number1 , number2)

Combines the values of two arguments using a bitwise OR. Each bit in the arguments is compared; if
corresponding bits are 0, the resulting bit is 0. Any other combination of corresponding bits results in a
bit value of 1. The result is returned as a numeric value.

Return type: Numeric

number1

Type: Numeric

The first value to be combined.

number2

Type: Numeric

The second value to be combined.

Reference for language elements
Version 4.1

654

Each number is interpreted as a 32-bit integer. If you pass a number that is not an integer, any fraction
is ignored and the number converted to an integer. A runtime error is returned if the integer is less than
zero or greater than 232-1.

Example
In this example, two numbers are combined using the BOR function. The result is written to the log.

DATA _NULL;
 result = BOR(10, 12);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 14

The numbers are combined as the binaries 1010 and 1100; the function creates the binary 1110,
which is returned as the corresponding decimal 14.

BXOR
Returns the result of combining two arguments using a bitwise XOR.

BXOR (number1 , number2)

Combines the values of two arguments using a bitwise XOR. Each bit in the arguments is compared;
the function adds the bits in the corresponding location of number1 and number2, and discards the
carry. The result is 0 when two 0s or two 1s correspond; otherwise the result is 1. For example, if 0 in
one argument corresponds with 1 in the other, then the result is 1. The result of the function is returned
as a numeric value.

Return type: Numeric

number1

Type: Numeric

The first value to be combined.

number2

Type: Numeric

The second value to be combined.

Each number is interpreted as a 32-bit integer. If you pass a number that is not an integer, any fraction
is ignored and the number converted to an integer. A runtime error is returned if the integer is less than
zero or greater than 232-1.

Reference for language elements
Version 4.1

655

Example
In this example, two numbers are combined using the BXOR function. The result is written to the log.

DATA _NULL_;
 result = BXOR(10, 12);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 6

The numbers are combined as the binaries 1010 and 1100; the function creates the binary 0110,
which is returned as the corresponding decimal 6.

BNOT
Returns the result of swapping bit values using a bitwise NOT.

BNOT (number)

Swaps the values of each bit in an argument using a bitwise NOT. If a bit is 1, then 0 is returned; if a bit
is 0, then 1 is returned.

Return type: Numeric

number

Type: Numeric

The value to be bit-swapped.

Each number is interpreted as a 32-bit integer. If you pass a number that is not an integer, any fraction
is ignored and the number converted to an integer. A runtime error is returned if the integer is less than
zero or greater than 232-1.

Example
In this example, the binary digits of a number are swapped using the BNOT function. The result is written
to the log.

DATA _NULL_;
 result = BNOT(0);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 4294967295

Reference for language elements
Version 4.1

656

The decimal number 0 is converted to the 32-bit binary number
00000000000000000000000000000000; this function creates the binary
11111111111111111111111111111111 which is returned as the corresponding decimal integer,
4294967295.

BLSHIFT
Returns the result of shifting the bits of an argument to the left.

BLSHIFT (number , shift - amt)

Performs a left bit-shift, which moves the bits in a value to the left. The bits lost by the shift at the
left-hand end of the value are replaced by zeros at the right-hand end of the value. You can specify
the number of bits to be shifted. For example, if the binary value 0101 is bit-shifted to the left by one
position, the result will be 1010. If the binary value 001101 is bit-shifted to the left by two positions, the
result will be 110100.

Return type: Numeric

number

Type: Numeric

The value to be bit-shifted to the left.

shift-amt

Type: Numeric

The number of bits to be shifted.

number is interpreted as a 32-bit integer. If you pass a number that is not an integer, any fraction is
ignored and the number converted to an integer. A runtime error is returned if the integer is less than
zero or greater than 232-1.

Example
In this example, the binary digits of a number are bit-shifted to the left by two digits. The result is written
to the log.

DATA _NULL_;
 result = BLSHIFT(75,2);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 300

Reference for language elements
Version 4.1

657

The number 75 corresponds to the binary 001001011; a left-shift of two digits results in 100101100,
which is returned as the corresponding decimal, 300.

BRSHIFT
Returns the result of shifting the bits of an argument to the right.

BRSHIFT (number , shift - amt)

Performs a right bit-shift, which moves the bits in a value to the right. The bits lost by the shift at the
right-hand end of the value are replaced by zeroes at the left-hand end of the string. You can specify
the number of bits to be shifted. For example, if the binary value 101 is bit-shifted to the right by one
position, the result will be 010. If the binary value 1101 is bit-shifted to the right by two positions, the
result will be 0011.

Return type: Numeric

number

Type: Numeric

The value to be bit-shifted to the right.

shift-amt

Type: Numeric

The number of bits to be shifted.

number is interpreted as a 32-bit integer. If you pass a number that is not an integer, any fraction is
ignored and the number converted to an integer. A runtime error is returned if the integer is less than
zero or greater than 232-1.

Example
In this example, the binary digits of a number are bit-shifted to the right by two digits. The result is
written to the log.

DATA _NULL_;
 result = BRSHIFT(75,2);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 18

The decimal number 75 corresponds to the binary 001001011; a right-shift of two digits results in
000010010, which is returned as the corresponding decimal 18.

Reference for language elements
Version 4.1

658

Combination functions and CALL routines
Perform combination and permutation operations on specified item.

Both combinations and permutations are selections of a number of items from a larger number of items;
for example, four numbers from ten numbers, or three toys from ten toys. With a combination, order
is not important ; the numbers 5, 9, 10 and the numbers 10,5, 9 are the same combination. With a
permutation, order matters; the numbers 5, 9, 10 are a different permutation to the numbers 10, 5, 9.

The number of permutations or combinations is also affected by whether repetitions are allowed; that
is, whether choosing an item reduces the total number of items from which selection can be made. For
example, if you choose three numbers from ten, each choice reduces by one the group of numbers
from which you can choose; you can then only create a permutation without repetition. However, if you
were to replace each drawn number with the same number, you would be able to create a permutation
with repetition.

In these functions, repetition is not allowed, for either combinations or permutations.

ALLPERM ..659
Returns the ordinal position in a list of permuted items at which the permutation changed from the
previous permutation.

COMB ..661
Returns the number of combinations for a specified number of items in a group of items.

LCOMB ..662
Returns the number of combinations for a specified number of items in a group of items and
returns the result as a natural logarithm.

LPERM .. 663
Returns as a natural logarithm the number of permutations for a specified number of items in a
group of items.

PERM .. 664
Returns the number of permutations of a group of items.

CALL ALLPERM ... 664
Returns the permutation at a specified place in a list of permuted sequences.

CALL RANPERK ...666
Returns a random permutation of the argument list.

CALL RANPERM .. 669
Returns a random permutation of the argument list.

Reference for language elements
Version 4.1

659

ALLPERM
Returns the ordinal position in a list of permuted items at which the permutation changed from the
previous permutation.

ALLPERM (k ,

,

value)

The position returned is that of the left-hand item of the pair of items that had to change in the previous
permutation to create the specified permutation. Items are permuted beginning from the order of the
group of items you specify. The items must be provided as a list of arguments, or as an array.

Return type: Numeric

k

Type: Numeric

The rank of the permutation. The permutations are ranked from 1 to the number of permutations.
No repetitions are allowed. For example, the number of permutations of three items with no
repetitions allowed is six; the rank of the initial list of items to be permuted is 1, the rank of the
final permutation is numbered 6.

value

Type: Var

An item to be permuted.

value must be an item stored in an argument, or an array. Each item must have the same
number of characters; if they do not, use formatting or other functions to make them the same.

Basic example
In this example, the function returns the position of the left hand item of the pair that changed to create
the specified permutation. The result is written to the log.

DATA _NULL_;
 var1 = '100';
 var2 = 'egg';
 var3 = 'red';
 result1 = ALLPERM(2,var1,var2,var3);
 PUT "The position of the left hand item of the pair that changed is: " result1;
RUN;

This produces the following output:

The position of the left hand item of the pair that changed is: 2

Reference for language elements
Version 4.1

660

In this example, the permutations (remembering that the function permutes with no repetitions) are:

100 egg red
100 red egg
egg 100 red
egg red 100
red 100 egg
red egg 100

In the specified line, line two, the items that were changed to make that permutation were egg and
red in line 1, which became red and egg in line two. The left-hand item of the pair that changed is,
therefore, the second item.

Example - listing position of change for all permutations
In this example, the DATA step used in the section Basic Example is modified so that all permutiations
are output. The result is written to the log.

DATA _NULL_;
 var1 = '100';
 var2 = 'egg';
 var3 = 'red';
 DO i = 1 TO perm(3);
 result1 = ALLPERM(i,var1,var2,var3);
 PUT result1;
 END;
RUN;

All permutations are checked in the DO loop, and the following results are returned and written to the log
with the PUT statement:

0
2
1
2
1
2

The first result is 0; it is the first permutation, the items are as ordered in var1,var2,var3 and no
changes have been made. The second result is 2, as described in Basic Example. The third result is 1;
and so on. How the first three results are determined is described in the table below.

100 egg red First line - no changes have been made, so 0 is returned
100 red egg red and egg swapped. The first (left-hand) index position of the pair of items

that were swapped to make this change is at index position 2.
egg 100 red 100 and red moved. The first (left-hand) index position of the pair of items that

were moved to make this change is at index position 1.

This pattern continues for each permutation.

Reference for language elements
Version 4.1

661

COMB
Returns the number of combinations for a specified number of items in a group of items.

COMB (n , r)

Items are permuted without repetition. The number of combinations returned is also equal to the
binomial coefficient for specified values.

Return type: Numeric

n

Type: Numeric

The total number of items in a group.

r

Type: Numeric

The number of items to be combined.

Example
In this example, the function is used to calculate the number of combinations of three items in a group
of five items, and then to calculate the number of combinations of four items in a group of ten items.
The result is written to the log.

DATA _NULL_;

 result=COMB(5,3);
 PUT "The number of combinations is: " result;

 result=COMB(10,4);
 PUT "The number of combinations is: " result;

RUN;

This produces the following output:

The number of combinations is: 10
The number of combinations is: 210

Reference for language elements
Version 4.1

662

LCOMB
Returns the number of combinations for a specified number of items in a group of items and returns the
result as a natural logarithm.

LCOMB (n , r)

Combinations are made without repetition.

Return type: Numeric

n

Type: Numeric

The total number of items in a group.

r

Type: Numeric

The number of items to be combined.

Example
In this example, the function calculates the number of combinations of three items in a group of five
items, and four items in a group of tem items. The result is written to the log.

DATA _NULL_;

 result=LCOMB(5,3);
 PUT "The number of combinations is: " result;

 result=LCOMB(10,4);
 PUT "The number of combinations is: " result;

RUN;

This produces the following output:

The number of combinations is: 2.302585093
The number of combinations is: 5.3471075307

The first result is the natural logarithm of 10; the second is the natural logarithm of 210.

Reference for language elements
Version 4.1

663

LPERM
Returns as a natural logarithm the number of permutations for a specified number of items in a group of
items.

LPERM (n
, r

)

Return type: Numeric

n

Type: Numeric

The number of items in the group.

r
Optional argument

Type: Numeric

The number of items to be permuted.

Example
In this example, the function calculates the number of permutations of three items in a group of ten
items, of three items in a group of five items, and four items in a group of tem items. Repetition is not
allowed. The result is written to the log.

DATA _NULL_;

 result=LPERM(5,3);
 PUT "The number of permuations is is: " result;

 result=LPERM(10,4);
 PUT "The number of permutations is: " result;

RUN;

This produces the following output:

The number of permutations is: 4.0943445622
The number of permutations is: 8.5251613611

The first result is the natural logarithm of 60; the second is the natural logarithm of 5040.

Reference for language elements
Version 4.1

664

PERM
Returns the number of permutations of a group of items.

PERM (n
, r

)

The items are permuted without repetition.

Return type: Numeric

n

Type: Numeric

The total number of items in a collection.

r
Optional argument

Type: Numeric

The number of items to be permuted.

Example
In this example, the function calculates the number of permutations of three items in a group of five
items, and of four items in a group of ten items. The result is written to the log.

DATA _NULL_;

 result=PERM(5,3);
 PUT "The number of permutations is: " result;

 result=PERM(10,4);
 PUT "The number of permutations is: " result;

RUN;

This produces the following output:

The number of permutations is: 60
The number of permutations is: 5040

CALL ALLPERM
Returns the permutation at a specified place in a list of permuted sequences.

CALL ALLPERM (k ,

,

value) ;

Reference for language elements
Version 4.1

665

Items are permuted beginning from the series of items you specify. The items to be permuted must be
provided as a list of variables, or as an array.

The permuted items are returned to the specified variables or array, and replace the original contents.

k

Type: Numeric

The rank of the permutation. The permutations are ranked from 1 to the number of permutations.
No repetitions are allowed. For example, the number of permutations of three items with no
repetitions allowed is six; the rank of the initial list of items to be permuted is 1, the rank of the
final permutation is numbered 6.

value

Type: Var

An item to be permuted.

value must be an item in a variable, or an array.

The value of each item in a variable or array must be the same length; if the lengths vary, use
formatting or other functions to make them the same.

Basic example
In this example, the routine writes the specified permutation from the list of all permutations. The result
is written to the log.

DATA _NULL_;
 var1=1;
 var2=2;
 var3=3;
 CALL ALLPERM(4, var1,var2,var3);
 PUT "The fourth permutation is: " var1 var2 var3;
RUN;

This produces the following output:

The fourth permutation is: 1 3 2;

Reference for language elements
Version 4.1

666

Example – writing all permutations of the initial items
In this example, the routine creates all permutations of the initial items 1,2 and 3. The result is written to
the log.

DATA _NULL_;
 var1=1;
 var2=2;
 var3=3;
 DO i = 1 TO fact(3);
 CALL ALLPERM(i, var1,var2,var3);
 PUT 'Permutation ' i 'is: ' var1 var2 var3;
 END;
RUN;

This produces the following output:

Permutation 1 is: 1 2 3
Permutation 2 is: 1 3 2
Permutation 3 is: 3 1 2
Permutation 4 is: 3 2 1
Permutation 5 is: 2 3 1
Permutation 6 is: 2 1 3

CALL RANPERK
Returns a random permutation of the argument list.

CALL RANPERK (seed , number- of- permutat ions ,

,

variable) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the random stream is initialised with the
specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same permutation each time the DATA step is executed, set seed to a negative value
or zero. This enables you to generate several reproducible permutations from the same DATA step.
To generate a different permutation each time the DATA step is executed, set seed to a positive value
greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the nearest
integer.

Each time you execute this routine, a new random permutation is generated; this includes each use
with an updated seed. The permutation is generated immediately after the stream has been initialised.

Reference for language elements
Version 4.1

667

Any items not permuted are returned in the remaining variables or array entries. For example, if you
have five items, 1, 2, 3, 4 and 5, and number-of-permutations is set to 3, then three of the five numbers
are permuted together – say 1, 3, 5 – and returned in the first three variables or array entries; the two
numbers not permuted – in this case 2 and 4 – are returned in the final two variables or array entries.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

number-of-permutations

Type: Numeric

The number of permutations.

variable

Type: Var

An array containing the items to be permuted, or a list of variables containing items to be
permuted. The items must be of the same type. The permuted items are returned to these
variables, or to the array. If strings are used they must be the same length, or defined as the
same length.

Examples
In this example, a random permutation is returned on each iteration of the loop. The result of each
permutation is returned to the array, and the array is then written to the log.

DATA _NULL_;
 ARRAY rp rp1-rp5 (2 9 100 2 4);
 DO i = 1 TO 5;
 CALL RANPERK (2, 4, of rp1-rp5);
 PUT rp1-rp5;
 END;
RUN;

This produces the following output:

9 4 2 100 2
2 9 2 100 4
2 9 100 2 4
2 9 4 100 2
4 2 2 100 9

Reference for language elements
Version 4.1

668

In this example, a random permutation is returned on each iteration of the loop. The result of each
permutation is returned to the variables, and these variables then written to the log.

DATA _NULL_;
 var1=1;
 var2=2;
 var3=3;
 var4=100;
 var5=102;
 DO i = 1 TO 5;
 CALL RANPERK (13,4,var1,var2,var3,var4,var5);
 PUT var1 var2 var3 var4 var5;
 END;
RUN;

This produces the following output:

3 100 1 2 102
102 2 1 3 100
3 100 102 2 1
3 1 2 100 102
2 102 1 3 100

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 ARRAY rp rp1-rp5 (2 9 100 2 4);
 DO i = 1 TO 5;
 CALL RANPERK (0, 4, of rp1-rp5);
 PUT rp1-rp5;
 END;
RUN;

This produces the following output:

9 2 4 2 100
4 9 100 2 2
2 100 9 4 2
9 4 2 2 100
100 9 2 4 2

Running the DATA step again produces the following output.

2 100 2 4 9
2 4 100 2 9
100 9 2 2 4
2 100 4 9 2
4 2 2 9 100

Reference for language elements
Version 4.1

669

CALL RANPERM
Returns a random permutation of the argument list.

CALL RANPERM (seed ,

,

variable) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the random stream is initialised with the
specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same permutation each time the DATA step is executed, set seed to a negative value
or zero. This enables you to generate several reproducible permutations from the same DATA step.
To generate a different permutation each time the DATA step is executed, set seed to a positive value
greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the nearest
integer.

Each time you execute this routine, a new random permutation is generated; this includes each use
with an updated seed. The permutation is generated immediately after the stream has been initialised.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

variable

Type: Var

An array containing the items to be permuted, or a list of variables containing items to be
permuted. The items must be of the same type. The permuted items are returned to these
variables, or to the array. If strings are used they must be the same length, or defined as the
same length.

Reference for language elements
Version 4.1

670

Examples
In this example, a random permutation is returned on each iteration of the loop. The result is returned to
the array, and then this array is written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 ARRAY rp rp1-rp5 (2 9 100 2 4);
 DO i = 1 TO 5;
 CALL RANPERM(2, of rp1-rp5);
 PUT rp1-rp5;
 END;
RUN;

This produces the following output:

The random numbers are:
2 4 100 2 9
4 100 2 2 9
2 2 100 9 4
4 2 100 2 9
2 4 9 2 100

In this example, a random permutation is returned on each iteration of the loop. These permutations are
then written to the log.

DATA _NULL_;
 var1=1;
 var2=2;
 var3=3;
 DO i = 1 TO 5;
 CALL RANPERM (5,var1,var2,var3);
 PUT var1 " " var2 " " var3;
 END;
RUN;

This produces the following output:

1 2 3
2 1 3
2 3 1
2 3 1
3 1 2

If the seed is set to 0, each run produces a different series of permutations. For example:

DATA _NULL_;
 ARRAY rp rp1-rp5 (2 9 100 2 4);
 DO i = 1 TO 5;
 CALL RANPERM (0, of rp1-rp5);
 PUT rp1-rp5;
 END;
RUN;

Reference for language elements
Version 4.1

671

This produces the following output:

4 100 2 2 9
2 100 9 4 2
9 4 2 2 100
2 4 100 2 9
2 9 4 2 100

Running the DATA step again produces the following output.

100 2 9 4 2
2 9 100 4 2
2 9 4 2 100
100 9 2 2 4
2 100 4 2 9

Comparison functions
Compare strings and numbers and return values based on whether the result is true or false.

IFC ...671
Returns a string as the result of evaluating a condition. A string is defined for the true and for the
false evaluation. Optionally, if the condition is missing, another specified string can be returned.

IFN ...673
Returns a specified result based on a control condition.

IFC
Returns a string as the result of evaluating a condition. A string is defined for the true and for the false
evaluation. Optionally, if the condition is missing, another specified string can be returned.

IFC (condit ion , t rue- string , false- string

, missing- string

)

Return type: Character

condition

Type: Numeric

A valid condition. This can be another function, or any expression.

true-string

Type: Character

The string to be returned if condition is true.

Reference for language elements
Version 4.1

672

false-string

Type: Character

The string to be returned if condition is false.

missing-string
Optional argument

Type: Character

The string to be returned if condition is missing.

Basic example
In this example, the function returns the text corresponding to the truth value of the first argument. The
result is written to the log.

DATA _NULL_;
 result = IFC(1, 'tree', 'flash');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: tree

condition is explicitly set to 1 and is therefore true, so the function returns the string in the true-string
argument.

Example – condition returned by another function
In this example, the value of condition is set by another DATA step function. The result is written to the
log.

DATA _NULL_;
 search = 'London';
 result = IFC(contains('SBC Ltd 2 50 London', search), 'Contains London', 'No
 London');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: Contains London

In this example, condition is set to true (1) by the CONTAINS function, which returns 1 if a string
contains a specified substring, 0 if not. In this case, the string searched for is London; the string
is found, so CONTAINS returns 1. Because condition is true, the function returns the string in the
true-string argument.

Reference for language elements
Version 4.1

673

Example – missing value
In this example, the function returns the text specified for the missing-string . The result is written to the
log.

DATA _NULL_;
 result = IFC(choosen(3, 1, 100, var1, 7, 12), 'Big Number', 'Small Number',
 'Missing');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: Missing

In this example, the CHOOSEN function contains an uninitialised variable (var1), which causes the
function to return a missing value. In turn, this causes the IFC function to use the missing-string
argument.

IFN
Returns a specified result based on a control condition.

IFN (condit ion , t rue- result , false- result

, missing- result

)

Evaluates a control variable condition, and returns one of three specified values: true-result if condition
is non-zero, false-result if it is zero, or missing-result if condition contains a missing value. If the
argument missing-result is omitted, it is considered missing.

Note:
The variable condition is numeric, so any logical expressions used to determine its value have to return
a number upon evaluation.

Return type: Numeric

condition

Type: Numeric

The control condition.

true-result

Type: Numeric

The value to return if the control condition evaluates to true.

false-result

Type: Numeric

Reference for language elements
Version 4.1

674

The value to return if the control condition evaluates to false.

missing-result
Optional argument

Type: Numeric

The value to return if the control condition evaluates to missing.

Examples
In these examples, a specified result based on a control condition is returned. The results are written
to the log.

DATA _NULL_;
 a1 = IFN("4",1,0,13);
 PUT a1=;
 a2 = IFN("four",1,0,13);
 PUT a2=;
 a3 = IFN("four",1,0);
 PUT a3=;
 a4 = IFN(0,1,0,13);
 PUT a4=;
RUN;

This produces the following output:

a1=1
a2=13
a3=.
a4=0

The argument value "4" has been converted into a number, but the argument value "four" is
considered missing.

Cryptographic functions
Create cryptographic hashes.

You can create hashes (message digests) using MD5, SHA-1 and functions in the SHA-2 family.

MD5 ... 675
Returns an MD5 message digest generated from specified text.

PWENCODE ... 676
Returns an encoded password.

SHA1 ... 677
Returns a SHA-1 message digest generated from specified text.

SHA256 ... 677
Returns a SHA-256 message digest generated from specified text.

Reference for language elements
Version 4.1

675

SHA384 ... 678
Returns a SHA-384 message digest generated from specified text.

SHA512 ... 679
Returns a SHA-512 message digest generated from specified text.

CALL AES256DEC ... 680
Returns a text decoded from a ciphertext originally encrypted using Advanced Encryption
Standard 256.

CALL AES256ENC ... 682
Returns a ciphertext created using Advanced Encryption Standard 256.

MD5
Returns an MD5 message digest generated from specified text.

MD5 (string)

The message digest is a 128-bit (16-byte) value. The digest is returned as binary, which can be
displayed by applying the $HEX. format.

Return type: Character

string

Type: Character

The string for which an MD5 message digest is required.

Example
In this example, the function is used to create an MD5 message digest for a specified string. The result
is written to the log.

DDATA _NULL_;

 hk = MD5('mypasskey');
 PUT 'The MD5 message digest is ' hk $HEX16.;

RUN;

This produces the following output:

The MD5 message digest is 1414460444AE18E7

The value is returned as a binary, which is then converted to a character string using the $HEX16.
format.

Reference for language elements
Version 4.1

676

PWENCODE
Returns an encoded password.

PWENCODE (password ,

type , encoding

)

Return type: Character

The encoded password.

password

Type: Character

The password.

type
Optional argument

Type: Numeric

1 or 3, for {sas001}, and {sas003} encryption code.

encoding
Optional argument

Type: Character

The name of an encoding to translate the password into, for example, 'UTF-8'.

Example
In this example, the function is configured to use the sas001 encryption code and UTF-8 encoding.
The result is written to the log.

DATA _NULL_;

 password = PWENCODE("BananasAndCustard", 1, 'UTF-8');
 PUT password;
RUN;

This produces the following output:

{sas001}QmFuYW5hc0FuZEN1c3RhcmQ=

Reference for language elements
Version 4.1

677

SHA1
Returns a SHA-1 message digest generated from specified text.

SHA1 (tex t)

The message digest is a 160-bit (20 byte) value. The digest is returned as binary, which can be
displayed by applying the $HEX. format.

Return type: Character

text

Type: Character

The string for which an SHA-1 message digest is required.

Example
In this example, the function is used to create a SHA1 message digest for a supplied string. The result
is written to the log.

DATA _NULL_;

 hk = SHA1("mypasskey");
 PUT "The SHA1 message digest is: " hk $HEX.;

RUN;

This produces the following output:

The SHA1 message digest is: D18F7DCA9C9788AAC9B87878A11F369D5DADCBC6

The value is returned as a binary, which is then converted to a character string using the $HEX. format.

SHA256
Returns a SHA-256 message digest generated from specified text.

SHA256 (tex t)

SHA-256 is one of the SHA-2 family of functions. A SHA-256 message digest is a 256-bit (32-byte)
value. The digest is returned as binary, which can be displayed by applying the $HEX. format.

Return type: Character

text

Type: Character

Reference for language elements
Version 4.1

678

The string for which a SHA-256 message digest is required.

Example
In this example, the function is used to create a SHA-256 message digest for a supplied string. The
result is written to the log.

DATA _NULL_;

 hk = SHA256("mypasskey");

 PUT "The SHA256 message digest is: " hk $hex64.;

RUN;

This produces the following output:

The SHA256 message digest is:
 523466C25030D8A6A9753D48E6A1072AB2C89453BBD2F44A75E3B116F70E74D7

The value is returned as a binary, which is then converted to a character string using the $HEX. format.

SHA384
Returns a SHA-384 message digest generated from specified text.

SHA384 (tex t)

SHA-384 is one of the SHA-2 family of functions. A SHA-384 message digest is a 384-bit (48-byte)
value. The digest is returned as binary, which can be displayed by applying the $HEX. format.

Return type: Character

text

Type: Character

The string for which a SHA-384 message digest is required.

Example
In this example, the function is used to create a SHA-384 message digest for a supplied string. The
result is written to the log.

DATA _NULL_;

 hk = SHA384("mypasskey");

 PUT "The SHA384 message digest is: " hk $hex84.;

RUN;

Reference for language elements
Version 4.1

679

This produces the following output:

The SHA384 message digest is:
5B07E5873C492924DE00A4076639E33CDE0BE381C0DBC9FC0EFB22FBDB2006CA6F90902DC50F2D1309FD
DA0978FD6E9D

The value is returned as a binary, which is then converted to a character string using the $HEX. format.

SHA512
Returns a SHA-512 message digest generated from specified text.

SHA512 (tex t)

SHA-512 is one of the SHA-2 family of functions. A SHA-512 message digest is a 512-bit (64-byte)
value. The digest is returned as binary, which can be displayed by applying the $HEX. format.

Return type: Character

text

Type: Character

The string for which an SHA-512 message digest is required.

Example
In this example, the function is used to create a SHA-512 message digest for a supplied string. The
result is written to the log.

DATA _NULL_;

 hk = SHA512("mypasskey");

 PUT "The SHA512 message digest is: " hk $hex128.;

RUN;

This produces the following output:

The SHA512 message digest is:
8F4CBD1050028B6748176EDA9111483464744FD76E099B54D60A030E94A9D43A92CBFAE06E1E8CB2ED70
B374E59CEDB64A56D22679745CC19AB333B8DADAB8B5

The value is returned as a binary, which is then converted to a character string using the $HEX. format.

Reference for language elements
Version 4.1

680

CALL AES256DEC
Returns a text decoded from a ciphertext originally encrypted using Advanced Encryption Standard 256.

CALL AES256DEC (key , iv , buffer , dest1

,

,

destn

) ;

Advanced Encryption Standard (AES) 256 is an industry-standard encryption algorithm. For information
on AES 256, see Announcing the Advanced Encryption Standard (AES) . This function uses AES
counter (CTR) mode.

Information can be encrypted as AES 256 using CALL AES256ENC. (page 680)

To decrypt a ciphertext encrypted using AES 256 you need the key and initialisation vector used to
encrypt the source information.

key

Type: Character

The key that was used to encrypt the source data. This must be a 32-byte string.

The key can be a string created using PWENCODE (page 676).

iv

Type: Character

The initialisation vector that was used to encrypt the source data. This must be a 16-byte string.

buffer

Type: Var

A variable or array item that contains the ciphertext (that is, the encrypted data).

dest1

Type: Var

A variable or array item that will contain the decrypted information.

destn
Optional argument

Type: Var

A variable or array item that will contain the decrypted information.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Reference for language elements
Version 4.1

681

You can specify that the ciphertext is decrypted into more than one destination item. The ciphertext
might have been constructed from many source items, and you might want to decrypt to the same
number of items. You can therefore specify more than one destination (dest1 … destn) for the
decryption.

Basic example
In this example, a string is decrypted. The result is written to the log.

data _null_;

 format pt $18.;

 ct = "0014F19A0DBB99066680870EBAB99950762FC58E"x;

 call aes256dec("HVZ5T68AE1WFM89GXFKC236IMV7L208Z",
 "ivvvvVVVVvvVVvVi", ct, pt);

 put "The decrypted text is: " pt;

run;

This produces the following output:

The decrypted text is: I have been hidden

Example – more than one source
In this example, three strings are decrypted. The result is written to the log.

data _null_;

 format pt1 $18.;
 format pt2 $14.;
 format pt3 $18.;

 ct = "0034F19A0DBB99066680870EBAB99950762FC58E339D2E3EEBD8C4C8D5BE1
034C905AC8DE63FF65C73DD4281B128FBE2AF8634D3"x;

 call aes256dec("HVZ5T68AE1WFM89GXFKC236IMV7L208Z",
 "ivvvvVVVVvvVVvVi", ct, pt1, pt2, pt3);

 put "The decrypted text is: ";
 put pt1;
 put pt2;
 put pt3;

run;

This produces the following output:

The decrypted text is:
I have been hidden
AES 256 hid me
Now I am decrypted

Reference for language elements
Version 4.1

682

CALL AES256ENC
Returns a ciphertext created using Advanced Encryption Standard 256.

CALL AES256ENC (key , iv , buffer , source1

,

,

sourcen

) ;

Advanced Encryption Standard (AES) 256 is an industry-standard encryption algorithm. For information
on AES 256, see Announcing the Advanced Encryption Standard (AES) . This function uses AES
counter (CTR) mode.

Information encrypted using this routine can be decrypted using CALL AES256DEC (page 680).

key

Type: Character

The key to be used to encrypt the source data. This must be a 32-byte string.

The key can be a string created using PWENCODE (page 676).

iv

Type: Character

The initialisation vector to apply. This must be a 16-byte string.

buffer

Type: Var

A variable or array item that that will contain the ciphertext (that is, the encrypted data).

source1

Type: Var

A variable or array item that contains data to be encrypted.

sourcen
Optional argument

Type: Var

A variable or array item that contains data to be encrypted.

You can specify more than one source of information; these will be concatenated to create one
ciphertext.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Reference for language elements
Version 4.1

683

Basic example
In this example, a string is encrypted. The result is written to the log.

data _null_;

 format ct $HEX64.;
 pt = "text to encrypt";

 call aes256enc("HVZ5T68AE1WFM89GXFKC236IMV7L208Z", "ivvvvVVVVvvVVvVi", ct, pt);

 put "The encrypted string is: " ct;

run;

This produces the following output:

The encrypted string is: 0011CCDF1DAECF1729C28705B7EB884966

Example – more than one source
In this example, three strings are encrypted. The result is written to the log.

data _null_;

 format ct $HEX134.;
 pt1 = "text to encrypt";
 pt2 = "another text to encrypt";
 pt3 = "and another text to encrypt";

 call aes256enc("HVZ5T68AE1WFM89GXFKC236IMV7L208Z",
 "ivvvvVVVVvvVVvVi", ct, pt1, pt2, pt3);

 put "The encrypted string is: " ct;

run;

This produces the following output:

The encrypted string is:
0043CCDF1DAECF1729C28705B7EB8849662ACE8F06B0186CF9999790C9F7007B84058C81E366CF0873DE0
6C5B525E6EFB797239721382308070FB356A3F2F0809DF4F4

Reference for language elements
Version 4.1

684

Date and time functions and CALL routine
Select, convert and calculate dates and times; for example, you can convert dates to Julian dates, get
the current date, count completed time intervals, or return the weekday number.

Dates and datetimes are stored in WPS as numeric values, using midnight on 01-January-1960 as a
reference date (epoch). From this reference point, each increment in a date value represents one day
from epoch, and each increment in a datetime value represents one second from midnight of the same
day. Times are stored as a numeric value, using midnight as the reference point, with each increment
representing one second.

WPS can represent dates between 01‑January‑1582 (date value of -138061) and 31‑December‑9999
(date value of 2936547); the equivalent datetime limits are between 01‑January‑1582:00:00:00
(datetime value of -11928470400) and 31‑December‑9999:23:59:59 (datetime value of
253717747199).

Time values should be less than 86400 (the number of seconds in a day); any numeric value greater
than this interpreted as a time value returns the total number of hours, minutes and seconds.

You need to be aware of the type of value you are using as the format applied to the stored numeric
can change the output. For example, the following uses a time value (tValue) that represents
12:30:45 to which time, date and datetime formats can be applied:

DATA _NULL_;
 tValue = 45045;
 PUT "Number as Time: " tValue time.;
 PUT "Number as Date: " tValue date11.;
 PUT "Number as DateTime: " tValue datetime.;
RUN;

When the time and datetime formats are applied, similar output for the time in the day is generated; the
date value is unlikely to be accurate:

Number as Time: 12:30:45
Number as Date: 30-APR-2083
Number as DateTime: 01JAN60:12:30:45

Date and time literals
As an alternative to using the numeric value for a date or datetime, you can append date or time
identifiers to a string, and the string will be treated as a date, time or datetime value. The modifiers
appended to the strings (after any quotes) are:

T

When appended to a string, the content of the string is interpreted as a time value.

DATA _NULL_;
 tm = "12:30:45"T;
 PUT "Time value: " tm;
 PUT "Time formatted: " tm time.;
RUN;

Reference for language elements
Version 4.1

685

Output as the numeric value and a formatted equivalent:

Time value: 45045
Time formatted: 12:30:45

D

When appended to a string, the content of the string is interpreted as a date value.

DATA _NULL_;
 da = "29-SEP-2014"D;
 PUT "Date value: " da;
 PUT "Date formatted: " da date11.;
RUN;

Output as the numeric value and a formatted equivalent:

Date value: 19995
Date formatted: 29-SEP-2014

DT

When appended to a string, the content of the string is interpreted as a datetime value.

DATA _NULL_;
 dm = "29-SEP-2014:12:30:45"DT;
 PUT "Datetime value: " dm;
 PUT "Datetime formatted: " dm datetime.;
RUN;

Output as the numeric value and a formatted equivalent:

Datetime value: 1727613045
Datetime formatted: 29SEP14:12:30:45

Date and time functions and CALL routines are used to generate date, datetime and time values; select
part of a value, convert values, or calculate differences between date or datetime values.

Get date and time values ... 686
DATA step functions that generate date and datetime values from epoch; generate the time value
within the current day; or convert date and time constants to a date, datetime or time value.

Select date and time values ... 693
DATA step functions that select part of a date value, datetime value, or time value.

Convert date and time values ...701
DATA step functions and CALL routine that convert between date values and Julian dates, or
create date or time values conforming to the ISO 8601:2004 standard.

Calculate date and time values .. 709
DATA step functions that calculate differences between date and datetime values; or increment
date and datetime values to create new date and datetime values.

Reference for language elements
Version 4.1

686

Get date and time values
DATA step functions that generate date and datetime values from epoch; generate the time value within
the current day; or convert date and time constants to a date, datetime or time value.

DATE ... 686
Returns the count of days since epoch. DATE is an alias of TODAY.

TODAY .. 687
Returns the date value for the current day. TODAY is an alias of DATE

DATETIME .. 687
Returns the number of seconds since epoch for the current time.

TIME .. 688
Returns the current time as the number of seconds from midnight.

MDY ...689
Returns a date value for a specifed month–day–year combination.

DHMS .. 690
Returns a datetime value for a specified date and time (hour, minute, second) combination.

HMS ...691
Returns a time value for a specified hour– minute–second combination.

YYQ ... 692
Returns the date value for the first day of a quarter from a specified year and quarter.

DATE

Returns the count of days since epoch. DATE is an alias of TODAY.

DATE ()

This function takes no arguments and returns the total number of days from epoch

Return type: Numeric

Example
The following example returns the date value for the current day and prints the output as a numeric
value. The date value is also reformatted to display as YYYY-MM-DD using the YYMMDD10. format.

DATA _NULL_;
 d = DATE();
 PUT "Today: " d;
 PUT "Default format: " d DATE.;
 PUT "YYYY-MM-DD format: " d YYMMDD10.;
RUN;

Reference for language elements
Version 4.1

687

Which produces the following output in the log:

Today: 20514
Default format: 01MAR16
YYYY-MM-DD format: 2016-03-01

TODAY

Returns the date value for the current day. TODAY is an alias of DATE

TODAY ()

This function takes no arguments and returns the total number of days from epoch.

Return type: Numeric

Example
The following example returns the date value for the current day and prints the output as a numeric
value. The date value is also reformatted to display as YYYY-MM-DD using the YYMMDD10. format.

DATA _NULL_;
 d = TODAY();
 PUT "Today: " d;
 PUT "Default format: " d date.;
 PUT "YYYY-MM-DD format: " d YYMMDD10.;
RUN;

Which produces the following output in the log:

Today: 20571
Default format: 27APR16
YYYY-MM-DD format: 2016-04-27

DATETIME

Returns the number of seconds since epoch for the current time.

DATETIME ()

This function takes no arguments and returns the count of seconds for the local time. The value
returned can contain up to three decimal places, representing the millisecond count for the current
second, and can be used as an argument to other date and time functions.

Return type: Numeric

Reference for language elements
Version 4.1

688

Example
The following example prints the current datetime in the numeric format and the same date time in a
datetime format that displays the milliseconds in the datetime value as the fractional part of the decimal
number of seconds

DATA _NULL_;
 dt = datetime();
 PUT "Time now: " dt;
 PUT "Default format: " dt datetime24.5;
RUN;

Which produces the following output in the log:

Time now: 1781097234.6
Default format: 09JUN2016:13:13:54.61000

TIME

Returns the current time as the number of seconds from midnight.

TIME ()

This function takes no arguments and returns the count of seconds from midnight for the current day.

Return type: Numeric

Example
The following example returns the current time and prints the output as a numeric value. The time value
is also reformatted to display using the default TIME. format.

DATA _NULL_;
 tM = TIME();
 PUT "Time in seconds " tM;
 PUT "Current time: " tM TIME.;
RUN;

Which produces the following output in the log:

Time in seconds 35894.681
Current time: 9:58:15

Reference for language elements
Version 4.1

689

MDY

Returns a date value for a specifed month–day–year combination.

MDY (month , day , year)

Return type: Numeric

The function will only return a date where a combination of month–day–year is valid.

month

Type: Numeric

The numeric representation of the month within the year.

day

Type: Numeric

The numeric representation of the day within the month.

year

Type: Numeric

A two or four digit representation of the year. The two-digit year range begins at the year set
in the YEARCUTOFF system option; by default the range of two-digit dates is 01-January-1920
through to 31-December-2019.

Example
The following example returns the date value for the month–day–year value 8–17–2015 and prints the
output as a numeric value. The date value is also reformatted to display using the DATE11. format.

DATA _NULL_;
 hour1 = MDY(8, 17, 2015);
 PUT "DATE value: " hour1;
 PUT "Formatted date: " hour1 DATE11.;
RUN;

Which produces the following output:

DATE value: 20317
Formatted date: 17-AUG-2015

Reference for language elements
Version 4.1

690

DHMS

Returns a datetime value for a specified date and time (hour, minute, second) combination.

DHMS (date- value , hour , minute , second)

All arguments must be supplied to this function. Each of the numeric hour, minute, and second fields
do not have an upper limit allowing you to calculate a future datetime value from midnight of the date
argument as the start point.

Return type: Numeric

date-value

Type: Numeric

The base date value from which the datetime value is calculated. This can be a known date
value, a date literal, or calculated using other functions that return a date value.

hour

Type: Numeric

The number of hours to be added to the date-value. Typically the number would be in the range
0–23.

minute

Type: Numeric

The number of minutes to be added to the hour value. Typically the number would be in the
range 0–59.

second

Type: Numeric

The number of seconds to be added to the minute value. Typically the number would be in the
range 0–59.

Example
This example calculates two datetime values; one representing midnight on the start date, and one
representing a datetime value 100 hours, 100 minutes and 100 seconds after the start date value.

DATA _NULL_;
 datetime1 = DHMS ("17-AUG-2015"d, 0, 0, 0);
 datetime2 = DHMS ("17-AUG-2015"d, 100, 100, 100);
 PUT "Formatted output: " datetime1 DATETIME.;
 PUT "Future date output: " datetime2 DATETIME.;
RUN;

Reference for language elements
Version 4.1

691

Which produces the following output in the log.

Formatted output: 17AUG15:00:00:00
Future date output: 21AUG15:05:41:40

Example
The DHMS function can also be used to convert date and time values into a single datetime value, or
generate a datetime value for the current date and time:

DATA _NULL_;
 td = TODAY();
 tm = TIME();
 dtNow = DHMS(td, HOUR(tm), MINUTE(tm), SECOND(tm));
 PUT dtNow DATETIME.;
RUN;

Which produces the following output in the log.

17AUG15:13:26:40

HMS

Returns a time value for a specified hour– minute–second combination.

HMS (hour , minute , second)

All arguments must be supplied to this function. A time value is calculated from the supplied number of
hours, minutes and seconds, and will return the time with reference to midnight on the current day. The
arguments do not have an upper limit allowing you to calculate a future time value as well as time within
the current day.

Return type: Numeric

hour

Type: Numeric

The number of hours from midnight of the current day. Typically the number would be in the
range 0–23.

minute

Type: Numeric

The number of minutes to be added to the hour value. Typically the number would be in the
range 0–59.

second

Type: Numeric

Reference for language elements
Version 4.1

692

The number of seconds to be added to the minute value. Typically the number would be in the
range 0–59.

Example
The following example returns the time value from a number of hours, minutes and seconds from
midnight of the current day

DATA _NULL_;
 time1 = HMS (12, 15, 45);
 time2 = HMS (100, 100, 100);
 PUT "Time1 output: " time1 time.;
 PUT "Time2 output as time: " time2 time.;
RUN;

Which produces the following output in the log

Time1 output: 12:15:45
Time2 output as time: 101:41

YYQ

Returns the date value for the first day of a quarter from a specified year and quarter.

YYQ (year , quarter)

Return type: Numeric

year

Type: Numeric

A two-digit or four-digit year value. The two-digit year begins at the year set in the YEARCUTOFF
system option; by default the range of two-digit years is 1920 through to 2019.

quarter

Type: Numeric

The quarter within the year, in the range 1–4.

Reference for language elements
Version 4.1

693

Example
The following example uses a DO loop to find the first day in each quarter of a year.

DATA _NULL_;
 DO i=1 to 4;
 Qt = YYQ(2015, i);
 PUT "First day of quarter " i ": " Qt DATE11.;
 END;
RUN;

Which produces the following output in the log.

First day of quarter 1 : 01-JAN-2015
First day of quarter 2 : 01-APR-2015
First day of quarter 3 : 01-JUL-2015
First day of quarter 4 : 01-OCT-2015

Select date and time values
DATA step functions that select part of a date value, datetime value, or time value.

DATEPART ... 694
Returns the date value from a datetime value.

TIMEPART .. 694
Returns the time section of a datetime value,

YEAR ...695
Returns the year numeric value from a date.

QTR ... 695
Returns the quarter in the year a date value falls within.

MONTH ... 696
Returns the month numeric value from a date.

WEEK .. 697
Returns the week count in the year within which the specified date occurs.

WEEKDAY ...698
Returns the weekday number from a date value.

DAY ... 699
Returns the day number within the month from a date value.

HOUR .. 699
Returns the hour value from a datetime or time value.

MINUTE ...700
Returns the number of minutes from a datetime or time value.

SECOND ... 701
Returns the number of seconds from a datetime or time value.

Reference for language elements
Version 4.1

694

DATEPART

Returns the date value from a datetime value.

DATEPART (datet ime- value)

This function can be used to convert a datetime value into a date value.

Return type: Numeric

datetime-value

Type: Numeric

The datetime value from which the date value will be returned. This can be a known datetime, a
datetime literal, or calculated using other functions.

Example
The following example converts a datetime value into a date format (DD-MMM-YYYY), and displays the
output using the DATE11. format.

DATA _NULL_;
 dpart=DATEPART("17-AUG-2015:12:30:45"dt);
 PUT "Date from a datetime: " dpart DATE11.;
RUN;

Which produces the following output in the log:

Date from a datetime: 17-AUG-2015

TIMEPART

Returns the time section of a datetime value,

TIMEPART (datet ime- value)

Return type: Numeric

datetime-value

Type: Numeric

The datetime value from which the time is returned. This can either be a known datetime value,
or calculated using other functions that return a datetime value.

Reference for language elements
Version 4.1

695

Example
DATA _NULL_;
 dtM = TIMEPART ("17-AUG-2015:12:30:45"DT);
 PUT "Time: " dtM TIME.;
RUN;

Which produces the following output in the log:

Time: 12:30:45

YEAR

Returns the year numeric value from a date.

YEAR (date- value)

Return type: Numeric

date-value

Type: Numeric

The date value from which the year part is returned. This can be a known date value, a date
literal, or calculated using other functions that return a date value.

Example
The following example returns the year value from a date literal.

DATA _NULL_;
 Hy = "17-AUG-2015"D;
 Yr = YEAR(Hy);
 PUT "Year: " Yr;
RUN;

Which produces the following output in the log:

Year: 2015

QTR

Returns the quarter in the year a date value falls within.

QTR (date- value)

Reference for language elements
Version 4.1

696

Return type: Numeric

date-value

Type: Numeric

The date value for which the quarter is calculated. This can be a known date value, a date literal,
or the result of using other functions that return a date value.

Example
The following example returns the quarter value from a date literal.

DATA _NULL_;
 Hy = "17-AUG-2015"D;
 Qt = QTR(Hy);
 PUT "Date is in quarter: " Qt;
RUN;

Which produces the following output in the log

Date is in quarter: 3

MONTH

Returns the month numeric value from a date.

MONTH (date- value)

The returned numeric represents the month in the year, where 1=January, 2=February and so on.

Return type: Numeric

date-value

Type: Numeric

The date value from which the month part is returned. This can either be a known date value, a
date literal, or calculated using other functions that return a date value.

Example
The following example returns the month as a numeric value; a string representation of the month can
be returned by formatting the date value using MONNAME.

 DATA _NULL_;
 Hy = "17-AUG-2015"D;
 Mn = MONTH(Hy);
 PUT "Month from DATE value: " Mn;
 PUT "Formatted month: " Hy MONNAME.;
RUN;

Reference for language elements
Version 4.1

697

Which produces the following output in the log:

Month from DATE value: 8
Formatted month: August

WEEK

Returns the week count in the year within which the specified date occurs.

WEEK (

date- value , algorithm

)

Where no date-value is provided to the function, the week value for TODAY is returned; if no algorithm is
specified, the "U" method is used.

Return type: Numeric

date-value
Optional argument

Type: Numeric

The date value for which the week count is determined. This can be a known date value, a date
literal, or calculated using other functions that return a date value.

algorithm
Optional argument

The method to be used when calculating the week number.

"U"

Specifies the first day of the week is Sunday. At the start of the year, any dates that fall
before the first Sunday of the year have a week count of "0".

"V"

Calculates the week based on the ISO 8601 Data elements and interchange formats –
Information interchange – Representation of dates and times standard definition for the
number of weeks in a year and the first week of the year.

The standard defines the first day of the week as a Monday, and the first week in a year is
that week that contains the first Thursday occuring in the year. At the start of the year, any
dates falling before week one will be either week 52 or week 53 (if the year is a long year)
of the previous year.

"W"

Specifies the first day of the week is Monday. At the start of the year, any dates that fall
before the first Monday of the year have a week count of "0"

Reference for language elements
Version 4.1

698

Example
The following example returns the week count for the current day, and the week count of a known date.
Both functions use the "U" calculation method.

DATA _NULL_;
 Td = TODAY();
 Wk = WEEK();
 Hy = "17-AUG-2015"D;
 HyWK = WEEK(Hy, "U");
 PUT "Today's date: " Td DATE11.;
 PUT "Week count of today: " Wk;
 PUT "Week count of Hy Date: "HyWk;
RUN;

Which produces the following output in the log.

Today's date: 17-AUG-2016
Week count of today: 33
Week count of Hy Date: 33

WEEKDAY

Returns the weekday number from a date value.

WEEKDAY (date- value)

The returned numeric represents the day in the week, where 1=Sunday, 2=Monday and so on.

Return type: Numeric

date-value

Type: Numeric

The date value from which the weekday part is returned. This can either be a known date value,
a date literal, or calculated using other functions that return a date value.

Example
The following example returns the weekday as a numeric value; a string representation of the weekday
can be returned by formatting the date value using DOWNAME.

DATA _NULL_;
 Hy = "17-AUG-2015"D;
 WK = WEEKDAY(Hy);
 PUT "Weekday number: " WK;
 PUT "Weekday name:" Hy DOWNAME.;
RUN;

Reference for language elements
Version 4.1

699

Which produces the following output in the log:

Weekday number: 2
Weekday name: Monday

DAY

Returns the day number within the month from a date value.

DAY (date- value)

Return type: Numeric

date-value

Type: Numeric

The date from which the day in the month is returned. This can be a known date value, a date
literal, or calculated using other functions that return a date value.

Example
The following example returns the day count for specified date value.

DATA _NULL_;
 DAY1 = DAY("17-AUG-2015"D);
 PUT "Day count from DAY1 date: " DAY1;
RUN;

Which produces the following output in the log:

Day count from DAY1 date: 17

HOUR

Returns the hour value from a datetime or time value.

HOUR (datet ime- value)

Return type: Numeric

datetime-value

Type: Numeric

Reference for language elements
Version 4.1

700

The datetime or time value from which the hour is returned. This can either be a known datetime
or time value, or calculated using other functions that return a datetime or time value.

Example
The following example returns the hour count for specified datetime value.

DATA _NULL_;
 TIME1 = HOUR("17-AUG-2015:12:30:45"DT);
 PUT "Hour part of the time: " TIME1;
RUN;

Which produces the following output

Hour part of the time: 12

MINUTE

Returns the number of minutes from a datetime or time value.

MINUTE (datet ime- value)

Return type: Numeric

datetime-value

Type: Numeric

The datetime or time value from which the minute count is extracted. This can either be a known
datetime or time value, or calculated using other functions that return a datetime or time value.

Example
The following example returns the minute count for specified datetime value.

DATA _NULL_;
 Mn=MINUTE("17-AUG-2015:12:30:45"DT);
 PUT "Number of minutes: " Mn;
RUN;

Which produces the following output in the log:

Number of minutes: 30

Reference for language elements
Version 4.1

701

SECOND

Returns the number of seconds from a datetime or time value.

SECOND (datet ime- value)

Return type: Numeric

datetime-value

Type: Numeric

The datetime or time value from which the count of seconds is returned. This can either be a
known datetime or time value, or calculated using other functions that return a datetime or time
value

Example
The following example returns the second count for specified datetime value.

DATA _NULL_;
 SEC1 = SECOND("17-AUG-2015:12:30:45"DT);
 PUT SEC1;
RUN;

Which produces the following output in the log:

Number of seconds: 45

Convert date and time values
DATA step functions and CALL routine that convert between date values and Julian dates, or create
date or time values conforming to the ISO 8601:2004 standard.

DATEJUL ...702
Converts a five-digit or seven-digit Julian Date into a date value.

JULDATE ...702
Converts a date value into a Julian Date.

JULDATE7 ...703
Converts a date value into a seven-digit (YYYYDDD) Julian Date.

CALL IS8601_CONVERT ... 704
Converts date and datetime formats to and from ISO 8601 time intervals and durations.

Reference for language elements
Version 4.1

702

DATEJUL

Converts a five-digit or seven-digit Julian Date into a date value.

DATEJUL (julian- date)

The two-digit year range in five-digit Julian Dates begins at the year set in the YEARCUTOFF system
option; by default the range of two-digit dates is 01-January-1920 through to 31-December-2019.

Return type: Numeric

When using Julian Dates in SAS language programs, we recommend using a seven-digit format to
ensure there is no confusion in date values.

julian-date

Type: Numeric

The five-digit (YYDDD) or seven-digit (YYYYDDD) Julian Date to convert to a SAS language date
numeric.

Example
The following example converts a five-digit and seven-digit Julian date into a date value. The
YEARCUTOFF is first printed to see whether the returned date value is the same.

PROC OPTIONS OPTION=YEARCUTOFF;
RUN;

DATA _NULL_ ;
 d5 = 21061;
 d7 = 2021061;
 jdate1 = DATEJUL(d5);
 jdate2 = DATEJUL(d7);
 PUT "From five-digit date: " jdate1 DATE11.;
 PUT "From seven-digit date: " jdate2 DATE11.;
RUN;

Which produces the following output in the log:

YEARCUTOFF=1920 Cutoff year used when interpreting or generating 2 digit
 years in functions and formats
From five-digit date: 02-MAR-1921
From seven-digit date: 02-MAR-2021

JULDATE

Converts a date value into a Julian Date.

JULDATE (date- value)

Reference for language elements
Version 4.1

703

The Julian Date returned consists of either a five-digit date (YYDDD) containing a two-digit year, or
seven-digit date (YYYYDDD) number containing a four-digit year. The two-digit year range begins
at the year set in the YEARCUTOFF system option; by default the range of two-digit dates is 01-
January-1920 through to 31-December-2019. For dates falling in the one hundred years after the 01-
January in the YEARCUTOFF, this function returns the Julian Date in five-digit format; for all other dates
this function returns the Julian Date in seven-digit format.

Return type: Numeric

date-value

Type: Numeric

The date value to be converted to a Julian Date. This can be a known date value, a date literal, or
calculated using other functions that return a date value.

Example
The following example returns either a five-digit or seven-digit Julian date value depending upon
whether the date is within 100 years of the DATECUTOFF value.

PROC OPTIONS OPTION=YEARCUTOFF;
RUN;

DATA _NULL_;
 JDATE1 = JULDATE("31-DEC-1919"D);
 JDATE2 = JULDATE("01-JAN-1920"D);
 JDATE3 = JULDATE("31-DEC-2019"D);
 JDATE4 = JULDATE("01-JAN-2020"D);
 PUT "JDATE1: " JDATE1;
 PUT "JDATE2: " JDATE2;
 PUT "JDATE3: " JDATE3;
 PUT "JDATE4: " JDATE4;
RUN;

Which produces the following output in the log:

YEARCUTOFF=1920 Cutoff year used when interpreting or generating 2 digit
 years in functions and formats
JDATE1: 1919365
JDATE2: 20001
JDATE3: 19365
JDATE4: 2020001

JULDATE7

Converts a date value into a seven-digit (YYYYDDD) Julian Date.

JULDATE7 (date- value)

Reference for language elements
Version 4.1

704

Return type: Numeric

date-value

Type: Numeric

The date value to be converted to a Julian Date. This can be a known date value, a date literal, or
calculated using other functions that return a date value.

Example
DATA _NULL_;
 JDATE1 = JULDATE7("31-DEC-1919"d);
 JDATE2 = JULDATE7("01-JAN-1920"d);
 JDATE3 = JULDATE7("31-DEC-2019"d);
 JDATE4 = JULDATE7("01-JAN-2020"d);
 PUT "JDATE1: " JDATE1;
 PUT "JDATE2: " JDATE2;
 PUT "JDATE3: " JDATE3;
 PUT "JDATE4: " JDATE4;
RUN;

Which produces the following output in the log:

JDATE1: 1919365
JDATE2: 1920001
JDATE3: 2019365
JDATE4: 2020001

CALL IS8601_CONVERT

Converts date and datetime formats to and from ISO 8601 time intervals and durations.

CALL IS8601_CONVERT (source- format , target- format

,

,

variable

) ;

The number of input and returned values are determined by the settings used in the source-format
and target-format arguments. These arguments are followed by any input values or return value
placeholders in the number and order defined in the format arguments.

Time intervals and durations are described in the standard, Data elements and interchange formats
– Information interchange – Representation of dates and times standard. An ISO 8601 time interval
describes the intervening time between two known time points; this can either be using the start and
end points, or one of the known time points and a duration. An ISO 8601 duration describes a period of
time without the context of a start or end date.

Reference for language elements
Version 4.1

705

When using ISO 8601 dates and times, WPS uses an internal representation for both time intervals and
durations. To present this information in output in a human-readable form, apply one of the formats
described in ISO 8601 date formats (page 476)

source-format

Specifies the format, or formats, of the source date and time information, one of the following
values:

"INTVL"

The input argument at position three is an ISO 8601 time interval.

"DT/DT"

Two input arguments are supplied, both are datetime values. The arguments at positions
three and four are assumed to be datetime values and can be known datetime numeric
values, datetime literals, or calculated using other functions that return a datetime value.

"DU/DT"

Two input arguments are provided; the first is an ISO 8601 duration, the second a datetime
value. The input argument at position three must be a valid ISO 8601 time interval. The
input argument at position four is assumed to be a datetime value, and can be a known
datetime numeric value, a datetime literal, or calculated using other functions that returns a
datetime value.

"DU/D"

Two input arguments are provided; the first is an ISO 8601 duration, the second a date
value. The input argument at position three must be a valid ISO 8601 time interval. The
input argument at position four is assumed to be a date value, and can be a known date
numeric value, a date literal, or calculated using other functions that returns a date value.

"DT/DU"

Two input arguments are provided; the first is a datetime value, the second an ISO 8601
duration. The input argument at position three is assumed to be a datetime value, and can
be a known datetime numeric value, a datetime literal, or calculated using other functions
that returns a datetime value. The input argument at position four must be a valid ISO
8601 time interval.

"D/DU"

Two input arguments are provided; the first is a date value, the second an ISO 8601
duration. The input argument at position three is assumed to be a date value, and can
be a known date numeric value, a string literal, or calculated using other functions that
returns a date value. The input argument at position four must be a valid ISO 8601 time
interval.

Reference for language elements
Version 4.1

706

"D/D"

Two input arguments are supplied, both are date values. The arguments at positions three
and four are assumed to be date values and can be known date numeric values, date
literals, or calculated using other functions that return a date value.

"DT"

The input argument supplied is a datetime value. The argument at position three is
assumed to be a datetime value and can be a known datetime numeric value, a datetime
literal, or calculated using other functions that return a datetime value.

"DU"

The input argument at position three is an ISO 8601 duration.

"D"

The input argument supplied is a date value. The argument at position three is assumed to
be a date value and can be a known date numeric value, a date literal, or calculated using
other functions that return a date value.

target-format

Specifies the format, or formats, the resultant date and time information is converted into.
target-format contains two options for calculating date and time values: "START" and
"END". These options can be used with ISO 8601 intervals, and duration values when used with
a date or datetime value.

"INTVL"

The output argument is an internal representation of the ISO 8601 interval format. To
present this information, apply one of the formats described in ISO 8601 date formats
(page 476)

"DT/DT"

Two datetime output arguments are returned.

"DU/DT"

Two output arguments are returned in the specified order; the first is an ISO 8601 duration,
the second a datetime value.

"DU/D"

Two output arguments are returned in the specified order; the first is an ISO 8601 duration,
the second a date value.

"DT/DU"

Two output arguments are returned in the specified order; the first is a datetime value, the
second an ISO 8601 duration.

Reference for language elements
Version 4.1

707

"D/DU"

Two output arguments are returned in the specified order; the first is a date value, the
second an ISO 8601 duration.

"D/D"

Two date output arguments are returned.

"DT"

The output argument is a datetime value.

"DU"

The output argument is an internal representation of the ISO 8601 duration format. To
present this information, apply one of the formats described in ISO 8601 date formats
(page 476)

"D"

The output argument is a date value.

"START"

The output is a datetime value marking the start point of either an interval value or
duration. The value is calculated from either an ISO 8601 Interval value, or a combination
of duration and end date.

"END"

The output is a datetime value marking the end point of either an interval value or duration.
The value is calculated from either an ISO 8601 Interval value, or a combination of
duration and start date.

variable
Optional argument

Type: Character or numeric value

Arguments containing the input and output values. The number and order of the arguments is
defined in the source-format and target-format.

Reference for language elements
Version 4.1

708

Example – Create ISO 8601 intervals
This example shows how to create ISO 8601 standard intervals from date or datetime values. The
format of the output intervals follows the structure defined in the standard; in the case of date values the
time element is set to midnight (00:00:00):

DATA _NULL_;
 startDT = "17-AUG-2015:12:30:45"DT;
 startD = "17-AUG-2015"D;
 endDT = "18-SEP-2016:15:45:00"DT;
 endD = "18-SEP-2016"D;
 FORMAT IntOutDT IntOutD $N8601EA.;
 CALL IS8601_CONVERT("DT/DT", "INTVL", startDT, endDT, IntOutDT);
 CALL IS8601_CONVERT("D/D", "INTVL", startD, endD, IntOutD);
 PUT "Interval from date: " IntOutD;
 PUT "Interval from datetime: " IntOutDT;
RUN;

Which produces the following output in the log:

Interval from date: 2015-08-17T00:00:00/2016-09-18T00:00:00
Interval from datetime: 2015-08-17T12:30:45/2016-09-18T15:45:00

Example – Convert datetime to date values
In addition to converting to ISO8601 formats, the routine can be used to convert between datetime and
date values. The following mimics using the DATEPART function to return dates from datetime values:

DATA _NULL_;
 startDT = "17-AUG-2015:12:30:45"DT;
 endDT = "18-SEP-2016:15:45:00"DT;
 FORMAT outD1 outD2 DATE11.;
 CALL IS8601_CONVERT("DT/DT", "D/D", startDT, endDT, outD1, outD2);
 PUT "Date from startDT: " outD1;
 PUT "Date from endDT: " outD2;
RUN;

Which produces the following output in the log:

Date from startDT: 17-AUG-2015
Date from endDT: 18-SEP-2016

Reference for language elements
Version 4.1

709

Example – Finding start or end dates
This example shows how to use the routine to calculate dates, in this case how to find the end datetime
where a start date and duration is known, and a start datetime where a duration and end date is
known.

DATA _NULL_;
 startDT = "17-AUG-2015:12:30:45"DT;
 endDT = "18-SEP-2016:15:45:00"DT;
 duStartEnd = 33794055;
 CALL IS8601_CONVERT("DU/DT", "START", duStartEnd, endDT, StartDate);
 CALL IS8601_CONVERT("DT/DU", "END", startDT, duStartEnd, EndDate);
 PUT "Start Date: " StartDate DATETIME.;
 PUT "End Date: " EndDate DATETIME.;
RUN;

Which produces the following output in the log:

Start Date: 17AUG15:12:30:45
End Date: 18SEP16:15:45:00

Calculate date and time values
DATA step functions that calculate differences between date and datetime values; or increment date
and datetime values to create new date and datetime values.

INTCK ..709
Returns a count of completed intervals between the supplied start-date and end-date.

INTNX ..713
Returns a numeric time, date or datetime value calculated as an increment number of intervals,
added to the start-date.

DATDIF ..720
Returns the number of days difference between two dates as a numeric value.

YRDIF ..721
Returns the number of years difference between two dates as a numeric value.

INTCK

Returns a count of completed intervals between the supplied start-date and end-date.

INTCK (interval , start- date , end- date

, method

)

Date, datetime, and time values can be used with this function. The accuracy of the count returned
reflects the combination of interval label and date, datetime or time value:

Reference for language elements
Version 4.1

710

• If working with date formats, intervals covering year to day will return correct results. Do not attempt
to use HOUR, MINUTE, or SECOND intervals with date values.

• If working with datetime formats, use increment names starting with DT. All values from DTYEAR
to DTSECOND can be used. In addition, HOUR, MINUTE and SECOND intervals can be used with
datetime values.

• If working with time formats, use the HOUR, MINUTE and SECOND intervals.

Return type: Numeric

interval

"YEAR"

Counts the number of years between the specified start-date and end-date. To use
the year interval with a date value, specify either YEAR or YR; to use this interval with a
datetime value, specify either DTYEAR or DTYR.

Using the DTYEAR interval with a date value results in an incorrect count.

"SEMIYEAR"

Counts the number of semi-years (six-month periods) between the specified start-date
and end-date. To use the semiyear interval with a date value, specify either SEMIYEAR or
SEMI; to use this interval with a datetime value, specify either DTSEMIYEAR or DTSEMIYR.

Using the DTSEMIYEAR interval with a date value results in an incorrect count.

"QUARTER"

Counts the number of quarters (three-month periods) between the specified start-date and
end-date. To use the quarter interval with a date value, specify either QUARTER or QTR; to
use this interval with a datetime value, specify either DTQUARTER or DTQTR.

Using the DTQUARTER interval with a date value results in an incorrect count.

"MONTH"

Counts the number of months between the specified start-date and end-date.. To use the
month interval with a date value, specify either MONTH or MON; to use this interval with a
datetime value, specify either DTMONTH or DTMON.

Using the DTMONTH interval with a date value results in an incorrect count.

"SEMIMONTH"

Counts the number of semi-months (two-week periods) between the specified start-date
and end-date. To use the semimonth interval with a date value, specify either SEMIMONTH
or SEMIMON; to use this interval with a datetime value, specify either DTSEMIMONTH or
DTSEMIMON.

Using the DTSEMIMONTH interval with a date value results in an incorrect count.

Reference for language elements
Version 4.1

711

"TENDAY"

Counts the number of tenday periods between the specified start-date and end-date. To
use this interval with a date value, specify TENDAY; to use this interval with a datetime
value, specify DTTENDAY.

Using the DTTENDAY interval with a date value results in an incorrect count.

"WEEK"

Counts the number of weeks between the specified start-date and end-date. To use this
interval with a date value, specify WEEK; to use this interval with a datetime value, specify
DTWEEK. When using a discrete method, the default first day of a week is Sunday.

Using the DTWEEK interval with a date value results in an incorrect count.

"WEEKDAY"

Counts the number of weekdays (ignoring Saturdays and Sundays) between the specified
start-date and end-date. To use this interval with a date value, specify WEEKDAY; to use
this interval with a datetime value, specify DTWEEKDAY.

"DAY"

Counts the number of days between the specified start-date and end-date. To use this
interval with a date value, specify DAY; to use this interval with a datetime value, specify
DTDAY.

Using the DTDAY interval with a date value results in an incorrect count.

"HOUR"

This interval can only be used with datetime or time values.

Counts the number of number of hours between the datetime or time values specified in
start-date and end-date. To use this interval specify either HOUR or DTHOUR.

"MINUTE"

This interval can only be used with datetime or time values.

Counts the number of number of minutes between the datetime or time values specified in
start-date and end-date. To use this interval specify one of MINUTE, MIN, DTMINUTE, or
DTMIN. The calculated output is the same whichever alias is selected.

"SECOND"

This interval can only be used with datetime or time values.

Counts the number of number of seconds between the datetime or time values specified
in start-date and end-date. To use this interval specify one of SECOND, SEC, DTSECOND, or
DTSEC. The calculated output is the same whichever alias is selected.

Reference for language elements
Version 4.1

712

start-date

Type: Numeric

The start date, datetime, or time value from which the number of increments is counted. This can
be a known value, a literal, or calculated using other functions. The start-date is not included in
the final calculation.

end-date

Type: Numeric

The end date, datetime, or time value to which the number of increments is counted. This can be
a known value, a literal, or calculated using other functions.

method
Optional argument

"DISCRETE"

Counts the number of natural boundaries for the interval type between the start-date
and end-date. Counting natural boundaries is the default behaviour, and can lead to
unexpected results, For example:

DATA _NULL_;
 V = INTCK("YEAR", "31-DEC-2015"D, "01-JAN-2017"D);
 PUT V;
RUN;

Returns a count of two years, as there are two natural year boundaries between the dates,
even though the dates are one year and one day apart.

"DISC"

Counts the number of natural boundaries for the interval type between the start-date and
end-date. "DISC" is an alias of "DISCRETE".

"D"

Counts the number of natural boundaries for the interval type between the start-date and
end-date. "D" is an alias of "DISCRETE".

"CONTINUOUS"

Counts the completed number of increments between the start-date and end-date, without
reference to the natural boundary of the increment type.

"CONT"

Counts the completed number of increments between the start-date and end-date,
without reference to the natural boundary of the increment type. "CONT" is an alias of
"CONTINUOUS".

Reference for language elements
Version 4.1

713

"C"

Counts the completed number of increments between the start-date and end-date,
without reference to the natural boundary of the increment type. "C" is an alias of
"CONTINUOUS".

Example
The following uses INTCK with a continuous method to find the current age in years, assuming a birth
date of January 09 1982.

DATA _NULL_;
 birthDate = "09-JAN-1982"D;
 currentDate = TODAY();
 cAge = INTCK("YEAR", birthDate, currentDate, "CONTINUOUS");
 PUT "Current age: "cAge;
RUN;

Which produces the following output in the log:

Current age: 34

INTNX

Returns a numeric time, date or datetime value calculated as an increment number of intervals, added
to the start-date.

INTNX (interval , start- date , increment

, interval- point

)

The calculated value takes account of the interval-point before the value is returned. The format of the
value you require (date or datetime) from the function determines the interval label:

• For date values, increments covering year to day will return correct results. Do not attempt to use
HOUR, MINUTE, or SECOND increments with date values.

• For datetime values, use increment names starting with DT. All values from DTYEAR to DTSECOND
can be used. In addition, HOUR, MINUTE and SECOND increments can be used with datetime values.

• For time values, use the HOUR, MINUTE and SECOND increments.

Return type: Numeric

interval

The "units" by which start-date is incremented. Once the date has been calculated, the return
value is determined by the interval-point selected, and varies dependent on the interval type
selected.

Reference for language elements
Version 4.1

714

"YEAR"

This interval increments a date or datetime by one year at a time. To use the year interval
with a date value, specify either YEAR or YR; to use this interval with a datetime value,
specify either DTYEAR or DTYR.

The interval-point selected may have a notable effect on the accuracy of the result. Once
the calculation is complete, the result is rounded to return January 1 of the year for an
interval-point of BEGINNING; July 1 or July 2 in leap years for an interval-point of MIDDLE;
and December 31 for an interval-point of END. An interval-point of SAME preserves the
offset from the date or datetime within the resultant interval period.

Using the DTYEAR interval with a date value results in an innacurate result.

"SEMIYEAR"

This interval increments a date or datetime by six months at a time. To use the semiyear
interval with a date value, specify either SEMIYEAR or SEMIYR; to use this interval with a
datetime value, specify either DTSEMIYEAR or DTSEMIYR.

The interval-point selected may have a noteable effect on the accuracy of the result. An
interval-point of SAME preserves the offset from the date or datetime within the resultant
interval period; for other interval-points once the calculation is complete the result is
rounded and, depending on which half of the year, the date or datetime value:

• For the first half of the year: January 1 for an interval-point of BEGINNING; April 1 for an
interval-point of MIDDLE; and June 30 for an interval-point of END.

• For the second half of the year: July 1 of the year for an interval-point of BEGINNING;
September 30 for an interval-point of MIDDLE; and December 31 for an interval-point of
END.

"QUARTER"

This interval increments a date or datetime by 3 months at a time. To use the quarter
interval with a date value, specify either QUARTER or QTR; to use this interval with a
datetime value, specify either DTQUARTER or DTQTR.

The interval-point selected may have an effect on the result. An interval-point of SAME
preserves the offset from the date or datetime within the resultant interval period; for other
interval-points once the calculation is complete the result is rounded and, depending on
which quarter of the year, the date or datetime value:

• For the first quarter of the year: January 1 for an interval-point of BEGINNING; February
14 (February 15 in leap years) for an interval-point of MIDDLE; and March 31 for an
interval-point of END.

• For the second quarter of the year: April 1 for an interval-point of BEGINNING; May 16
for an interval-point of MIDDLE; and June 30 for an interval-point of END.

• For the third quarter of the year: July 1 for an interval-point of BEGINNING; August 15
for an interval-point of MIDDLE; and September 30 for an interval-point of END.

Reference for language elements
Version 4.1

715

• For the fourth quarter of the year: October 1 for an interval-point of BEGINNING;
November 15 for an interval-point of MIDDLE; and December 31 for an interval-point of
END.

"MONTH"

This interval increments a date or datetime by one month at a time. To use the month
interval with a date value, specify either MONTH or MON; to use this interval with a datetime
value, specify either DTMONTH or DTMON.

The interval-point selected may have an effect on the result. An interval-point of SAME
preserves the offset from the date or datetime within the resultant interval period; for
other interval-points once the calculation is complete the result is rounded, and the result
returned depends on the interval-point selected:

• With an interval-point of BEGINNING, using date values, returns the first day of
the month containing the unrounded result; for datetime values, returns a value
corresponding to midnight for the first day of the month containing the unrounded
result.

• With an interval-point of MIDDLE, using date values, returns the middle day of
the month containing the unrounded result; for datetime values, returns a value
corresponding to 11:59:59 of the middle day of the month containing the unrounded
result.

• With an interval-point of END, using date values, returns the last day of the month
containing the unrounded result; for datetime values, returns a value corresponding to
23:59:59 of the last day of the month containing the unrounded result.

"SEMIMONTH"

This interval increments a date or datetime by half a month at a time. A semimonth is
fixed in the SAS language to: the first if the month to the fifteenth being the first half;
the sixteenth of the month to the final day as the second half. To use the semimonth
interval with a date value, specify either SEMIMONTH or SEMIMON; to use this interval with
a datetime value, specify either DTSEMIMONTH or DTSEMIMON.

The interval-point selected may have an effect on the result. An interval-point of SAME
preserves the offset from the date or datetime within the resultant interval period; for other
interval-points once the calculation is complete the result is rounded depending on the
interval-point selected:

• With an interval-point of BEGINNING. For the first half of the month, returns the first of
the month for date values, and midnight on the first of the month for datetime values.
For the second half of the month returns the sixteenth for date values, and midnight on
the sixteenth of the month for datetime values.

• With an interval-point of MIDDLE. For the first half of the month, returns the eighth
of the month for date values, and 11:59:59 on the eighth of the month for datetime
values. For the second half of the month returns the middle-day between the sixteenth
and the month end for date values, and 23:59:59 on the same day for datetime values.

Reference for language elements
Version 4.1

716

• With an interval-point of END. For the first half of the month, returns the fifteenth of
the month for date values, and 11:59:59 on the fifteenth for datetime values. For
the second half of the month returns the last day of the month for date values, and
23:59:59 on the last day of the month for datetime values.

"TENDAY"

The tenday interval splits a month into ten day intervals, starting on the first, eleventh
and twenty-first days of the month. Where a month has 31 days, the third tenday interval
includes the thrity-first of the month.

This interval increments a date or datetime by one tenday period at a time. To use this
interval with a date value, specify TENDAY; to use this interval with a datetime value,
specify DTTENDAY.

Using an interval-point of SAME, the offset is maintined within the resultant interval,
including the time portion of a datetime value. When using any other interval-point, once
the calculation is complete the result is rounded depending on the interval-point selected:

• With an interval-point of BEGINNING. For date values the first interval in a month
returns the first of the month; the second interval returms the eleventh of the month;
the third interval returns the twenty-first of the month. Datetime values return midnight
on the same days in the intervals.

• With an interval-point of MIDDLE. For date values the first interval in a month returns
the fifth of the month; the second interval returms the fifteenth of the month; the third
interval returns either the twenty-fifth if the month has thirty day, or the twenty-sixth if
the month has thirty-one days. Datetime values return midnight on the same days in
the intervals.

• With an interval-point of END. For the first half of the month, returns the fifteenth of
the month for date values, and 11:59:59 on the fifteenth for datetime values. For
the second half of the month returns the last day of the month for date values, and
23:59:59 on the last day of the month for datetime values.

"WEEK"

This interval increments a date or datetime by one week at a time. When using a week
increment, the default first day of a week is Sunday.

Using an interval-point of SAME, the offset is maintined within the resultant interval,
including the time portion of a datetime value. When using any other interval-point, once
the calculation is complete the result is rounded depending on the interval-point selected:

• An interval-point of BEGINNING returns the default first day of a week. Date values with
return the date for the Sunday of the resultant interval; datetime values return midnight
on Sunday of the resultant interval.

• With an interval-point of MIDDLE. Date values return the date for the Wednesday of the
resulting interval, datetime values return 11:59:59 on the Wednesday of the resultant
interval.

Reference for language elements
Version 4.1

717

• An interval-point of END returns the default final day of a week. Date values return the
date for the Saturday of the resulting interval; datetime values return 23:59:59 on the
Saturday of the resultant interval.

"WEEKDAY"

This interval increments a date or datetime by one day at a time, ignoring Saturdays and
Sundays. Adding one weekday to a Friday therefore returns the date for the following
Monday, adding two days returns the date for the following Tuesday.

To use this interval with a date value, specify WEEKDAY; to use this interval with a datetime
value, specify DTWEEKDAY. Using the DTWEEKDAY interval with a date format results in an
inaccurate date, as the calculated result is rounded to the entered interval-point in seconds
before being returned from the function. Using the WEEKDAY interval with a datetime format
results in a missing value.

"DAY"

This interval increments a date or datetime by one day at a time. To use this interval with a
date value, specify DAY; to use this interval with a datetime value, specify DTDAY.

Using the DTDAY interval with a date format results in an inaccurate date, as the calculated
result is rounded to the entered interval-point in seconds before being returned from the
function. Using the DAY interval with a datetime format results in a missing value.

"HOUR"

This interval can only be used with datetime or time values.

To use the hour interval, specify one of the following as the interval: HOUR, HR, DTHOUR, or
DTHR. The calculated output is the same whichever alias is selected.

If you apply an hour interval to a date value the initial date is treated as the number of
seconds in a datetime value to which increment x 3600 seconds is added. The
calculated value is rounded to increment-point, and the output treated as a day count
resulting in an inaccurate date.

The following example shows the output when using datetime and date formats with an
interval denominated in hours:

DATA _NULL_;
 DATE1 = 1727568000;
 DATE2 = "29-SEP-2014"d;

 DOUT1 = INTNX ("HOUR", DATE1, 11);
 DOUT2 = INTNX ("HOUR", DATE2, 11);
 PUT "Stating DATETIME: " DATE1;
 PUT "INTNX DATETIME raw data: " DOUT1;
 PUT "DATETIME format with hours: " DOUT1 DATETIME.;
 PUT "Starting DATE: " DATE2;
 PUT "INTNX DATE raw data: " DOUT2;
 PUT "DATE format with hours: " DOUT2 DATE11.;
RUN;

Reference for language elements
Version 4.1

718

Which produces the following output in the log. The INTNX DATE raw data has been
rounded to the beginning of the interval, and must therefore be divisible by 3600.

Stating DATETIME: 1727568000
INTNX DATETIME raw data: 1727607600
DATETIME format with hours: 29SEP14:11:00:00
Starting DATE: 19995
INTNX DATE raw data: 57600
DATE format with hours: 14-SEP-2117

"MINUTE"

This interval should only be used with datetime or time values.

To use the minute interval, specify one of the following as the interval: MINUTE, MIN,
DTMINUTE, or DTMIN. The calculated output is the same whichever alias is selected.

If you apply a minute interval to a date value, the initial date is treated as the number
of seconds in a datetime value, to which increment x 60 seconds is added. The
calculated value is rounded to increment-point, and the output treated as a day count
resulting in an inaccurate date.

The following example shows the output when using datetime and date formats with an
interval denominated in minutes:

DATA _NULL_;
 DATE1 = 1727568000;
 DATE2 = "29-SEP-2014"d;

 DOUT1 = INTNX ("MINUTE", DATE1, 1001);
 DOUT2 = INTNX ("MINUTE", DATE2, 1001);
 PUT "Stating DATETIME: " DATE1;
 PUT "INTNX DATETIME raw data: " DOUT1;
 PUT "DATETIME format with minutes: " DOUT1 DATETIME.;
 PUT "Starting DATE: " DATE2;
 PUT "INTNX DATE raw data: " DOUT2;
 PUT "DATE format with minutes: " DOUT2 DATE11.;
RUN;

Which produces the following output. The INTNX DATE raw data has been rounded to
the beginning of the interval, and must therefore be divisible by 60.

Stating DATETIME: 1727568000
INTNX DATETIME raw data: 1727628060
DATETIME format with minutes: 29SEP14:16:41:00
Starting DATE: 19995
INTNX DATE raw data: 80040
DATE format with minutes: 21-FEB-2179

"SECOND"

This interval should only be used with datetime or time values.

To use the second interval, specify one of the following as the interval: SECOND, SEC,
DTSECOND, or DTSEC. The calculated output is the same whichever alias is selected.

Reference for language elements
Version 4.1

719

If you apply this interval to a date value, the date is treated as the number of seconds in
a datetime value, to which the increment number of seconds is added and the result
converted to an inaccurate date.

The following example shows the output when using datetime and formats with an interval
date denominated in seconds:

DATA _NULL_;
 DATE1 = 1727568000;
 DATE2 = "29-SEP-2014"d;

 DOUT1 = INTNX ("SECOND", DATE1, 10001);
 DOUT2 = INTNX ("SECOND", DATE2, 10001);
 PUT "Stating DATETIME: " DATE1;
 PUT "INTNX DATETIME raw data: " DOUT1;
 PUT "DATETIME format with seconds: " DOUT1 DATETIME.;
 PUT "Starting DATE: " DATE2;
 PUT "INTNX DATE raw data: " DOUT2;
 PUT "DATE format with seconds: " DOUT2 DATE11.;
RUN;

Which produces the following output. Setting the interval to seconds means the calculated
result is not rounded.

Stating DATETIME: 1727568000
INTNX DATETIME raw data: 1727578001
DATETIME format with seconds: 29SEP14:02:46:41
Starting DATE: 19995
INTNX DATE raw data: 29996
DATE format with seconds: 15-FEB-2042

start-date

Type: Numeric

The start date, time or datetime to which an increment number of intervals is added. This can be
a known value, a literal, or calculated using other functions that return a date, time or datetime
value.

increment

Type: Numeric

The number of the selected interval to be added to the start-date.

interval-point
Optional argument

Determines the return point within the interval. When not entered, the default is the start of the
selected interval. The calculated value is rounded to the interval-point selected before being
returned by INTNX.

"BEGINNING"

Rounds the output to the start point of the current interval period.

Reference for language elements
Version 4.1

720

"MIDDLE"

Rounds the output to the mid-point of the current interval period.

"END"

Rounds the output to the end-point of the current interval period.

"SAME"

Preserves the offset within the interval period. Alternatively, you can specify the alias
"SAMEDAY".

DATDIF

Returns the number of days difference between two dates as a numeric value.

DATDIF (start- date , end- date , basis)

The returned value is resolved using the basis, which determines how month and years are calculated
between the start-date and end-date. This function can only be used with date values; datetime values
can be passed in to the function, but differences cannot be calculated between datetime values.

Return type: Numeric

start-date

Type: Numeric

The date value from which to begin counting, inclusive. This can be a known date value, a date
literal, or calculated using other functions that return a date value.

end-date

Type: Numeric

The date value at which to stop counting. This date is excluded from the count. This can be a
known date value, a date literal, or calculated using other functions that return a date value.

basis
The basis determines how the days in the month and days in the year are calculated.

"30/360"

Each month is treated as containing 30 days, and the year 360 days. Differences within
a month return the actual value; where a difference crosses the month boundary the
returned value is rounded to a 30 day month. Where the difference is greater than a year,
the count is rounded assuming a 360 day year.

Reference for language elements
Version 4.1

721

For example:

DATA _NULL_;
 startDate = "01-JAN-2015"D;
 endDate1 = "10-MAR-2015"D;
 endDate2 = "20-APR-2016"D;
 outDate1 = DATDIF(startDate, endDate1, "30/360");
 outDate2 = DATDIF(startDate, endDate2, "30/360");
 PUT "count between startDate and";
 PUT "endDate1: " outDate1;
 PUT "endDate2: " outDate2;
RUN;

Returns the following counts. Counting to endDate1 is two months and nine days
difference, giving a total count of 69 days; endDate2 is greater than one year in
difference, and can be calculated as one year (360 days), three months (90 days) and 19
days for a total of 469 days.

count between startDate and
endDate1: 69
endDate2: 469

"360"

An alias of "30/360".

"ACT/ACT"

Returns the actual count of days between the start-date and end-date.

"ACTUAL"

An alias of "ACT/ACT", returning the actual count of days between the start-date and end-
date.

"ACT/360"

Returns the actual count of days between the start-date and end-date, but assume 360
days in the year when the difference is greater than a year.

"ACT/365"

Returns the actual count of days between the start-date and end-date, but assume 365
days in the year when the difference is greater than a year.

YRDIF

Returns the number of years difference between two dates as a numeric value.

YRDIF (start- date , end- date

, basis

)

Reference for language elements
Version 4.1

722

Return type: Numeric

start-date

Type: Numeric

The date value from which to begin counting, inclusive. This can be a known date value, a date
literal, or calculated using other functions that return a date value.

end-date

Type: Numeric

The date value at which to stop counting. This date is excluded from the count. This can be a
known date value, a date literal, or calculated using other functions that return a date value.

basis
Optional argument

The basis determines how the days in the year are calculated, and consequently the difference in
years between two dates.

"AGE"

An alias of "ACTUAL".

"30/360"
Returns the number of years' difference between the start-date and end-date, assuming
that each year contains 360 days. Where the result contains a fraction of a year, the
actual days within a month are returned, where the count crosses a month boundary, a 30
day month is assumed, and the count is rounded before being returned as the fractional
part of the result.

"ACT/ACT"

An alias of "ACTUAL".

"ACTUAL"

Returns the number of years' difference between the start-date and end-date, taking into
account the actual number of days in each year.

"ACT/360"

Returns the number of years' difference between the start-date and end-date, assuming
that each year contains 360 days. Where the result contains a fraction of a year, the
actual days elapsed within the year is returned as the fractional part of the result.

Reference for language elements
Version 4.1

723

"360"

Returns the number of years' difference between the start-date and end-date, assuming
that each year contains 360 days. The start-date and end-date are converted to date
formats and the difference is calculated as the number of elapsed days divided by 360.
This calculation does not take into account the extra five days in each year, and may
generate some unexpected results, for example:

DATA _NULL_;
 start="01-JAN-2000"D;
 current = "01-JAN-2016"D;
 C_360 = YRDIF(start, CURRENT, "360");
 PUT C_360;
RUN;

Where C_360 returns a value of 16.233333, rather than a value of 16 that might have
been expected as both dates are January 1.

"ACT/365"

Returns the number of years' difference between the start-date and end-date, assuming
that each year contains 365 days. The start-date and end-date are converted to date
formats and the difference is calculated as the number of elapsed days divided by 365.
Where the result contains a fraction of a year, the actual days elapsed within the year is
returned as the fractional part of the result.

"365"

Returns the number of years' difference between the start-date and end-date, assuming
that each year contains 365 days. The start-date and end-date are converted to date
formats and the difference is calculated as the number of elapsed days divided by 365.

Dataset input and output functions and CALL
routines
Open and close datasets, get information about datasets, and get observations from them.

An identifier is returned when you open a dataset. This identifier can then be used with the other input
and output functions to return information about the attributes of the dataset, the format of variables in
the dataset, the library name and reference for the dataset, and so on. You can also get observations
from the dataset and variables from a specified observation.

ATTRC ...725
Returns information about character-based attributes of a dataset, such as its character set,
whether it is encrypted, the library with which it is associated, and so on.

Reference for language elements
Version 4.1

724

ATTRN ...727
Returns information about the numeric attributes of a dataset, such as the number of
observations, the date and time the dataset was created and modified, and so on.

CEXIST ..731
Returns a value that indicates whether a specified catalog or catalog entry exists.

CLOSE .. 731
Closes a dataset opened with the OPEN function. The dataset to be closed is specified using the
dataset identifier returned by OPEN.

CUROBS ... 732
Returns the position of the current observation in the dataset. For example, if the FETCHOBS
function has been used to get the tenth observation in the current dataset, then CUROBS will
return 10.

DESCRIBE .. 733
Enables a list to be populated with dataset, data view and catalog entry attributes.

DSNAME ... 737
Returns the name of an open dataset associated with a specified identifier.

EXIST .. 738
Returns a value that specifies whether a specified member exists in a library. You can also
specify the type of member, if required.

FETCH ...739
Fetches the next observation from a dataset.

FETCHOBS ... 742
Fetches the specified observation from a dataset.

GETVARC ... 744
Returns the value of the specified character variable from an observation in the Dataset Data
Vector (DDV).

GETVARN ... 746
Returns the value of the specified numeric variable from the current observation in the Dataset
Data Vector (DDV).

IORCMSG ... 747
Returns an error message.

LIBNAME ...747
Assigns or deassigns a libref for a library.

LIBREF .. 750
Returns a value indicating whether a specified libname has been assigned.

NOTE ...751
Returns an identifier for the current observation from a specified open dataset.

OPEN .. 752
Opens a specified dataset, and returns an identifier that can be used by other functions.

POINT ..753
Points at an observation previously identified by the NOTE function.

Reference for language elements
Version 4.1

725

REWIND .. 754
Positions the dataset pointer at the first record in the dataset.

VARFMT ..755
Returns the format of a specified variable, if a format has been applied.

VARINFMT .. 756
Returns the informat of a specified variable, if an informat has been applied.

VARLABEL .. 758
Returns the label associated with the specified variable.

VARLEN .. 759
Returns the length of a specified variable.

VARNAME ...760
Returns the name of a specified variable. The name is that defined for the variable in the dataset.

VARNUM ... 761
Returns the ordinal position of a named variable in an observation in a dataset.

VARTYPE ..762
Returns the type of the variable at the specified ordinal position in an observation. A variable can
be numeric or character.

CALL SET ... 763
Identifies the variables in a dataset, and makes them available to other functions in the DATA
step. This enables the variable names specified in the dataset to be used in other functions and
routines.

ATTRC
Returns information about character-based attributes of a dataset, such as its character set, whether it
is encrypted, the library with which it is associated, and so on.

ATTRC (dataset- id , attribute)

For information on the numeric attributes of datasets, see ATTRN (page 727).

Return type: Character

dataset-id

Type: Numeric

The identifier of the dataset for which you want information. The identifier is returned by the
OPEN (page 752) function, which should be called before this function is used.

attribute

Specifies the attribute for which information will be returned. The attributes listed below are
available. The value returned by an attribute is also described.

Reference for language elements
Version 4.1

726

"CHARSET"

The character set in which the data is stored.

"ENCRYPT"

A value indicating whether the data is encryped or not. YES if it is, otherwise NO.

"ENGINE"

The name of the engine used to open the file. For example, WPD for WPS's own dataset
files.

"LABEL"

The label associated with the dataset.

"LIB"

The name of the library assigned to a dataset (if one has been assigned).

"MEM"

The name of the dataset in use.

"MODE"

The mode with which the file was opened. This will be I, IN or IS. See OPEN (page
752) for details.

"MTYPE"

A value indicating whether the dataset is a view (VIEW) or data (DATA).

"SORTEDBY"

If the dataset is sorted, the observation on which the data is sorted. Otherwise, null.

"SORTLVL"

A value indicating that the dataset has been sorted, and the type of sort. If the dataset has
not been sorted, the value is null, otherwise, the value can be:

• WEAK – The dataset has been defined as sorted using the SORTEDBY option to the
DATA statement, in which case the sort order has not been validated by WPS, and is
shown as not validated in the metadata for the dataset.

• STRONG – The dataset has been sorted using mechanisms such as PROC SORT,
in which case the sort order is validated by WPS, and is shown as validated in the
metadata for the dataset.

Reference for language elements
Version 4.1

727

"SORTSEQ"

The dataset collation order, such as ASCII or EBCDIC, or one of the national collation
ordering schemes. The collation order is set using the SORTSEQ system option or the PROC
SORT option SORTSEQ. If the collating sequence is the same as the device on which the
DATA step is run, then null is returned.

"TYPE"

Returns the value specified for the DATA step option TYPE=. If no value has been set for
the option, blank is returned.

Example
In this example, the function is used to return various attributes of the dataset. The result is written to
the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');

 ca = ATTRC(id,"ENCRYPT");
 PUT 'Is the dataset encrypted? ' ca;

 ca = ATTRC(id,"ENGINE");
 PUT 'Which engine was used to open the dataset? ' ca;

 ca = ATTRC(id,"CHARSET");
 PUT 'Which character set does the dataset use? ' ca;

 ca = ATTRC(id,"MODE");
 PUT 'In which mode was the dataset opened? ' ca;

 returnc = CLOSE(id);
RUN;

This produces the following output:

Is the dataset encrypted? NO
Which engine was used to open the dataset? WPD
Which character set does the dataset use? ASCII
In which mode was the dataset opened? I

ATTRN
Returns information about the numeric attributes of a dataset, such as the number of observations, the
date and time the dataset was created and modified, and so on.

ATTRN (dataset- id , attribute)

For information on the character attributes of datasets, see ATTRC (page 725).

Reference for language elements
Version 4.1

728

Return type: Numeric

dataset-id

Type: Numeric

The identifier of the dataset for which you want information. The identifier is returned by the
OPEN (page 752) function, which should be called before this function is used.

attribute

Specifies the attribute for which information will be returned. The attributes listed below are
available. The value returned by an attribute is also described.

"ANOBS"

Indicates whether the number of observations in the dataset are known; 1 if true, 0
otherwise.

"ANY"

Indicates whether variables are identified or not. If no variables are identified, -1 is
returned. If variables are identified, but there are no observations, 0 is returned. Otherwise,
0 is returned.

"ARAND"

Indicates whether random access is allowed to the dataset; 1 if true, 0 otherwise.

"ARWU"

Indicates whether the dataset is read only; 1 if true, 0 otherwise.

"AUDIT"

Indicates whether audit logging is supported; 1 if true, 0 otherwise.

Note:
Audit logging is not currently supported

"AUDIT_DATA"

Indicates whether after images of updated records are stored; 1 if true, 0 otherwise.

Note:
Audit logging is not currently supported

"AUDIT_BEFORE"

Indicates whether before images of updated records are stored; 1 if true, 0 otherwise.

Note:
Audit logging is not currently supported

Reference for language elements
Version 4.1

729

"AUDIT_ERROR"

Indicates whether an attempt to store after images of updated records have been
unsuccessful; 1 if true, 0 otherwise.

Note:
Audit logging is not currently supported

"CRDTE"

Date and time the dataset was created.

"ICONST"

A value identifying the type of integrity constraint.

Note:
Integrity constraints are not currently supported

"INDEX"

Indicates whether the dataset supports indexing; 1 if true, 0 otherwise.

"ISINDEX"

Indicates whether the dataset is indexed; 1 if true, 0 otherwise.

"ISSUBSET"

Indicates the observations in the dataset are a subset of a table; 1 if true, 0 otherwise.

"LRECL"

The logical record length of the dataset.

"MODTE"

The date and time at which the dataset was last modified.

"NDEL"

The number of observations marked for deletion.

"NLOBS"

The number of observations not marked for deletion.

"NLOBSF"

The number of observations in the dataset, if known; -1 otherwise. For example, if the
dataset is is an SQL view or a dataset view, the number of observations contained cannot
be known beforehand, so for such a view -1 would be returned.

Reference for language elements
Version 4.1

730

"NOBS"

The number of observations, including deleted observations.

"NVARS"

The number of variables in the dataset.

"RANDOM"

Indicates whether the datset can be accessed randomly; 1 if true, 0 otherwise.

"TAPE"

Indicates whether the datset can be dataset can only be accessed sequentially; 1 if true, 0
otherwise.

"VAROBS"

Indicates whether the number of observations in the dataset is known; 1 if true, 0
otherwise.

"WHSTMT"

Indicates whether a dataset WHERE statement is active, and if so, what type. The value will
be 0, if no WHERE statement is active, or 2 if a temporary WHERE clause is active.

Example
In this example, the function is used to return various numeric attributes of the dataset. The result is
written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');

 na = ATTRN(id,"LRECL");
 PUT 'The logical record length of the dataset is: ' na;

 na = ATTRN(id,"ISINDEX");
 PUT 'Is the dataset index sequential? ' na;

 nd = ATTRN(id,"CRDTE");
 PUT 'The dataset was last modified on ' nd datetime.;

 returnc = CLOSE(id);
RUN;

This produces the following output:

The logical record length of the dataset is: 284
Is the dataset index sequential? 1
The dataset was last modified on 01FEB16:07:00:01

Reference for language elements
Version 4.1

731

CEXIST
Returns a value that indicates whether a specified catalog or catalog entry exists.

CEXIST (catalog- name- or- catalog- entry

, state

)

Return type: Numeric

Returns 1 (true) if the catalog or catalog entry exists, 0 otherwise).

catalog-name-or-catalog-entry

Type: Character

The catalog name or catalog entry.

state
Optional argument
Only one value is available:

"U"
Checks whether the catalog or catalog entry is also updatable, that is, it has write access.

Example
In this example, it is assumed the catalog specified exists. The result is written to the log.

DATA _NULL_;
 FILENAME F CATALOG 'work.cat1.entry.demo';
 result = CEXIST('work.cat1');
 op = IFC(result,"The catalog entry exists","The catalog entry doesn't exist");
 PUT op;
RUN;

This produces the following output:

The catalog entry exists

CLOSE
Closes a dataset opened with the OPEN function. The dataset to be closed is specified using the dataset
identifier returned by OPEN.

CLOSE (dataset- id)

Return type: Numeric

Reference for language elements
Version 4.1

732

If the dataset is successfully closed, 0 (zero) is returned; otherwise 1 is returned.

dataset-id

Type: Numeric

The identifier of the dataset to close. This is an identifier generated by the OPEN (page 752)
function.

OPEN returns 0 (zero) if the file specified does not exist. CLOSE does not recognise 0 as valid identifier,
and will return an error if you attempt to close a file using it.

Example
In this example, the identifier returned by the OPEN function is used in the subsequent CLOSE function.
The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 PUT "The identifier is: " id;
 id=1;
 returnc = CLOSE(id);
 IF returnc = 0 THEN cs = 'Dataset closed successfully';
 ELSE cs = 'Dataset not closed';
 PUT cs;
RUN;

This produces the following output:

The identifier is: 1
Dataset closed successfully

CUROBS
Returns the position of the current observation in the dataset. For example, if the FETCHOBS function
has been used to get the tenth observation in the current dataset, then CUROBS will return 10.

CUROBS (dataset- id)

The current observation is stored in the Dataset Data Vector (DDV).

Return type: Numeric

dataset-id

Type: Numeric

The identifier of the dataset that contains the current observation for which you want the position.
This is an identifier generated by the OPEN (page 752) function.

Reference for language elements
Version 4.1

733

Example
In this example, the function returns the position of the observation selected by the FETCHOBS function.
The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 fo = FETCHOBS(id,10);
 return = CUROBS(id);
 cds = CLOSE(id);
 PUT 'The current observation is: ' return;
RUN;

This produces the following output:

The current observation is: 10

DESCRIBE
Enables a list to be populated with dataset, data view and catalog entry attributes.

DESCRIBE (source- name , l ist- id

, type

)

This function requires a list to be created using one of the list creation functions, MAKELIST (page
1667) or MAKENLIST (page 1668). For datasets and dataset views, the list can then be populated
with the dataset attributes returned by ATTRC (page 725) and ATTRN (page 727). For catalog
entries the list can then be populated with attributes returned for the keywords described below.

Return type: Numeric

0 (zero) if successful.

source-name

Type: Character

The name of the dataset, data view or catalog entry for which you want information about
attributes. The name must be specified using libname format, for example lbooks.books.

list-id

Type: List

The identifier of a list into which the attributes will be copied. The list must have item names that
match the attributes to be returned. For example, if you want to return information about whether
the dataset is indexed, the list must contain an item named MODE. See the section below for more
information, and the examples.

type
Optional argument

Reference for language elements
Version 4.1

734

Type: Character

The type of dataset. This can be:

'DATA'
A dataset.

'CATALOG'
A catalog entry.

'VIEW'
A data view.

If you do not specify a value for this argument, the type of dataset is determined by the number of
filename elements that constitute source-name. For example, if you specify:

• books or booklib.books, the source is assumed to be a dataset or data view (in the first
case, work.books is assumed).

• booklib.books.history.catams, the source is assumed to be a catalog
entry. If you omit the last element of the name for a catalog entry (for example,
booklib.books.history), the default is program.

Lists must be named lists. For datasets and data views, a list item name must be an attribute
corresponding to one of the keywords listed under the attribute option of the ATTRC (page 725) and
ATTRN (page 727) functions. For example, LIB returns as a string the library in which the dataset
resides; ANOBS returns the value 1 or 0, depending on whether the number of observations is available.

ATTRC returns characters, and ATTRN returns a number, so the list item must be set with the
appropriate function (SETNITEMC (page 1712)or SETNITEMN (page 1725)). See the examples
below.

When you create a list item it can have any value, as the initial values will be replaced by the value of
the corresponding attribute.

For catalog entries, a list item name can be one of the following:

'DESC'

The description provided for the catalog entry.

'EDESC'

The extended description provided for the catalog entry. Extended descriptions are not currently
supported, so no value is returned.

'CRDATE'

The date at which the dataset entry was created.

'DATE'

The date at which the dataset entry was last modified.

Reference for language elements
Version 4.1

735

'CRDATE' and 'DATE' can return the date as a string or as a number. If a string, the format is
dd/mmm/yy, where dd is the numeric day in the month (for example, 11), mmm is an abbreviation for
the English language name for the month (for example, SEP), and yy is the last two digits of the year
(for example, 17). If a number, it is the number of days since epoch.

Basic example
In this example, attributes are returned from a specified dataset to a list. The resulting list is then written
to the log using CALL PUTLIST (page 1737).

LIBNAME BOOK_DIR 'c:\temp\books';
DATA _NULL_;

 lid1 = MAKELIST();

 lr1 = SETNITEMC(lid1, '', 'LIB');
 lr1 = SETNITEMC(lid1, '', 'MODE');
 lr1 = SETNITEMN(lid1, ., 'LRECL');

 dsc = DESCRIBE('book_dir.books', lid1);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(LIB='BOOK_DIR'
 MODE='I'
 LRECL=196
)[1]

The values of the attributes, 'LIB', 'MODE and 'LRECL' are inserted into the list. Although the
argument 'DATA' has not been specified, the function recognises that a dataset has been specified
because the argument to source-name comprises a libname and a dataset name from the specified
library.

Reference for language elements
Version 4.1

736

Example – getting attribute information for a data view
In this example, attributes are returned from a specified data view into a list. The resulting list is then
written to the log using CALL PUTLIST (page 1737).

LIBNAME BOOK_DIR 'c:\temp\books';
DATA _NULL_;

 lid1 = MAKELIST();

 lr1 = SETNITEMC(lid1, '', 'LIB');
 lr1 = SETNITEMC(lid1, '', 'MODE');
 lr1 = SETNITEMN(lid1, ., 'ANOBS');
 lr1 = SETNITEMN(lid1, ., 'INDEX');
 lr1 = SETNITEMN(lid1, ., 'LRECL');
 lr1 = SETNITEMN(lid1, ., 'ISSUBSET');

 dsc = DESCRIBE('book_dir.histbooks', lid1,'view');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(LIB='BOOK_DIR'
 MODE='I'
 ANOBS=1
 INDEX=1
 LRECL=196
 CRDTE=1816773917.3
)[1]

The values of the attributes 'LIB', 'MODE', 'ANOBS', 'INDEX', 'LRECL', and 'CRDTE' are
inserted into the list. In this case, the data is contained in a data view because type is specified as
'VIEW'.

Reference for language elements
Version 4.1

737

Example – getting attribute information for a catalog entry
In this example, attributes are returned from a specified catalog entry into a list. The resulting list is then
written to the log using CALL PUTLIST (page 1737).

DATA _NULL_;

 lid1 = MAKELIST();

 lr1 = SETNITEMC(lid1, '', 'DESC');
 lr1 = SETNITEMC(lid1, '', 'EDESC');
 lr1 = SETNITEMC(lid1, , 'CRDATE');
 lr1 = SETNITEMN(lid1, ., 'DATE');

 dsc = DESCRIBE('book_dir.bookscat.history1.CATAMS', lid1);

 CALL PUTLIST(lid1,,0);

 gi = GETNITEMN(lid1, 'date');
 PUT gi = date.;

RUN;

This produces the following output:

(DESC='History subset'
 EDESC=' '
 CRDATE='09/11/2017'
 DATE=21073
)[1]
Converted date 11SEP17

The value for 'CRDATE' has been returned as a string, while the value for 'DATE' has been returned
as the number of days since epoch. In this example, the value for 'DATE' is obtained from the list and
written to the log using the DATE. format to show that the values of 'CRDATE' and 'DATE' are the
same. The filename is recognised as a catalog entry as it comprises four elements.

DSNAME
Returns the name of an open dataset associated with a specified identifier.

DSNAME (dataset- id)

Datasets are opened using the OPEN function, which returns a dataset identifier that can be used in
other dataset input/output functions. DSNAME enables you to obtain the name of the dataset associated
with an identifier.

Return type: Character

dataset-id

Type: Numeric

Reference for language elements
Version 4.1

738

The identifier of the dataset of interest. This is an identifier generated by the OPEN (page
752) function.

Example
In this example, the function returns the name of the dataset previously opened using the OPEN
function. The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 name = DSNAME(id);
 cds = CLOSE(id);
 PUT 'The current dataset is: ' name;
RUN;

This produces the following output:

The current dataset is: SASHELP.zipcode.DATA

EXIST
Returns a value that specifies whether a specified member exists in a library. You can also specify the
type of member, if required.

EXIST (member- name

, member- type

)

Return type: Numeric

Returns 1 if the specified member exists, 0 otherwise.

member-name

Type: Character

The name of the library member.

member-type
Optional argument

Type: Character

The type of library member. This can be, for example, DATA (the default) for a dataset, CATALOG
for a catalog, and so on.

Reference for language elements
Version 4.1

739

Example
In this example, the function checks for the existence of a dataset and of a catalog in a library on the
Windows operating system. The result is written to the log.

DATA _NULL_;
 IF EXIST('sashelp.locale', 'catalog') THEN PUT "The library member exists";
 ELSE PUT "The dataset doesn't exist";
 IF EXIST('sashelp.zipcode') then PUT "The library member exists";
 ELSE PUT "The dataset doesn't exist";
RUN;

This produces the following output:

The library member exists
The library member exists

FETCH
Fetches the next observation from a dataset.

FETCH (dataset- id

, opt ion

)

The dataset is specified using an identifier that was generated by the OPEN (page 752) function
used to open the dataset. The observation is read into the Dataset Data Vector (DDV); the observation
can then be accessed by subsequent functions. By default, the observation fetched is the first
observation; the next invocation of the function returns the second observation, and so on. However,
if the FETCHOBS (page 742) function is first invoked with a specified observation, a subsequent
FETCH obtains the next observation.

Return type: Numeric

Can be:

0

The observation was found and read into the DDV.

-1

The observation specified is beyond the end of the dataset

dataset-id

Type: Numeric

The identifier of the dataset from which the observation will be fetched. This is an identifier
generated by the OPEN (page 752) function.

Reference for language elements
Version 4.1

740

option
Optional argument

There is one optional argument:

"NOSET"

Ensures that variables in the DDV are not updated by corresponding variables obtained
from the dataset by the CALL SET routine.

Note:
This keyword only effects the CALL SET routine. If you use another function (such as
GETVARN) to obtain the variable, then NOSET has no effect.

If an attempt is made to fetch an observation beyond the end of the file, no observation is found, and
the DDV retains the last observation successfully fetched.

Basic example
In this example, the function fetches observations that are then accessed by the GETVARN function,
which in this example returns the third variable in the observation. The result is written to the log.

LIBNAME ref 'C:\program files\World Programming\WPS\4\sashelp';
DATA _NULL_;
 id = OPEN('ref.zipcode');
 DO i= 1 TO 10;
 gno = FETCH(id);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 END;
 fo = FETCHOBS(id,13);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 fo = FETCH(id);
 nextrec = GETVARN(id,3);
 PUT nextrec;
RUN;

This produces the following output:

-73.046388
-73.049288
-66.723627
-67.186553
-67.151954
-67.135899
-67.151346
-66.977377
-67.144161
-66.797578
-66.735892
-66.673779

Reference for language elements
Version 4.1

741

The example output lists the third variable (in this case, a longitude) from each selected observation.
The first ten observations are fetched by the FETCH function; each invocation of the function in the
DO selects the next observation. The FETCHOBS function is then used to select a specific observation
(in this example, the thirteenth in the dataset). When FETCH is subsequently called it gets the next
observation, which in this example will be the fourteenth in the dataset.

Example – with NOSET option
In this example, the function fetches observations that are then accessed by the GETVARN function, and
by the CALL SET routine. The result is written to the log.

DATA _NULL_;

 zip= 0.0;
 x = 0.0;
 y = 0.0;

 id = OPEN('sashelp.zipcode');

 f = FETCHOBS(id,10);
 fv = GETVARN(id,2);
 CALL SET(id);
 PUT fv= zip= x= y=;

 f = FETCH(id);
 fv = GETVARN(id,2);
 CALL SET(id);
 PUT fv= zip= x= y=;

 f = FETCH(id,"noset");
 fv = GETVARN(id,2);
 CALL SET(id);
 PUT fv= zip= x= y=;

 returnc = CLOSE(id);

RUN;

This produces the following output:

fv=18.287716 zip=0 x=0 y=0
fv=18.471326 zip=612 x=-66.728149 y=18.471326
fv=18.472737 zip=612 x=-66.728149 y=18.471326

In this example, observations are fetched from the dataset. Variables are then obtained from the
observation in the DDV using GETVARN and CALL SET. The GETVARN function gets the second
variable, which corresponds to y in these observations. In the second use of the FETCH function NOSET
is specified. The zip, x and y variables remain the same as those returned in the previous CALL SET.
However, GETVARN returns the value 18.456904; this demonstrates that FETCH did obtain the next
value, and that NOSET only affects the CALL SET routine.

Reference for language elements
Version 4.1

742

FETCHOBS
Fetches the specified observation from a dataset.

FETCHOBS (dataset- id , obs- num

, opt ions

)

The dataset is specified using an identifier that was generated by the OPEN (page 752) function
used to open the dataset. The observation is read into the Dataset Data Vector (DDV); the observation
can then be accessed by subsequent functions.

Return type: Numeric

Can be:

0
The observation was found and read into the DDV

-1
The observation specified is beyond the end of the dataset

dataset-id

Type: Numeric

The identifier of the dataset from which the observation will be fetched. This is an identifier
generated by the OPEN (page 752) function.

obs-num

Type: Numeric

The observation number of the observation to be found and then read into the DDV. The
observations are numbered sequentially from one through to the end of the file.

options
Optional argument

Type: Character

NOSET

Ensures that variables in the Dataset Data Vector are not updated by corresponding
variables obtained from the dataset by the CALL SET routine.

Note:
This keyword only effects the CALL SET routine. If you use another function (such as
GETVARN) to obtain the variable, then NOSET has no effect.

Reference for language elements
Version 4.1

743

ABS

When finding the observation specified by obs-num, deleted observations are by default
ignored. For example, if the dataset has ten observations, two of which have been deleted,
the dataset would appear to only have eight observations. If obs-num is set to 10, then no
observation would be found and an error message returned. If this option is set, however,
deleted records are not ignored and are included in the observation count. In the previous
example, therefore, the last observation would now be found.

Basic example
In this example, the function fetches observations that are then accessed by the GETVARN function,
which in this example returns the third variable in the observation. The result is written to the log.

LIBNAME ref 'C:\program files\World Programming\WPS\4\sashelp';
DATA _NULL_;
 id = OPEN('ref.zipcode');
 DO i= 60 to 70;
 gno = FETCHOBS(id,i);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 END;
 fo = FETCHOBS(id,78);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 fo = FETCH(id);
 nextrec = GETVARN(id,3);
 PUT nextrec;
RUN;

This produces the following output:

-66.614749
-66.61449
-65.732399
-66.244271
-66.39152
-65.774509
-66.015222
-66.04134
-66.036044
-66.036446
-66.614009
-66.161033
-66.161026

The example output lists the first variable (in this case, a longitude) from each selected observation.
The first ten observations are fetched by the FETCHOBS function, with the index of each observation
provided by the DO loop counter. The FETCHOBS function is then used to select a specific observation
(in this example, observation 78 in the dataset). When FETCH is subsequently called, it gets the next
observation, the 79th in the dataset.

Reference for language elements
Version 4.1

744

Example – using NOSET option
In this example, the function fetches observations that are then accessed by the GETVARN function, and
by the CALL SET routine.The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');

 zip= 0.0;
 x = 0.0;
 y = 0.0;

 f = FETCHOBS(id,10);
 fv = GETVARN(id,2);
 CALL SET(id);
 PUT fv= zip= x= y=;

 f = FETCHOBS(id,11);
 fv = GETVARN(id,2);
 CALL SET(id);
 PUT fv= zip= x= y=;

 f = FETCHOBS(id,13,"noset");
 fv = GETVARN(id,2);
 CALL SET(id);
 put fv= zip= x= y=;

 RETURNC = CLOSE(id);

RUN;

This produces the following output:

fv=18.287716 zip=0 x=0 y=0
fv=18.471326 zip=612 x=-66.728149 y=18.471326
fv=18.456904 zip=612 x=-66.728149 y=18.471326

In this example, observations are fetched from the dataset. Variables are then obtained from the
observation in the DDV using GETVARN and CALL SET. The GETVARN function gets the second
variable, which corresponds to y in these observations. In the third use of the FETCHOBS function
NOSET is used. The zip, x and y variables remain the same as those returned in the previous CALL
SET. However, GETVARN returns the value 18.456904; this demonstrates that FETCH did obtain the
next value, and that NOSET only affects the CALL SET routine.

GETVARC
Returns the value of the specified character variable from an observation in the Dataset Data Vector
(DDV).

GETVARC (dataset- id , var- num)

Reference for language elements
Version 4.1

745

An observation can be inserted into the DDV using the FETCH (page 739) or FETCHOBS (page
742) functions. The value must be a character string, otherwise an error is returned.

Return type: Character

dataset-id

Type: Numeric

The identifier of the dataset from which to get the variable. This is an identifier generated by the
OPEN (page 752) function.

var-num

Type: Numeric

The ordinal position in the observation of the variable from which you want the value. For
example, if the observation has six variables, and you want to obtain the value from the fourth,
you would specify 4 to this argument.

Example
In this example, the function fetches observations that are then accessed by the GETVARC function,
which in this example returns the value of the fifth variable in the observation. The result is written to the
log.

LIBNAME ref 'C:\program files\World Programming\WPS\4\sashelp';
DATA _NULL_;
 id = OPEN('ref.zipcode');
 DO i= 2000 TO 2010;
 gno = FETCHOBS(id, i);
 nextrec = GETVARC(id,5);
 PUT nextrec;
 END;
RUN;

This produces the following output:

Derby
Derby Line
East Burke
East Charleston
East Hardwick
East Haven
East Saint Johnsbury
Glover
Granby
Greensboro
Greensboro Bend

The example lists the fifth variable (in this case, a city name) from a series of selected observations.
Ten observations are fetched by the FETCHOBS function, starting at the 51st observation; each
invocation of the function in the DO selects the next observation.

Reference for language elements
Version 4.1

746

GETVARN
Returns the value of the specified numeric variable from the current observation in the Dataset Data
Vector (DDV).

GETVARN (dataset- id , var- num)

An observation can be inserted into the DDV using the FETCH (page 739) or FETCHOBS (page
742) functions. The variable must be numeric, otherwise an error is returned.

Return type: Numeric

dataset-id

Type: Numeric

The identifier of the dataset from which to get the variable. This is an identifier generated by the
OPEN (page 752) function.

var-num

Type: Numeric

The ordinal position in the observation of the variable from which you want the value. For
example, if the observation has six variables, and you want to obtain the fourth, you would
specify 4 in this argument.

Example
In this example, the function fetches five observations that are then accessed by a series of GETVARN
functions, which in this example return the first, second and third variables in the observation. The result
is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode','in');
 DO i= 192 TO 196;
 gno = FETCHOBS(id,i);
 zip = GETVARN(id,1);
 y = GETVARN(id,2);
 x = GETVARN(id,3);
 PUT "Zipcode " zip z5. " is at Y = " y 5.2 " and X = " x 7.2 ;
 END;
RUN;

This produces the following output:

Zipcode 00986 is at Y = 18.41 and X = -65.98
Zipcode 00987 is at Y = 18.41 and X = -65.98
Zipcode 00988 is at Y = 18.41 and X = -65.98
Zipcode 01001 is at Y = 42.07 and X = -72.62
Zipcode 01002 is at Y = 42.38 and X = -72.47

Reference for language elements
Version 4.1

747

IORCMSG
Returns an error message.

IORCMSG ()

This function enables you to display a text message about the status of the input/output operation,
rather than a numeric code. The error message is based on the numeric return code held in the
IORC automatic variable.

This function can only be called from a DATA step that has at least one of the following:

• A MODIFY function
• A SET function with the KEY statement

Return type: Character

Example
In this example, it is assumed the catalog specified exists. The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 MODIFY example;
 sl = QUOTE(ATTRC(id,'SORTLVL'));
 PUT sl;
 cl = CLOSE(id);
 msg = IORCMSG();
 PUT msg;
RUN;

This produces the following output:

"STRONG"
The IO operation completed successfully

LIBNAME
Assigns or deassigns a libref for a library.

LIBNAME (l ibname ,

locat ion

,

engine , opt ions

)

Return type: Numeric

Returns 0 (zero) if the library is successfully assigned, otherwise -70008.

Reference for language elements
Version 4.1

748

libname

Type: Character

The name specified for the library.

location
Optional argument

Type: Character

The location of the library; for example, on Windows this could be a pathname such as C:\data
\study1.

engine
Optional argument

Type: Character

An engine type recognised by WPS. For example, WPD, V9SEQ, or SASDASD.

options
Optional argument

Type: Character

An option specific to the dataset. See the LIBNAME statement associated with the engine for
more details.

To deassign the libname, specify the function without a library. For example:

LIBNAME('ref','C:\Program Files\World Programming WPS 3\sashelp')

will assign the libname, while:

LIBNAME('ref')

will deassign it.

Example – assigning a libname
In this example, a LIBNAME function is used to specify a libname. The result is written to the log.

DATA _NULL_;
 lok = LIBNAME('ref','C:\program files\World Programming\WPS\4\sashelp');
 PUT 'Status returned: ' lok;
 id = OPEN('ref.zipcode');
 DO i= 51 TO 55;
 gno = FETCHOBS(id, i);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 END;
 cl = CLOSE(id);
RUN;

Reference for language elements
Version 4.1

749

This produces the following output:

Status returned: 0
-66.398866
-66.402557
-66.863322
-66.103857
-66.101442

Status returned: 0 indicates that the libname was successfully created for the dataset.

Alternatively, if an attempt was made to create a reference to an unknown library:

DATA _NULL_;
 lok = LIBNAME('ref','C:\Program Files\World Programming WPS\sashelp');
 PUT 'Status returned: ' lok;
 id = OPEN('ref.zipcode');
 DO i= 51 TO 55;
 gno = FETCHOBS(id, i);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 END;
 cl = CLOSE(id);
RUN;

the following status would be returned:

Status returned: -70008

as well as error message indicating that the arguments to other function are invalid, because no
variables had been returned.

Example – deassigning a libname
In this example, a previously assigned libname is deassigned using a LIBNAME function. The result is
written to the log.

DATA _NULL_;
 lok = LIBNAME('ref');
 PUT 'Status returned: ' lok;
 id = OPEN('ref.zipcode');
 gno = FETCHOBS(id, 55);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 cl = CLOSE(id);
RUN;

This produces the following output:

Status returned: 0

Reference for language elements
Version 4.1

750

This shows that the LIBNAME function excuted successfully. However, the following statements and
functions return error messages, as no observations and variables are returned; for example:

NOTE: Argument 1 to function FETCHOBS at line 1264 column 9 is invalid
NOTE: Argument 1 to function GETVARN at line 1265 column 13 is invalid
.
NOTE: Argument to function CLOSE at line 1267 column 8 is invalid

If you were to use the LIBREF function to check whether the libname ref exists,

DATA _NULL_;
 libr = LIBREF('ref');
 PUT 'Has the specified libref been opened: ' libr;
RUN;

the following would be returned:

Has the specified libref been opened: 70006

showing that the libname ref no longer has a library name associated with it.

LIBREF
Returns a value indicating whether a specified libname has been assigned.

LIBREF (argument)

Return type: Numeric

If the specified library name has been assigned, 0 (zero) is returned. If the library name does not exist,
the error code 70006 is returned.

argument

Type: Character

The libname you want to check.

Reference for language elements
Version 4.1

751

Example
If the following DATA step had been executed:

DATA _NULL_;
 lok = LIBNAME('ref','C:\program files\World Programming\WPS\4\sashelp');
 PUT 'Status returned: ' lok;
 id = OPEN('ref.zipcode');
 DO i= 51 TO 55;
 gno = FETCHOBS(id, i);
 nextrec = GETVARN(id,3);
 PUT nextrec;
 END;
 cl = CLOSE(id);
RUN;

then the following example checks whether librefs named ref and reff have been opened. The result
is written to the log.

DATA _NULL_;
 libr = LIBREF('ref');
 PUT 'Has the specified libref been opened: ' libr;
 libr = LIBREF('reff');
 PUT 'Has the specified libref been opened: ' libr;
RUN;

This produces the following output:

Has the specified libref been opened: 0
Has the specified libref been opened: 70006

NOTE
Returns an identifier for the current observation from a specified open dataset.

NOTE (dataset- id)

Return type: Numeric

An identifier for the note. The first note identified will have the identifier 1, the next identified 2, and so
on. If the dataset identifier does not exist, 0 (zero) is returned.

dataset-id

Type: Numeric

The identifier of the dataset containing the observation to be noted. This is an identifier generated
by the OPEN (page 752) function.

Reference for language elements
Version 4.1

752

Example
In this example, the identifier returned by the OPEN function is used in the subsequent NOTE function.
The result is written to the log.

DATA _NULL_;
 lok = LIBNAME('ref','C:\program files\World Programming\WPS\4\sashelp');
 id = OPEN('ref.zipcode');
 fo = FETCHOBS(id, 200);
 DO i= 1 TO 5;
 gno = FETCH(id);
 author = GETVARC(id,5);
 END;
 obno=NOTE(id);
 PUT 'The identifier for the observation is: ' obno;
RUN;

This produces the following output:

The identifier for the observation is: 1

OPEN
Opens a specified dataset, and returns an identifier that can be used by other functions.

OPEN (dataset- name

, type

)

Return type: Numeric

If the dataset is not found, 0 is returned. Otherwise a number that will be used as the identifier is
returned.

dataset-name

Type: Character

The name of the dataset to be opened.

type
Optional argument
The mode in which the dataset is opened:

"I"
Random access mode.

"IN"
Sequential access mode. Observations are read from beginning to END; previous
observations cannot be read.

Reference for language elements
Version 4.1

753

"IS"
Sequential access mode in which observations are read from beginning to end, but
previous observations can be read.

An opened dataset can be closed with the CLOSE (page 731) function, specifying the identifier
returned by the OPEN function. When a dataset is closed, its identifier is released; this identifier will then
be used by a subsequent OPEN.

Note:
If the OPEN returns 0 because the dataset does not exist, using this value in a CLOSE function will cause
an error.

Example
In this example, the identifiers returned by the OPEN function are used in the subsequent CLOSE
function. The result is written to the log.

DATA _NULL_;
 fo1 = OPEN('sashelp.zipcode','IS');
 fo2 = OPEN('sashelp.mimetypes');
 PUT 'fo1 identifier: ' fo1;
 PUT 'fo2 identifier: ' fo2;
 cr = CLOSE(fo1);
 cr = CLOSE(fo2);
RUN;

This produces the following output:

fo1 identifier: 1
fo2 identifier: 2

POINT
Points at an observation previously identified by the NOTE function.

POINT (dataset- id , note- id)

Return type: Numeric

If the observation exists in the dataset, 0 (zero) is returned; 40010 is returned otherwise.

dataset-id

Type: Numeric

The identifier of the dataset containing the noted observation. This is an identifier generated by
the OPEN (page 752) function.

Reference for language elements
Version 4.1

754

note-id

Type: Numeric

The identifier generated by the NOTE function for the corresponding observation.

Example
In this example, the identifier returned for the dataset by the OPEN function, and the identifiers returned
for observations by NOTE functions, are used to verify whether observations exist. The result is written
to the log.

DATA _NULL_;
 lok = LIBNAME('ref','C:\program files\World Programming\WPS\4\sashelp');
 id = OPEN('ref.zipcode');

 go = FETCHOBS(id,1);
 vz = GETVARN(id,3);
 PUT vz;
 obno = NOTE(id);

 DO i = 1 TO 100;
 rs= FETCH(id);
 END;
 pt = POINT(id,obno);
 obs = FETCHOBS(id,POINT(id,obno));
 vz = GETVARN(id,3);
 PUT vz;
RUN;

This produces the following output:

-73.046388
-73.046388

The current observation is noted using the NOTE function after the first observation is fetched using
FETCHOBS. A further 100 observations are subsequently read. The observation previously noted is then
specified to POINT. The next FETCH therefore returns the first observation.

REWIND
Positions the dataset pointer at the first record in the dataset.

REWIND (dataset- id)

Return type: Numeric

dataset-id

Type: Numeric

Reference for language elements
Version 4.1

755

The identifier of the dataset to rewind. This is an identifier generated by the OPEN (page 752)
function.

Example
In this example, the identifier returned by the OPEN function is used in a REWIND function. The result is
written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 go = FETCHOBS(id,2010);
 ob = GETVARN(id,1);
 PUT 'Observation: ' ob;
 rc = REWIND(id);
 go = FETCH(id);
 ob = GETVARN(id,1);
 PUT 'Observation: ' ob;
RUN;

This produces the following output:

Observation: 5842
Observation: 501

The first result is from the 2010th observation in the dataset; the second result is from the first.

VARFMT
Returns the format of a specified variable, if a format has been applied.

VARFMT (dataset- id , variable- index)

The function examines the metadata of the dataset for a specified variable to get information about the
format. If no format has been applied, a character missing value is returned.

Return type: Character

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-index

Type: Numeric

The ordinal (that is, the index) position of the variable in the observation. For example, if the
observations in the dataset consist of the variables Author, Title and Type, in that order, then
specifying 3 for this argument would return the format for Type.

Reference for language elements
Version 4.1

756

The value returned will, where applicable, be one of the formats specified in WPS, such as BESTX or F.

Example
In this example, the function is used to return the formats of the variables in a dataset, where those
variables have formats applied. The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 num=ATTRN(id,"nvars");
 DO i=1 TO num;
 name = VARNAME(id,i);
 format = VARFMT(id,i);
 IF FORMAT = "" THEN PUT name $10. " has no format";
 ELSE PUT name $10. " has the format " format;
 END;
 rc=CLOSE(id);
RUN;

This produces the following output:

ZIP has the format Z5.
Y has the format 11.6
X has the format 11.6
ZIP_CLASS has no format
CITY has no format
STATE has no format
STATECODE has no format
STATENAME has no format
COUNTY has no format
COUNTYNM has no format
MSA has no format
AREACODE has no format
TIMEZONE has no format
GMTOFFSET has no format
DST has no format

In this DATA step, the function is used to return the format for each variable. Only the ZIP, X and Y
variables have formats applied.

VARINFMT
Returns the informat of a specified variable, if an informat has been applied.

VARINFMT (dataset- id , variable- index)

The function examines the metadata of the dataset for a specified variable to get information about the
informat. If no informat has been applied, a character missing value is returned.

Return type: Character

Reference for language elements
Version 4.1

757

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-index

Type: Numeric

The ordinal (that is, the index) position of the variable in the observation. For example, if the
observations in the dataset consist of the variables Author, Title and Type, in that order, then
specifying 3 for this argument would return the informat for Type.

The value returned will, where applicable, be one of the informats available in WPS, such as INDEXC or
ANYDTDTE.

Example
In this example, the function is used to return the formats of the variables in a dataset, where those
variables have formats applied. The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.vcatalg');
 num=ATTRN(id,"nvars");
 DO i=1 TO num;
 name = VARNAME(id,i);
 format = VARINFMT(id,i);
 IF format="" THEN PUT name $10. " has no informat";
 ELSE PUT name $10. " has the informat " format;
 END;
 rc=CLOSE(id);
RUN;

This produces the following output:

libname has no informat
memname has no informat
memtype has no informat
objname has no informat
objtype has no informat
objdesc has no informat
created has the informat datetime13.
modified has the informat datetime13.
alias has no informat

In this DATA step, the function is used to return the informat for each variable. Only the CREATED,
MODIFIED and ALIAS variables have informats applied.

Reference for language elements
Version 4.1

758

VARLABEL
Returns the label associated with the specified variable.

VARLABEL (dataset- id , variable- index)

A variable only has a label if one has been specified for it. If there is no label, a character missing value
is returned.

Return type: Character

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-index

Type: Numeric

The ordinal (that is, the index) position of the variable in the observation. For example, if the
observations in the dataset consist of the variables Author, Title and Type, in that order, then
specifying 3 for this argument would return the label for the variable Type.

Example
In this example, the function gets the labels of the first and third variables in the specified dataset. The
result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 vl = VARLABEL(id, 1);
 PUT "The Label is: " vl;
 vl = VARLABEL(id, 3);
 PUT "The Label is: " vl;
RUN;

This produces the following output:

The Label is: The zip code
The Label is: The longitude in degrees of the ZIP code centroid

In the following example, the example dataset created previously is examined for labels; no labels
have been specified, so no information is returned:

DATA _NULL_;
 id = OPEN('work.example');
 vn = VARLABEL(id, 1);
 PUT "Variable label is: " vn;
 vn = VARLABEL(id, 2);
 PUT "Variable label is: " vn;
RUN;

Reference for language elements
Version 4.1

759

This produces the following output:

Variable label is:
Variable label is:

VARLEN
Returns the length of a specified variable.

VARLEN (dataset- id , variable- index)

Return type: Numeric

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-index

Type: Numeric

The ordinal (that is, the index) position of the variable in the observation. For example, if the
observations in the dataset consist of the variables Author, Title and Type, in that order, then
specifying 3 for this argument would return the length of the Type variable.

Example
In this example, the function gets the length of the variables that comprise observations in the specified
dataset. The result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 num=ATTRN(id,"nvars");
 DO i=1 TO num;
 length = VARLEN(id,i);
 vn = VARNAME(id,i);
 PUT vn $10. " is " length 3. " characters long" ;
 END;
 rc=CLOSE(id);
RUN;

Reference for language elements
Version 4.1

760

This produces the following output:

ZIP is 8 characters long
Y is 8 characters long
X is 8 characters long
ZIP_CLASS is 1 characters long
CITY is 64 characters long
STATE is 8 characters long
STATECODE is 2 characters long
STATENAME is 64 characters long
COUNTY is 8 characters long
COUNTYNM is 64 characters long
MSA is 8 characters long
AREACODE is 16 characters long
TIMEZONE is 16 characters long
GMTOFFSET is 8 characters long
DST is 1 characters long

VARNAME
Returns the name of a specified variable. The name is that defined for the variable in the dataset.

VARNAME (dataset- id , variable- index)

Return type: Character

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-index

Type: Numeric

The ordinal (that is, the index) position of the variable in the observation. For example, if the
observations in the dataset consist of the variables Author, Title and Type, in that order, then
specifying 3 for this argument would return Type.

Example
In this example, the function gets the name of the third variable in the specified dataset. The result is
written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 vn = VARNAME(id, 5);
 PUT "Variable name is " vn;
RUN;

Reference for language elements
Version 4.1

761

This produces the following output:

Variable name is CITY

The function returns city, which is the name of the fifth variable in an observation in the dataset.

VARNUM
Returns the ordinal position of a named variable in an observation in a dataset.

VARNUM (dataset- id , variable- name)

Return type: Numeric

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-name

Type: Character

The name of a variable in the dataset.

The variable-name must be defined in the dataset; if it is not, 0 will be returned.

Example
In this example, the function gets the position of the specified variable names. The result is written to
the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 vn = VARNUM(id, "zip");
 PUT "Variable position is: " vn;
 vn = VARNUM(id, "city");
 PUT "Variable position is: " vn;
 vn = VARNUM(id, "city1");
 PUT "Variable position is: " vn;
RUN;

This produces the following output:

Variable position is: 1
Variable position is: 5
Variable position is: 0

Reference for language elements
Version 4.1

762

The function returns the ordinal position of the CITY and ZIP variables in an observation; CITY1 is not
a named variable in the dataset, so the function returns 0.

VARTYPE
Returns the type of the variable at the specified ordinal position in an observation. A variable can be
numeric or character.

VARTYPE (dataset- id , variable- index)

Return type: Character

Returns C for chracter, N for numeric.

dataset-id

Type: Numeric

The identifier of the dataset containing the variable. This is an identifier generated by the OPEN
(page 752) function.

variable-index

Type: Numeric

The ordinal (that is, the index) position of the variable in the observation. The ordinal (that is,
the index) position of the variable in the observation. For example, if the observations in the
dataset consist of the variables Author, Title and Genre, in that order, then specifying 3 for
this argument would return the type of the Genre variable.

Example
In this example, the function gets the type of the first and fifth variable in the specified dataset. The
result is written to the log.

DATA _NULL_;
 id = OPEN('sashelp.zipcode');
 vt = VARTYPE(id, 1);
 PUT "Variable type is: " vt;
 vt = VARTYPE(id, 5);
 PUT "Variable type is: " vt;
RUN;

This produces the following output:

Variable type is: N
Variable type is: C

The function first returns N, as the first variable in an observation in the dataset is a zipcode; the second
use of the function returns C, as the fifth variable of an observation is the name of a city.

Reference for language elements
Version 4.1

763

CALL SET
Identifies the variables in a dataset, and makes them available to other functions in the DATA step. This
enables the variable names specified in the dataset to be used in other functions and routines.

CALL SET (dataset- id) ;

dataset-id

Type: Numeric

The identifier of the dataset. This is an identifier generated by the OPEN (page 752) function.

Example
In this example, the routine is used to identify the variables in an observation, and these are then used
in various PUT functions and a string function. The result is written to the log.

DATA _NULL_;
 zip=0;
 x=0;
 y=0;
 city="";
 state=0;
 statecode="";

 id = OPEN('sashelp.zipcode');
 CALL SET(id);

 f = FETCHOBS(id,10);
 PUT zip= x= y=;

 f = FETCHOBS(id,11);
 PUT city= state= statecode=;

 f = FETCHOBS(id,12);
 PUT zip= x= y= city= state= statecode=;

 returnc = CLOSE(id);
RUN;

This produces the following output:

zip=611 x=-66.797578 y=18.287716
city=A state=72 statecode=P
zip=613 x=-66.719283 y=18.472737 city=A state=72 statecode=P

Reference for language elements
Version 4.1

764

Decision forest functions and CALL routines
Access decision forest functionality.

A decision forest takes an ensemble approach to a collection of decision trees to create an
approximation to the underlying data.

The prediction produced by a decision forest combines the predictions made by each individual
tree. For classification trees the prediction of the forest is the class that gains the most votes from
each tree. For a regression tree the prediction of the forest is the mean average of the prediction
from each tree. There are multiple ways in which decision forests can be trained, WPS uses the
R language randomForest package and the algorithms of Leo Breiman and Adele Cutler (https://
www.stat.berkeley.edu/~breiman/RandomForests/) . The randomForest package must be installed in
R before decision forest functionality can be used.

Note:
The term RandomForest is a registered trademark of Leo Breiman and Adele Cutler.

Currently only classification trees are supported, and only continuous input variables, that is categorical
input variables are not supported. The exportToWps within PROC R will produce an error if an attempt
is made to export a randomForest object that is not compatible with the DF_OPEN function.

DF_OPEN ..764
The function returns an ID that can be used with other decision forest functions and routines.

DF_PREDICT .. 765
Produces predictions from a decision forest.

CALL DF_CLOSE ... 766
Closes a decision forest previously opened by DF_OPEN.

CALL DF_DESCRIBE ... 767
Prints information to the log about the specified decision forest.

CALL DF_PREDICT ..767
Produces predictions from a decision forest, returning multiple result values.

DF_OPEN
The function returns an ID that can be used with other decision forest functions and routines.

DF_OPEN (f ilename)

Opens a decision forest file that was previously generated by the exportToWps function within PROC
R. The exportToWps function takes a randomForest object produced by the randomForest R package
(https://www.stat.berkeley.edu/~breiman/RandomForests/) and exports the parts necessary for
performing prediction. This consists of the definitions of all of the decision trees.

https://www.stat.berkeley.edu/~breiman/RandomForests/
https://www.stat.berkeley.edu/~breiman/RandomForests/

Reference for language elements
Version 4.1

765

Return type: Numeric

filename

Type: Character

The decision forest file to open.

The function returns an opaque numeric ID. If the forest cannot be opened, then 0 is returned. A
specific error code and error text can be retrieved using the SYSRC and SYSMSG functions.

DF_PREDICT
Produces predictions from a decision forest.

DF_PREDICT (df- id ,

,

input- variable)

For the prediction to be correct, input values must be passed in in the same order as was used during
training. The DF_VARNAMES call routine can be used to print this list of variables out.

For a classification tree, this returns the predicted class number, where 1 is the first class. The returned
class will be the class that received the most votes after evaluating all of the trees in the forest.

For a regression tree, this returns the mean average of the outcome variable.

Return type: Numeric

df-id

Type: Numeric

The ID of a decision forest previously opened using DF_OPEN.

input-variable

Type: Numeric

A list of expressions giving the values of the input variables.

Reference for language elements
Version 4.1

766

Example
PROC R;
 SUBMIT;
 data(iris)
 rf = randomForest(iris[,-5], iris[,5], ntree=10)
 exportToWps(rf, "df.dat")
 ENDSUBMIT;
 import r=iris;

PROC FORMAT;
 value species
 1='setosa'
 2='versicolor'
 3='virginica';

DATA predict;
 SET iris;
 RETAIN df;
 IF _n_=1 THEN DO;
 df = DF_OPEN("df.dat");
 END;
 prediction = DF_PREDICT(df,
 Sepal_Length, Sepal_Width, Petal_Length, Petal_Width);
 FORMAT prediction species.;
 KEEP prediction;
RUN;

 PROC PRINT data=predict; RUN;

CALL DF_CLOSE
Closes a decision forest previously opened by DF_OPEN.

CALL DF_CLOSE (df- id) ;

Note:
It is not necessary to explicitly close decision forests in a DATA step, they are closed automatically
when the DATA step ends.

df-id

Type: Numeric

The ID of a decision forest previously opened using DF_OPEN.

Reference for language elements
Version 4.1

767

CALL DF_DESCRIBE
Prints information to the log about the specified decision forest.

CALL DF_DESCRIBE (df- id) ;

df-id

Type: Numeric

The ID of a decision forest previously opened using DF_OPEN

Example
PROC R;
 SUBMIT;
 DATA(iris)
 rf = RANDOMFOREST(iris[,-5], iris[,5], ntree=10)
 EXPORTTOWPS(rf, "df.dat")
 ENDSUBMIT;

 DATA _NULL_;
 df = DF_OPEN("df.dat");
 CALL DF_DESCRIBE(df);
 RUN;

Which produces the following output in the log:

NOTE: Decision tree description:
 Number of trees : 10
 Number of output classes : 3
 Input variables : Sepal.Length, Sepal.Width,Petal.Length,
 Petal.Width

CALL DF_PREDICT
Produces predictions from a decision forest, returning multiple result values.

CALL DF_PREDICT (df- id , opt ion- string ,

,

variable) ;

As with the DF_PREDICT function the order of the input variables is very important to the accuracy of
the output.

df-id

Type: Numeric

The ID of a decision forest previously opened using DF_OPEN

Reference for language elements
Version 4.1

768

option-string
A character string controlling the form of the output. The contents of this string is only read once,
so using a string literal is the most appropriate way to pass the value.

For a classification tree, the option string can take the following values. There values are
mutually exclusive, and whichever is specified last is used.

"P"
Returns the probabilities for each output class.

"V"
Returns the number of votes cast for each output class.

variable

Type: Numeric

A list of expressions giving the values of the input variables and into which the results of the
prediction will be returned.

Example
PROC R;
 SUBMIT;
 data(iris)
 rf = randomForest(iris[,-5], iris[,5], ntree=10)
 exportToWps(rf, "df.dat")
 ENDSUBMIT;
 import r=iris;

DATA predict;
 SET iris;
 RETAIN df;
 IF _n_=1 THEN DO;
 df = df_open("df.dat");
 CALL DF_DESCRIBE(df);
 END;
 CALL DF_PREDICT(df, 'V',Sepal_Length, Sepal_Width, Petal_Length,
 Petal_Width,votes_setosa, votes_versicolor, votes_virginica);
 KEEP votes:;
RUN;

PROC PRINT data=predict; RUN;

Difference and lag functions
Find the difference or lag between two variables.

DIF ...769
Returns the difference between the current value of a specified variable, and the value of that
variable in a specified previous observation.

Reference for language elements
Version 4.1

769

LAG ... 772
Returns the value of a specified variable in a specified previous observation.

DIF
Returns the difference between the current value of a specified variable, and the value of that variable
in a specified previous observation.

DIFn (value)

This function enables you find the difference between the value of a variable in the current observation
and the corresponding value in an earlier observation. By default, the difference between the current
and previous observation is returned. You can, however, return a value from a previous observation
that is a specified number of positions behind the current observation. For example, you could
specify that you want to find the difference between the current value of a variable and its value in the
previous record (the default), or that you want the difference between the current value and that in an
observation that lags six observations behind the current one.

The position of an observation behind the current observation is specified by n. This can be set
to any integer from 1 to the number of records in the dataset. For example, if you want to get the
difference between the value of a variable in the previous record, and the same value in the current
record, you would specify DIF1(value); to get the difference between the value of a variable in
an observation that is six positions behind the current observation, and the value in the currently
observation, you would specify DIF6(value). If n is omitted, 1 is used; that is, DIF(value) is the
same as DIF1(value).

Return type: Character

value

Type: Character or numeric value

The name of the variable to compare. The variable must contain numeric data. If strings are
compared, 0 (zero) is returned.

When a DATA step containing a DIF function is compiled, a queue is created for each call of the
function in the DATA step. For example, suppose you specify DIF1(value), a queue with one position
is created. If your dataset contained the values 100, 200, 300, 400, and so on, the queue would
be filled as shown in the following diagram:

Reference for language elements
Version 4.1

770

On the first call to the function, the current value is 100. As there is no preceding observation, the
preceding value is missing, and the missing value is returned. On the second call to the function,
the queue contains the value 100, from the preceding observation, while the current value is 200.
Therefore, the value100 is returned, which is 200 - 100.

If you specify DIF2(value), a queue with two positions is created. If you used the same dataset as
described above, the queue would be filled as in the following diagram:

Because a queue is created at each call site of the function, the result you obtain might be unexpected.
For example, in the following DATA step, the function is invoked by a conditional statement:

DATA _NULL_;

 INPUT num1;

 IF num1=500 THEN do;
 dn = DIF(num1);
 PUT dn=;
 END;

datalines;
100
200
300
400
500
;

This returns:

dn=.

Reference for language elements
Version 4.1

771

The queue for the DIF function is only updated at the point the function is invoked, when num1 equals
500. As this is the first invocation of DIF for this call site, there is no previous observation. The queue
therefore contains a missing value, and DIF returns a missing text value.

Basic example
In this example, the function returns the previous observation. The result is written to the log.

DATA _NULL_;

 INPUT num1;

 nf = DIF(num1);

 PUT "The difference between values is: " nf;

datalines;
100
1200
16
23
;

This produces the following output:

The difference between values is: .
The difference between values is: 1100
The difference between values is: -1184
The difference between values is: 7

The first value returned is numeric missing, because there is no value for num2 before 100.

Because no index is specified on the DIF keyword, the value of the variable of the preceding
observation is returned (that is, DIF is equivalent to DIF1).

Example – with different lag
In this example, the function is used to return the difference between the average house price at the
end of each year and the house price at the end of the last quarter of each preceding year. The result is
written to the log.

DATA _NULL_;

 INPUT qrt $ num1;
 pq = DIF4(num1);
 lq = lag4(num1);

 if qrt EQ "Q1-2010" then put "Price at qrt Price at previous EOY Difference
 between years";

 if substr(qrt, 1, 2) EQ "Q4" then do;
 PUT num1 @16 lq @39 pq;
 end;

datalines;
Q1-2010 162887

Reference for language elements
Version 4.1

772

Q2-2010 168719
Q3-2010 167354
Q4-2010 162971
Q1-2011 162379
Q2-2011 166764
Q3-2011 166597
Q4-2011 164785
Q1-2012 162722
Q2-2012 164955
Q3-2012 163910
Q4-2012 162924
Q1-2013 163056
Q2-2013 167294
Q3-2013 170918
Q4-2013 174444
Q1-2014 178124
Q2-2014 186544
Q3-2014 188810
Q4-2014 189002
Q1-2015 188566
Q2-2015 194258
Q3-2015 195733
Q4-2015 197044
Q1-2016 198564
Q2-2016 204238
Q3-2016 206346
Q4-2016 205937
;

This produces the following output:

Price at qrt Price at previous EOY Difference between years
162971 . .
164785 162971 1814
162924 164785 -1861
174444 162924 11520
189002 174444 14558
197044 189002 8042
205937 197044 8893

The example also uses the LAG (page 772) function to display the value at the previous end of
year. The first values returned for DIF and LAG are numeric missing; because the list starts from Q1
2009, there is no value that lags four observations behind Q4 of 2010.

LAG
Returns the value of a specified variable in a specified previous observation.

LAGn (value)

You can specify the position of an observation that lags behind the current observation for which you
want to return the value of a variable. For example, you could specify that you want the value of a
variable in the previous record (the default), or that you want the value in an observation that is six
observations behind the current one.

Reference for language elements
Version 4.1

773

The position of an observation behind the current observation is specified by n. This can be set to any
integer from 1 to the number of records in the dataset. For example, if you want to get the value of a
variable in the previous record, you would specify LAG1(value); to get the value of a variable in an
observation that is six positions behind the current observation, you would specify LAG6(value). If n is
omitted, 1 is used; LAG(value) is the same as LAG1(value).

Return type: Character

value

Type: Character or numeric value

The name of the variable to be returned.

When a DATA step containing a LAG function is compiled, a queue is created for each instance of the
function in the DATA step.

For example, suppose you specify LAG1(value), a queue with one position is created. If your dataset
contained the values 100, 200, 300, 400, and so on, the queue would be filled as shown in the
following diagram:

On the first call to the function, the current value is 100. As there is no preceding observation, the
preceding value is missing, and the missing value is returned. On the second call to the function,
the queue contains the value 100, from the preceding observation, while the current value is 200.
Therefore, the value100 is returned, as this is the previous value.

If you specify LAG2(value), a queue with two positions is created. If you used the same dataset as
described above, the queue would be filled as in the following diagram:

Reference for language elements
Version 4.1

774

Because a queue is created at each call site of the function, the result you obtain might be unexpected.
For example, in the following DATA step, the function is invoked by a conditional statement:

LIBNAME books "c:\temp\books";
DATA _NULL_;

 SET books.books=eof;

 IF eof THEN do;
 fa = LAG(author);
 PUT fa=;
 END;

RUN;

This returns:

fa=

The queue for the LAG function is only updated at the point it is called. Therefore, the queue only
contains the value for author that is returned at the end of the file, when the IF is triggered. There is
no previous observation, so LAG returns a missing text value.

Basic example
In this example, the function returns the previous observation. The result is written to the log.

DATA _NULL_;

 INPUT num1;

 nf = LAG(num1);

 PUT "The previous value of num1 is " nf;

datalines;
100
1200
16
23
;

This produces the following output:

The previous value of num1 is .
The previous value of num1 is 100
The previous value of num1 is 1200
The previous value of num1 is 16

The first value returned is numeric missing, because there is no value for num2 before 100.

Because no index is specified on the LAG keyword, the value of the variable of the preceding
observation is returned (that is, LAG is equivalent to LAG1).

Reference for language elements
Version 4.1

775

Example – using LAG to count unique names
In this example, data is read from a dataset of book titles and corresponding author names. The dataset
is ordered by author names. The function is used check whether the current value of the Author
variable is unique by testing it against the value of the variable in the previous observation. If it is
unique, a counter is incremented. The result is written to the log.

LIBNAME books "c:\temp\books";
DATA _null_;
 retain noa 1;

 SET books.books_author_sorted END=eof;

 IF _N_ > 1 AND author != LAG(author) THEN noa = noa + 1;

 IF eof THEN PUT "Number of unique author names: " noa;

RUN;

This produces the following output:

Number of unique author names: 1256

Distribution-based functions and CALL routines
Perform statistical operations on various probability distributions, including density, survival, quantile
and deviance calculations, and drawing random numbers.

CALL STREAMINIT .. 777
Initialises the random number stream based on a seed.

Bernoulli distribution ..778
Functions for the Bernoulli distribution at a specified point, based on the probability of success.

Beta distribution .. 795
Functions for the Beta distribution.

Binomial distribution .. 823
Functions and CALL routines for the Binomial distribution at a specified point, based on the
probability of success.

Bivariate Normal distribution ... 850
Functions for the Bivariate Normal distribution.

Cauchy distribution ..853
Functions and CALL routines for the Cauchy distribution.

Chi-Squared distribution ..874
Functions for the Chi-Squared distribution.

Erlang distribution ... 883
Functions for the Erlang distribution.

Reference for language elements
Version 4.1

776

Exponential distribution ... 885
Functions and CALL routines for the Exponential distribution.

Fisher distribution ..905
Functions for the Fisher distribution.

Gamma distribution ... 913
Functions and CALL routines for the Gamma distribution.

Gaussian distribution ...943
Functions for the Gaussian distribution.

Geometric distribution ... 966
Functions for the Geometric distribution.

Gumbel distribution ... 982
Functions for the Gumbel distribution.

Hypergeometric distribution .. 1006
Functions for the Hypergeometric distribution.

Inverse Gaussian distribution ..1016
Functions for the Inverse Gaussian distribution.

Johnson SB distribution .. 1044
Functions for the Johnson SB distribution.

Johnson SU distribution ..1067
Functions for the Johnson SU distribution.

Laplace distribution ... 1091
Functions for the Laplace distribution.

Logistic distribution ..1115
Functions for the Logistic distribution.

Lognormal distribution ...1130
Functions for the Lognormal distribution.

Negative Binomial distribution ...1156
Functions for the Negative Binomial distribution.

Normal distribution .. 1176
Functions and CALL routines for the Normal distribution.

Normal mixture distribution ... 1209
Functions for the Normal mixture distribution.

Pareto distribution ... 1237
Functions for the Pareto distribution.

Poisson distribution ... 1245
Functions and CALL routines for the Poisson distribution.

Power distribution ..1274
Functions for the Power distribution.

Rayleigh distribution ..1282
Functions for the Rayleigh distribution.

Reference for language elements
Version 4.1

777

Student's T distribution ... 1283
Functions for the Student's T distribution.

Table distribution ...1291
Functions and CALL routines for the Table distribution.

Triangular distribution ..1302
Functions and CALL routines for the Triangular distribution.

Tweedie distribution .. 1308
Functions for the Tweedie distribution.

Uniform distribution ... 1314
Functions and CALL routines for the Uniform distribution.

Wald distribution ..1335
Functions for the Wald distribution.

Weibull distribution .. 1360
Functions for the Weibull distribution.

CALL STREAMINIT
Initialises the random number stream based on a seed.

CALL STREAMINIT (seed) ;

To initialise the stream of random numbers, this routine must be executed before any other random
number function or routine within the same DATA step. Only the first call to this routine within a DATA
step initialises the random stream; all subsequent calls are ignored.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. To generate a different sequence of random numbers each time the DATA
step is executed, set seed to a positive value greater than or equal to 1. If the value specified for seed is
fractional, it is truncated to the nearest integer.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

778

Example
In this example, the function is used to generate a seed for RAND.

DATA _NULL_;
 CALL STREAMINIT(100);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND ("BINOMIAL", 0.2, 50);
 PUT result;
 END;
RUN;

This produces the following output:

14
12
7
10
7

Running the DATA step again produces the same output.

Bernoulli distribution
Functions for the Bernoulli distribution at a specified point, based on the probability of success.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – BERNOULLI .. 780

Returns the probability density of the Bernoulli distribution, based on the probability of success.
This function is an alias of PMF – BERNOULLI.

PMF – BERNOULLI ..781

Returns the probability mass of the Bernoulli distribution, based on the probability of success.
This function is an alias of PDF – BERNOULLI.

Reference for language elements
Version 4.1

779

LOGPDF – BERNOULLI ...782

Returns the natural logarithm of the probability density of the Bernoulli distribution, based on the
probability of success. This function is an alias of LOGPMF – BERNOULLI.

LOGPMF – BERNOULLI .. 783

Returns the natural logarithm of the probability mass of the Bernoulli distribution, based on the
probability of success. This function is an alias of LOGPDF – BERNOULLI.

CDF – BERNOULLI .. 784

Returns the cumulative density of the Bernoulli distribution, based on the probability of success.

LOGCDF – BERNOULLI ...786

Returns the natural logarithm of the cumulative density of the Bernoulli distribution, based on the
probability of success.

SDF – BERNOULLI .. 787

Returns the survival of the Bernoulli distribution, based on the probability of success.

LOGSDF – BERNOULLI ...788

Returns the natural logarithm of the survival of the Bernoulli distribution, based on the probability
of success.

QUANTILE – BERNOULLI ..789

Returns the quantile of the Bernoulli distribution for a specified probability value, based on the
probability of success.

DEVIANCE – BERNOULLI ... 790

Returns the deviance of the Bernoulli distribution at a specified point, based on the probability of
success.

RAND – BERNOULLI ... 793
Returns a random number from the Bernoulli distribution based on the probability of success.

Reference for language elements
Version 4.1

780

PDF – BERNOULLI

Returns the probability density of the Bernoulli distribution, based on the probability of success. This
function is an alias of PMF – BERNOULLI.

PDF ("BERNOULLI" , x , p)

Calculates the probability density function for the Bernoulli distribution at point x, based on the
probability of success p.

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability density of the Bernoulli distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PDF("BERNOULLI",0,0.7);
 PUT s1=;
 s2 = PDF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = PDF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = PDF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

Reference for language elements
Version 4.1

781

This produces the following output:

s1=0.3
s2=0
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

PMF – BERNOULLI

Returns the probability mass of the Bernoulli distribution, based on the probability of success. This
function is an alias of PDF – BERNOULLI.

PMF ("BERNOULLI" , x , p)

Calculates the probability mass function for the Bernoulli distribution at point x, based on the probability
of success p.

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

782

Examples
In these examples, the probability mass of the Bernoulli distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PMF("BERNOULLI",0,0.7);
 PUT s1=;
 s2 = PMF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = PMF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = PMF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=0.3
s2=0
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

LOGPDF – BERNOULLI

Returns the natural logarithm of the probability density of the Bernoulli distribution, based on the
probability of success. This function is an alias of LOGPMF – BERNOULLI.

LOGPDF ("BERNOULLI" , x , p)

Calculates the natural logarithm of the probability density function for the Bernoulli distribution at point x,
based on the probability of success p.

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

Restriction: x = 0 or x = 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

783

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p < 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Bernoulli distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("BERNOULLI",0,0.7);
 PUT s1=;
 s2 = LOGPDF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = LOGPDF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = LOGPDF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.203972804
s2=.
s3=.
s4=.

The last three examples return a missing value because one of the arguments is out of range.

LOGPMF – BERNOULLI

Returns the natural logarithm of the probability mass of the Bernoulli distribution, based on the
probability of success. This function is an alias of LOGPDF – BERNOULLI.

LOGPMF ("BERNOULLI" , x , p)

Calculates the natural logarithm of the probability mass function for the Bernoulli distribution at point x,
based on the probability of success p.

This function is defined under the following conditions:

Return type: Numeric

Reference for language elements
Version 4.1

784

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

Restriction: x = 0 or x = 1

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p < 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Bernoulli distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("BERNOULLI",0,0.7);
 PUT s1=;
 s2 = LOGPMF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = LOGPMF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = LOGPMF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.203972804
s2=.
s3=.
s4=.

The last three examples return a missing value because one of the arguments is out of range.

CDF – BERNOULLI

Returns the cumulative density of the Bernoulli distribution, based on the probability of success.

CDF ("BERNOULLI" , x , p)

Calculates the cumulative density function for the Bernoulli distribution at point x, based on the
probability of success p.

Reference for language elements
Version 4.1

785

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Bernoulli distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = CDF("BERNOULLI",0,0.7);
 PUT s1=;
 s2 = CDF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = CDF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = CDF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=0.3
s2=0
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

Reference for language elements
Version 4.1

786

LOGCDF – BERNOULLI

Returns the natural logarithm of the cumulative density of the Bernoulli distribution, based on the
probability of success.

LOGCDF ("BERNOULLI" , x , p)

Calculates the natural logarithm of the cumulative density function for the Bernoulli distribution at point
x, based on the probability of success p.

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p < 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Bernoulli distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF("BERNOULLI",0,0.7);
 PUT s1=;
 s2 = LOGCDF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = LOGCDF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = LOGCDF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

Reference for language elements
Version 4.1

787

This produces the following output:

s1=-1.203972804
s2=.
s3=.
s4=.

The last three examples return a missing value because one of the arguments is out of range.

SDF – BERNOULLI

Returns the survival of the Bernoulli distribution, based on the probability of success.

SDF ("BERNOULLI" , x , p)

Calculates the survival, or the complement to the cumulative density function, for the Bernoulli
distribution at point x, based on the probability of success p.

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

788

Examples
In these examples, the survival of the Bernoulli distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = SDF("BERNOULLI",1,0.7);
 PUT s1=;
 s2 = SDF("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = SDF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = SDF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=1
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

LOGSDF – BERNOULLI

Returns the natural logarithm of the survival of the Bernoulli distribution, based on the probability of
success.

LOGSDF ("BERNOULLI" , x , p)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Bernoulli distribution at point x, based on the probability of success p.

This function is defined under the following conditions:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

Restriction: x < 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

789

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p < 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Bernoulli distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF("BERNOULLI",-1,0.7);
 PUT s1=;
 s2 = LOGSDF("BERNOULLI",1,0.7);
 PUT s2=;
 s3 = LOGSDF("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = LOGSDF("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=.
s3=.
s4=.

The last three examples return a missing value because one of the arguments is out of range.

QUANTILE – BERNOULLI

Returns the quantile of the Bernoulli distribution for a specified probability value, based on the
probability of success.

QUANTILE ("BERNOULLI" , q , p)

Calculates the quantile x, or the inverse of the cumulative density function, for the Bernoulli distribution
for probability value q based on the probability of success p.

The quantile function returns point x such that randomly drawn values from the distribution fall below x
with probability q.

This function is defined under the following conditions:

Reference for language elements
Version 4.1

790

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the quantile of the Bernoulli distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = QUANTILE("BERNOULLI",0.7,0);
 PUT s1=;
 s2 = QUANTILE("BERNOULLI",-1,0.7);
 PUT s2=;
 s3 = QUANTILE("BERNOULLI",0,1.7);
 PUT s3=;
 s4 = QUANTILE("BERNOULLI",0,-1.7);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=.
s3=.
s4=.

The last three examples return a missing value because one of the arguments is out of range.

DEVIANCE – BERNOULLI

Returns the deviance of the Bernoulli distribution at a specified point, based on the probability of
success.

DEVIANCE ("BERNOULLI" , x , p

, epsilon

)

Reference for language elements
Version 4.1

791

Calculates the deviance, or goodness of fit, for the generalised linear model of the Bernoulli distribution
at point x based on the probability of success p. An optional range correction parameter ε (epsilon)
can be specified. If ε > 0.01, it is set equal to 0.01. If it is not specified or if ε < 10-12, the value of
10-12 is used for correction. The probability of success is then adjusted so that ε ≤ p ≤ 1-ε:

This adjusted value of p is used in the subsequent calculation of the deviance.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the deviance.

Restriction: x=0 or x=1

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Expected: 0 < p < 1. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

epsilon
Optional argument

Type: Numeric

The range correction parameter.

Default: ε = 10-12

Expected: 10-12 < ε < 0.01. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

792

Examples – applying correction to the probability of success
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("BERNOULLI", 1, 0.99992, 0.00005);
 PUT g1=;
 g2 = DEVIANCE("BERNOULLI", 1, 0.99992, 0.00010);
 PUT g2=;
 g3 = DEVIANCE("BERNOULLI", 1, 0.99992, 0.00015);
 PUT g3=;
 g4 = DEVIANCE("BERNOULLI", 1, 0.99992);
 PUT g4=;
RUN;

This produces the following output:

p1=0.99992
p2=0.99990
p3=0.99985
p4=0.99992

g1=0.0001600064
g2=0.0002000100
g3=0.0003000225
g4=0.0001600064

The value of the probability of success is not corrected in the first example because p < 1-ε. However,
this condition does not hold in the second and third example, and correction is applied: p = 1-ε. This
corrected value is used for calculation, yielding different results.
In the fourth example the ε parameter is omitted, so the default value of ε = 10-12 is used. Here, as in
the first example, p < 1-ε, so no correction is required.

Examples – deviance calculation
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("BERNOULLI", 0, 0.7);
 PUT g1=;
 g2 = DEVIANCE("BERNOULLI", 0, 0.5);
 PUT g2=;
 g3 = DEVIANCE("BERNOULLI", 0, 0.3);
 PUT g3=;
 g4 = DEVIANCE("BERNOULLI", 1, 0.7);
 PUT g4=;
 g5 = DEVIANCE("BERNOULLI", 1, 0.5);
 PUT g5=;
 g6 = DEVIANCE("BERNOULLI", 1, 0.3);
 PUT g6=;
RUN;

Reference for language elements
Version 4.1

793

This produces the following output:

g1=2.4079456087
g2=1.3862943611
g3=0.7133498879
g4=0.7133498879
g5=1.3862943611
g6=2.4079456087

For the Bernoulli distribution, the deviance is symmetrical around p=0.5 for the opposite values of x.
Thus, in the above example g1 = g6, g2 = g5, and g3 = g4.

RAND – BERNOULLI

Returns a random number from the Bernoulli distribution based on the probability of success.

RAND ("BERNOULLI" , p)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is either 0 or 1.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

794

Example
In this example, a random number from the Bernoulli distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("BERNOULLI", 0.75);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0
0
1
0
1

Running the DATA step again produces the following output.

The random numbers are:
0
1
0
0
1

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(10);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("BERNOULLI", 0.75);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1
0
0
1
1

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

795

Beta distribution
Functions for the Beta distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – BETA ... 796

Returns the probability density of the Beta distribution, based on the shape parameters α and β.
This function is an alias of PMF – BETA.

PMF – BETA ...799

Returns the probability mass of the Beta distribution, based on the shape parameters α and β.
This function is an alias of PDF – BETA.

LOGPDF – BETA ..801

Returns the natural logarithm of the probability density of the Beta distribution, based on the
shape parameters α and β. This function is an alias of LOGPMF – BETA.

LOGPMF – BETA ... 803

Returns the natural logarithm of the probability mass of the Beta distribution, based on the shape
parameters α and β. This function is an alias of LOGPDF – BETA.

CDF – BETA ... 806

 =

Returns the cumulative density of the Beta distribution, based on the shape parameters α and β.
This function is similar to PROBBETA where optional arguments are set to default values.

PROBBETA ... 808

 =

Reference for language elements
Version 4.1

796

Returns the cumulative density of the Beta distribution, based on the shape parameters α and β.
This function is similar to CDF – BETA where optional arguments are set to default values.

LOGCDF – BETA ... 810

Returns the natural logarithm of the cumulative density of the Beta distribution, based on the
shape parameters α and β.

SDF – BETA ... 812

Returns the survival of the Beta distribution, based on the shape parameters α and β.

LOGSDF – BETA ..815

Returns the natural logarithm of the survival of the Beta distribution, based on the shape
parameters α and β.

QUANTILE – BETA .. 817

Returns the quantile of the Beta distribution for a specified probability value, based on the shape
parameters α and β. This function is similar to BETAINV where optional arguments are set to
default values.

BETAINV ... 819

Returns the quantile of the Beta distribution for a specified probability value, based on the shape
parameters α and β. This function is similar to QUANTILE – BETA where optional arguments are
set to default values.

RAND – BETA .. 821
Returns a random number from the Beta distribution based on the shape parameters α and β.

PDF – BETA

Returns the probability density of the Beta distribution, based on the shape parameters α and β. This
function is an alias of PMF – BETA.

PDF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the probability density function for the Beta distribution at point x, based on the shape
parameters α (alpha) and β (beta). The last two arguments specify domain bounds for point x. If they
are omitted, the following defaults are used: lower = 0 and upper = 1. These optional arguments must
be either both specified or both omitted.

Reference for language elements
Version 4.1

797

This function is defined under the following conditions:

lower < upper

 =

where Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction:

if x = lower, then alpha > 1
otherwise alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction:

if x = upper, then beta > 1
otherwise beta > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

798

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability density of the Beta distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PDF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = PDF ("BETA",2.7,0.7,3,1,7);
 PUT s2=;
 s3 = PDF ("BETA",-1,1.7,3,-1,5);
 PUT s3=;
 s4 = PDF ("BETA",-1,0.7,3,-1,5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.2007587988
s2=0.2007587988
s3=0
s4=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased or
decreased by the same value. The last example returns a missing value because one of the arguments
is out of range.

Reference for language elements
Version 4.1

799

PMF – BETA

Returns the probability mass of the Beta distribution, based on the shape parameters α and β. This
function is an alias of PDF – BETA.

PMF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the probability mass function for the Beta distribution at point x, based on the shape
parameters α (alpha) and β (beta). The last two arguments specify domain bounds for point x. If they
are omitted, the following defaults are used: lower = 0 and upper = 1. These optional arguments must
be either both specified or both omitted.

This function is defined under the following conditions:

lower < upper

 =

where Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction:

Reference for language elements
Version 4.1

800

if x = lower, then alpha > 1
otherwise alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction:

if x = upper, then beta > 1
otherwise beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

801

Examples
In these examples, the probability mass of the Beta distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PMF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = PMF ("BETA",2.7,0.7,3,1,7);
 PUT s2=;
 s3 = PMF ("BETA",-1,1.7,3,-1,5);
 PUT s3=;
 s4 = PMF ("BETA",-1,0.7,3,-1,5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.2007587988
s2=0.2007587988
s3=0
s4=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased or
decreased by the same value. The last example returns a missing value because one of the arguments
is out of range.

LOGPDF – BETA

Returns the natural logarithm of the probability density of the Beta distribution, based on the shape
parameters α and β. This function is an alias of LOGPMF – BETA.

LOGPDF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the natural logarithm of the probability density function for the Beta distribution at point x,
based on the shape parameters α (alpha) and β (beta). The last two arguments specify domain bounds
for point x. If they are omitted, the following defaults are used: lower = 0 and upper = 1. These optional
arguments must be either both specified or both omitted.

Reference for language elements
Version 4.1

802

This function is defined under the following conditions:

α > 0, β > 0, lower < x < upper

 =

where Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

Restriction: lower < x < upper

If the argument is out of range, a missing value is returned.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

803

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Beta distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = LOGPDF ("BETA",2.7,0.7,3,-1,5);
 PUT s2=;
 s3 = LOGPDF ("BETA",-1,1.7,3,-1,5);
 PUT s3=;
RUN;

This produces the following output:

s1=-1.605651097
s2=-1.605651097
s3=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased
or decreased by the same value. The last two examples return a missing value because one of the
arguments is out of range.

LOGPMF – BETA

Returns the natural logarithm of the probability mass of the Beta distribution, based on the shape
parameters α and β. This function is an alias of LOGPDF – BETA.

LOGPMF ("BETA" , x , alpha , beta ,

lower

, upper
)

Reference for language elements
Version 4.1

804

Calculates the natural logarithm of the probability mass function for the Beta distribution at point x,
based on the shape parameters α (alpha) and β (beta). The last two arguments specify domain bounds
for point x. If they are omitted, the following defaults are used: lower = 0 and upper = 1. These optional
arguments must be either both specified or both omitted.

This function is defined under the following conditions:

α > 0, β > 0, lower < x < upper

 =

where Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

Restriction: lower < x < upper

If the argument is out of range, a missing value is returned.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Reference for language elements
Version 4.1

805

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Beta distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = LOGPMF ("BETA",2.7,0.7,3,-1,5);
 PUT s2=;
 s3 = LOGPMF ("BETA",-1,1.7,3,-1,5);
 PUT s3=;
RUN;

This produces the following output:

s1=-1.605651097
s2=-1.605651097
s3=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased
or decreased by the same value. The last two examples return a missing value because one of the
arguments is out of range.

Reference for language elements
Version 4.1

806

CDF – BETA

Returns the cumulative density of the Beta distribution, based on the shape parameters α and β. This
function is similar to PROBBETA where optional arguments are set to default values.

CDF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the cumulative density function for the Beta distribution at point x, based on the shape
parameters α (alpha) and β (beta).

The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.
Prior to computation, the value of x is normalised with respect to the domain bounds as follows:

This normalised value is then used in further calculations.

This function is defined under the following conditions:

lower < upper

 =

where Iz(α, β) is the regularised incomplete Beta function; Β (z; α, β) is the incomplete Beta function;
and Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

alpha

Type: Numeric

Reference for language elements
Version 4.1

807

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

808

Examples
In these examples, the cumulative density of the Beta distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = CDF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = CDF ("BETA",2.7,0.7,3,1,7);
 PUT s2=;
 s3 = CDF ("BETA",7,0.7,3,-1,5);
 PUT s3=;
 s4 = CDF ("BETA",-3,0.7,3,-1,5);
 PUT s4=;
 s5 = CDF ("BETA",0,-0.7,3,-1,5);
 PUT s5=;
RUN;

This produces the following output:

s1=0.7475328365
s2=0.7475328365
s3=1
s4=0
s5=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased or
decreased by the same value. The last example returns a missing value because one of the arguments
is out of range.

PROBBETA

Returns the cumulative density of the Beta distribution, based on the shape parameters α and β. This
function is similar to CDF – BETA where optional arguments are set to default values.

PROBBETA (x , alpha , beta)

Calculates the cumulative density function for the Beta distribution at point x, based on the shape
parameters α (alpha) and β (beta).

This function is defined under the following conditions:

0 < x < 1, α > 0, β > 0

Reference for language elements
Version 4.1

809

 =

where Ix(α, β) is the regularised incomplete Beta function; Β (x; α, β) is the incomplete Beta function;
and Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

Restriction: 0 < x < 1

If the argument is out of range, a missing value is returned.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Beta distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PROBBETA (0,0.7,3);
 PUT s1=;
 s2 = PROBBETA (1,0.7,3);
 PUT s2=;
 s3 = PROBBETA (2,0.7,3);
 PUT s3=;
RUN;

Reference for language elements
Version 4.1

810

This produces the following output:

s1=0
s2=1
s3=.

The last example returns a missing value because one of the arguments is out of range.

LOGCDF – BETA

Returns the natural logarithm of the cumulative density of the Beta distribution, based on the shape
parameters α and β.

LOGCDF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the natural logarithm of the cumulative density function for the Beta distribution at point x,
based on the shape parameters α (alpha) and β (beta).

The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.
Prior to computation, the value of x is normalised with respect to the domain bounds as follows:

This normalised value is then used in further calculations.

This function is defined under the following conditions:

lower < upper, x > lower

 =

where Iz(α, β) is the regularised incomplete Beta function; Β (z; α, β) is the incomplete Beta function;
and Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

811

The point at which to calculate the natural logarithm of the cumulative density.

Restriction: x > lower

If the argument is out of range, a missing value is returned.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

812

Examples
In these examples, the natural logarithm of the cumulative density of the Beta distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s3 = LOGCDF ("BETA",2.7,0.7,3,1,7);
 PUT s3=;
 s4 = LOGCDF ("BETA",7,0.7,3,-1,5);
 PUT s4=;
 s5 = LOGCDF ("BETA",-3,0.7,3,-1,5);
 PUT s5=;
 s6 = LOGCDF ("BETA",0,-0.7,3,-1,5);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.290977046
s2=-0.290977046
s3=0
s4=M
s5=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased
or decreased by the same value. The last two examples return a missing value because one of the
arguments is out of range.

SDF – BETA

Returns the survival of the Beta distribution, based on the shape parameters α and β.

SDF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the survival, or the complement to the cumulative density function, for the Beta distribution at
point x, based on the shape parameters α (alpha) and β (beta).

The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.
Prior to computation, the value of x is normalised with respect to the domain bounds as follows:

This normalised value is then used in further calculations.

Reference for language elements
Version 4.1

813

This function is defined under the following conditions:

lower < upper

 = =

where Iz(α, β) is the regularised incomplete Beta function; Β (z; α, β) is the incomplete Beta function;
and Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

Reference for language elements
Version 4.1

814

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the survival of the Beta distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = SDF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = SDF ("BETA",2.7,0.7,3,1,7);
 PUT s2=;
 s3 = SDF ("BETA",-3,0.7,3,-1,5);
 PUT s3=;
 s4 = SDF ("BETA",7,0.7,3,-1,5);
 PUT s4=;
 s5 = SDF ("BETA",0,-0.7,3,-1,5);
 PUT s5=;
RUN;

This produces the following output:

s1=0.2524671635
s2=0.2524671635
s3=1
s4=0
s5=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased or
decreased by the same value. The last example returns a missing value because one of the arguments
is out of range.

Reference for language elements
Version 4.1

815

LOGSDF – BETA

Returns the natural logarithm of the survival of the Beta distribution, based on the shape parameters α
and β.

LOGSDF ("BETA" , x , alpha , beta ,

lower

, upper
)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Beta distribution at point x, based on the shape parameters α (alpha) and β (beta).

The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.
Prior to computation, the value of x is normalised with respect to the domain bounds as follows:

This normalised value is then used in further calculations.

This function is defined under the following conditions:

lower < upper, x < upper

 = =

where Iz(α, β) is the regularised incomplete Beta function; Β (z; α, β) is the incomplete Beta function;
and Β (α, β) is the Beta function, see BETA (page 1819).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

Restriction: x < upper

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

816

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

817

Examples
In these examples, the natural logarithm of the survival of the Beta distribution is returned. The results
are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("BETA",0.7,0.7,3,-1,5);
 PUT s1=;
 s2 = LOGSDF ("BETA",2.7,0.7,3,1,7);
 PUT s2=;
 s3 = LOGSDF ("BETA",-3,0.7,3,-1,5);
 PUT s3=;
 s4 = LOGSDF ("BETA",7,0.7,3,-1,5);
 PUT s4=;
 s5 = LOGSDF ("BETA",0,-0.7,3,-1,5);
 PUT s5=;
RUN;

This produces the following output:

s1=-1.376474084
s2=-1.376474084
s3=0
s4=M
s5=.

The second example demonstrates the effect of normalisation of x with respect to the domain bounds.
In the second example the function result remains the same when x, lower and upper are increased
or decreased by the same value. The last two examples return a missing value because one of the
arguments is out of range.

QUANTILE – BETA

Returns the quantile of the Beta distribution for a specified probability value, based on the shape
parameters α and β. This function is similar to BETAINV where optional arguments are set to default
values.

QUANTILE ("BETA" , q , alpha , beta ,

lower

, upper
)

Calculates the quantile x, or the inverse of the cumulative density function, for the Beta distribution
for probability value q based on the shape parameters α (alpha) and β (beta). The last two arguments
specify domain bounds for point x. If they are omitted, the following defaults are used: lower = 0 and
upper = 1. These optional arguments must be either both specified or both omitted.

Reference for language elements
Version 4.1

818

This function is defined under the following conditions:

0 ≤ q ≤ 1, α > 0, β > 0

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Beta distribution, see section CDF – BETA (page 806).

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 ≤ q ≤ 1

If the argument is out of range or contains a missing value, a missing value is returned.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

Reference for language elements
Version 4.1

819

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the quantile of the Beta distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = QUANTILE ("BETA",0,0.7,3,-1,5);
 PUT s1=;
 s2 = QUANTILE ("BETA",1,0.7,3,-1,5);
 PUT s2=;
 s3 = QUANTILE ("BETA",2,0.7,3,-1,5);
 PUT s3=;
RUN;

This produces the following output:

s1=-1
s2=5
s3=.

The last example returns a missing value because one of the arguments is out of range.

BETAINV

Returns the quantile of the Beta distribution for a specified probability value, based on the shape
parameters α and β. This function is similar to QUANTILE – BETA where optional arguments are set to
default values.

BETAINV (q , alpha , beta)

Calculates the quantile x, or the inverse of the cumulative density function, for the Beta distribution for
probability value q based on the shape parameters α (alpha) and β (beta).

Reference for language elements
Version 4.1

820

This function is defined under the following conditions:

0 ≤ q ≤ 1, α > 0, β > 0

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Beta distribution where optional arguments are set to their default values, see section
CDF – BETA (page 806).

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 ≤ q ≤ 1

If the argument is out of range or contains a missing value, a missing value is returned.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction: alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

The second shape parameter for the distribution.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

821

Examples
In these examples, the quantile of the Beta distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = BETAINV (0,0.7,3);
 PUT s1=;
 s2 = BETAINV (1,0.7,3);
 PUT s2=;
 s3 = BETAINV (2,0.7,3);
 PUT s3=;
RUN;

This produces the following output:

s1=0
s2=1
s3=.

The last example returns a missing value because one of the arguments is out of range.

RAND – BETA

Returns a random number from the Beta distribution based on the shape parameters α and β.

RAND ("BETA" , alpha , beta)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is between 0 and 1, not including the bounds.

alpha

Type: Numeric

The first shape parameter for the distribution.

Restriction:alpha > 0

If the argument is out of range, a missing value is returned.

beta

Type: Numeric

Reference for language elements
Version 4.1

822

The second shape parameter for the distribution.

Restriction:beta > 0

If the argument is out of range, a missing value is returned.

Example
In this example, a random number from the Beta distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("BETA", 5, 7);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.66276642
0.5280493354
0.6088615973
0.3683775145
0.5415439703

Running the DATA step again produces the following output.

The random numbers are:
0.247427599
0.4217970341
0.4026729573
0.5006055913
0.5966151994

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(10);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("BETA", 5, 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.7409740272
0.4877923354
0.5533304015
0.8536038268
0.3520169329

Reference for language elements
Version 4.1

823

Running the DATA step again produces the same output.

Binomial distribution
Functions and CALL routines for the Binomial distribution at a specified point, based on the probability
of success.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – BINOMIAL ... 825

Returns the probability density of the Binomial distribution for a specified number of successes
based on the probability of success and the number of Bernoulli trials. This function is an alias of
PMF – BINOMIAL.

PMF – BINOMIAL ... 826

Returns the probability mass of the Binomial distribution for a specified number of successes
based on the probability of success and the number of Bernoulli trials. This function is an alias of
PDF – BINOMIAL.

LOGPDF – BINOMIAL ..828

Returns the natural logarithm of the probability density of the Binomial distribution for a specified
number of successes based on the probability of success and the number of Bernoulli trials.
This function is an alias of LOGPMF – BINOMIAL.

LOGPMF – BINOMIAL ... 830

Returns the natural logarithm of the probability mass of the Binomial distribution for a specified
number of successes based on the probability of success and the number of Bernoulli trials.
This function is an alias of LOGPDF – BINOMIAL.

CDF – BINOMIAL ... 831

Reference for language elements
Version 4.1

824

Returns the cumulative density of the Binomial distribution for a specified number of successes
based on the probability of success and the number of Bernoulli trials. This function is similar to
PROBBNML.

PROBBNML .. 833

Returns the cumulative density of the Binomial distribution for a specified number of successes
based on the probability of success and the number of Bernoulli trials. This function is similar to
CDF – BINOMIAL.

LOGCDF – BINOMIAL ..834

Returns the natural logarithm of the cumulative density of the Binomial distribution for a
specified number of successes based on the probability of success and the number of Bernoulli
trials.

SDF – BINOMIAL ... 836

 =

Returns the survival of the Binomial distribution for a specified number of successes based on
the probability of success and the number of Bernoulli trials.

LOGSDF – BINOMIAL ..838

Returns the natural logarithm of the survival of the Binomial distribution for a specified number
of successes based on the probability of success and the number of Bernoulli trials.

QUANTILE – BINOMIAL ...839

Returns the quantile of the Binomial distribution for a specified probability value, based on the
probability of success and the number of Bernoulli trials.

DEVIANCE – BINOMIAL .. 841

Returns the deviance of the Binomial distribution at a specified point, based on the distribution
mean and the number of trials.

RAND – BINOMIAL .. 843
Returns a random number from the Binomial distribution based on the probability of success
and the the number of Bernoulli trials. This function is similar to RANBIN and CALL RANBIN.

RANBIN ... 845
Returns a random number from the Binomial distribution based on the probability of success
and the the number of Bernoulli trials. This function is similar to RAND – BINOMIAL and CALL
RANBIN.

Reference for language elements
Version 4.1

825

CALL RANBIN ...848
Returns a random number from the Binomial distribution based on the probability of success
and the the number of Bernoulli trials. This routine is similar to function RAND – BINOMIAL and
RANBIN.

PDF – BINOMIAL

Returns the probability density of the Binomial distribution for a specified number of successes based
on the probability of success and the number of Bernoulli trials. This function is an alias of PMF –
BINOMIAL.

PDF ("BINOMIAL" , k , p , n)

Calculates the probability density function for the Binomial distribution for the number of successes k
based on the probability of success p and the number of Bernoulli trials n.

This function is defined under the following conditions:

 =

Return type: Numeric

k

Type: Numeric

The number of successes.

Restriction: k must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

Reference for language elements
Version 4.1

826

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability density of the Binomial distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PDF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = PDF("BINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = PDF("BINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = PDF("BINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = PDF("BINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

This produces the following output:

s1=0.00006561
s2=0
s3=0
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

PMF – BINOMIAL

Returns the probability mass of the Binomial distribution for a specified number of successes based
on the probability of success and the number of Bernoulli trials. This function is an alias of PDF –
BINOMIAL.

PMF ("BINOMIAL" , k , p , n)

Calculates the probability mass function for the Binomial distribution for the number of successes k
based on the probability of success p and the number of Bernoulli trials n.

Reference for language elements
Version 4.1

827

This function is defined under the following conditions:

 =

Return type: Numeric

k

Type: Numeric

The number of successes.

Restriction: k must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

828

Examples
In these examples, the probability mass of the Binomial distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PMF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = PMF("BINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = PMF("BINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = PMF("BINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = PMF("BINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

This produces the following output:

s1=0.00006561
s2=0
s3=0
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

LOGPDF – BINOMIAL

Returns the natural logarithm of the probability density of the Binomial distribution for a specified
number of successes based on the probability of success and the number of Bernoulli trials. This
function is an alias of LOGPMF – BINOMIAL.

LOGPDF ("BINOMIAL" , k , p , n)

Calculates the natural logarithm of the probability density function for the Binomial distribution for the
number of successes k based on the probability of success p and the number of Bernoulli trials n.

This function is defined under the following conditions:

 =

Reference for language elements
Version 4.1

829

Return type: Numeric

k

Type: Numeric

The number of successes.

Restriction: 0 ≤ k ≤ n and k must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Binomial distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = LOGPDF("BINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = LOGPDF("BINOMIAL",0,-1.7,8);
 PUT s3=;
RUN;

This produces the following output:

s1=-9.631782435
s2=.
s3=.

The last two examples return a missing value because one of the arguments is out of range.

Reference for language elements
Version 4.1

830

LOGPMF – BINOMIAL

Returns the natural logarithm of the probability mass of the Binomial distribution for a specified number
of successes based on the probability of success and the number of Bernoulli trials. This function is an
alias of LOGPDF – BINOMIAL.

LOGPMF ("BINOMIAL" , k , p , n)

Calculates the natural logarithm of the probability mass function for the Binomial distribution for the
number of successes k based on the probability of success p and the number of Bernoulli trials n.

This function is defined under the following conditions:

 =

Return type: Numeric

k

Type: Numeric

The number of successes.

Restriction: 0 ≤ k ≤ n and k must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

Reference for language elements
Version 4.1

831

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Binomial distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = LOGPMF("BINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = LOGPMF("BINOMIAL",0,-1.7,8);
 PUT s3=;
RUN;

This produces the following output:

s1=-9.631782435
s2=.
s3=.

The last two examples return a missing value because one of the arguments is out of range.

CDF – BINOMIAL

Returns the cumulative density of the Binomial distribution for a specified number of successes based
on the probability of success and the number of Bernoulli trials. This function is similar to PROBBNML.

CDF ("BINOMIAL" , k , p , n)

Calculates the cumulative density function for the Binomial distribution for the number of successes k
based on the probability of success p and the number of Bernoulli trials n.

This function is defined under the following conditions:

 = =

Reference for language elements
Version 4.1

832

where Ip(k+1, n−k) is the regularised incomplete Beta function; Β (p; k+1, n−k) is the incomplete
Beta function; and Β (k+1, n−k) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is less than or equal to one.

k

Type: Numeric

The number of successes.

Restriction: k must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Binomial distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = CDF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = CDF("BINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = CDF("BINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = CDF("BINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = CDF("BINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

Reference for language elements
Version 4.1

833

This produces the following output:

s1=0.00006561
s2=0
s3=1
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

PROBBNML

Returns the cumulative density of the Binomial distribution for a specified number of successes based
on the probability of success and the number of Bernoulli trials. This function is similar to CDF –
BINOMIAL.

PROBBNML (p , n , k)

Note:
Function PROBBNML differs from CDF("BINOMIAL", k, p, n) in the order of the arguments and in
the restrictions imposed on k.

Calculates the cumulative density function for the Binomial distribution for the number of successes k
based on the probability of success p and the number of Bernoulli trials n.

This function is defined under the following conditions:

 = =

where Ip(k+1, n−k) is the regularised incomplete Beta function; Β (p; k+1, n−k) is the incomplete
Beta function; and Β (k+1, n−k) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is less than or equal to one.

p

Type: Numeric

The probability of success in all the trials.

Reference for language elements
Version 4.1

834

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k must be integer and 0 ≤ k ≤ n

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Binomial distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PROBBNML(0.7,8,0);
 PUT s1=;
 s2 = PROBBNML(0.7,8,-1);
 PUT s2=;
 s3 = PROBBNML(-1.7,8,0);
 PUT s3=;
RUN;

This produces the following output:

s3=0.00006561
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

LOGCDF – BINOMIAL

Returns the natural logarithm of the cumulative density of the Binomial distribution for a specified
number of successes based on the probability of success and the number of Bernoulli trials.

LOGCDF ("BINOMIAL" , k , p , n)

Reference for language elements
Version 4.1

835

Calculates the natural logarithm of the cumulative density function for the Binomial distribution for the
number of successes k based on the probability of success p and the number of Bernoulli trials n.

This function is defined under the following conditions:

 = =

where Ip(k+1, n−k) is the regularised incomplete Beta function; Β (p; k+1, n−k) is the incomplete
Beta function; and Β (k+1, n−k) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is negative or zero.

k

Type: Numeric

The number of successes.

Restriction: k must be integer and k ≥ 0

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

836

Examples
In these examples, the natural logarithm of the cumulative density of the Binomial distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = LOGCDF("BINOMIAL",9,0.7,8);
 PUT s2=;
 s3 = LOGCDF("BINOMIAL",-1,0.7,8);
 PUT s3=;
 s4 = LOGCDF("BINOMIAL",0,-1.7,8);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.203972804
s2=0
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

SDF – BINOMIAL

Returns the survival of the Binomial distribution for a specified number of successes based on the
probability of success and the number of Bernoulli trials.

SDF ("BINOMIAL" , k , p , n)

Calculates the survival, or the complement to the cumulative density function, for the Binomial
distribution for the number of successes k based on the probability of success p and the number of
Bernoulli trials n.

This function is defined under the following conditions:

 =

Reference for language elements
Version 4.1

837

where Ip(k+1, n−k) is the regularised incomplete Beta function; Β (p; k+1, n−k) is the incomplete
Beta function; and Β (k+1, n−k) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is less than or equal to one.

k

Type: Numeric

The number of successes.

Restriction: k must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the survival of the Binomial distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = SDF("BINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = SDF("BINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = SDF("BINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = SDF("BINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = SDF("BINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

Reference for language elements
Version 4.1

838

This produces the following output:

s1=0.99993439
s2=1
s3=0
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

LOGSDF – BINOMIAL

Returns the natural logarithm of the survival of the Binomial distribution for a specified number of
successes based on the probability of success and the number of Bernoulli trials.

LOGSDF ("BINOMIAL" , k , p , n)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Binomial distribution for the number of successes k based on the probability of success p and
the number of Bernoulli trials n.

This function is defined under the following conditions:

 =

where Ip(k+1, n−k) is the regularised incomplete Beta function; Β (p; k+1, n−k) is the incomplete
Beta function; and Β (k+1, n−k) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is negative or zero.

k

Type: Numeric

The number of successes.

Restriction: k < n

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

839

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Binomial distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF("BINOMIAL",-1,0.7,8);
 PUT s1=;
 s2 = LOGSDF("BINOMIAL",1,0.7,8);
 PUT s2=;
 s3 = LOGSDF("BINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = LOGSDF("BINOMIAL",0,-1.7,8);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=-0.001291163
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

QUANTILE – BINOMIAL

Returns the quantile of the Binomial distribution for a specified probability value, based on the
probability of success and the number of Bernoulli trials.

QUANTILE ("BINOMIAL" , q , p , n)

Calculates the quantile x, or the inverse of the cumulative density function, for the Binomial distribution
for probability value q based on the probability of success p and the number of Bernoulli trials n.

Reference for language elements
Version 4.1

840

This function is defined under the following conditions:

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Binomial distribution, see section CDF – BINOMIAL (page 831).

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 ≤ q ≤ 1

If the argument is out of range or contains a missing value, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

841

Examples
In these examples, the quantile of the Binomial distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = QUANTILE("BINOMIAL",0.7,0,8);
 PUT s1=;
 s2 = QUANTILE("BINOMIAL",0.7,0.3,8);
 PUT s2=;
 s3 = QUANTILE("BINOMIAL",-1,0.7,8);
 PUT s3=;
 s4 = QUANTILE("BINOMIAL",0,-1.7,8);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=3
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

DEVIANCE – BINOMIAL

Returns the deviance of the Binomial distribution at a specified point, based on the distribution mean
and the number of trials.

DEVIANCE ("BINOMIAL" , x , mu , n

, epsilon

)

Calculates the deviance, or goodness of fit, for the generalised linear model of the Binomial distribution
at point x based on the distribution mean μ (mu) and the number of trials n, with n > 0 and integer,
and 0 < x ≤ n. An optional range correction parameter ε (epsilon) can be specified. If ε > 0.01, it is
set equal to 0.01. If it is not specified or if ε < 10-12, the value of 10-12 is used for correction. The
distribution mean is then adjusted so that nε ≤ μ ≤ n(1-ε):

This adjusted value of μ is used in the subsequent calculation of the deviance.

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

842

The point at which to calculate the deviance.

Restriction: 0 < x ≤ n

If the argument is out of range, a missing value is returned.

mu

Type: Numeric

The distribution mean.

Expected: 0 < μ < n. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

n

Type: Numeric

The number of trials.

Restriction: n > 0

If the argument is out of range, a missing value is returned.

epsilon
Optional argument

Type: Numeric

The range correction parameter.

Default: ε = 10-12

Expected: 10-12 < ε < 0.01. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

Examples – applying correction to the distribution mean
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("BINOMIAL", 0.001, 0.007, 10, 0.0005);
 PUT g1=;
 g2 = DEVIANCE("BINOMIAL", 0.001, 0.007, 10, 0.0010);
 PUT g2=;
 g3 = DEVIANCE("BINOMIAL", 0.001, 0.007, 10, 0.0015);
 PUT g3=;
 g4 = DEVIANCE("BINOMIAL", 0.001, 0.007, 10);
 PUT g4=;
RUN;

Reference for language elements
Version 4.1

843

This produces the following output:

g1=0.0081117815
g2=0.0134029355
g3=0.0226035199
g4=0.0081117815

The value of the distribution mean is not corrected in the first example because μ > ε. However,
this condition does not hold in the second and third example, and correction is applied: μ = ε. This
corrected value is used for calculation, yielding different results.
In the fourth example the ε parameter is omitted, so the default value of ε = 10-12 is used. Here, as in
the first example, μ > ε, so no correction is required.

RAND – BINOMIAL

Returns a random number from the Binomial distribution based on the probability of success and the
the number of Bernoulli trials. This function is similar to RANBIN and CALL RANBIN.

RAND ("BINOMIAL" , p , n)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is an integer between 0 and n, inclusive.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 < p < 1

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n > 0

Reference for language elements
Version 4.1

844

If the argument is out of range, a missing value is returned.

Example
In this example, a random number from the Binomial distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("BINOMIAL", 0.75, 10);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
8
9
7
8
9

Running the DATA step again produces the following output.

The random numbers are:
8
10
7
8
6

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(10);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("BINOMIAL", 0.75, 10);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
10
6
7
9
9

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

845

RANBIN

Returns a random number from the Binomial distribution based on the probability of success and the
the number of Bernoulli trials. This function is similar to RAND – BINOMIAL and CALL RANBIN.

RANBIN (seed , n , p)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

The return value is an integer between 0 and n, inclusive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n > 0

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 < p < 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

846

Basic examples
In this example, a random number from the Binomial distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANBIN(10, 50, 0.2);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
13
11
19
11
8

Running the DATA step again produces the same output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANBIN(0, 50, 0.2);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
11
9
11
10
10

Running the DATA step again produces the following output.

The random numbers are:
6
9
12
5
8

Reference for language elements
Version 4.1

847

Example — repeated use of seed values
In this example, a random number from the Binomial distribution is returned each time the function is
executed. The results are written to the log.

DATA _NULL_;
 PUT "The first sequence of random numbers is:";
 result = RANBIN(19, 23, 0.75);
 PUT result;
 result = RANBIN(29, 23, 0.75);
 PUT result;
 result = RANBIN(13, 23, 0.75);
 PUT result;
 result = RANBIN(31, 23, 0.75);
 PUT result;
 result = RANBIN(17, 23, 0.75);
 PUT result;
 result = RANBIN(37, 23, 0.75);
 PUT result;
 result = RANBIN(11, 23, 0.75);
 PUT result;
RUN;

DATA _NULL_;
 PUT "The second sequence of random numbers is:";
 result = RANBIN(19, 23, 0.75);
 PUT result;
 result = RANBIN(97, 23, 0.75);
 PUT result;
 result = RANBIN(37, 23, 0.75);
 PUT result;
 result = RANBIN(41, 23, 0.75);
 PUT result;
 result = RANBIN(71, 23, 0.75);
 PUT result;
 result = RANBIN(67, 23, 0.75);
 PUT result;
 result = RANBIN(51, 23, 0.75);
 PUT result;
RUN;

Reference for language elements
Version 4.1

848

This produces the following output:

The first sequence of random numbers is:
17
17
18
20
17
17
16

The second sequence of random numbers is:
17
17
18
20
17
17
16

Both DATA steps produce the same output because the first seed in each DATA step is the same. All
subsequent seed values are ignored.

CALL RANBIN

Returns a random number from the Binomial distribution based on the probability of success and the
the number of Bernoulli trials. This routine is similar to function RAND – BINOMIAL and RANBIN.

CALL RANBIN (seed , n , p , x) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The return value is an integer between 0 and n, inclusive.

Reference for language elements
Version 4.1

849

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

n

Type: Numeric

The number of Bernoulli trials.

Restriction: n > 0

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 < p < 1

If the argument is out of range, a missing value is returned.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Binomial distribution is returned on each iteration of the
loop and stored in variable x. The results are written to the log.

This is an example of two different sequences of random numbers generated from the same DATA step.

DATA _NULL_;
 PUT "First loop:";
 seed = 19;
 PUT seed=;
 DO i = 1 TO 5;
 CALL RANBIN(seed, 50, 0.2, x);
 PUT x= seed=;
 END;

 PUT "Second loop:";
 seed = 0;
 PUT seed=;
 DO i = 1 TO 5;
 CALL RANBIN(seed, 50, 0.2, x);
 PUT x= seed=;
 END;
RUN;

Reference for language elements
Version 4.1

850

This produces the following output:

First loop:
seed=19
x=10 seed=1104426845
x=9 seed=927037761
x=11 seed=1281321492
x=14 seed=1994098043
x=10 seed=1096180836

Second loop:
seed=0
x=5 seed=76099855
x=12 seed=1597485642
x=11 seed=1284594645
x=12 seed=1543772508
x=8 seed=644993642

Running the DATA step again produces the following output.

First loop:
seed=19
x=10 seed=1104426845
x=9 seed=927037761
x=11 seed=1281321492
x=14 seed=1994098043
x=10 seed=1096180836

Second loop:
seed=0
x=6 seed=115223722
x=12 seed=1558180343
x=10 seed=1046943362
x=11 seed=1489670930
x=9 seed=863372559

The first loop produces the same results in both runs of the DATA step because it is initialised with the
same non-zero seed value. The second loop produces different sequences of random numbers in the
two runs of the DATA step because it is initialised with a zero seed.

Bivariate Normal distribution
Functions for the Bivariate Normal distribution.

PROBBNRM ..851

Returns the value of the cumulative density function at a specified point for the standard Bivariate
Normal distribution where both random variables have mean 0, standard deviation of 1 and the
specified correlation coefficient.

Reference for language elements
Version 4.1

851

PROBBNRM

Returns the value of the cumulative density function at a specified point for the standard Bivariate
Normal distribution where both random variables have mean 0, standard deviation of 1 and the
specified correlation coefficient.

PROBBNRM (x , y , rho)

The bivariate cumulative density function at a point gives the probability that a randomly drawn
value from the first distribution is less than or equal to and a randomly drawn value from the second
distribution is less than or equal to .

This function is defined for

The calculated value for the standard Bivariate Normal distribution with correlation coefficient ρ (rho) is

 =

Return type: Numeric

The return value is between 0 and 1 inclusive.

x

Type: Numeric

The point in the first distribution at which to calculate the cumulative density.

y

Type: Numeric

The point in the second distribution at which to calculate the cumulative density.

rho

Type: Numeric

Default: 1

Restriction:

The correlation coefficient between the distributions.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

852

Basic example
In this example, the value of the cumulative density function for the standard Bivariate Normal
distribution is calculated for various values of x, y and rho. The results are written to the log.

DATA _NULL_;
 s1= PROBBNRM(0, 0, 0);
 PUT s1=;
 s2= PROBBNRM(0, 0, 0.5);
 PUT s2=;
 s3= PROBBNRM(0, 0, 1);
 PUT s3=;
 s4 = PROBBNRM(-0.6, 0.3, 0);
 PUT s4=;
 s5 = PROBBNRM(-0.6, 0.3, -0.5);
 PUT s5=;
 s6 = PROBBNRM(-0.6, 0.3, -1);
 PUT s6=;
RUN;

This produces the following output:

s1=0.2499999986
s2=0.333333514
s3=0.5
s4=0.1694641404
s5=0.1008857975
s6=0

The first three examples specify the same pair of points in a standard Bivariate Normal distribution,
but with different correlation coefficients. So they return a range of values for the cumulative density
function at the specified pair of points.

The fourth, fifth and sixth examples specify a different pair of points in a standard Bivariate Normal
distribution, again, with different correlation coefficients. Again, these examples return a range of values
for the cumulative density function at the specified pair of points.

Argument errors
In this example, PROBBNRM is called with various combinations of invalid arguments. The results are
written to the log.

DATA _NULL_;

 s1 = PROBBNRM(-0.6, 0.3, 1.1);
 PUT s1=;
 s2 = PROBBNRM(-0.6, 0.3, -1.1);
 PUT s2=;

RUN;

This produces the following output:

s1=.
s2=.

Reference for language elements
Version 4.1

853

These examples specify invalid values for the correlation coefficient, rho. Each generates a message in
the log, and returns a missing value.

Cauchy distribution
Functions and CALL routines for the Cauchy distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – CAUCHY ... 854

Returns the probability density of the Cauchy distribution based on the location and scale
parameters. This function is an alias of PMF – CAUCHY.

PMF – CAUCHY ... 856

Returns the probability mass of the Cauchy distribution based on the location and scale
parameters. This function is an alias of PDF – CAUCHY.

LOGPDF – CAUCHY ..858

Returns the natural logarithm of the probability density of the Cauchy distribution based on the
location and scale parameters. This function is an alias of LOGPMF – CAUCHY.

LOGPMF – CAUCHY ... 860

Returns the natural logarithm of the probability mass of the Cauchy distribution based on the
location and scale parameters. This function is an alias of LOGPDF – CAUCHY.

CDF – CAUCHY ... 861

Returns the cumulative density of the Cauchy distribution based on the location and scale
parameters.

Reference for language elements
Version 4.1

854

LOGCDF – CAUCHY ..863

Returns the natural logarithm of the cumulative density of the Cauchy distribution based on the
location and scale parameters.

SDF – CAUCHY ... 864

Returns the survival of the Cauchy distribution based on the location and scale parameters.

LOGSDF – CAUCHY ..866

Returns the natural logarithm of the survival of the Cauchy distribution based on the location and
scale parameters.

QUANTILE – CAUCHY ...868

Returns the quantile of the Cauchy distribution for a specified probability value based on the
location and scale parameters.

RAND – CAUCHY .. 869
Returns a random number from the Cauchy distribution. This function is similar to RANCAU and
CALL RANCAU.

RANCAU ... 871
Returns a random number from the Cauchy distribution. This function is similar to RAND –
CAUCHY and CALL RANCAU.

CALL RANCAU ... 872
Returns a random number from the Cauchy distribution. This routine is similar to function RAND
– CAUCHY and RANCAU.

PDF – CAUCHY

Returns the probability density of the Cauchy distribution based on the location and scale parameters.
This function is an alias of PMF – CAUCHY.

PDF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the probability density function for the Cauchy distribution at point x, based on the location
parameter x0 (x0) and the scale parameter γ (gamma). Arguments x0 and gamma are optional. If x0 is
omitted, it defaults to 0; if gamma is omitted, it defaults to 1.

If x0 is specified, then gamma must also be specified.

Reference for language elements
Version 4.1

855

This function is defined under the following conditions:

γ > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

856

Examples
In these examples, the probability density of the Cauchy distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PDF ("CAUCHY",0.5,-1,4);
 PUT s1=;
 s2 = PDF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = PDF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = PDF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.0697665504
s2=0.2546479089
s3=0.2546479089
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The probability density function of the Cauchy distribution is symmetrical around the location parameter
x0 as illustrated in the second and third examples. The function returns the same result for points which
are equidistant from x0.

PMF – CAUCHY

Returns the probability mass of the Cauchy distribution based on the location and scale parameters.
This function is an alias of PDF – CAUCHY.

PMF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the probability mass function for the Cauchy distribution at point x, based on the location
parameter x0 (x0) and the scale parameter γ (gamma). Arguments x0 and gamma are optional. If x0 is
omitted, it defaults to 0; if gamma is omitted, it defaults to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Reference for language elements
Version 4.1

857

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability mass of the Cauchy distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PMF ("CAUCHY",0.5,-1,4);
 PUT s1=;
 s2 = PMF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = PMF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = PMF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

Reference for language elements
Version 4.1

858

This produces the following output:

s1=0.0697665504
s2=0.2546479089
s3=0.2546479089
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The probability mass function of the Cauchy distribution is symmetrical around the location parameter
x0 as illustrated in the second and third examples. The function returns the same result for points which
are equidistant from x0.

LOGPDF – CAUCHY

Returns the natural logarithm of the probability density of the Cauchy distribution based on the location
and scale parameters. This function is an alias of LOGPMF – CAUCHY.

LOGPDF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the natural logarithm of the probability density function for the Cauchy distribution at point x,
based on the location parameter x0 (x0) and the scale parameter γ (gamma). Arguments x0 and gamma
are optional. If x0 is omitted, it defaults to 0; if gamma is omitted, it defaults to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

Reference for language elements
Version 4.1

859

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Cauchy distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("CAUCHY",0.5,-1,4);
 PUT s1=;
 s2 = LOGPDF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = LOGPDF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = LOGPDF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-2.546528434
s2=-1.367873437
s3=-1.367873437
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The natural logarithm of the probability density function of the Cauchy distribution is symmetrical around
the location parameter x0 as illustrated in the second and third examples. The function returns the same
result for points which are equidistant from x0.

Reference for language elements
Version 4.1

860

LOGPMF – CAUCHY

Returns the natural logarithm of the probability mass of the Cauchy distribution based on the location
and scale parameters. This function is an alias of LOGPDF – CAUCHY.

LOGPMF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the natural logarithm of the probability mass function for the Cauchy distribution at point x,
based on the location parameter x0 (x0) and the scale parameter γ (gamma). Arguments x0 and gamma
are optional. If x0 is omitted, it defaults to 0; if gamma is omitted, it defaults to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

Reference for language elements
Version 4.1

861

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Cauchy distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("CAUCHY",0.5,-1,4);
 PUT s1=;
 s2 = LOGPMF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = LOGPMF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = LOGPMF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-2.546528434
s2=-1.367873437
s3=-1.367873437
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The natural logarithm of the probability mass function of the Cauchy distribution is symmetrical around
the location parameter x0 as illustrated in the second and third examples. The function returns the same
result for points which are equidistant from x0.

CDF – CAUCHY

Returns the cumulative density of the Cauchy distribution based on the location and scale parameters.

CDF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the cumulative density function for the Cauchy distribution at point x, based on the location
parameter x0 (x0) and the scale parameter γ (gamma). Arguments x0 and gamma are optional. If x0 is
omitted, it defaults to 0; if gamma is omitted, it defaults to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Reference for language elements
Version 4.1

862

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Cauchy distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = CDF ("CAUCHY",3,-1,4);
 PUT s1=;
 s2 = CDF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = CDF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = CDF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

Reference for language elements
Version 4.1

863

This produces the following output:

s1=0.75
s2=0.6475836177
s3=0.3524163823
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

LOGCDF – CAUCHY

Returns the natural logarithm of the cumulative density of the Cauchy distribution based on the location
and scale parameters.

LOGCDF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the natural logarithm of the cumulative density function for the Cauchy distribution at point x,
based on the location parameter x0 (x0) and the scale parameter γ (gamma). Arguments x0 and gamma
are optional. If x0 is omitted, it defaults to 0; if gamma is omitted, it defaults to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

864

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Cauchy distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("CAUCHY",3,-1,4);
 PUT s1=;
 s2 = LOGCDF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = LOGCDF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = LOGCDF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-0.287682072
s2=-0.434507355
s3=-1.042941898
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

SDF – CAUCHY

Returns the survival of the Cauchy distribution based on the location and scale parameters.

SDF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the survival, or the complement to the cumulative density function, for the Cauchy
distribution at point x, based on the location parameter x0 (x0) and the scale parameter γ (gamma).
Arguments x0 and gamma are optional. If x0 is omitted, it defaults to 0; if gamma is omitted, it defaults
to 1.

Reference for language elements
Version 4.1

865

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

866

Examples
In these examples, the survival of the Cauchy distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = SDF ("CAUCHY",3,-1,4);
 PUT s1=;
 s2 = SDF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = SDF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = SDF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.25
s2=0.3524163823
s3=0.6475836177
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

LOGSDF – CAUCHY

Returns the natural logarithm of the survival of the Cauchy distribution based on the location and scale
parameters.

LOGSDF ("CAUCHY" , x ,

x0 , gamma
)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Cauchy distribution at point x, based on the location parameter x0 (x0) and the scale parameter γ
(gamma). Arguments x0 and gamma are optional. If x0 is omitted, it defaults to 0; if gamma is omitted, it
defaults to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

γ > 0

 =

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

867

The point at which to calculate the natural logarithm of the survival.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Cauchy distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("CAUCHY",3,-1,4);
 PUT s1=;
 s2 = LOGSDF ("CAUCHY",0.5,0,1);
 PUT s2=;
 s3 = LOGSDF ("CAUCHY",-0.5,0,1);
 PUT s3=;
 s4 = LOGSDF ("CAUCHY",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.386294361
s2=-1.042941898
s3=-0.434507355
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

Reference for language elements
Version 4.1

868

QUANTILE – CAUCHY

Returns the quantile of the Cauchy distribution for a specified probability value based on the location
and scale parameters.

QUANTILE ("CAUCHY" , q ,

x0 , gamma
)

Calculates the quantile x, or the inverse of the cumulative density function, for the Cauchy distribution
for probability value q based on the location parameter x0 (x0) and the scale parameter γ (gamma).
Arguments x0 and gamma are optional. If x0 is omitted, it defaults to 0; if gamma is omitted, it defaults
to 1.

If x0 is specified, then gamma must also be specified.

This function is defined under the following conditions:

0 < q < 1, γ > 0

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

x0
Optional argument

Type: Numeric

The location parameter.

Default: 0

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

gamma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Reference for language elements
Version 4.1

869

Restriction: must be positive

If gamma is specified, then x0 must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the quantile of the Cauchy distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = QUANTILE ("CAUCHY",0.1,-1,4);
 PUT s1=;
 s2 = QUANTILE ("CAUCHY",0.9,-1,4);
 PUT s2=;
 s3 = QUANTILE ("CAUCHY",0.5,-1,4);
 PUT s3=;
 s4 = QUANTILE ("CAUCHY",-0.5,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=-13.31073415
s2=11.310734149
s3=-1
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

RAND – CAUCHY

Returns a random number from the Cauchy distribution. This function is similar to RANCAU and CALL
RANCAU.

RAND ("CAUCHY")

The distribution is parameterised using a location of 0 and a scale of 1.

This function does not take any variable arguments.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Reference for language elements
Version 4.1

870

Return type: Numeric

Example
In this example, a random number from the Cauchy distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("CAUCHY");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.4263776967
-3.888063075
1.6837079995
-1.271628711
1.042411634

Running the DATA step again produces the following output.

The random numbers are:
0.855515708
0.6539476118
-3.702708893
0.4270412143
4.8968502713

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(10);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("CAUCHY");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-0.613114417
2.4034121057
-0.649756486
-1.821516178
6.856637058

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

871

RANCAU

Returns a random number from the Cauchy distribution. This function is similar to RAND – CAUCHY
and CALL RANCAU.

RANCAU (seed)

The distribution is parameterised using a location of 0 and a scale of 1.

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Example
In this example, a random number from the Cauchy distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANCAU(10);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.7404084178
-1.473097832
0.3834782913
-0.012433112
1.1742074908

Running the DATA step again produces the following output.

Reference for language elements
Version 4.1

872

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANCAU(0);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-19.05625376
1.2717209805
5.1594876086
-0.221519437
0.7377019906

Running the DATA step again produces the following output.

The random numbers are:-0.511933644
-5.404156858
0.8455612831
-2.727554921
0.7114644347

CALL RANCAU

Returns a random number from the Cauchy distribution. This routine is similar to function RAND –
CAUCHY and RANCAU.

CALL RANCAU (seed , x) ;

The distribution is parameterised using a location of 0 and a scale of 1.

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

Reference for language elements
Version 4.1

873

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Cauchy distribution is returned on each iteration of the loop
and stored in ranN. The results are written to the log.

DATA _NULL_;
 DO i = 1 TO 5;
 call rancau(10, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

1.7404084178
-1.473097832
0.3834782913
-0.012433112
1.1742074908

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 DO i = 1 TO 5;
 call rancau(0, ranN);
 PUT ranN;
 END;
RUN;

Reference for language elements
Version 4.1

874

This produces the following output:

The random numbers are:
-0.075360642
-0.720706397
1.2159827241
1.80796392
-0.716337281

Running the DATA step again produces the following output.

The random numbers are:
-0.266269517
-0.77613149
-1.596082366
2.980330735
2.2060086809

Chi-Squared distribution
Functions for the Chi-Squared distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – CHISQUARE ... 875
Returns the probability density of the Chi-Squared distribution, based on the number of degrees
of freedom and the noncentrality parameter. This function is an alias of PMF – CHISQUARE.

PMF – CHISQUARE ...876
Returns the probability mass of the Chi-Squared distribution, based on the number of degrees of
freedom and the noncentrality parameter. This function is an alias of PDF – CHISQUARE.

LOGPDF – CHISQUARE ..876
Returns the natural logarithm of the probability density of the Chi-Squared distribution, based on
the number of degrees of freedom and the noncentrality parameter. This function is an alias of
LOGPMF – CHISQUARE.

LOGPMF – CHISQUARE ... 877
Returns the natural logarithm of the probability mass of the Chi-Squared distribution, based on
the number of degrees of freedom and the noncentrality parameter. This function is an alias of
LOGPDF – CHISQUARE.

Reference for language elements
Version 4.1

875

CDF – CHISQUARE ... 878
Returns the cumulative density of the Chi-Squared distribution, based on the number of degrees
of freedom and the noncentrality parameter. This function is similar to PROBCHI.

PROBCHI .. 878
Returns the cumulative density of the Chi-Squared distribution, based on the number of degrees
of freedom and the noncentrality parameter. This function is similar to CDF – CHISQUARE.

LOGCDF – CHISQUARE ..879
Returns the natural logarithm of the cumulative density of the Chi-Squared distribution, based on
the number of degrees of freedom and the noncentrality parameter.

SDF – CHISQUARE ... 879
Returns the survival of the Chi-Squared distribution, based on the number of degrees of freedom
and the noncentrality parameter.

LOGSDF – CHISQUARE ..880
Returns the natural logarithm of the survival of the Chi-Squared distribution, based on the
number of degrees of freedom and the noncentrality parameter.

QUANTILE – CHISQUARE ...880
Returns the quantile of the Chi-Squared distribution, based on the number of degrees of freedom
and the noncentrality parameter. This function is similar to CINV.

CINV .. 881
Returns the quantile of the Noncentral Chi-Squared distribution, based on the number of
degrees of freedom and the noncentrality parameter. This function is similar to QUANTILE –
CHISQUARE.

RAND – CHISQUARE .. 882
Returns a random number from the Chi-Squared distribution based on the number of degrees of
freedom.

PDF – CHISQUARE

Returns the probability density of the Chi-Squared distribution, based on the number of degrees of
freedom and the noncentrality parameter. This function is an alias of PMF – CHISQUARE.

PDF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

876

k

Type: Numeric

lambda
Optional argument

Type: Numeric

PMF – CHISQUARE

Returns the probability mass of the Chi-Squared distribution, based on the number of degrees of
freedom and the noncentrality parameter. This function is an alias of PDF – CHISQUARE.

PMF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGPDF – CHISQUARE

Returns the natural logarithm of the probability density of the Chi-Squared distribution, based on the
number of degrees of freedom and the noncentrality parameter. This function is an alias of LOGPMF –
CHISQUARE.

LOGPDF ("CHISQUARE" , x , k

, lambda

)

Reference for language elements
Version 4.1

877

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGPMF – CHISQUARE

Returns the natural logarithm of the probability mass of the Chi-Squared distribution, based on the
number of degrees of freedom and the noncentrality parameter. This function is an alias of LOGPDF –
CHISQUARE.

LOGPMF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

878

CDF – CHISQUARE

Returns the cumulative density of the Chi-Squared distribution, based on the number of degrees of
freedom and the noncentrality parameter. This function is similar to PROBCHI.

CDF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

PROBCHI

Returns the cumulative density of the Chi-Squared distribution, based on the number of degrees of
freedom and the noncentrality parameter. This function is similar to CDF – CHISQUARE.

PROBCHI (x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Reference for language elements
Version 4.1

879

Type: Numeric

LOGCDF – CHISQUARE

Returns the natural logarithm of the cumulative density of the Chi-Squared distribution, based on the
number of degrees of freedom and the noncentrality parameter.

LOGCDF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

SDF – CHISQUARE

Returns the survival of the Chi-Squared distribution, based on the number of degrees of freedom and
the noncentrality parameter.

SDF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

880

k

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGSDF – CHISQUARE

Returns the natural logarithm of the survival of the Chi-Squared distribution, based on the number of
degrees of freedom and the noncentrality parameter.

LOGSDF ("CHISQUARE" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

QUANTILE – CHISQUARE

Returns the quantile of the Chi-Squared distribution, based on the number of degrees of freedom and
the noncentrality parameter. This function is similar to CINV.

QUANTILE ("CHISQUARE" , q , k

, lambda

)

Return type: Numeric

Reference for language elements
Version 4.1

881

q

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

CINV

Returns the quantile of the Noncentral Chi-Squared distribution, based on the number of degrees of
freedom and the noncentrality parameter. This function is similar to QUANTILE – CHISQUARE.

CINV (q , k

, lambda

)

Return type: Numeric

q

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

882

RAND – CHISQUARE

Returns a random number from the Chi-Squared distribution based on the number of degrees of
freedom.

RAND ("CHISQUARE" , degrees- of- freedom)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

degrees-of-freedom

Type: Numeric

The number of degrees of freedom.

Example
In this example, a random number from the Chi-Squared distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("CHISQUARE", 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.1890726701
2.6570160479
2.7255796359
1.5478911372
1.2643875905

Reference for language elements
Version 4.1

883

Running the DATA step again produces the following output.

The random numbers are:
4.1108027773
6.1036866288
2.4825035135
1.5245407666
1.1249219054

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(50);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("CHISQUARE", 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.3922968316
0.6089642297
4.8476385246
0.5618948164
4.6102139672

Running the DATA step again produces the same output.

Erlang distribution
Functions for the Erlang distribution.

RAND – ERLANG ...883
Returns a random number from the Erlang distribution based on the mean.

RAND – ERLANG

Returns a random number from the Erlang distribution based on the mean.

RAND ("ERLANG" , shape)

The distribution is parameterised using a rate of 1.

Reference for language elements
Version 4.1

884

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

shape

Type: Numeric

The shape of the distribution.

Example
In this example, a random number from the Erlang distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("ERLANG", 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
4.0300435051
6.6808226796
9.4384477997
4.2859111604
4.9152869497

Running the DATA step again produces the following output.

The random numbers are:
4.6183065003
5.2119448149
6.2187519718
5.5032738869
9.3680427968

Reference for language elements
Version 4.1

885

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(50);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("ERLANG", 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
3.2303700361
0.9112274081
2.8616064449
2.3220704166
3.1615075339

Running the DATA step again produces the same output.

Exponential distribution
Functions and CALL routines for the Exponential distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – EXPONENTIAL ... 887

Returns the probability density of the Exponential distribution, based on the scale parameter. This
function is an alias of PMF – EXPONENTIAL.

PMF – EXPONENTIAL ... 888

Returns the probability mass of the Exponential distribution, based on the scale parameter. This
function is an alias of PDF – EXPONENTIAL.

LOGPDF – EXPONENTIAL ..890

Reference for language elements
Version 4.1

886

Returns the natural logarithm of the probability density of the Exponential distribution, based on
the scale parameter. This function is an alias of LOGPMF – EXPONENTIAL.

LOGPMF – EXPONENTIAL ..891

Returns the natural logarithm of the probability mass of the Exponential distribution, based on the
scale parameter. This function is an alias of LOGPDF – EXPONENTIAL.

CDF – EXPONENTIAL ... 893

Returns the cumulative density of the Exponential distribution, based on the scale parameter.

LOGCDF – EXPONENTIAL ..894

Returns the natural logarithm of the cumulative density of the Exponential distribution, based on
the scale parameter.

SDF – EXPONENTIAL ... 896

Returns the survival of the Exponential distribution, based on the scale parameter.

LOGSDF – EXPONENTIAL ..897

Returns the natural logarithm of the survival of the Exponential distribution, based on the scale
parameter.

QUANTILE – EXPONENTIAL ...899

Returns the quantile of the Exponential distribution, based on the scale parameter.

RAND – EXPONENTIAL ...900
Returns a random number from the Exponential distribution. This function is similar to RANEXP
and CALL RANEXP.

RANEXP ..902
Returns a random number from the Exponential distribution. This function is similar to RAND –
EXPONENTIAL and CALL RANEXP.

CALL RANEXP ... 903
Returns a random number from the Exponential distribution. This routine is similar to function
RAND – EXPONENTIAL and RANEXP.

Reference for language elements
Version 4.1

887

PDF – EXPONENTIAL

Returns the probability density of the Exponential distribution, based on the scale parameter. This
function is an alias of PMF – EXPONENTIAL.

PDF ("EXPONENTIAL" , x

, beta

)

Calculates the probability density function for the Exponential distribution at point x, based on scale
parameter β (beta). The scale parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

β > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

888

Examples
In these examples, the probability density of the Exponential distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PDF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = PDF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = PDF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = PDF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = PDF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=0.2098642552
s2=0.3523440449
s3=0.4756147123
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

PMF – EXPONENTIAL

Returns the probability mass of the Exponential distribution, based on the scale parameter. This
function is an alias of PDF – EXPONENTIAL.

PMF ("EXPONENTIAL" , x

, beta

)

Calculates the probability mass function for the Exponential distribution at point x, based on scale
parameter β (beta). The scale parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

β > 0

 =

Return type: Numeric

Reference for language elements
Version 4.1

889

x

Type: Numeric

The point at which to calculate the probability mass.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability mass of the Exponential distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PMF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = PMF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = PMF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = PMF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = PMF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=0.2098642552
s2=0.3523440449
s3=0.4756147123
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

Reference for language elements
Version 4.1

890

LOGPDF – EXPONENTIAL

Returns the natural logarithm of the probability density of the Exponential distribution, based on the
scale parameter. This function is an alias of LOGPMF – EXPONENTIAL.

LOGPDF ("EXPONENTIAL" , x

, beta

)

Calculates the natural logarithm of the probability density function for the Exponential distribution at
point x, based on scale parameter β (beta). The scale parameter is optional; if it is omitted, it defaults to
1.

This function is defined under the following conditions:

x ≥ 0, β > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

Restriction: must be positive or zero

If the argument is out of range, a missing value is returned.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

891

Examples
In these examples, the natural logarithm of the probability density of the Exponential distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = LOGPDF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = LOGPDF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = LOGPDF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = LOGPDF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=-1.561294361
s2=-1.043147181
s3=-0.743147181
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGPMF – EXPONENTIAL

Returns the natural logarithm of the probability mass of the Exponential distribution, based on the scale
parameter. This function is an alias of LOGPDF – EXPONENTIAL.

LOGPMF ("EXPONENTIAL" , x

, beta

)

Calculates the natural logarithm of the probability mass function for the Exponential distribution at point
x, based on scale parameter β (beta). The scale parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

x ≥ 0, β > 0

 =

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

892

The point at which to calculate the natural logarithm of the probability mass.

Restriction: must be positive or zero

If the argument is out of range, a missing value is returned.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Exponential distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = LOGPMF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = LOGPMF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = LOGPMF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = LOGPMF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=-1.561294361
s2=-1.043147181
s3=-0.743147181
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

Reference for language elements
Version 4.1

893

CDF – EXPONENTIAL

Returns the cumulative density of the Exponential distribution, based on the scale parameter.

CDF ("EXPONENTIAL" , x

, beta

)

Calculates the cumulative density function for the Exponential distribution at point x, based on scale
parameter β (beta). The scale parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

β > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

894

Examples
In these examples, the cumulative density of the Exponential distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = CDF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = CDF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = CDF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = CDF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = CDF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=0.1605429792
s2=0.2953119103
s3=0.0487705755
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGCDF – EXPONENTIAL

Returns the natural logarithm of the cumulative density of the Exponential distribution, based on the
scale parameter.

LOGCDF ("EXPONENTIAL" , x

, beta

)

Calculates the natural logarithm of the cumulative density function for the Exponential distribution at
point x, based on scale parameter β (beta). The scale parameter is optional; if it is omitted, it defaults to
1.

This function is defined under the following conditions:

x > 0, β > 0

 =

Return type: Numeric

Reference for language elements
Version 4.1

895

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Exponential distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = LOGCDF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = LOGCDF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = LOGCDF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = LOGCDF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=-1.829193589
s2=-1.219723158
s3=-3.020628109
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

Reference for language elements
Version 4.1

896

SDF – EXPONENTIAL

Returns the survival of the Exponential distribution, based on the scale parameter.

SDF ("EXPONENTIAL" , x

, beta

)

Calculates the survival, or the complement to the cumulative density function, for the Exponential
distribution at point x, based on scale parameter β (beta). The scale parameter is optional; if it is
omitted, it defaults to 1.

This function is defined under the following conditions:

β > 0

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

897

Examples
In these examples, the survival of the Exponential distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = SDF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = SDF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = SDF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = SDF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = SDF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=0.8394570208
s2=0.7046880897
s3=0.9512294245
s4=1
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGSDF – EXPONENTIAL

Returns the natural logarithm of the survival of the Exponential distribution, based on the scale
parameter.

LOGSDF ("EXPONENTIAL" , x

, beta

)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Exponential distribution at point x, based on scale parameter β (beta). The scale parameter is
optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

β > 0

 =

Return type: Numeric

Reference for language elements
Version 4.1

898

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Exponential distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = LOGSDF ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = LOGSDF ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = LOGSDF ("EXPONENTIAL",-3,4);
 PUT s4=;
 s5 = LOGSDF ("EXPONENTIAL",7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=-0.175
s2=-0.35
s3=-0.05
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

Reference for language elements
Version 4.1

899

QUANTILE – EXPONENTIAL

Returns the quantile of the Exponential distribution, based on the scale parameter.

QUANTILE ("EXPONENTIAL" , q

, beta

)

Calculates the quantile x, or the inverse of the cumulative density function, for the Exponential
distribution for probability value q based on scale parameter β (beta). The scale parameter is optional; if
it is omitted, it defaults to 1.

This function is defined under the following conditions:

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

beta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

900

Examples
In these examples, the quantile of the Exponential distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = QUANTILE ("EXPONENTIAL",0.7,4);
 PUT s1=;
 s2 = QUANTILE ("EXPONENTIAL",0.7,2);
 PUT s2=;
 s3 = QUANTILE ("EXPONENTIAL",0.1,2);
 PUT s3=;
 s4 = QUANTILE ("EXPONENTIAL",0,4);
 PUT s4=;
 s5 = QUANTILE ("EXPONENTIAL",0.7,0);
 PUT s5=;
RUN;

This produces the following output:

s1=4.8158912173
s2=2.4079456087
s3=0.2107210313
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows the
output when q equals to zero. The fifth example shows the output when an argument value falls outside
the domain bounds.

RAND – EXPONENTIAL

Returns a random number from the Exponential distribution. This function is similar to RANEXP and
CALL RANEXP.

RAND ("EXPONENTIAL")

The distribution is parameterised using a mean of 1.

This function does not take any variable arguments.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

Reference for language elements
Version 4.1

901

The return value is positive.

Example
In this example, a random number from the Exponential distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("EXPONENTIAL");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
2.7082011391
2.3898074454
0.3126476527
0.2865067564
0.1319622419

Running the DATA step again produces the following output.

The random numbers are:
0.970507831
2.6047812803
0.681884276
0.3436686056
1.1060946519

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(16);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("EXPONENTIAL");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2862521114
0.0710885532
0.0574738376
2.8483074967
1.52861687

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

902

RANEXP

Returns a random number from the Exponential distribution. This function is similar to RAND –
EXPONENTIAL and CALL RANEXP.

RANEXP (seed)

The distribution is parameterised using a mean of 1.

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

The return value is positive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Example
In this example, a random number from the Exponential distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANEXP(10);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.8641189282
0.1051016758
0.4993573256
0.2530488276
0.3939087162

Reference for language elements
Version 4.1

903

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANEXP(0);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.4323774084
0.1566195304
1.3868878749
0.7776727044
0.4901959216

Running the DATA step again produces the following output.

The random numbers are:
0.633166558
0.9361323397
0.4423314352
1.129363563
1.3409875818

CALL RANEXP

Returns a random number from the Exponential distribution. This routine is similar to function RAND –
EXPONENTIAL and RANEXP.

CALL RANEXP (seed , x) ;

The distribution is parameterised using a mean of 1.

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

Reference for language elements
Version 4.1

904

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The return value is positive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Exponential distribution is returned on each iteration of the
loop and stored in ranN. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call ranexp(10, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

0.1629593815
0.3554083799
0.0017584843
0.520898765
1.5323575328

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call ranexp(0, ranN);
 PUT ranN;
 END;
RUN;

Reference for language elements
Version 4.1

905

This produces the following output:

The random numbers are:
4.3744549453
0.3787492277
0.6879483842
2.2348845064
0.693289297

Running the DATA step again produces the following output.

The random numbers are:
0.9833834191
0.3000878672
0.1583015061
0.1095265191
1.6490832095

Fisher distribution
Functions for the Fisher distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – F .. 906
Returns the probability density of the Fisher distribution. This function is an alias of PMF – F.

PMF – F ..906
Returns the probability mass of the Fisher distribution. This function is an alias of PDF – F.

LOGPDF – F ...907
Returns the natural logarithm of the probability density of the Fisher distribution. This function is
an alias of LOGPMF – F.

LOGPMF – F .. 907
Returns the natural logarithm of the probability mass of the Fisher distribution. This function is
an alias of LOGPDF – F.

CDF – F .. 908
Returns the cumulative density of the Fisher distribution.

PROBF .. 908

LOGCDF – F ...909
Returns the natural logarithm of the cumulative density of the Fisher distribution.

Reference for language elements
Version 4.1

906

SDF – F .. 910
Returns the survival of the Fisher distribution.

LOGSDF – F ...910
Returns the natural logarithm of the survival of the Fisher distribution.

QUANTILE – F ..911
Returns the quantile of the Fisher distribution.

FINV .. 911

RAND – F ... 912
Returns a random number from the Fisher distribution based on the degrees of freedom.

PDF – F

Returns the probability density of the Fisher distribution. This function is an alias of PMF – F.

PDF ("F" , x , d1 , d2)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

d1

Type: Numeric

d2

Type: Numeric

PMF – F

Returns the probability mass of the Fisher distribution. This function is an alias of PDF – F.

PMF ("F" , x , d1 , d2)

Return type: Numeric

Reference for language elements
Version 4.1

907

x

Type: Numeric

The point at which to calculate the probability mass.

d1

Type: Numeric

d2

Type: Numeric

LOGPDF – F

Returns the natural logarithm of the probability density of the Fisher distribution. This function is an
alias of LOGPMF – F.

LOGPDF ("F" , x , d1 , d2)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

d1

Type: Numeric

d2

Type: Numeric

LOGPMF – F

Returns the natural logarithm of the probability mass of the Fisher distribution. This function is an alias
of LOGPDF – F.

LOGPMF ("F" , x , d1 , d2)

Reference for language elements
Version 4.1

908

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

d1

Type: Numeric

d2

Type: Numeric

CDF – F

Returns the cumulative density of the Fisher distribution.

CDF ("F" , x , d1 , d2)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

d1

Type: Numeric

d2

Type: Numeric

PROBF

PROBF (x , d1 , d2
, nc

)

Reference for language elements
Version 4.1

909

Return type: Numeric

x

Type: Numeric

d1

Type: Numeric

d2

Type: Numeric

nc
Optional argument

Type: Numeric

LOGCDF – F

Returns the natural logarithm of the cumulative density of the Fisher distribution.

LOGCDF ("F" , x , d1 , d2)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

d1

Type: Numeric

d2

Type: Numeric

Reference for language elements
Version 4.1

910

SDF – F

Returns the survival of the Fisher distribution.

SDF ("F" , x , d1 , d2)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

d1

Type: Numeric

d2

Type: Numeric

LOGSDF – F

Returns the natural logarithm of the survival of the Fisher distribution.

LOGSDF ("F" , x , d1 , d2)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

d1

Type: Numeric

d2

Type: Numeric

Reference for language elements
Version 4.1

911

QUANTILE – F

Returns the quantile of the Fisher distribution.

QUANTILE ("F" , q , d1 , d2)

Return type: Numeric

q

Type: Numeric

d1

Type: Numeric

d2

Type: Numeric

FINV

FINV (probability , num- degree- of- freedom , degree- of- freedom

, non- centrality

)

Return type: Numeric

probability

Type: Numeric

num-degree-of-freedom

Type: Numeric

degree-of-freedom

Type: Numeric

Reference for language elements
Version 4.1

912

non-centrality
Optional argument

Type: Numeric

RAND – F

Returns a random number from the Fisher distribution based on the degrees of freedom.

RAND ("F" , degrees- of- freedom , second- degrees- of- freedom)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

degrees-of-freedom

Type: Numeric

The first number of degrees of freedom for the distribution.

second-degrees-of-freedom

Type: Numeric

The second number of degrees of freedom for the distribution.

Example
In this example, a random number from the Fisher distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("F", 7,3);
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

913

This produces the following output:

The random numbers are:
1.5580202043
0.2275444934
2.9556306842
0.2816658411
0.9441069678

Running the DATA step again produces the following output.

The random numbers are:
0.436236944
0.4925625125
1.6689190328
5.3555436202
1.1726657119

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(16);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("F", 7,3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.3151390248
1.3442231108
0.457142241
2.3632063261
1.8960485237

Running the DATA step again produces the same output.

Gamma distribution
Functions and CALL routines for the Gamma distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

Reference for language elements
Version 4.1

914

PDF – GAMMA ... 915

Returns the probability density of the Gamma distribution, based on the shape and scale
parameters. This function is an alias of PMF – GAMMA.

PMF – GAMMA ...917

Returns the probability mass of the Gamma distribution, based on the shape and scale
parameters. This function is an alias of PDF – GAMMA.

LOGPDF – GAMMA ... 919

Returns the natural logarithm of the probability density of the Gamma distribution, based on the
shape and scale parameters. This function is an alias of LOGPMF – GAMMA.

LOGPMF – GAMMA ... 921

Returns the natural logarithm of the probability mass of the Gamma distribution, based on the
shape and scale parameters. This function is an alias of LOGPDF – GAMMA.

CDF – GAMMA ...923

Returns the cumulative density of the Gamma distribution, based on the shape and scale
parameters. This function is similar to PROBGAM where the optional argument in CDF –
GAMMA is set to its default value.

PROBGAM .. 925

Returns the cumulative density of the Gamma distribution, based on the shape and scale
parameters. This function is similar to CDF – GAMMA where the optional argument in CDF –
GAMMA is set to its default value.

LOGCDF – GAMMA ... 927

Returns the natural logarithm of the cumulative density of the Gamma distribution, based on the
shape and scale parameters.

SDF – GAMMA ... 929

Returns the survival of the Gamma distribution, based on the shape and scale parameters.

Reference for language elements
Version 4.1

915

LOGSDF – GAMMA ... 930

Returns the natural logarithm of the survival of the Gamma distribution, based on the shape and
scale parameters.

QUANTILE – GAMMA .. 932

Returns the quantile of the Gamma distribution, based on the shape and scale parameters. This
function is similar to GAMINV where the optional argument in QUANTILE – GAMMA is set to its
default value.

GAMINV .. 934

Returns the quantile of the Gamma distribution, based on the shape and scale parameters.
This function is similar to QUANTILE – GAMMA where the optional argument in QUANTILE –
GAMMA is set to its default value.

DEVIANCE – GAMMA ..935

Returns the deviance of the Gamma distribution at a specified point, based on the distribution
mean.

RAND – GAMMA .. 938
Returns a random number from the Gamma distribution based on the shape. This function is
similar to RANGAM and CALL RANGAM.

RANGAM ...939
Returns a random number from the Gamma distribution based on the shape. This function is
similar to RAND – GAMMA and CALL RANGAM.

CALL RANGAM .. 941
Returns a random number from the Gamma distribution based on the shape. This routine is
similar to function RAND – GAMMA and RANGAM.

PDF – GAMMA

Returns the probability density of the Gamma distribution, based on the shape and scale parameters.
This function is an alias of PMF – GAMMA.

PDF ("GAMMA" , x , k

, theta

)

Calculates the probability density function for the Gamma distribution at point x, based on the shape
parameter k and scale parameter θ (theta). The scale parameter is optional; if it is omitted, it defaults to
1.

Reference for language elements
Version 4.1

916

This function is defined under the following conditions:

θ > 0

 =

 =

where is the Gamma function, see GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

k

Type: Numeric

The shape parameter.

Restriction: if x = 0 then k must be greater than or equal to 1; for all other values of x, k must be
greater than 0

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

917

Examples
In these examples, the probability density of the Gamma distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PDF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = PDF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = PDF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = PDF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = PDF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=0.0367262447
s2=0.3476097127
s3=0.0719556586
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

PMF – GAMMA

Returns the probability mass of the Gamma distribution, based on the shape and scale parameters.
This function is an alias of PDF – GAMMA.

PMF ("GAMMA" , x , k

, theta

)

Calculates the probability mass for the Gamma distribution at point x, based on the shape parameter k
and scale parameter θ (theta). The scale parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

θ > 0

Reference for language elements
Version 4.1

918

 =

 =

where is the Gamma function, see GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

k

Type: Numeric

The shape parameter.

Restriction: if x = 0 then k must be greater than or equal to 1; for all other values of x, k must be
greater than 0

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

919

Examples
In these examples, the probability mass of the Gamma distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PMF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = PMF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = PMF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = PMF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = PMF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=0.0367262447
s2=0.3476097127
s3=0.0719556586
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGPDF – GAMMA

Returns the natural logarithm of the probability density of the Gamma distribution, based on the shape
and scale parameters. This function is an alias of LOGPMF – GAMMA.

LOGPDF ("GAMMA" , x , k

, theta

)

Calculates the natural logarithm of the probability density for the Gamma distribution at point x, based
on the shape parameter k and scale parameter θ (theta). The scale parameter is optional; if it is
omitted, it defaults to 1.

This function is defined under the following conditions:

x ≥ 0, θ > 0

Reference for language elements
Version 4.1

920

 =

 =

where is the Gamma function, see GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

Restriction: must be positive or zero

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The shape parameter.

Restriction: if x = 0 then k must be equal to 1; for all other values of x, k must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

921

Examples
In these examples, the natural logarithm of the probability density of the Gamma distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = LOGPDF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = LOGPDF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = LOGPDF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = LOGPDF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=-3.304263666
s2=-1.056674944
s3=-2.631705202
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGPMF – GAMMA

Returns the natural logarithm of the probability mass of the Gamma distribution, based on the shape
and scale parameters. This function is an alias of LOGPDF – GAMMA.

LOGPMF ("GAMMA" , x , k

, theta

)

Calculates the natural logarithm of the probability mass for the Gamma distribution at point x, based on
the shape parameter k and scale parameter θ (theta). The scale parameter is optional; if it is omitted, it
defaults to 1.

This function is defined under the following conditions:

x ≥ 0, θ > 0

Reference for language elements
Version 4.1

922

 =

 =

where is the Gamma function, see GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

Restriction: must be positive or zero

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The shape parameter.

Restriction: if x = 0 then k must be equal to 1; for all other values of x, k must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

923

Examples
In these examples, the natural logarithm of the probability mass of the Gamma distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = LOGPMF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = LOGPMF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = LOGPMF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = LOGPMF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=-3.304263666
s2=-1.056674944
s3=-2.631705202
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

CDF – GAMMA

Returns the cumulative density of the Gamma distribution, based on the shape and scale parameters.
This function is similar to PROBGAM where the optional argument in CDF – GAMMA is set to its default
value.

CDF ("GAMMA" , x , k

, theta

)

Calculates the cumulative density function for the Gamma distribution at point x, based on the shape
parameter k and scale parameter θ (theta). The scale parameter is optional; if it is omitted, it defaults to
1.

This function is defined under the following conditions:

Reference for language elements
Version 4.1

924

 =

 =

 =

where is the lower incomplete Gamma function and is the Gamma function, see
GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

k

Type: Numeric

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

925

Examples
In these examples, the cumulative density of the Gamma distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = CDF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = CDF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = CDF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = CDF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = CDF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=0.0136380006
s2=0.1558049836
s3=0.9599447964
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

PROBGAM

Returns the cumulative density of the Gamma distribution, based on the shape and scale parameters.
This function is similar to CDF – GAMMA where the optional argument in CDF – GAMMA is set to its
default value.

PROBGAM (x , k)

Calculates the cumulative density function of the Gamma distribution, based on the shape parameter k.

This function is defined under the following conditions:

 =

 =

Reference for language elements
Version 4.1

926

 =

where is the lower incomplete Gamma function and is the Gamma function, see
GAMMA (page 1813).

Note:
For negative values of x this function returns a missing value, whereas function CDF – GAMMA returns
zero.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

Restriction: must be positive or zero

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Gamma distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PROBGAM (0.7,2);
 PUT s1=;
 s2 = PROBGAM (0.1,2);
 PUT s2=;
 s3 = PROBGAM (0.7,0.1);
 PUT s3=;
 s4 = PROBGAM (-3,2);
 PUT s4=;
 s5 = PROBGAM (0.7,-2);
 PUT s5=;
RUN;

Reference for language elements
Version 4.1

927

This produces the following output:

s1=0.1558049836
s2=0.0046788402
s3=0.9599447964
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGCDF – GAMMA

Returns the natural logarithm of the cumulative density of the Gamma distribution, based on the shape
and scale parameters.

LOGCDF ("GAMMA" , x , k

, theta

)

Calculates the natural logarithm of the cumulative density function for the Gamma distribution at point x,
based on the shape parameter k and scale parameter θ (theta). The scale parameter is optional; if it is
omitted, it defaults to 1.

This function is defined under the following conditions:

 =

 =

 =

where is the lower incomplete Gamma function and is the Gamma function, see
GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

928

k

Type: Numeric

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Gamma distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = LOGCDF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = LOGCDF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = LOGCDF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = LOGCDF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=-4.294895221
s2=-1.859150159
s3=-0.0408795
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

Reference for language elements
Version 4.1

929

SDF – GAMMA

Returns the survival of the Gamma distribution, based on the shape and scale parameters.

SDF ("GAMMA" , x , k

, theta

)

Calculates the survival, or the complement to the cumulative density function, for the Gamma
distribution at point x, based on the shape parameter k and scale parameter θ (theta). The scale
parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

 =

 =

 =

where is the lower incomplete Gamma function and is the Gamma function, see
GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

k

Type: Numeric

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Reference for language elements
Version 4.1

930

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the survival of the Gamma distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = SDF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = SDF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = SDF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = SDF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = SDF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=0.9863619994
s2=0.8441950164
s3=0.0400552036
s4=1
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

LOGSDF – GAMMA

Returns the natural logarithm of the survival of the Gamma distribution, based on the shape and scale
parameters.

LOGSDF ("GAMMA" , x , k

, theta

)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Gamma distribution at point x, based on the shape parameter k and scale parameter θ (theta).
The scale parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

Reference for language elements
Version 4.1

931

 =

 =

 =

where is the lower incomplete Gamma function and is the Gamma function, see
GAMMA (page 1813).

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

k

Type: Numeric

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

932

Examples
In these examples, the natural logarithm of the survival of the Gamma distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = LOGSDF ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = LOGSDF ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = LOGSDF ("GAMMA",-3,2,4);
 PUT s4=;
 s5 = LOGSDF ("GAMMA",7,-1,4);
 PUT s5=;
RUN;

This produces the following output:

s1=-0.013731852
s2=-0.169371749
s3=-3.217496688
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows
the output for negative values of x. The fifth example shows the output when x falls outside the domain
bounds.

QUANTILE – GAMMA

Returns the quantile of the Gamma distribution, based on the shape and scale parameters. This
function is similar to GAMINV where the optional argument in QUANTILE – GAMMA is set to its default
value.

QUANTILE ("GAMMA" , q , k

, theta

)

Calculates the quantile x, or the inverse of the cumulative density function, for the Gamma distribution
for probability value q, based on the shape parameter k and scale parameter θ (theta). The scale
parameter is optional; if it is omitted, it defaults to 1.

This function is defined under the following conditions:

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Gamma distribution, see section CDF – GAMMA (page 923).

Reference for language elements
Version 4.1

933

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

k

Type: Numeric

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the quantile of the Gamma distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = QUANTILE ("GAMMA",0.7,2,4);
 PUT s1=;
 s2 = QUANTILE ("GAMMA",0.7,2,1);
 PUT s2=;
 s3 = QUANTILE ("GAMMA",0.7,0.1,1);
 PUT s3=;
 s4 = QUANTILE ("GAMMA",0,0.1,1);
 PUT s4=;
 s5 = QUANTILE ("GAMMA",-3,2,4);
 PUT s5=;
RUN;

Reference for language elements
Version 4.1

934

This produces the following output:

s1=9.7568659331
s2=2.4392164833
s3=0.0174277764
s4=.
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows the
output when q equals to zero. The fifth example shows the output when an argument value falls outside
the domain bounds.

GAMINV

Returns the quantile of the Gamma distribution, based on the shape and scale parameters. This
function is similar to QUANTILE – GAMMA where the optional argument in QUANTILE – GAMMA is set
to its default value.

GAMINV (q , k)

Calculates the quantile x, or the inverse of the cumulative density function, for the Gamma distribution
for probability value q, based on the shape parameter k.

This function is defined under the following conditions:

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Gamma distribution, see section CDF – GAMMA (page 923).

Note:
In this function, the probability q can equal 0 (zero), whereas in function QUANTILE – GAMMA q must
be strictly greater than 0 (zero).

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 ≤ q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

k

Type: Numeric

Reference for language elements
Version 4.1

935

The shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Examples
In these examples, the quantile of the Gamma distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = GAMINV (0.7,2);
 PUT s1=;
 s2 = GAMINV (0.1,2);
 PUT s2=;
 s3 = GAMINV (0.7,0.1);
 PUT s3=;
 s4 = GAMINV (0,0.1);
 PUT s4=;
 s5 = GAMINV (-3,2);
 PUT s5=;
RUN;

This produces the following output:

s1=2.4392164833
s2=0.5318116084
s3=0.0174277764
s4=0
s5=.

The first three examples show the effects of the arguments on the result. The fourth example shows the
output when q equals to zero. The fifth example shows the output when an argument value falls outside
the domain bounds.

DEVIANCE – GAMMA

Returns the deviance of the Gamma distribution at a specified point, based on the distribution mean.

DEVIANCE ("GAMMA" , x , mu

, epsilon

)

Calculates the deviance, or goodness of fit, for the generalised linear model of the Gamma distribution
at a nonnegative point x based on the distribution mean μ (mu). An optional range correction
parameter ε (epsilon) can be specified. If ε > 0.01, it is set equal to 0.01. If it is not specified or if
ε < 10-12, the value of 10-12 is used for correction. The distribution mean is then adjusted so that
μ ≥ ε:

Reference for language elements
Version 4.1

936

If x ≥ 0, it is adjusted so that x ≥ ε:

These adjusted values of μ and x are used in the subsequent calculation of the deviance.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the deviance.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

mu

Type: Numeric

The distribution mean.

Expected: μ > 0. Values not within this range are corrected to fall in this range; this behaviour is
however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

epsilon
Optional argument

Type: Numeric

The range correction parameter.

Default: ε = 10-12

Expected: 10-12 < ε < 0.01. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

937

Examples – applying correction to the distribution mean
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("GAMMA", 0.1, 0.0007, 0.0005);
 PUT g1=;
 g2 = DEVIANCE("GAMMA", 0.1, 0.0007, 0.0010);
 PUT g2=;
 g3 = DEVIANCE("GAMMA", 0.1, 0.0007, 0.0015);
 PUT g3=;
 g4 = DEVIANCE("GAMMA", 0.1, 0.0007);
 PUT g4=;
RUN;

This produces the following output:

g1=273.79059545
g2=188.78965963
g3=122.93392318
g4=273.79059545

The value of the distribution mean is not corrected in the first example because μ > ε. However,
this condition does not hold in the second and third example, and correction is applied: μ = ε. This
corrected value is used for calculation, yielding different results.
In the fourth example the ε parameter is omitted, so the default value of ε = 10-12 is used. Here, as in
the first example, μ > ε, so no correction is required.

Examples – invariant scaling
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("GAMMA", 0.001, 0.007);
 PUT g1=;
 g2 = DEVIANCE("GAMMA", 0.01 , 0.07);
 PUT g2=;
 g3 = DEVIANCE("GAMMA", 0.1 , 0.7);
 PUT g3=;
RUN;

This produces the following output:

g1=6.5255619127
g2=6.5255619127
g3=6.5255619127

For the Gamma distribution, when both the point of measurement x and the distribution mean μ are
scaled with the same factor, the deviance remains the same.

Reference for language elements
Version 4.1

938

RAND – GAMMA

Returns a random number from the Gamma distribution based on the shape. This function is similar to
RANGAM and CALL RANGAM.

RAND ("GAMMA" , shape)

The distribution is parameterised using a scale of 1.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

shape

Type: Numeric

A shape parameter for the distribution.

Example
In this example, a random number from the Gamma distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("GAMMA", 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
5.7003495538
2.9098612135
0.7765584912
1.9572029415
1.0605257842

Reference for language elements
Version 4.1

939

Running the DATA step again produces the following output.

The random numbers are:
1.95537115
0.2755466634
2.9501199923
4.4732083311
2.9515196911

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(12);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("GAMMA", 3);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
3.4869816111
2.1891910706
2.8123690729
3.0755814295
2.3247368117

Running the DATA step again produces the same output.

RANGAM

Returns a random number from the Gamma distribution based on the shape. This function is similar to
RAND – GAMMA and CALL RANGAM.

RANGAM (seed , shape)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

Reference for language elements
Version 4.1

940

The return value is positive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

shape

Type: Numeric

A positive number that defines the shape of the gamma distribution.

If a negative number is used, a missing value is returned from the function, and a note indicating
the argument is invalid is written to the log.

Example
In this example, a random number from the Gamma distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANGAM(50, 0.2);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.0104523162
0.5938802889
0.0000965085
0.0008535642
0.621719791

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANGAM(0, 0.2);
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

941

This produces the following output:

The random numbers are:
6.728089E-10
0.0538443586
0.0131700204
0.6767632093
0.0109073109

Running the DATA step again produces the following output.

The random numbers are:
0.0002528525
1.1553658321
0.0003353805
0.1849489086
2.9069978738

CALL RANGAM

Returns a random number from the Gamma distribution based on the shape. This routine is similar to
function RAND – GAMMA and RANGAM.

CALL RANGAM (seed , shape , x) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The return value is positive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

942

shape

Type: Numeric

A value defining the shape of the gamma distribution.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Gamma distribution based on the shape is returned on
each iteration of the loop and stored in ranN. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call rangam(50, 0.2,ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
0.0104523162
0.5938802889
0.0000965085
0.0008535642
0.621719791

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call rangam(0, 0.2,ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
0.0577740856
1.073869E-7
0.3667352159
0.0350047029
2.4169802E-6

Reference for language elements
Version 4.1

943

Running the DATA step again produces the following output.

The random numbers are:
3.1296626E-6
0.001638255
0.4199521379
0.0057071644
0.0926429502

Gaussian distribution
Functions for the Gaussian distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – GAUSSIAN .. 945

Returns the value of the probability density function at a given point for the Gaussian distribution
with the specified mean and standard deviation. This function is an alias of PMF – GAUSSIAN,
PDF – NORMAL and PMF – NORMAL.

PMF – GAUSSIAN ..947

Returns the value of the probability mass function at a given point for the Gaussian distribution
with the specified mean and standard deviation. This function is an alias of PDF – GAUSSIAN,
PDF – NORMAL and PMF – NORMAL.

LOGPDF – GAUSSIAN ...949

Returns the value of the natural logarithm of the probability density function at a given point for
the Gaussian distribution with the specified mean and standard deviation. This function is an alias
of LOGPMF – GAUSSIAN, LOGPDF – NORMAL and LOGPMF – NORMAL.

LOGPMF – GAUSSIAN .. 951

Reference for language elements
Version 4.1

944

Returns the value of the natural logarithm of the probability mass function at a given point for the
Gaussian distribution with the specified mean and standard deviation. This function is an alias of
LOGPDF – GAUSSIAN, LOGPDF – NORMAL and LOGPMF – NORMAL.

CDF – GAUSSIAN ..953

Returns the value of the cumulative density function at a given point for the Gaussian distribution
with the specified mean and standard deviation. This function is an alias of CDF – NORMAL and
is similar to PROBNORM.

LOGCDF – GAUSSIAN .. 955

Returns the value of the natural logarithm of the cumulative density function at a given point for
the Gaussian distribution with the specified mean and standard deviation. This function is an alias
of LOGCDF – NORMAL.

SDF – GAUSSIAN .. 957

Returns the value of the survival function at a given point for the Gaussian distribution with the
specified mean and standard deviation. This function is an alias of SDF – NORMAL.

LOGSDF – GAUSSIAN ...960

Returns the value of the natural logarithm of the survival function at a given point for the
Gaussian distribution with the specified mean and standard deviation. This function is an alias of
LOGSDF – NORMAL.

QUANTILE – GAUSSIAN ... 962

Returns the value of the quantile function at a given point for the Gaussian distribution with the
specified mean and standard deviation. This function is an alias of QUANTILE – NORMAL and is
similar to PROBIT.

DEVIANCE – GAUSSIAN ...964

Returns the deviance of the Gaussian distribution at a specified point, based on the distribution
mean. This function is an alias of DEVIANCE – NORMAL.

Reference for language elements
Version 4.1

945

PDF – GAUSSIAN

Returns the value of the probability density function at a given point for the Gaussian distribution with
the specified mean and standard deviation. This function is an alias of PMF – GAUSSIAN, PDF –
NORMAL and PMF – NORMAL.

PDF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the probability density
function for the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Reference for language elements
Version 4.1

946

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the probability density function of the Gaussian distribution is calculated for
various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = PDF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = PDF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = PDF("GAUSSIAN", 0);
 PUT s3=;
 s4 = PDF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = PDF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = PDF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = PDF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = PDF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=0.3989422804
s2=0.3989422804
s3=0.3989422804
s4=0.0647587978
s5=0.0647587978
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the probability density function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the probability density function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

947

PMF – GAUSSIAN

Returns the value of the probability mass function at a given point for the Gaussian distribution with
the specified mean and standard deviation. This function is an alias of PDF – GAUSSIAN, PDF –
NORMAL and PMF – NORMAL.

PMF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the probability mass
function for the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Reference for language elements
Version 4.1

948

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the probability mass function of the Gaussian distribution is calculated for
various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = PMF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = PMF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = PMF("GAUSSIAN", 0);
 PUT s3=;
 s4 = PMF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = PMF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = PMF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = PMF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = PMF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=0.3989422804
s2=0.3989422804
s3=0.3989422804
s4=0.0647587978
s5=0.0647587978
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the probability mass function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the probability mass function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

949

LOGPDF – GAUSSIAN

Returns the value of the natural logarithm of the probability density function at a given point for the
Gaussian distribution with the specified mean and standard deviation. This function is an alias of
LOGPMF – GAUSSIAN, LOGPDF – NORMAL and LOGPMF – NORMAL.

LOGPDF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the probability density function for the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

950

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the probability density function of the Gaussian
distribution is calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = LOGPDF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = LOGPDF("GAUSSIAN", 0);
 PUT s3=;
 s4 = LOGPDF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = LOGPDF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = LOGPDF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGPDF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = LOGPDF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=-0.918938533
s2=-0.918938533
s3=-0.918938533
s4=-2.737085714
s5=-2.737085714
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the natural logarithm of the probability
density function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below
the mean, so both examples return the same value for the natural logarithm of the probability density
function.

Reference for language elements
Version 4.1

951

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

LOGPMF – GAUSSIAN

Returns the value of the natural logarithm of the probability mass function at a given point for the
Gaussian distribution with the specified mean and standard deviation. This function is an alias of
LOGPDF – GAUSSIAN, LOGPDF – NORMAL and LOGPMF – NORMAL.

LOGPMF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the probability mass function for the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

Reference for language elements
Version 4.1

952

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the probability mass function of the Gaussian
distribution is calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = LOGPMF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = LOGPMF("GAUSSIAN", 0);
 PUT s3=;
 s4 = LOGPMF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = LOGPMF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = LOGPMF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGPMF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = LOGPMF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=-0.918938533
s2=-0.918938533
s3=-0.918938533
s4=-2.737085714
s5=-2.737085714
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the natural logarithm of the probability
mass function.

Reference for language elements
Version 4.1

953

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below
the mean, so both examples return the same value for the natural logarithm of the probability mass
function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

CDF – GAUSSIAN

Returns the value of the cumulative density function at a given point for the Gaussian distribution with
the specified mean and standard deviation. This function is an alias of CDF – NORMAL and is similar
to PROBNORM.

CDF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the cumulative density
function for the standard Gaussian distribution.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

The return value is between 0 and 1 inclusive.

x

Type: Numeric

The point at which to calculate the cumulative density.

Reference for language elements
Version 4.1

954

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the cumulative density function of the Gaussian distribution is calculated
for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = CDF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = CDF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = CDF("GAUSSIAN", 0);
 PUT s3=;
 s4 = CDF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = CDF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = CDF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = CDF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = CDF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

Reference for language elements
Version 4.1

955

This produces the following output:

s1=0.5
s2=0.5
s3=0.5
s4=0.0668072013
s5=0.0668072013
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the cumulative density function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the cumulative density function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

LOGCDF – GAUSSIAN

Returns the value of the natural logarithm of the cumulative density function at a given point for the
Gaussian distribution with the specified mean and standard deviation. This function is an alias of
LOGCDF – NORMAL.

LOGCDF ("GAUSSIAN" , x ,
mu , sigma

)

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the cumulative density function for the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Reference for language elements
Version 4.1

956

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the cumulative density function of the Gaussian
distribution is calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = LOGCDF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = LOGCDF("GAUSSIAN", 0);
 PUT s3=;
 s4 = LOGCDF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = LOGCDF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = LOGCDF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGCDF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = LOGCDF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

Reference for language elements
Version 4.1

957

This produces the following output:

s1=-0.693147181
s2=-0.693147181
s3=-0.693147181
s4=-2.705944401
s5=-2.705944401
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the natural logarithm of the cumulative
density function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below
the mean, so both examples return the same value for the natural logarithm of the cumulative density
function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

SDF – GAUSSIAN

Returns the value of the survival function at a given point for the Gaussian distribution with the specified
mean and standard deviation. This function is an alias of SDF – NORMAL.

SDF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the survival function for
the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

Reference for language elements
Version 4.1

958

 =

Return type: Numeric

The return value is between 0 and 1 inclusive.

x

Type: Numeric

The point at which to calculate the value of the survival function.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

959

Example
In this example, the value of the survival function of the Gaussian distribution is calculated for various
values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = SDF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = SDF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = SDF("GAUSSIAN", 0);
 PUT s3=;
 s4 = SDF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = SDF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = SDF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = SDF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = SDF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=0.5
s2=0.5
s3=0.5
s4=0.9331927987
s5=0.9331927987
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean 0
and standard deviation 1. So they all return the same value for the survival function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the survival function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

960

LOGSDF – GAUSSIAN

Returns the value of the natural logarithm of the survival function at a given point for the Gaussian
distribution with the specified mean and standard deviation. This function is an alias of LOGSDF –
NORMAL.

LOGSDF ("GAUSSIAN" , x ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the survival function for the standard Gaussian distribution at point x.

This function is defined for .

The calculated value for the Gaussian distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival function.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

961

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the survival function of the Gaussian distribution is
calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGSDF("GAUSSIAN", 0, 0, 1);
 PUT s1=;
 s2 = LOGSDF("GAUSSIAN", 0, 0);
 PUT s2=;
 s3 = LOGSDF("GAUSSIAN", 0);
 PUT s3=;
 s4 = LOGSDF("GAUSSIAN", -3, 0, 2);
 PUT s4=;
 s5 = LOGSDF("GAUSSIAN", 7, 10, 2);
 PUT s5=;
 s6 = LOGSDF("GAUSSIAN", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGSDF("GAUSSIAN", -3, , 2);
 PUT s7=;
 s8 = LOGSDF("GAUSSIAN", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=-0.693147181
s2=-0.693147181
s3=-0.693147181
s4=-0.069143456
s5=-0.069143456
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Gaussian distribution with mean
0 and standard deviation 1. So they all return the same value for the natural logarithm of the survival
function.

The fourth example specifies a point, -3, in a Gaussian distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Gaussian distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the natural logarithm of the survival function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

962

QUANTILE – GAUSSIAN

Returns the value of the quantile function at a given point for the Gaussian distribution with the specified
mean and standard deviation. This function is an alias of QUANTILE – NORMAL and is similar to
PROBIT.

QUANTILE ("GAUSSIAN" , q ,
mu , sigma

)

The Gaussian distribution is also known as the Normal distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the quantile function for
the standard Gaussian distribution at q.

This function is defined for

The calculated value, x, for the Gaussian distribution with mean μ and standard deviation σ, is:

 =

where , inf{x} (infinium) is the greatest lower bound of x, and CDF (x,μ,σ) is the cumulative
density function of the Gaussian distribution with mean μ and standard deviation σ.

The calculated value, x, for the standard Gaussian distribution, where μ = 0 and σ = 1, is

 =

where , inf{x} is the greatest lower bound of x, and CDF (x) is the cumulative density function of
the standard Gaussian distribution.

Return type: Numeric

q

Type: Numeric

Restriction:

The probability value for which to calculate the quantile.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 0

Reference for language elements
Version 4.1

963

The mean of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the distribution.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the quantile function of the Gaussian distribution is calculated for various
values of q, mu and sigma. The results are written to the log.

As this function is the inverse of the cumulative density function, this example demonstrates the
relationship by using the same points in the distribution as the cumulative density function example,
CDF – GAUSSIAN (page 953). Therefore the q values in this example are the returned values in
the cumulative density function example, and the returned values in this example are the x values in the
cumulative density function example (subject to rounding errors).

DATA _NULL_;
 s1 = QUANTILE("GAUSSIAN", 0.5, 0, 1);
 PUT s1=;
 s2 = QUANTILE("GAUSSIAN", 0.5, 0);
 PUT s2=;
 s3 = QUANTILE("GAUSSIAN", 0.5);
 PUT s3=;
 s4 = QUANTILE("GAUSSIAN", 0.0668072013, 0, 2);
 PUT s4=;
 s5 = QUANTILE("GAUSSIAN", 0.0668072013, 10, 2);
 PUT s5=;
 s6 = QUANTILE("GAUSSIAN", 0.0668072013, 0, 2, 3);
 PUT s6=;
 s7 = QUANTILE("GAUSSIAN", 0.0668072013, , 2);
 PUT s7=;
 s8 = QUANTILE("GAUSSIAN", 0.0668072013, 0, 0);
 PUT s8=;
 s9 = QUANTILE("GAUSSIAN", 1.0, 0, 1);
 PUT s9=;
RUN;

Reference for language elements
Version 4.1

964

This produces the following output:

s1=0
s2=0
s3=0
s4=-3
s5=7.0000000005
s6=.
s7=.
s8=.
s9=.

The first three examples all specify the same cumulative density value, 0.5, for a standard Gaussian
distribution with mean 0 and standard deviation 1. So they all return the same value for the quantile
function. In this case, the value is the point in the distribution where the probability is 0.5 that a random
member of the distribution falls below this point. For the standard Gaussian distribution, this value is the
mean, 0.

The fourth example specifies a cumulative density value of 0.0668072013, a mean of 0 and a standard
deviation of 2. The fifth example specifies the same cumulative density value and standard deviation,
but has a mean of 10. For a Gaussian distribution with a standard deviation of 2, 0.0668072013 is
the value of the cumulative density function at a point 1.5 standard deviations below the mean. So
both these examples return the point that is 1.5 standard deviations below the mean, although the
actual values returned are different because the examples have different means. There is also a small
rounding error in the last digit of the fifth example.

The last four examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, the eighth example specifies an invalid value for sigma and the ninth example specifies an invalid
value for q, the cumulative density.

DEVIANCE – GAUSSIAN

Returns the deviance of the Gaussian distribution at a specified point, based on the distribution mean.
This function is an alias of DEVIANCE – NORMAL.

DEVIANCE ("GAUSSIAN" , x , mu)

Keyword GAUSSIAN is an alias of NORMAL, see DEVIANCE – NORMAL (page 1202).

Calculates the deviance, or goodness of fit, for the generalised linear model of the Gaussian distribution
at point x based on the distribution mean μ (mu).

Return type: Numeric

If the wrong number of arguments are supplied, a missing value is returned.

Reference for language elements
Version 4.1

965

x

Type: Numeric

The point at which to calculate the deviance.

If the argument contains a missing value, a missing value is returned.

mu

Type: Numeric

The distribution mean.

If the argument contains a missing value, a missing value is returned.

Basic examples
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 s1 = DEVIANCE("GAUSSIAN",-12.3,0);
 PUT s1=;
 s2 = DEVIANCE("GAUSSIAN",1.1,1.1);
 PUT s2=;
RUN;

This produces the following output:

s1=151.29
s2=0

The second example demonstrates that when the point of measurement equals the distribution mean,
the deviance of the Gaussian distribution is zero.

Examples – proportional scaling
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("GAUSSIAN", 0.01, 0.07);
 PUT g1=;
 g2 = DEVIANCE("GAUSSIAN", 0.1 , 0.7);
 PUT g2=;
 g3 = DEVIANCE("GAUSSIAN", 1 , 7);
 PUT g3=;
RUN;

This produces the following output:

g1=0.0036
g2=0.36
g3=36

Due to the nature of the Gaussian distribution, when both the point of measurement x and the
distribution mean μ are scaled with the same factor, the deviance is scaled with the square of that
factor.

Reference for language elements
Version 4.1

966

Geometric distribution
Functions for the Geometric distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – GEOMETRIC ...967

Returns the probability density of the Geometric distribution for a specified number of failures,
based on the probability of success in Bernoulli trials. This function is an alias of PMF –
GEOMETRIC.

PMF – GEOMETRIC .. 968

Returns the probability mass of the Geometric distribution for a specified number of failures,
based on the probability of success in Bernoulli trials. This function is an alias of PDF –
GEOMETRIC.

LOGPDF – GEOMETRIC ... 970

Returns the natural logarithm of the probability density of the Geometric distribution for a
specified number of failures, based on the probability of success in Bernoulli trials. This function
is an alias of LOGPMF – GEOMETRIC.

LOGPMF – GEOMETRIC ...971

Returns the natural logarithm of the probability mass of the Geometric distribution for a specified
number of failures, based on the probability of success in Bernoulli trials. This function is an alias
of LOGPDF – GEOMETRIC.

CDF – GEOMETRIC ...973

Returns the cumulative density of the Geometric distribution for a specified number of failures,
based on the probability of success in Bernoulli trials.

LOGCDF – GEOMETRIC ... 974

Returns the natural logarithm of the cumulative density of the Geometric distribution for a
specified number of failures, based on the probability of success in Bernoulli trials.

Reference for language elements
Version 4.1

967

SDF – GEOMETRIC ...976

Returns the survival of the Geometric distribution for a specified number of failures, based on the
probability of success in Bernoulli trials.

LOGSDF – GEOMETRIC ... 977

Returns the natural logarithm of the survival of the Geometric distribution for a specified number
of failures, based on the probability of success in Bernoulli trials.

QUANTILE – GEOMETRIC .. 979

Returns the quantile of the Geometric distribution for a specified probability value, based on the
probability of success in Bernoulli trials.

RAND – GEOMETRIC ..980
Returns a random number from the Geometric distribution based on the probability.

PDF – GEOMETRIC

Returns the probability density of the Geometric distribution for a specified number of failures, based on
the probability of success in Bernoulli trials. This function is an alias of PMF – GEOMETRIC.

PDF ("GEOMETRIC" , r , p)

Calculates the probability density function for the Geometric distribution for the number of failures r
based on the probability of success p in Bernoulli trials.

 =

Return type: Numeric

The return value is between 0 and 1, inclusive.

r

Type: Numeric

The number of failures until the first success.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

Reference for language elements
Version 4.1

968

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability density of the Geometric distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PDF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = PDF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = PDF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = PDF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = PDF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = PDF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=0.0189
s2=0
s3=0
s4=0
s5=.
s6=.

The first four examples show the output when the arguments lie within the domain bounds. The last two
examples show the output when one of the arguments falls outside the domain bounds.

PMF – GEOMETRIC

Returns the probability mass of the Geometric distribution for a specified number of failures, based on
the probability of success in Bernoulli trials. This function is an alias of PDF – GEOMETRIC.

PMF ("GEOMETRIC" , r , p)

Calculates the probability mass function for the Geometric distribution for the number of failures r based
on the probability of success p in Bernoulli trials.

 =

Reference for language elements
Version 4.1

969

Return type: Numeric

The return value is between 0 and 1, inclusive.

r

Type: Numeric

The number of failures until the first success.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability mass of the Geometric distribution is returned. The results are written
to the log.

DATA _NULL_;

 s1 = PMF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = PMF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = PMF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = PMF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = PMF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = PMF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=0.0189
s2=0
s3=0
s4=0
s5=.
s6=.

The first four examples show the output when the arguments lie within the domain bounds. The last two
examples show the output when one of the arguments falls outside the domain bounds.

Reference for language elements
Version 4.1

970

LOGPDF – GEOMETRIC

Returns the natural logarithm of the probability density of the Geometric distribution for a specified
number of failures, based on the probability of success in Bernoulli trials. This function is an alias of
LOGPMF – GEOMETRIC.

LOGPDF ("GEOMETRIC" , r , p)

Calculates the natural logarithm of the probability density function for the Geometric distribution for the
number of failures r based on the probability of success p in Bernoulli trials.

 =

Return type: Numeric

The return value is negative or zero.

r

Type: Numeric

The number of failures until the first success.

Restriction: r ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 < p < 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

971

Examples
In these examples, the natural logarithm of the probability density of the Geometric distribution is
returned. The results are written to the log.

DATA _NULL_;

 s1 = LOGPDF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = LOGPDF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = LOGPDF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = LOGPDF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = LOGPDF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = LOGPDF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=-3.968593357
s2=.
s3=.
s4=.
s5=.
s6=.

The first example shows the output when the arguments lie within the domain bounds. The remaining
examples show the output when one of the arguments falls outside the domain bounds. The argument
values in these examples are the same as in the examples for function PDF – GEOMETRIC.

LOGPMF – GEOMETRIC

Returns the natural logarithm of the probability mass of the Geometric distribution for a specified
number of failures, based on the probability of success in Bernoulli trials. This function is an alias of
LOGPDF – GEOMETRIC.

LOGPMF ("GEOMETRIC" , r , p)

Calculates the natural logarithm of the probability mass function for the Geometric distribution for the
number of failures r based on the probability of success p in Bernoulli trials.

 =

Return type: Numeric

The return value is negative or zero.

Reference for language elements
Version 4.1

972

r

Type: Numeric

The number of failures until the first success.

Restriction: r ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 < p < 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Geometric distribution is
returned. The results are written to the log.

DATA _NULL_;

 s1 = LOGPMF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = LOGPMF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = LOGPMF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = LOGPMF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = LOGPMF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = LOGPMF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=-3.968593357
s2=.
s3=.
s4=.
s5=.
s6=.

The first example shows the output when the arguments lie within the domain bounds. The remaining
examples show the output when one of the arguments falls outside the domain bounds. The argument
values in these examples are the same as in the examples for function PMF – GEOMETRIC.

Reference for language elements
Version 4.1

973

CDF – GEOMETRIC

Returns the cumulative density of the Geometric distribution for a specified number of failures, based
on the probability of success in Bernoulli trials.

CDF ("GEOMETRIC" , r , p)

Calculates the cumulative density function for the Geometric distribution for the number of failures r
based on the probability of success p in Bernoulli trials.

 =

Return type: Numeric

The return value is less than or equal to one.

r

Type: Numeric

The number of failures until the first success.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

974

Examples
In these examples, the cumulative density of the Geometric distribution is returned. The results are
written to the log.

DATA _NULL_;

 s1 = CDF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = CDF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = CDF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = CDF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = CDF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = CDF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=0.9919
s2=-2.333333333
s3=0
s4=1
s5=.
s6=.

The first four examples show the output when the arguments lie within the domain bounds. The last two
examples show the output when one of the arguments falls outside the domain bounds.

LOGCDF – GEOMETRIC

Returns the natural logarithm of the cumulative density of the Geometric distribution for a specified
number of failures, based on the probability of success in Bernoulli trials.

LOGCDF ("GEOMETRIC" , r , p)

Calculates the natural logarithm of the cumulative density function for the Geometric distribution for the
number of failures r based on the probability of success p in Bernoulli trials.

 =

Return type: Numeric

The return value is negative or zero.

Reference for language elements
Version 4.1

975

r

Type: Numeric

The number of failures until the first success.

Restriction: r ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p < 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Geometric distribution is
returned. The results are written to the log.

DATA _NULL_;

 s1 = LOGCDF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = LOGCDF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = LOGCDF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = LOGCDF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = LOGCDF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = LOGCDF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.008132983
s2=.
s3=.
s4=0
s5=.
s6=.

The first and fourth examples show the output when the arguments lie within the domain bounds. The
remaining examples show the output when one of the arguments falls outside the domain bounds. The
argument values in these examples are the same as in the examples for function CDF – GEOMETRIC.

Reference for language elements
Version 4.1

976

SDF – GEOMETRIC

Returns the survival of the Geometric distribution for a specified number of failures, based on the
probability of success in Bernoulli trials.

SDF ("GEOMETRIC" , r , p)

Calculates the survival, or the complement to the cumulative density function, for the Geometric
distribution for the number of failures r based on the probability of success p in Bernoulli trials.

 =

Return type: Numeric

The return value is positive or zero.

r

Type: Numeric

The number of failures until the first success.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

977

Examples
In these examples, the survival of the Geometric distribution is returned. The results are written to the
log.

DATA _NULL_;

 s1 = SDF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = SDF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = SDF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = SDF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = SDF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = SDF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=0.0081
s2=3.333333333
s3=1
s4=0
s5=.
s6=.

The first four examples show the output when the arguments lie within the domain bounds. The last two
examples show the output when one of the arguments falls outside the domain bounds.

LOGSDF – GEOMETRIC

Returns the natural logarithm of the survival of the Geometric distribution for a specified number of
failures, based on the probability of success in Bernoulli trials.

LOGSDF ("GEOMETRIC" , r , p)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Geometric distribution for the number of failures r based on the probability of success p in
Bernoulli trials.

 =

Return type: Numeric

Reference for language elements
Version 4.1

978

r

Type: Numeric

The number of failures until the first success.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 < p ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Geometric distribution is returned. The
results are written to the log.

DATA _NULL_;

 s1 = LOGSDF ("GEOMETRIC",3,0.7);
 PUT s1=;
 s2 = LOGSDF ("GEOMETRIC",-2,0.7);
 PUT s2=;
 s3 = LOGSDF ("GEOMETRIC",3,0);
 PUT s3=;
 s4 = LOGSDF ("GEOMETRIC",3,1);
 PUT s4=;
 s5 = LOGSDF ("GEOMETRIC",0.6,0.7);
 PUT s5=;
 s6 = LOGSDF ("GEOMETRIC",3,2);
 PUT s6=;
RUN;

This produces the following output:

s1=-4.815891217
s2=1.2039728043
s3=0
s4=.
s5=.
s6=.

The first three examples show the output when the arguments lie within the domain bounds. The
remaining examples show the output when one of the arguments falls outside the domain bounds. The
argument values in these examples are the same as in the examples for function SDF – GEOMETRIC.

Reference for language elements
Version 4.1

979

QUANTILE – GEOMETRIC

Returns the quantile of the Geometric distribution for a specified probability value, based on the
probability of success in Bernoulli trials.

QUANTILE ("GEOMETRIC" , q , p)

Calculates the quantile x, or the inverse of the cumulative density function, for the Geometric
distribution for probability value q based on the probability of success p in Bernoulli trials.

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Geometric distribution, see section CDF – GEOMETRIC (page 973).

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 ≤ q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

p

Type: Numeric

The probability of success for each trial.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

980

Examples
In these examples, the quantile of the Geometric distribution is returned. The results are written to the
log.

DATA _NULL_;

 s1 = QUANTILE ("GEOMETRIC",0.973,0.7);
 PUT s1=;
 s2 = QUANTILE ("GEOMETRIC",0.974,0.7);
 PUT s2=;
 s3 = QUANTILE ("GEOMETRIC",0.6,0.7);
 PUT s3=;
 s4 = QUANTILE ("GEOMETRIC",-3,0.7);
 PUT s4=;
RUN;

This produces the following output:

s1=2
s2=3
s3=0
s4=.

The first three examples show the output when the arguments lie within the domain bounds. The last
example show the output when one of the arguments falls outside the domain bounds.

RAND – GEOMETRIC

Returns a random number from the Geometric distribution based on the probability.

RAND ("GEOMETRIC" , probability)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

probability

Type: Numeric

A probability from the distribution.

Reference for language elements
Version 4.1

981

Example
In this example, a random number from the Geometric distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("GEOMETRIC", 0.75);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.0408202604
0.6931654616
2.1977668027
0.3678618118
0.3735144205

Running the DATA step again produces the following output.

The random numbers are:
1.6421995056
1.9395878658
0.7045833721
0.0342775477
0.2960285254

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(11);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("GEOMETRIC", 0.75);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
2.0659785187
0.5051382886
1.0388574894
0.9438183502
0.3738827807

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

982

Gumbel distribution
Functions for the Gumbel distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – GUMBEL ... 983

where

Returns the probability density at a point from a Gumbel distribution, with specified location and
scale parameters. This function is an alias of PMF – GUMBEL.

PMF – GUMBEL ... 985

where

Returns the probability density at a point from a Gumbel distribution, with specified location and
scale parameters. This function is an alias of PDF – GUMBEL.

LOGPDF – GUMBEL ..988
where

Returns the natural logarithm of the probability density at a point from a Gumbel distribution, with
specified location and scale parameters. This function is an alias of LOGPMF – GUMBEL.

LOGPMF – GUMBEL ... 990
where

Returns the natural logarithm of the probability density at a point from a Gumbel distribution, with
specified location and scale parameters. This function is an alias of LOGPDF – GUMBEL.

CDF – GUMBEL ... 993
where

Returns the cumulative density at a point from a Gumbel distribution, with specified location and
scale parameters.

LOGCDF – GUMBEL ..995
where

Returns the natural logarithm of the cumulative density at a point from a Gumbel distribution, with
specified location and scale parameters.

Reference for language elements
Version 4.1

983

SDF – GUMBEL ... 997
where

Returns the survival density at a point from a Gumbel distribution, with specified location and
scale parameters.

LOGSDF – GUMBEL ..1000
where

Returns the natural logarithm of the survival density at a point from a Gumbel distribution, with
specified location and scale parameters.

QUANTILE – GUMBEL ...1002

Returns the quantile of a Gumbel distribution with specified location and scale parameters, for a
specified cumulative density.

RAND – GUMBEL .. 1004
Returns a random number from the Gumbel distribution.

PDF – GUMBEL

Returns the probability density at a point from a Gumbel distribution, with specified location and scale
parameters. This function is an alias of PMF – GUMBEL.

PDF ("GUMBEL" , x ,
mu , beta

)

The probability density function at a point x gives the likelihood that a randomly drawn value from the
distribution is equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The probability density function at a point x of a Gumbel distribution with location parameter μ and scale
parameter β is defined as follows:

 where

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

984

The point at which to calculate the probability density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= PDF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= PDF("GUMBEL", 1, 0);
PUT s2=;
s3= PDF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=0.25464638
s2=0.25464638
s3=0.25464638

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = PDF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=0.0605123465

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a much
lower probability density value at x = 1 than the basic examples.

Reference for language elements
Version 4.1

985

Example – use of location parameter
DATA _NULL_;
s5 = PDF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = PDF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=0.0066926997
s6=0.0066926997

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the same
relative point on the distribution, but with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = PDF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = PDF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

PMF – GUMBEL

Returns the probability density at a point from a Gumbel distribution, with specified location and scale
parameters. This function is an alias of PDF – GUMBEL.

PMF ("GUMBEL" , x ,
mu , beta

)

The probability density function at a point x gives the likelihood that a randomly drawn value from the
distribution is equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

Reference for language elements
Version 4.1

986

The probability density function at a point x of a Gumbel distribution with location parameter μ and scale
parameter β is defined as follows:

 where

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= PMF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= PMF("GUMBEL", 1, 0);
PUT s2=;
s3= PMF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=0.25464638
s2=0.25464638
s3=0.25464638

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same value.

Reference for language elements
Version 4.1

987

Example – use of scale parameter
DATA _NULL_;
s4 = PMF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=0.0605123465

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a much
lower probability density value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = PMF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = PMF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=0.0066926997
s6=0.0066926997

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the same
relative point on the distribution, but with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = PMF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = PMF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

Reference for language elements
Version 4.1

988

LOGPDF – GUMBEL

Returns the natural logarithm of the probability density at a point from a Gumbel distribution, with
specified location and scale parameters. This function is an alias of LOGPMF – GUMBEL.

LOGPDF ("GUMBEL" , x ,
mu , beta

)

The probability density function at a point x gives the likelihood that a randomly drawn value from the
distribution is equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The probability density function at a point x of a Gumbel distribution with location parameter μ and scale
parameter β is defined as follows:

 where

The natural logarithm of this is therefore:

 where

which simplifies to:

 where

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

989

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= LOGPDF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= LOGPDF("GUMBEL", 1, 0);
PUT s2=;
s3= LOGPDF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=-1.367879441
s2=-1.367879441
s3=-1.367879441

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving
to x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same probability
density.

Example – use of scale parameter
DATA _NULL_;
s4 = LOGPDF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=-2.804907861

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
natural logarithm of the probability density value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = LOGPDF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = LOGPDF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=-5.006737947
s6=-5.006737947

Reference for language elements
Version 4.1

990

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the same
relative point on the distribution, but with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = LOGPDF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = LOGPDF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

LOGPMF – GUMBEL

Returns the natural logarithm of the probability density at a point from a Gumbel distribution, with
specified location and scale parameters. This function is an alias of LOGPDF – GUMBEL.

LOGPMF ("GUMBEL" , x ,
mu , beta

)

The probability density at a point x gives the likelihood that a randomly drawn value from the distribution
is equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The probability density function at a point x of a Gumbel distribution with location parameter μ and scale
parameter β is defined as follows:

 where

The natural logarithm of this is therefore:

 where

Reference for language elements
Version 4.1

991

which simplifies to:

 where

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= LOGPMF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= LOGPMF("GUMBEL", 1, 0);
PUT s2=;
s3= LOGPMF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=-1.367879441
s2=-1.367879441
s3=-1.367879441

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving
to x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same natural
logarithm of the probability density.

Reference for language elements
Version 4.1

992

Example – use of scale parameter
DATA _NULL_;
s4 = LOGPMF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=-2.804907861

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
natural logarithm of the probability density value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = LOGPMF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = LOGPMF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=-5.006737947
s6=-5.006737947

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the same
relative point on the distribution, but with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = LOGPMF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = LOGPMF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

Reference for language elements
Version 4.1

993

CDF – GUMBEL

Returns the cumulative density at a point from a Gumbel distribution, with specified location and scale
parameters.

CDF ("GUMBEL" , x ,
mu , beta

)

The cumulative density function at a point x gives the likelihood that a randomly drawn value from the
distribution is less than or equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The cumulative density function at a point x of a Gumbel distribution with location parameter μ and
scale parameter β is defined as follows:

 where

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

994

Basic example
DATA _NULL_;
s1= CDF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= CDF("GUMBEL", 1, 0);
PUT s2=;
s3= CDF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=0.6922006276
s2=0.6922006276
s3=0.6922006276

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving
to x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same cumulative
density.

Example – use of scale parameter
DATA _NULL_;
s4 = CDF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=0.4289213437

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
cumulative density value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = CDF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = CDF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=0.9932847021
s6=0.9932847021

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts x
back by the same amount, to x = 2. Both produce the same result, because they evaluate the CDF from
the same point of the distribution, just with the distribution located in different places.

Reference for language elements
Version 4.1

995

Example – invalid syntax
DATA _NULL_;
s7 = CDF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = CDF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

LOGCDF – GUMBEL

Returns the natural logarithm of the cumulative density at a point from a Gumbel distribution, with
specified location and scale parameters.

LOGCDF ("GUMBEL" , x ,
mu , beta

)

The cumulative density function at a point x gives the likelihood that a randomly drawn value from the
distribution is less than or equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The cumulative density function at a point x of a Gumbel distribution with location parameter μ and
scale parameter β is defined as follows:

 where

The natural logarithm of this is therefore:

 where

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

996

The point at which to calculate the natural logarithm of the cumulative density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= LOGCDF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= LOGCDF("GUMBEL", 1, 0);
PUT s2=;
s3= LOGCDF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=-0.367879441
s2=-0.367879441
s3=-0.367879441

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = LOGCDF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=-0.846481725

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
natural logarithm of cumulative density at x = 1 than the basic examples.

Reference for language elements
Version 4.1

997

Example – use of location parameter
DATA _NULL_;
s5 = LOGCDF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = LOGCDF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=-0.006737947
s6=-0.006737947

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts x
back by the same amount, to x = 2. Both produce the same result, because they evaluate the CDF from
the same point of the distribution, just with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = LOGCDF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = LOGCDF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

SDF – GUMBEL

Returns the survival density at a point from a Gumbel distribution, with specified location and scale
parameters.

SDF ("GUMBEL" , x ,
mu , beta

)

The survival density function at a point x gives the likelihood that a randomly drawn value from the
distribution is greater than or equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

Reference for language elements
Version 4.1

998

The survival density function at a point x of a Gumbel distribution with location parameter μ and scale
parameter β is defined as follows:

 where

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= SDF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= SDF("GUMBEL", 1, 0);
PUT s2=;
s3= SDF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=0.3077993724
s2=0.3077993724
s3=0.3077993724

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving
to x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same survival
density.

Reference for language elements
Version 4.1

999

Example – use of scale parameter
DATA _NULL_;
s4 = SDF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=0.5710786563

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a higher
survival density at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = SDF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = SDF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=0.0067152979
s6=0.0067152979

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts x
back by the same amount, to x = 2. Both produce the same result, because they evaluate the SDF from
the same point of the distribution, just with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = SDF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = SDF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

Reference for language elements
Version 4.1

1000

LOGSDF – GUMBEL

Returns the natural logarithm of the survival density at a point from a Gumbel distribution, with specified
location and scale parameters.

LOGSDF ("GUMBEL" , x ,
mu , beta

)

The survival density function at a point x gives the likelihood that a randomly drawn value from the
distribution is greater than or equal to x.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, with μ = 0 and β = 1.
It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The survival density function at a point x of a Gumbel distribution with location parameter μ and scale
parameter β is defined as follows:

 where

The natural logarithm of this is therefore:

 where

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival density.

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1001

Basic example
DATA _NULL_;
s1= LOGSDF("GUMBEL", 1, 0, 1);
PUT s1=;
s2= LOGSDF("GUMBEL", 1, 0);
PUT s2=;
s3= LOGSDF("GUMBEL", 1);
PUT s3=;
RUN;

This produces the following output:

s1=-1.178307096
s2=-1.178307096
s3=-1.178307096

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, λ=1 and θ = 0 (a 'standard' Gumbel distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = LOGSDF("GUMBEL", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=-0.560228327

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a higher
value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = LOGSDF("GUMBEL", 5, 0, 1);
PUT s5=;
s6 = LOGSDF("GUMBEL", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=-5.003367082
s6=-5.003367082

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with λ = 1 and θ = 0; whereas the second shifts the distribution back using θ = -3, but also shifts x
back by the same amount, to x = 2. Both produce the same result, because they evaluate the SDF from
the same point of the distribution, just with the distribution located in different places.

Reference for language elements
Version 4.1

1002

Example – invalid syntax
DATA _NULL_;
s7 = LOGSDF("GUMBEL", 1, 1, 0, 0);
PUT s7=;
s8 = LOGSDF("GUMBEL", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

QUANTILE – GUMBEL

Returns the quantile of a Gumbel distribution with specified location and scale parameters, for a
specified cumulative density.

QUANTILE ("GUMBEL" , q ,
mu , beta

)

The quantile for a cumulative density q gives a threshold value of x, below which randomly drawn
values from the defined Gumbel distribution should occur q times.

You can optionally specify the distribution’s location parameter μ (mu) and scale parameter β (beta). If
these arguments are not specified, a standard Gumbel distribution is assumed, which has μ = 0 and β =
1. It is possible to specify μ (mu) without β (beta) (in which case, β is set to 1), but not β (beta) without μ
(mu).

The quantile function for a Gumbel distribution with location parameter μ and scale parameter β is
defined as the inverse of the cumulative density function:

Return type: Numeric

q

Type: Numeric

The cumulative probability density value for which to calculate the quantile.

Restriction: 0 < q < 1

Reference for language elements
Version 4.1

1003

mu
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution on the x axis.

beta
Optional argument

Type: Numeric

The scale parameter. If used, mu must also be specified.

Restriction: beta ≥ 0

Basic example
DATA _NULL_;
S1= QUANTILE("GUMBEL", 0.69220062755, 0, 1);
PUT S1=;
S2= QUANTILE("GUMBEL", 0.69220062755, 0);
PUT S2=;
S3= QUANTILE("GUMBEL", 0.69220062755);
PUT S3=;
RUN;

This produces the following output:

S1=1
S2=1
S3=1

These first three examples are all equivalent and demonstrate the flexible syntax, with each specifying
q = 0.69220062755, and in every case resolving to θ = 0, and λ = 1; therefore returning the same value:
x = 1.

Example – use of scale parameter
DATA _NULL_;
S4 = QUANTILE("GUMBEL", 0.428921343695, 0, 6);
PUT S4=;
RUN;

This produces the following output:

S4=1

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This means that a
smaller cumulative density is required to return an x value of 1 compared to the basic examples.

Reference for language elements
Version 4.1

1004

Example – use of location parameter
DATA _NULL_;
S5 = QUANTILE("GUMBEL", 0.993284702068, 0, 1);
PUT S5=;
S6 = QUANTILE("GUMBEL", 0.993284702068, -3, 1);
PUT S6=;
RUN;

This produces the following output:

S5=5
S6=2

These two examples demonstrate the location parameter. The same cumulative density is input, but
with the Gumbel distribution at two different locations, thus producing different values of x.

Example – invalid syntax
DATA _NULL_;
S7 = QUANTILE("GUMBEL", 0.993284702068, 1, 0, 1, 0);
PUT S7=;
S8 = QUANTILE("GUMBEL", 0.993284702068, , 1, 0);
PUT S8=;
RUN;

This produces the following output:

S7=.
S8=.

Neither of these examples are valid; the first has too many arguments, and the second specifies λ
without θ.

RAND – GUMBEL

Returns a random number from the Gumbel distribution.

RAND ("GUMBEL")

The distribution is parameterised using a location of 0 and a scale of 1.

This function does not take any variable arguments.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

Reference for language elements
Version 4.1

1005

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

Example
In this example, a random number from the Gumbel distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("GUMBEL");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-0.851020115
-0.367363323
-1.019768582
1.3707779555
0.6873485682

Running the DATA step again produces the following output.

The random numbers are:
-0.779538288
-1.013083359
-1.249802502
1.5490383986
-0.116005925

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(18);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("GUMBEL");
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1006

This produces the following output:

The random numbers are:
2.1788597906
1.1880261682
-1.049847839
-0.185175736
0.0890908226

Running the DATA step again produces the same output.

Hypergeometric distribution
Functions for the Hypergeometric distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – HYPERGEOMETRIC ...1007
Returns the probability density of the Hypergeometric distribution. This function is an alias of
PMF – HYPERGEOMETRIC.

PMF – HYPERGEOMETRIC .. 1008
Returns the probability mass of the Hypergeometric distribution. This function is an alias of PDF
– HYPERGEOMETRIC.

LOGPDF – HYPERGEOMETRIC ... 1008
Returns the natural logarithm of the probability density of the Hypergeometric distribution. This
function is an alias of LOGPMF – HYPERGEOMETRIC.

LOGPMF – HYPERGEOMETRIC ...1009
Returns the natural logarithm of the probability mass of the Hypergeometric distribution. This
function is an alias of LOGPDF – HYPERGEOMETRIC.

CDF – HYPERGEOMETRIC .. 1010
Returns the cumulative density of the Hypergeometric distribution.

PROBHYPR .. 1011

LOGCDF – HYPERGEOMETRIC ...1011
Returns the natural logarithm of the cumulative density of the Hypergeometric distribution.

SDF – HYPERGEOMETRIC ...1012
Returns the survival of the Hypergeometric distribution.

Reference for language elements
Version 4.1

1007

LOGSDF – HYPERGEOMETRIC ... 1013
Returns the natural logarithm of the survival of the Hypergeometric distribution.

QUANTILE – HYPERGEOMETRIC ..1014
Returns the quantile of the Hypergeometric distribution.

RAND – HYPER ... 1014
Returns a random number from the Hypergeometric distribution based on the population size,
number of draws, and number of successes.

PDF – HYPERGEOMETRIC

Returns the probability density of the Hypergeometric distribution. This function is an alias of PMF –
HYPERGEOMETRIC.

PDF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1008

PMF – HYPERGEOMETRIC

Returns the probability mass of the Hypergeometric distribution. This function is an alias of PDF –
HYPERGEOMETRIC.

PMF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

LOGPDF – HYPERGEOMETRIC

Returns the natural logarithm of the probability density of the Hypergeometric distribution. This
function is an alias of LOGPMF – HYPERGEOMETRIC.

LOGPDF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

Reference for language elements
Version 4.1

1009

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

LOGPMF – HYPERGEOMETRIC

Returns the natural logarithm of the probability mass of the Hypergeometric distribution. This function
is an alias of LOGPDF – HYPERGEOMETRIC.

LOGPMF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

p

Type: Numeric

Reference for language elements
Version 4.1

1010

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

CDF – HYPERGEOMETRIC

Returns the cumulative density of the Hypergeometric distribution.

CDF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1011

PROBHYPR

PROBHYPR (Np , m , n , x
, r

)

Return type: Numeric

Np

Type: Numeric

m

Type: Numeric

n

Type: Numeric

x

Type: Numeric

r
Optional argument

Type: Numeric

LOGCDF – HYPERGEOMETRIC

Returns the natural logarithm of the cumulative density of the Hypergeometric distribution.

LOGCDF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

`

x

Type: Numeric

Reference for language elements
Version 4.1

1012

The point at which to calculate the natural logarithm of the cumulative density.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

SDF – HYPERGEOMETRIC

Returns the survival of the Hypergeometric distribution.

SDF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

Reference for language elements
Version 4.1

1013

odds
Optional argument

Type: Numeric

LOGSDF – HYPERGEOMETRIC

Returns the natural logarithm of the survival of the Hypergeometric distribution.

LOGSDF ("HYPERGEOMETRIC" , x , p , k , n

, odds

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1014

QUANTILE – HYPERGEOMETRIC

Returns the quantile of the Hypergeometric distribution.

QUANTILE ("HYPERGEOMETRIC" , q , p , k , n

, odds

)

Return type: Numeric

q

Type: Numeric

p

Type: Numeric

k

Type: Numeric

n

Type: Numeric

odds
Optional argument

Type: Numeric

RAND – HYPER

Returns a random number from the Hypergeometric distribution based on the population size, number
of draws, and number of successes.

RAND ("HYPER" , populat ion- size , number- of- successful- items ,

number- of- draws)

Reference for language elements
Version 4.1

1015

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

population-size

Type: Numeric

The size of the population from which draw are made.

number-of-successful-items

Type: Numeric

The number of draws that meet the criterion for success.

number-of-draws

Type: Numeric

The total number of draws from the population.

Example
In this example, a random number from the Hypergeometric distribution is returned on each iteration of
the loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("HYPER", 1000, 450, 600);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
282
272
285
273
271

Reference for language elements
Version 4.1

1016

Running the DATA step again produces the following output.

The random numbers are:
258
266
277
277
274

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(18);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("HYPER", 1000, 450, 600);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
264
279
283
271
270

Running the DATA step again produces the same output.

Inverse Gaussian distribution
Functions for the Inverse Gaussian distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – IGAUSS ... 1018

Reference for language elements
Version 4.1

1017

Returns the value of the probability density function at a specified point for the Inverse Gaussian
distribution with the specified shape and mean. This function is an alias of PDF – IGAUSS, PDF
– WALD and PMF – WALD.

PMF – IGAUSS ...1020

Returns the value of the probability mass function at a specified point for the Inverse Gaussian
distribution with the specified shape and mean. This function is an alias of PDF – IGAUSS, PDF
– WALD and PMF – WALD.

LOGPDF – IGAUSS ... 1023

Returns the value of the natural logarithm of the probability density function at a specified point
for the Inverse Gaussian distribution with the specified shape and mean. This function is an alias
of LOGPMF – IGAUSS, LOGPDF – WALD and LOGPMF – WALD.

LOGPMF – IGAUSS ... 1025

Returns the value of the natural logarithm of the probability mass function at a specified point for
the Inverse Gaussian distribution with the specified shape and mean. This function is an alias of
LOGPDF – IGAUSS, LOGPDF – WALD and LOGPMF – WALD.

CDF – IGAUSS ...1028

Returns the value of the cumulative density function at a specified point for the Inverse Gaussian
distribution with the specified shape and mean. This function is an alias of CDF – WALD.

LOGCDF – IGAUSS ... 1030

Returns the value of the natural logarithm of the cumulative density function at a specified point
for the Inverse Gaussian distribution with the specified shape and mean. This function is an alias
of LOGCDF – WALD.

SDF – IGAUSS ... 1033

Returns the value of the survival function at a specified point for the Inverse Gaussian distribution
with the specified shape and mean. This function is an alias of SDF – WALD.

Reference for language elements
Version 4.1

1018

LOGSDF – IGAUSS ... 1035

Returns the value of the natural logarithm of the survival function at a specified point for the
Inverse Gaussian distribution with the specified shape and mean. This function is an alias of
LOGSDF – WALD.

QUANTILE – IGAUSS .. 1037

Returns the value of the quantile function at a specified point for the Inverse Gaussian distribution
with the specified shape and mean. This function is an alias of QUANTILE – WALD.

DEVIANCE – IGAUSS ..1040

Returns the deviance of the Inverse Gaussian distribution at a specified point, based on the
distribution mean. This function is an alias of DEVIANCE – WALD.

RAND – INVERSE GAUSSIAN .. 1042
Returns a random number from the Inverse Gaussian distribution based on the mean and
shape.

PDF – IGAUSS

Returns the value of the probability density function at a specified point for the Inverse Gaussian
distribution with the specified shape and mean. This function is an alias of PDF – IGAUSS, PDF –
WALD and PMF – WALD.

PDF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point x is

 =

Reference for language elements
Version 4.1

1019

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, PDF – IGAUSS is called for various Inverse Gaussian distributions. The results are
written to the log.

DATA _NULL_;

 s1 = PDF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = PDF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = PDF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = PDF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

 s5 = PDF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

Reference for language elements
Version 4.1

1020

This produces the following output:

s1=0.6429310692
s2=0.0562223942
s3=0.9678828981
s4=0.0144476475
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Argument errors
In this example, PDF – IGAUSS is called with various combinations of invalid arguments. The results
are written to the log.

DATA _NULL_;

 s1 = PDF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = PDF("IGAUSS", 0.5);
 PUT s2=;

 s3 = PDF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = PDF("IGAUSS",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

PMF – IGAUSS

Returns the value of the probability mass function at a specified point for the Inverse Gaussian
distribution with the specified shape and mean. This function is an alias of PDF – IGAUSS, PDF –
WALD and PMF – WALD.

PMF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

Reference for language elements
Version 4.1

1021

This function is defined for

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1022

Basic example
In this example, PMF – IGAUSS is called for various Inverse Gaussian distributions. The results are
written to the log.

DATA _NULL_;

 s1 = PMF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = PMF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = PMF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = PMF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

 s5 = PMF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=0.6429310692
s2=0.0562223942
s3=0.9678828981
s4=0.0144476475
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Argument errors
In this example, PMF – IGAUSS is called with various combinations of invalid arguments. The results
are written to the log.

DATA _NULL_;

 s1 = PMF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = PMF("IGAUSS", 0.5);
 PUT s2=;

 s3 = PMF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = PMF("IGAUSS",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

Reference for language elements
Version 4.1

1023

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

LOGPDF – IGAUSS

Returns the value of the natural logarithm of the probability density function at a specified point for the
Inverse Gaussian distribution with the specified shape and mean. This function is an alias of LOGPMF
– IGAUSS, LOGPDF – WALD and LOGPMF – WALD.

LOGPDF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for:

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

Restriction: x > 0

The point at which to calculate the natural logarithm of the probability density.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Reference for language elements
Version 4.1

1024

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGPDF – IGAUSS is called for various Inverse Gaussian distributions. The results
are written to the log.

DATA _NULL_;

 s1 = LOGPDF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGPDF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGPDF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGPDF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

RUN;

This produces the following output:

s1=-0.441717762
s2=-2.878440129
s3=-0.032644172
s4=-4.237223681

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1.

Reference for language elements
Version 4.1

1025

Argument errors
In this example, LOGPDF – IGAUSS is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGPDF("IGAUSS", 0.5);
 PUT s2=;

 s3 = LOGPDF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGPDF("IGAUSS",0.5, 1, 0);
 PUT s4=;

 s5 = LOGPDF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=.
s2=.
s3=.
s4=.
s5=M

The first four examples generate a message in the log, and return a missing value. The first example
has too many arguments. The second example has too few arguments. The third example specifies an
invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth example generates a message in the log and returns MISSING_M, the missing value
corresponding to . This example specifies an invalid value for x, which results in an attempt to
calculate the natural logarithm of 0 (zero).

LOGPMF – IGAUSS

Returns the value of the natural logarithm of the probability mass function at a specified point for the
Inverse Gaussian distribution with the specified shape and mean. This function is an alias of LOGPDF
– IGAUSS, LOGPDF – WALD and LOGPMF – WALD.

LOGPMF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

Reference for language elements
Version 4.1

1026

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for:

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

Restriction: x > 0

The point at which to calculate the natural logarithm of the probability mass.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1027

Basic example
In this example, LOGPMF – IGAUSS is called for various Inverse Gaussian distributions. The results
are written to the log.

DATA _NULL_;

 s1 = LOGPMF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGPMF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGPMF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGPMF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

RUN;

This produces the following output:

s1=-0.441717762
s2=-2.878440129
s3=-0.032644172
s4=-4.237223681

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1.

Argument errors
In this example, LOGPMF – IGAUSS is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGPMF("IGAUSS", 0.5);
 PUT s2=;

 s3 = LOGPMF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGPMF("IGAUSS",0.5, 1, 0);
 PUT s4=;

 s5 = LOGPMF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

Reference for language elements
Version 4.1

1028

This produces the following output:

s1=.
s2=.
s3=.
s4=.
s5=M

The first four examples generate a message in the log, and return a missing value. The first example
has too many arguments. The second example has too few arguments. The third example specifies an
invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth example generates a message in the log and returns MISSING_M, the missing value
corresponding to . This example specifies an invalid value for x, which results in an attempt to
calculate the natural logarithm of 0 (zero).

CDF – IGAUSS

Returns the value of the cumulative density function at a specified point for the Inverse Gaussian
distribution with the specified shape and mean. This function is an alias of CDF – WALD.

CDF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

Reference for language elements
Version 4.1

1029

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, CDF – IGAUSS is called for various Inverse Gaussian distributions. The results are
written to the log.

DATA _NULL_;

 s1 = CDF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = CDF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = CDF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = CDF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

 s5 = CDF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=0.2492117733
s2=0.8481757552
s3=0.2323571892
s4=0.9888921338
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Reference for language elements
Version 4.1

1030

Argument errors
In this example, CDF – IGAUSS is called with various combinations of invalid arguments. The results
are written to the log.

DATA _NULL_;

 s1 = CDF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = CDF("IGAUSS", 0.5);
 PUT s2=;

 s3 = CDF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = CDF("IGAUSS",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

LOGCDF – IGAUSS

Returns the value of the natural logarithm of the cumulative density function at a specified point for the
Inverse Gaussian distribution with the specified shape and mean. This function is an alias of LOGCDF
– WALD.

LOGCDF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for:

The calculated value at point x is

 =

Reference for language elements
Version 4.1

1031

Return type: Numeric

x

Type: Numeric

Restriction: x > 0

The point at which to calculate the natural logarithm of the cumulative density.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGCDF – IGAUSS is called for various Inverse Gaussian distributions. The results
are written to the log.

DATA _NULL_;

 s1 = LOGCDF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGCDF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGCDF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGCDF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

RUN;

Reference for language elements
Version 4.1

1032

This produces the following output:

s1=-1.389452249
s2=-0.164667406
s3=-1.459479483
s4=-0.011170019

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1.

Argument errors
In this example, LOGCDF – IGAUSS is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = LOGCDF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGCDF("IGAUSS", 0.5);
 PUT s2=;

 s3 = LOGCDF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGCDF("IGAUSS",0.5, 1, 0);
 PUT s4=;

 s5 = LOGCDF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=.
s2=.
s3=.
s4=.
s5=M

The first four examples generate a message in the log, and return a missing value. The first example
has too many arguments. The second example has too few arguments. The third example specifies an
invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth example generates a message in the log and returns MISSING_M, the missing value
corresponding to . This example specifies an invalid value for x, which results in an attempt to
calculate the natural logarithm of 0 (zero).

Reference for language elements
Version 4.1

1033

SDF – IGAUSS

Returns the value of the survival function at a specified point for the Inverse Gaussian distribution with
the specified shape and mean. This function is an alias of SDF – WALD.

SDF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the value of the survival function.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

Reference for language elements
Version 4.1

1034

If the argument is out of range, a missing value is returned.

Basic example
In this example, SDF – IGAUSS is called for various Inverse Gaussian distributions. The results are
written to the log.

DATA _NULL_;

 s1 = SDF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = SDF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = SDF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = SDF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

 s5 = SDF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=0.7507882267
s2=0.1518242448
s3=0.7676428108
s4=0.0111078662
s5=1

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Reference for language elements
Version 4.1

1035

Argument errors
In this example, SDF – IGAUSS is called with various combinations of invalid arguments. The results
are written to the log.

DATA _NULL_;

 s1 = SDF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = SDF("IGAUSS", 0.5);
 PUT s2=;

 s3 = SDF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = SDF("IGAUSS",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

LOGSDF – IGAUSS

Returns the value of the natural logarithm of the survival function at a specified point for the Inverse
Gaussian distribution with the specified shape and mean. This function is an alias of LOGSDF –
WALD.

LOGSDF ("IGAUSS" , x , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point x is

 =

Reference for language elements
Version 4.1

1036

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival function.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGSDF – IGAUSS is called for various Inverse Gaussian distributions. The results
are written to the log.

DATA _NULL_;

 s1 = LOGSDF("IGAUSS", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGSDF("IGAUSS", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGSDF("IGAUSS", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGSDF("IGAUSS", 3.5, 2, 1);
 PUT s4=;

 s5 = LOGSDF("IGAUSS", -0.5, 1, 2);
 PUT s5=;

RUN;

Reference for language elements
Version 4.1

1037

This produces the following output:

s1=-0.286631655
s2=-1.885031712
s3=-0.264430744
s4=-4.500101754
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Argument errors
In this example, LOGSDF – IGAUSS is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = LOGSDF("IGAUSS", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGSDF("IGAUSS", 0.5);
 PUT s2=;

 s3 = LOGSDF("IGAUSS", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGSDF("IGAUSS",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

QUANTILE – IGAUSS

Returns the value of the quantile function at a specified point for the Inverse Gaussian distribution with
the specified shape and mean. This function is an alias of QUANTILE – WALD.

QUANTILE ("IGAUSS" , q , lambda
, mu

)

The Inverse Gaussian distribution is also known as the Wald distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

Reference for language elements
Version 4.1

1038

This function is defined for

The calculated value at point q is

 =

where

•
• inf{x} (infinium) is the greatest lower bound of x

• λ is the shape parameter

• μ is the mean

• is the cumulative density function

Return type: Numeric

q

Type: Numeric

Restriction:

The probability value for which to calculate the quantile.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1039

Basic example
In this example, QUANTILE – IGAUSS is called twice, with two different probability values from the
same distribution. The returned values are then passed to CDF – IGAUSS for the same distribution.
The results are written to the log.

DATA _NULL_;

 s1 = QUANTILE("IGAUSS", 0.25, 1, 2);
 PUT s1=;
 s2 = QUANTILE("IGAUSS", 0.75, 1, 2);
 PUT s2=;

 s3 = CDF("IGAUSS", s1, 1, 2);
 PUT s3=;
 s4 = CDF("IGAUSS", s2, 1, 2);
 PUT s4=;

RUN;

This produces the following output:

s1=0.5012268362
s2=2.2841739815
s3=0.25
s4=0.75

As QUANTILE – IGAUSS and CDF – IGAUSS are inverse functions, the values returned from CDF –
IGAUSS are the same as those originally passed to QUANTILE – IGAUSS.

Argument errors
In this example, CDF – IGAUSS is called with various combinations of invalid arguments. The results
are written to the log.

DATA _NULL_;

 s1 = QUANTILE("IGAUSS", 0.25, 1, 2, 3);
 PUT s1=;

 s2 = QUANTILE("IGAUSS", 0.25);
 PUT s2=;

 s3 = QUANTILE("IGAUSS", 0.25, 0, 2);
 PUT s3=;

 s4 = QUANTILE("IGAUSS", 0.25, 1, 0);
 PUT s4=;

 s5 = QUANTILE("IGAUSS", 0, 1, 0);
 PUT s5=;

 s6 = QUANTILE("IGAUSS", -1, 1, 0);
 PUT s6=;

RUN;

Reference for language elements
Version 4.1

1040

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth and sixth examples specify invalid values for q.

DEVIANCE – IGAUSS

Returns the deviance of the Inverse Gaussian distribution at a specified point, based on the distribution
mean. This function is an alias of DEVIANCE – WALD.

DEVIANCE ("IGAUSS" , x , mu

, epsilon

)

Keyword IGAUSS is an alias of WALD, see DEVIANCE – WALD (page 1359).

Calculates the deviance, or goodness of fit, for the generalised linear model of the Inverse Gaussian
distribution at a nonnegative point x based on the distribution mean μ (mu). An optional range
correction parameter ε (epsilon) can be specified. If ε > 0.01, it is set equal to 0.01. If it is not
specified or if ε < 10-12, the value of 10-12 is used for correction. The distribution mean is then
adjusted so that μ ≥ ε:

If x ≥ 0, it is adjusted so that x ≥ ε:

These adjusted values of μ and x are used in the subsequent calculation of the deviance.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the deviance.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

mu

Type: Numeric

The distribution mean.

Reference for language elements
Version 4.1

1041

Expected: μ > 0. Values not within this range are corrected to fall in this range; this behaviour is
however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

epsilon
Optional argument

Type: Numeric

The range correction parameter.

Default: ε = 10-12

Expected: 10-12 < ε < 0.01. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

Examples – applying correction to the distribution mean
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("IGAUSS", 0.01, 0.0007, 0.0005);
 PUT g1=;
 g2 = DEVIANCE("IGAUSS", 0.01, 0.0007, 0.0010);
 PUT g2=;
 g3 = DEVIANCE("IGAUSS", 0.01, 0.0007, 0.0015);
 PUT g3=;
 g4 = DEVIANCE("IGAUSS", 0.01, 0.0007);
 PUT g4=;
RUN;

This produces the following output:

g1=17651.020408
g2=8100
g3=3211.1111111
g4=17651.020408

The value of the distribution mean is not corrected in the first example because μ > ε. However,
this condition does not hold in the second and third example, and correction is applied: μ = ε. This
corrected value is used for calculation, yielding different results.
In the fourth example the ε parameter is omitted, so the default value of ε = 10-12 is used. Here, as in
the first example, μ > ε, so no correction is required.

Reference for language elements
Version 4.1

1042

Examples – inverted scaling
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("IGAUSS", 0.01, 0.07);
 PUT g1=;
 g2 = DEVIANCE("IGAUSS", 0.1 , 0.7);
 PUT g2=;
 g3 = DEVIANCE("IGAUSS", 1 , 7);
 PUT g3=;
RUN;

This produces the following output:

g1=73.469387755
g2=7.3469387755
g3=0.7346938776

For the Inverse Gaussian distribution, when both the point of measurement x and the distribution mean
μ are scaled with the same factor, the deviance is scaled with the inverse of this factor.

RAND – INVERSE GAUSSIAN

Returns a random number from the Inverse Gaussian distribution based on the mean and shape.

RAND ("INVERSE GAUSSIAN" , mean , shape)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

mean

Type: Numeric

The mean of the distribution.

shape

Type: Numeric

The shape for the distribution.

Reference for language elements
Version 4.1

1043

Example
In this example, a random number from the Inverse Gaussian distribution is returned on each iteration
of the loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("INVERSE GAUSSIAN", 50, 4);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
19.216894327
88.842156238
6.6845410249
5.3918984993
1.6023162835

Running the DATA step again produces the following output.

The random numbers are:
1.5702146415
12.69443758
31.972435895
2.4117557127
5.2739838598

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(12);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("INVERSE GAUSSIAN", 50, 4);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
5.0841749568
1.2554045238
0.4110029909
4.2476360314
10.979380548

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

1044

Johnson SB distribution
Functions for the Johnson SB distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – JOHNSON SB ... 1045

 where

Returns the probability density of the Johnson SB distribution based on the shape parameters,
scale and location. This function is an alias of PMF – JOHNSON SB.

PMF – JOHNSON SB ...1047

 where

Returns the probability mass of the Johnson SB distribution based on the shape parameters,
scale and location. This function is an alias of PDF – JOHNSON SB.

LOGPDF – JOHNSON SB ... 1050

 where

Returns the natural logarithm of the probability density of the Johnson SB distribution based on
the shape parameters, scale and location. This function is an alias of LOGPMF – JOHNSON SB.

LOGPMF – JOHNSON SB ... 1052

 where

Returns the natural logarithm of the probability mass of the Johnson SB distribution based on the
shape parameters, scale and location. This function is an alias of LOGPDF – JOHNSON SB.

CDF – JOHNSON SB ...1054

 where

Returns the cumulative density of the Johnson SB distribution based on the shape parameters,
scale and location.

LOGCDF – JOHNSON SB ... 1056

 where

Reference for language elements
Version 4.1

1045

Returns the natural logarithm of the cumulative density of the Johnson SB distribution based on
the shape parameters, scale and location.

SDF – JOHNSON SB ... 1059

 where

Returns the survival of the Johnson SB distribution based on the shape parameters, scale and
location.

LOGSDF – JOHNSON SB ... 1061

 where

Returns the natural logarithm of the survival of the Johnson SB distribution based on the shape
parameters, scale and location.

QUANTILE – JOHNSON SB .. 1063

 where

Returns the quantile of the Johnson SB distribution based on the shape parameters, scale and
location.

RAND – JOHNSON SB .. 1066
Returns a random number from the Johnson SB distribution based on the shape parameters.

PDF – JOHNSON SB

Returns the probability density of the Johnson SB distribution based on the shape parameters, scale
and location. This function is an alias of PMF – JOHNSON SB.

PDF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the probability density function for the Johnson SB distribution at point x, based on the
shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi). Arguments lambda and
xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then
lambda must also be specified.

Reference for language elements
Version 4.1

1046

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1047

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the probability density of the Johnson SB distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PDF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = PDF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = PDF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = PDF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = PDF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = PDF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=0.3965747044
s2=0.0005679726
s3=0.0267260797
s4=0.0550275892
s5=1.5310853232
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

PMF – JOHNSON SB

Returns the probability mass of the Johnson SB distribution based on the shape parameters, scale and
location. This function is an alias of PDF – JOHNSON SB.

PMF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Reference for language elements
Version 4.1

1048

Calculates the probability mass function for the Johnson SB distribution at point x, based on the shape
parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi). Arguments lambda and xi
are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then
lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

Reference for language elements
Version 4.1

1049

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the probability mass of the Johnson SB distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PMF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = PMF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = PMF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = PMF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = PMF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = PMF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=0.3965747044
s2=0.0005679726
s3=0.0267260797
s4=0.0550275892
s5=1.5310853232
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

Reference for language elements
Version 4.1

1050

LOGPDF – JOHNSON SB

Returns the natural logarithm of the probability density of the Johnson SB distribution based on the
shape parameters, scale and location. This function is an alias of LOGPMF – JOHNSON SB.

LOGPDF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the probability density for the Johnson SB distribution at point
x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi).
Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to
0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0, ξ < x < ξ + λ

 = where

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

Restriction: ξ < x < ξ + λ

If the argument is out of range, a missing value is returned.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

Reference for language elements
Version 4.1

1051

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Johnson SB distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGPDF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGPDF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGPDF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGPDF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = LOGPDF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.924890846
s2=-7.47343743
s3=-3.622115424
s4=-2.899920597
s5=0.4259768455
s6=.

Reference for language elements
Version 4.1

1052

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

LOGPMF – JOHNSON SB

Returns the natural logarithm of the probability mass of the Johnson SB distribution based on the shape
parameters, scale and location. This function is an alias of LOGPDF – JOHNSON SB.

LOGPMF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the probability mass function for the Johnson SB distribution at
point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi).
Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to
0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0, ξ < x < ξ + λ

 = where

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

Restriction: ξ < x < ξ + λ

If the argument is out of range, a missing value is returned.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1053

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Johnson SB distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGPMF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGPMF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGPMF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGPMF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = LOGPMF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

Reference for language elements
Version 4.1

1054

This produces the following output:

s1=-0.924890846
s2=-7.47343743
s3=-3.622115424
s4=-2.899920597
s5=0.4259768455
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

CDF – JOHNSON SB

Returns the cumulative density of the Johnson SB distribution based on the shape parameters, scale
and location.

CDF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the cumulative density function for the Johnson SB distribution at point x, based on the
shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi). Arguments lambda and
xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then
lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

Reference for language elements
Version 4.1

1055

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1056

Examples
In these examples, the cumulative density of the Johnson SB distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = CDF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = CDF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = CDF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = CDF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = CDF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = CDF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=0.0140022056
s2=5.5526996E-6
s3=0.0006937843
s4=0.0016177037
s5=0.6574321695
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

LOGCDF – JOHNSON SB

Returns the natural logarithm of the cumulative density of the Johnson SB distribution based on the
shape parameters, scale and location.

LOGCDF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the cumulative density function for the Johnson SB distribution at
point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi).
Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to
0. If xi is specified, then lambda must also be specified.

Reference for language elements
Version 4.1

1057

This function is defined under the following conditions:

δ > 0, λ > 0, x > ξ

 = where

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

Restriction: x > ξ

If the argument is out of range, a missing value is returned.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Reference for language elements
Version 4.1

1058

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Johnson SB distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGCDF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGCDF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGCDF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGCDF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = LOGCDF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=-4.268540421
s2=-12.10122634
s3=-7.273349521
s4=-6.426747606
s5=-0.419413685
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

Reference for language elements
Version 4.1

1059

SDF – JOHNSON SB

Returns the survival of the Johnson SB distribution based on the shape parameters, scale and location.

SDF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the survival, or the complement to the cumulative density function, for the Johnson SB
distribution at point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda)
and location ξ (xi). Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is
omitted, it defaults to 0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

Reference for language elements
Version 4.1

1060

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the survival of the Johnson SB distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = SDF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = SDF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = SDF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = SDF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = SDF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = SDF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

Reference for language elements
Version 4.1

1061

This produces the following output:

s1=0.9859977944
s2=0.9999944473
s3=0.9993062157
s4=0.9983822963
s5=0.3425678305
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

LOGSDF – JOHNSON SB

Returns the natural logarithm of the survival of the Johnson SB distribution based on the shape
parameters, scale and location.

LOGSDF ("JOHNSON SB" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Johnson SB distribution at point x, based on the shape parameters δ (delta) and γ (gamma),
scale λ (lambda) and location ξ (xi). Arguments lambda and xi are optional. If lambda is omitted, it
defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0, x < ξ + λ

 = where

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Reference for language elements
Version 4.1

1062

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

Restriction: x < ξ + λ

If the argument is out of range, a missing value is returned.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1063

Examples
In these examples, the natural logarithm of the survival of the Johnson SB distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGSDF ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGSDF ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGSDF ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGSDF ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = LOGSDF ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.014101161
s2=-5.552715E-6
s3=-0.000694025
s4=-0.001619014
s5=-1.071285596
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

QUANTILE – JOHNSON SB

Returns the quantile of the Johnson SB distribution based on the shape parameters, scale and location.

QUANTILE ("JOHNSON SB" , q , delta , gamma ,

lambda

, x i

)

Calculates the quantile x, or the inverse of the cumulative density function, for the Johnson SB
distribution for probability value q based on the shape parameters δ (delta) and γ (gamma), scale λ
(lambda) and location ξ (xi). Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1;
if xi is omitted, it defaults to 0. If xi is specified, then lambda must also be specified.

Reference for language elements
Version 4.1

1064

This function is defined under the following conditions:

0 < q < 1, δ > 0, λ > 0

 where

where Φ-1(q) is the probit function, or the quantile function of the standard Normal distribution, and
erf-1(q) is the inverse of the error function, see PROBIT (page 1200) and ERF (page 1830).

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

Reference for language elements
Version 4.1

1065

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the quantile of the Johnson SB distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = QUANTILE ("JOHNSON SB", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = QUANTILE ("JOHNSON SB", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = QUANTILE ("JOHNSON SB", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = QUANTILE ("JOHNSON SB", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = QUANTILE ("JOHNSON SB", 0.1, 1, 0, 1,-0.5);
 PUT s5=;
 s6 = QUANTILE ("JOHNSON SB", 0.1, 0, 0, 1,-0.5);
 PUT s6=;
RUN;

This produces the following output:

s1=0.2172862285
s2=0.3450711937
s3=0.4300734302
s4=0.4345724571
s5=-0.282713771
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

Reference for language elements
Version 4.1

1066

RAND – JOHNSON SB

Returns a random number from the Johnson SB distribution based on the shape parameters.

RAND ("JOHNSON SB" , delta , gamma)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

The Johnson SB distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

The return value is positive.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, an error is returned.

gamma

Type: Numeric

The second shape parameter.

Example
In this example, a random number from the Johnson SB distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("JOHNSON SB", 10,5);
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1067

This produces the following output:

The random numbers are:
0.3855994315
0.4378382275
0.3666275822
0.3726487926
0.3698356082

Running the DATA step again produces the following output.

The random numbers are:
0.3816704915
0.3473201428
0.372621443
0.3732903865
0.4076553479

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(18);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("JOHNSON SB", 10,5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.389370907
0.3846661629
0.3702455951
0.3742395847
0.3672945964

Running the DATA step again produces the same output.

Johnson SU distribution
Functions for the Johnson SU distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

Reference for language elements
Version 4.1

1068

PDF – JOHNSON SU ...1069

 where

Returns the probability density of the Johnson SU distribution, based on the shape parameters,
scale and location. This function is an alias of PMF – JOHNSON SU.

PMF – JOHNSON SU .. 1071

 where

Returns the probability mass of the Johnson SU distribution based on the shape parameters,
scale and location. This function is an alias of PDF – JOHNSON SU.

LOGPDF – JOHNSON SU ... 1073

 where

Returns the natural logarithm of the probability density of the Johnson SU distribution based on
the shape parameters, scale and location. This function is an alias of LOGPMF – JOHNSON SU.

LOGPMF – JOHNSON SU ...1075

 where

Returns the natural logarithm of the probability mass of the Johnson SU distribution based on the
shape parameters, scale and location. This function is an alias of LOGPDF – JOHNSON SU.

CDF – JOHNSON SU ...1078

Returns the cumulative density of the Johnson SU distribution based on the shape parameters,
scale and location.

LOGCDF – JOHNSON SU ... 1080

Returns the natural logarithm of the cumulative density of the Johnson SU distribution based on
the shape parameters, scale and location.

SDF – JOHNSON SU ...1082

Returns the survival of the Johnson SU distribution based on the shape parameters, scale and
location.

LOGSDF – JOHNSON SU ... 1085

Returns the natural logarithm of the survival of the Johnson SU distribution based on the shape
parameters, scale and location.

Reference for language elements
Version 4.1

1069

QUANTILE – JOHNSON SU .. 1087

Returns the quantile of the Johnson SU distribution based on the shape parameters, scale and
location.

RAND – JOHNSON SU ..1089
Returns a random number from the Johnson SU distribution based on the shape parameters.

PDF – JOHNSON SU

Returns the probability density of the Johnson SU distribution, based on the shape parameters, scale
and location. This function is an alias of PMF – JOHNSON SU.

PDF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the probability density function for the Johnson SU distribution at point x, based on the
shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi). Arguments lambda and
xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then
lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

Reference for language elements
Version 4.1

1070

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the probability density of the Johnson SU distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PDF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = PDF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = PDF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = PDF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = PDF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = PDF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

Reference for language elements
Version 4.1

1071

This produces the following output:

s1=0.3949890957
s2=0.778255654
s3=0.2647251817
s4=0.1989736025
s5=0.170842289
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

PMF – JOHNSON SU

Returns the probability mass of the Johnson SU distribution based on the shape parameters, scale and
location. This function is an alias of PDF – JOHNSON SU.

PMF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the probability mass function for the Johnson SU distribution at point x, based on the shape
parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi). Arguments lambda and xi
are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then
lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

delta

Type: Numeric

Reference for language elements
Version 4.1

1072

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1073

Examples
In these examples, the probability mass of the Johnson SU distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = PMF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = PMF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = PMF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = PMF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = PMF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = PMF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

This produces the following output:

s1=0.3949890957
s2=0.778255654
s3=0.2647251817
s4=0.1989736025
s5=0.170842289
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

LOGPDF – JOHNSON SU

Returns the natural logarithm of the probability density of the Johnson SU distribution based on the
shape parameters, scale and location. This function is an alias of LOGPMF – JOHNSON SU.

LOGPDF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the probability density function for the Johnson SU distribution at
point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi).
Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to
0. If xi is specified, then lambda must also be specified.

Reference for language elements
Version 4.1

1074

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

Reference for language elements
Version 4.1

1075

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Johnson SU distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGPDF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGPDF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGPDF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGPDF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = LOGPDF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.92889712
s2=-0.943847385
s3=-1.329063041
s4=-1.614583114
s5=-1.767014434
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

LOGPMF – JOHNSON SU

Returns the natural logarithm of the probability mass of the Johnson SU distribution based on the shape
parameters, scale and location. This function is an alias of LOGPDF – JOHNSON SU.

LOGPMF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Reference for language elements
Version 4.1

1076

Calculates the natural logarithm of the probability mass function for the Johnson SU distribution at
point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi).
Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to
0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 = where

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Reference for language elements
Version 4.1

1077

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Johnson SU distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGPMF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGPMF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGPMF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGPMF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = LOGPMF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.92889712
s2=-0.943847385
s3=-1.329063041
s4=-1.614583114
s5=-1.767014434
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

Reference for language elements
Version 4.1

1078

CDF – JOHNSON SU

Returns the cumulative density of the Johnson SU distribution based on the shape parameters, scale
and location.

CDF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the cumulative density function for the Johnson SU distribution at point x, based on the
shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi). Arguments lambda and
xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then
lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 =

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1079

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the cumulative density of the Johnson SU distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = CDF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = CDF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = CDF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = CDF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = CDF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = CDF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

Reference for language elements
Version 4.1

1080

This produces the following output:

s1=0.5397619739
s2=0.5791299407
s3=0.1840159795
s4=0.5199305142
s5=0.8290319998
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

LOGCDF – JOHNSON SU

Returns the natural logarithm of the cumulative density of the Johnson SU distribution based on the
shape parameters, scale and location.

LOGCDF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the cumulative density function for the Johnson SU distribution at
point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda) and location ξ (xi).
Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is omitted, it defaults to
0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 =

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

Reference for language elements
Version 4.1

1081

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1082

Examples
In these examples, the natural logarithm of the cumulative density of the Johnson SU distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGCDF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGCDF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGCDF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGCDF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = LOGCDF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

This produces the following output:

s1=-0.616627026
s2=-0.546228404
s3=-1.69273268
s4=-0.654060103
s5=-0.187496524
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

SDF – JOHNSON SU

Returns the survival of the Johnson SU distribution based on the shape parameters, scale and location.

SDF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the survival, or the complement to the cumulative density function, for the Johnson SU
distribution at point x, based on the shape parameters δ (delta) and γ (gamma), scale λ (lambda)
and location ξ (xi). Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1; if xi is
omitted, it defaults to 0. If xi is specified, then lambda must also be specified.

Reference for language elements
Version 4.1

1083

This function is defined under the following conditions:

δ > 0, λ > 0

 =

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1084

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the survival of the Johnson SU distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = SDF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = SDF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = SDF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = SDF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = SDF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = SDF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

This produces the following output:

s1=0.4602380261
s2=0.4208700593
s3=0.8159840205
s4=0.4800694858
s5=0.1709680002
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

Reference for language elements
Version 4.1

1085

LOGSDF – JOHNSON SU

Returns the natural logarithm of the survival of the Johnson SU distribution based on the shape
parameters, scale and location.

LOGSDF ("JOHNSON SU" , x , delta , gamma ,

lambda

, x i

)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Johnson SU distribution at point x, based on the shape parameters δ (delta) and γ (gamma),
scale λ (lambda) and location ξ (xi). Arguments lambda and xi are optional. If lambda is omitted, it
defaults to 1; if xi is omitted, it defaults to 0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

δ > 0, λ > 0

 =

where Φ(x) is the cumulative density function of the standard Normal distribution and erf(x) is the error
function, see CDF – NORMAL (page 1187) and ERF (page 1830).

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1086

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Johnson SU distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = LOGSDF ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = LOGSDF ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = LOGSDF ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = LOGSDF ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = LOGSDF ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

Reference for language elements
Version 4.1

1087

This produces the following output:

s1=-0.776011475
s2=-0.865431141
s3=-0.203360507
s4=-0.733824424
s5=-1.766278873
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

QUANTILE – JOHNSON SU

Returns the quantile of the Johnson SU distribution based on the shape parameters, scale and location.

QUANTILE ("JOHNSON SU" , q , delta , gamma ,

lambda

, x i

)

Calculates the quantile x, or the inverse of the cumulative density function, for the Johnson SU
distribution for probability value q based on the shape parameters δ (delta) and γ (gamma), scale λ
(lambda) and location ξ (xi). Arguments lambda and xi are optional. If lambda is omitted, it defaults to 1;
if xi is omitted, it defaults to 0. If xi is specified, then lambda must also be specified.

This function is defined under the following conditions:

0 < q < 1, δ > 0, λ > 0

where Φ-1(q) is the probit function, or the quantile function of the standard Normal distribution, and
erf-1(q) is the inverse of the error function, see PROBIT (page 1200) and ERF (page 1830).

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Return type: Numeric

Reference for language elements
Version 4.1

1088

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, a missing value is returned.

gamma

Type: Numeric

The second shape parameter.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If xi is specified, then lambda must also be specified.

If the argument is out of range, a missing value is returned.

xi
Optional argument

Type: Numeric

The location parameter.

Default: 0

If xi is specified, then lambda must also be specified.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1089

Examples
In these examples, the quantile of the Johnson SU distribution is returned. The results are written to the
log.

DATA _NULL_;
 s1 = QUANTILE ("JOHNSON SU", 0.1, 1, 0, 1, 0);
 PUT s1=;
 s2 = QUANTILE ("JOHNSON SU", 0.1, 2, 0, 1, 0);
 PUT s2=;
 s3 = QUANTILE ("JOHNSON SU", 0.1, 1,-1, 1, 0);
 PUT s3=;
 s4 = QUANTILE ("JOHNSON SU", 0.1, 1, 0, 2, 0);
 PUT s4=;
 s5 = QUANTILE ("JOHNSON SU", 0.1, 1, 0, 1,-1);
 PUT s5=;
 s6 = QUANTILE ("JOHNSON SU", 0.1, 0, 0, 1,-1);
 PUT s6=;
RUN;

This produces the following output:

s1=-1.662309119
s2=-0.685534595
s3=-0.285286163
s4=-3.324618237
s5=-2.662309119
s6=.

The first five examples show the impact of the arguments on the result for the same point x in the
distribution. In the sixth example the function returns a missing value because one of the arguments is
out of range.

RAND – JOHNSON SU

Returns a random number from the Johnson SU distribution based on the shape parameters.

RAND ("JOHNSON SU" , delta , gamma)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

The Johnson SU distribution is defined in: N. L. Johnson, "Systems of frequency curves generated by
methods of translation", Biometrika 36, no. 1/2 (1949): 149-76, doi:10.2307/2332539.

Reference for language elements
Version 4.1

1090

Return type: Numeric

The return value is negative.

delta

Type: Numeric

The first shape parameter.

Restriction: must be positive

If the argument is out of range, an error is returned.

gamma

Type: Numeric

The second shape parameter.

Example
In this example, a random number from the Johnson SU distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("JOHNSON SU", 10,5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-0.673348129
-0.663680708
-0.506524535
-0.613047601
-0.62250131

Running the DATA step again produces the following output.

The random numbers are:
-0.564678432
-0.429874148
-0.663882461
-0.322217153
-0.440821654

Reference for language elements
Version 4.1

1091

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(18);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("JOHNSON SU", 10,5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-0.465294973
-0.487261343
-0.556494653
-0.537014675
-0.571047881

Running the DATA step again produces the same output.

Laplace distribution
Functions for the Laplace distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – LAPLACE .. 1093

Returns the probability density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters. This function is an alias of
PMF – LAPLACE.

PMF – LAPLACE .. 1095

Returns the probability density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters. This function is an alias of
PDF – LAPLACE.

Reference for language elements
Version 4.1

1092

LOGPDF – LAPLACE ...1097

Returns the natural logarithm of the probability density at a point from a Laplace distribution (also
known as the Double Exponential distribution), with specified location and scale parameters. This
function is an alias of LOGPMF – LAPLACE.

LOGPMF – LAPLACE ...1100

Returns the natural logarithm of the probability mass function at a point from a Laplace
distribution (also known as the Double Exponential distribution), with specified location and scale
parameters. This function is an alias of LOGPDF – LAPLACE.

CDF – LAPLACE .. 1102

Returns the cumulative density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters.

LOGCDF – LAPLACE ...1105

Returns the natural logarithm of the cumulative density at a point from a Laplace distribution (also
known as the Double Exponential distribution), with specified location and scale parameters.

SDF – LAPLACE .. 1107

Returns the survival density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters.

LOGSDF – LAPLACE ...1110

Returns the natural logarithm of the survival density at a point from a Laplace distribution (also
known as the Double Exponential distribution), with specified location and scale parameters.

QUANTILE – LAPLACE ..1112

Returns the quantile of a Laplace distribution (also known as the Double Exponential distribution)
for a specified cumulative density, with specified location and scale parameters.

Reference for language elements
Version 4.1

1093

PDF – LAPLACE

Returns the probability density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters. This function is an alias of PMF
– LAPLACE.

PDF ("LAPLACE" , x ,

theta , lambda

)

The probability density function at a point x gives the likelihood that a randomly drawn value from the
distribution is equal to x.

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a 'standard' Laplace distribution is assumed, with θ = 0
and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but not
λ (lambda) without θ (theta).

The probability density function at a point x of a Laplace distribution with location parameter θ and scale
parameter λ is defined by two exponential distributions as follows:

which simplifies to:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

Reference for language elements
Version 4.1

1094

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= PDF("LAPLACE", 1, 0, 1);
PUT s1=;
s2= PDF("LAPLACE", 1, 0);
PUT s2=;
s3= PDF("LAPLACE", 1);
PUT s3=;
RUN;

This produces the following output:

s1=0.1839397206
s2=0.1839397206
s3=0.1839397206

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ=1 (a 'standard' Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = PDF("LAPLACE", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=0.0705401437

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a much
lower probability density value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = PDF("LAPLACE", 5, 0, 1);
PUT s5=;
s6 = PDF("LAPLACE", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=0.0033689735
s6=0.0033689735

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with θ = 0 and λ = 1; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the function
at the same relative point on the distribution, but with the distribution located in different places.

Reference for language elements
Version 4.1

1095

Example – invalid syntax
DATA _NULL_;
s7 = PDF("LAPLACE", 1, 0, 1, 0);
PUT s7=;
s8 = PDF("LAPLACE", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

PMF – LAPLACE

Returns the probability density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters. This function is an alias of PDF
– LAPLACE.

PMF ("LAPLACE" , x ,

theta , lambda

)

The probability density function at a point x gives the likelihood that a randomly drawn value from the
distribution is equal to x.

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a 'standard' Laplace distribution is assumed, with θ = 0
and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but not
λ (lambda) without θ (theta).

The probability density function at a point x of a Laplace distribution with location parameter θ and scale
parameter λ is defined by two exponential distributions as follows:

which simplifies to:

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

1096

The point at which to calculate the probability density.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= PMF("LAPLACE", 1, 0, 1);
PUT s1=;
s2= PMF("LAPLACE", 1, 0);
PUT s2=;
s3= PMF("LAPLACE", 1);
PUT s3=;
RUN;

This produces the following output:

s1=0.1839397206
s2=0.1839397206
s3=0.1839397206

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ = 1 (a 'standard' Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = PMF("LAPLACE", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=0.0705401437

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a much
lower probability density value at x = 1 than the basic examples.

Reference for language elements
Version 4.1

1097

Example – use of location parameter
DATA _NULL_;
s5 = PMF("LAPLACE", 5, 0, 1);
PUT s5=;
s6 = PMF("LAPLACE", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=0.0033689735
s6=0.0033689735

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with θ = 0 and λ = 1; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the function
at the same relative point on the distribution, but with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = PMF("LAPLACE", 1, 0, 1, 0);
PUT s7=;
s8 = PMF("LAPLACE", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

LOGPDF – LAPLACE

Returns the natural logarithm of the probability density at a point from a Laplace distribution (also
known as the Double Exponential distribution), with specified location and scale parameters. This
function is an alias of LOGPMF – LAPLACE.

LOGPDF ("LAPLACE" , x ,

theta , lambda

)

The probability density function (PDF) at a point x gives the likelihood that a randomly drawn value from
the distribution is equal to x.

Reference for language elements
Version 4.1

1098

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a standard Laplace distribution is assumed, with θ = 0
and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but not
λ (lambda) without θ (theta).

The probability density function at a point x of a Laplace distribution with location parameter θ and scale
parameter λ is defined by two exponential distributions as follows:

which simplifies to:

The natural logarithm of this is therefore:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1099

Basic example
DATA _NULL_;
s1= LOGPDF("LAPLACE", 1, 0, 1);
PUT s1=;
s2= LOGPDF("LAPLACE", 1, 0);
PUT s2=;
s3= LOGPDF("LAPLACE", 1);
PUT s3=;
RUN;

This produces the following output:

s1=-1.693147181
s2=-1.693147181
s3=-1.693147181

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ=1 (a 'standard' Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = LOGPDF("LAPLACE", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=-2.651573316

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
natural logarithm of probability density at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = LOGPDF("LAPLACE", 5, 0, 1);
PUT s5=;
s6 = LOGPDF("LAPLACE", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=-5.693147181
s6=-5.693147181

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with θ = 0 and λ = 1; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the function
at the same relative point on the distribution, but with the distribution located in different places.

Reference for language elements
Version 4.1

1100

Example – invalid syntax
DATA _NULL_;
s7 = LOGPDF("LAPLACE", 1, 0, 1, 0);
PUT s7=;
s8 = LOGPDF("LAPLACE", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

LOGPMF – LAPLACE

Returns the natural logarithm of the probability mass function at a point from a Laplace distribution
(also known as the Double Exponential distribution), with specified location and scale parameters. This
function is an alias of LOGPDF – LAPLACE.

LOGPMF ("LAPLACE" , x ,

theta , lambda

)

The probability mass function (PMF) at a point x gives the likelihood that a randomly drawn value from
the distribution is equal to x.

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a standard Laplace distribution is assumed, with θ = 0
and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but not
λ (lambda) without θ (theta).

The probability mass function function at a point x of a Laplace distribution with location parameter θ
and scale parameter λ is defined as:

which simplifies to:

The natural logarithm of this is therefore:

Return type: Numeric

Reference for language elements
Version 4.1

1101

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass function.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
s1= LOGPMF("LAPLACE", 1, 0, 1);
PUT s1=;
s2= LOGPMF("LAPLACE", 1, 0);
PUT s2=;
s3= LOGPMF("LAPLACE", 1);
PUT s3=;
RUN;

This produces the following output:

s1=-1.693147181
s2=-1.693147181
s3=-1.693147181

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ=1 (a 'standard' Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
s4 = LOGPMF("LAPLACE", 1, 0, 6);
PUT s4=;
RUN;

This produces the following output:

s4=-2.651573316

Reference for language elements
Version 4.1

1102

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
natural logarithm of probability density at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
s5 = LOGPMF("LAPLACE", 5, 0, 1);
PUT s5=;
s6 = LOGPMF("LAPLACE", 2, -3, 1);
PUT s6=;
RUN;

This produces the following output:

s5=-5.693147181
s6=-5.693147181

These two examples demonstrate the location parameter. The first example evaluates the distribution at
x = 5, with θ = 0 and λ = 1; whereas the second shifts the distribution back using θ = -3, but also shifts
x back by the same amount, to x = 2. Both produce the same result, because they evaluate the function
at the same relative point on the distribution, but with the distribution located in different places.

Example – invalid syntax
DATA _NULL_;
s7 = LOGPMF("LAPLACE", 1, 0, 1, 0);
PUT s7=;
s8 = LOGPMF("LAPLACE", 1, , 0);
PUT s8=;
RUN;

This produces the following output:

s7=.
s8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

CDF – LAPLACE

Returns the cumulative density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters.

CDF ("LAPLACE" , x ,

theta , lambda

)

The cumulative density function (CDF) at a point x gives the likelihood that a randomly drawn value
from the distribution is less than or equal to x.

Reference for language elements
Version 4.1

1103

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a standard Laplace distribution is assumed, which has θ
= 0 and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but
not λ (lambda) without θ (theta).

The cumulative density function for a point x of a Laplace distribution with location parameter θ and
scale parameter λ is defined as the integral of the PDF from minus infinity to x:

which simplifies to:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1= CDF("LAPLACE", 1, 0, 1);
PUT S1=;
S2= CDF("LAPLACE", 1, 0);
PUT S2=;
S3= CDF("LAPLACE", 1);
PUT S3=;
RUN;

Reference for language elements
Version 4.1

1104

This produces the following output:

S1=0.8160602794
S2=0.8160602794
S3=0.8160602794

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ = 1 (a 'standard' Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
S4 = CDF("LAPLACE", 1, 0, 6);
PUT S4=;
RUN;

This produces the following output:

S4=0.5767591376

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
S5 = CDF("LAPLACE", 5, 0, 1);
PUT S5=;
S6 = CDF("LAPLACE", 2, -3, 1);
PUT S6=;
RUN;

This produces the following output:

S5=0.9966310265
S6=0.9966310265

These two examples demonstrate the location parameter. The first example gives the cumulative
density of the distribution at x = 5, with θ = 0 and λ = 1; whereas the second shifts the distribution
back using θ = -3, but also shifts x back by the same amount, to x = 2. Both produce the same result,
because they evaluate the function at the same point of the distribution, just with the distribution located
in different places.

Example – invalid syntax
DATA _NULL_;
S7 = CDF("LAPLACE", 1, 0, 1, 0);
PUT S7=;
S8 = CDF("LAPLACE", 1, , 0);
PUT S8=;
RUN;

Reference for language elements
Version 4.1

1105

This produces the following output:

S7=.
S8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

LOGCDF – LAPLACE

Returns the natural logarithm of the cumulative density at a point from a Laplace distribution (also
known as the Double Exponential distribution), with specified location and scale parameters.

LOGCDF ("LAPLACE" , x ,

theta , lambda

)

The cumulative density function (CDF) at a point x gives the likelihood that a randomly drawn value
from the distribution is less than or equal to x.

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a standard Laplace distribution is assumed, which has θ
= 0 and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but
not λ (lambda) without θ (theta).

The cumulative density function for a point x of a Laplace distribution with location parameter θ and
scale parameter λ is defined as the integral of the PDF from minus infinity to x:

which simplifies to:

The natural logarithm of this is then defined as:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

theta
Optional argument

Reference for language elements
Version 4.1

1106

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1= LOGCDF("LAPLACE", 1, 0, 1);
PUT S1=;
S2= LOGCDF("LAPLACE", 1, 0);
PUT S2=;
S3= LOGCDF("LAPLACE", 1);
PUT S3=;
RUN;

This produces the following output:

S1=-0.203267055
S2=-0.203267055
S3=-0.203267055

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ = 1 (a 'standard' Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
S4 = LOGCDF("LAPLACE", 1, 0, 6);
PUT S4=;
RUN;

This produces the following output:

S4=-0.550330539

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a lower
value at x = 1 than the basic examples.

Reference for language elements
Version 4.1

1107

Example – use of location parameter
DATA _NULL_;
S5 = LOGCDF("LAPLACE", 5, 0, 1);
PUT S5=;
S6 = LOGCDF("LAPLACE", 2, -3, 1);
PUT S6=;
RUN;

This produces the following output:

S5=-0.003374661
S6=-0.003374661

These two examples demonstrate the location parameter. The first example gives the natural logarithm
of the cumulative density of the distribution at x = 5, with θ = 0 and λ = 1; whereas the second shifts
the distribution back using θ = -3, but also shifts x back by the same amount, to x = 2. Both produce
the same result, because they evaluate the function at the same point of the distribution, just with the
distribution located in different places.

Example – invalid syntax
DATA _NULL_;
S7 = LOGCDF("LAPLACE", 1, 0, 1, 0);
PUT S7=;
S8 = LOGCDF("LAPLACE", 1, , 0);
PUT S8=;
RUN;

This produces the following output:

S7=.
S8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

SDF – LAPLACE

Returns the survival density at a point from a Laplace distribution (also known as the Double
Exponential distribution), with specified location and scale parameters.

SDF ("LAPLACE" , x ,

theta , lambda

)

The survival density function (SDF) at a point x gives the likelihood that a randomly drawn value from
the distribution is greater than or equal to x.

Reference for language elements
Version 4.1

1108

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a standard Laplace distribution is assumed, which has θ
= 0 and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but
not λ (lambda) without θ (theta).

The survival function for a point x of a Laplace distribution with location parameter θ and scale
parameter λ is defined as the integral of the PDF from x to infinity:

which simplifies to:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival density.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1= SDF("LAPLACE", 1, 0, 1);
PUT S1=;
S2= SDF("LAPLACE", 1, 0);
PUT S2=;
S3= SDF("LAPLACE", 1);
PUT S3=;
RUN;

Reference for language elements
Version 4.1

1109

This produces the following output:

S1=0.1839397206
S2=0.1839397206
S3=0.1839397206

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ = 1 (a standard Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
S4 = SDF("LAPLACE", 1, 0, 6);
PUT S4=;
RUN;

This produces the following output:

S4=0.4232408624

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a larger
value at x = 1 than the basic examples.

Example – use of location parameter
DATA _NULL_;
S5 = SDF("LAPLACE", 5, 0, 1);
PUT S5=;
S6 = SDF("LAPLACE", 2, -3, 1);
PUT S6=;
RUN;

This produces the following output:

S5=0.0033689735
S6=0.0033689735
S7=.
S8=.

These two examples demonstrate the location parameter. The first example gives the value of the SDF
of the distribution at x = 5, with θ = 0 and λ = 1; whereas the second shifts the distribution back using θ
= -3, but also shifts x back by the same amount, to x = 2. Both produce the same result, because they
evaluate the function at the same point of the distribution, just with the distribution located in different
places.

Example – invalid syntax
DATA _NULL_;
S7 = SDF("LAPLACE", 1, 0, 1, 0);
PUT S7=;
S8 = SDF("LAPLACE", 1, , 0);
PUT S8=;
RUN;

Reference for language elements
Version 4.1

1110

This produces the following output:

S7=.
S8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

LOGSDF – LAPLACE

Returns the natural logarithm of the survival density at a point from a Laplace distribution (also known
as the Double Exponential distribution), with specified location and scale parameters.

LOGSDF ("LAPLACE" , x ,

theta , lambda

)

The survival density function (SDF) at a point x gives the likelihood that a randomly drawn value from
the distribution is greater than or equal to x.

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a standard Laplace distribution is assumed, which has θ
= 0 and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1), but
not λ (lambda) without θ (theta).

The survival function for a point x of a Laplace distribution with location parameter θ and scale
parameter λ is defined as the integral of the PDF from x to infinity:

which simplifies to:

The natural logarithm of this is defined as:

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival density .

theta
Optional argument

Reference for language elements
Version 4.1

1111

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda > 0.

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1= LOGSDF("LAPLACE", 1, 0, 1);
PUT S1=;
S2= LOGSDF("LAPLACE", 1, 0);
PUT S2=;
S3= LOGSDF("LAPLACE", 1);
PUT S3=;
RUN;

This produces the following output:

S1=-1.693147181
S2=-1.693147181
S3=-1.693147181

These first three examples are all equivalent and demonstrate the flexible syntax, with each resolving to
x = 1, θ = 0, and λ = 1 (a standard Laplace distribution) and therefore returning the same value.

Example – use of scale parameter
DATA _NULL_;
S4 = LOGSDF("LAPLACE", 1, 0, 6);
PUT S4=;
RUN;

This produces the following output:

S4=-0.859813847

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This returns a larger
value at x = 1 than the basic examples.

Reference for language elements
Version 4.1

1112

Example – use of location parameter
DATA _NULL_;
S5 = LOGSDF("LAPLACE", 5, 0, 1);
PUT S5=;
S6 = LOGSDF("LAPLACE", 2, -3, 1);
PUT S6=;
RUN;

This produces the following output:

S5=-5.693147181
S6=-5.693147181

These two examples demonstrate the location parameter. The first example gives the natural logarithm
of the value of the SDF of the distribution at x = 5, with θ = 0 and λ = 1; whereas the second shifts
the distribution back using θ = -3, but also shifts x back by the same amount, to x = 2. Both produce
the same result, because they evaluate the function at the same point of the distribution, just with the
distribution located in different places.

Example – invalid syntax
DATA _NULL_;
S7 = LOGSDF("LAPLACE", 1, 0, 1, 0);
PUT S7=;
S8 = LOGSDF("LAPLACE", 1, , 0);
PUT S8=;
RUN;

This produces the following output:

S7=.
S8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

QUANTILE – LAPLACE

Returns the quantile of a Laplace distribution (also known as the Double Exponential distribution) for a
specified cumulative density, with specified location and scale parameters.

QUANTILE ("LAPLACE" , q ,

theta , lambda

)

The quantile for a cumulative density q gives a threshold value of x, below which randomly drawn
values from the defined Laplace distribution should occur q times.

Reference for language elements
Version 4.1

1113

You can optionally specify the distribution’s location parameter θ (theta) and scale parameter λ
(lambda). If these arguments are not specified, a 'standard' Laplace distribution is assumed, which has
θ = 0 and λ = 1. It is possible to specify θ (theta) without λ (lambda) (in which case, λ will be set to 1),
but not λ (lambda) without θ (theta).

The quantile function for a Laplace distribution with location parameter θ and scale parameter λ is
defined as the inverse of the cumulative density function for a Laplace distribution:

which simplifies to:

Return type: Numeric

q

Type: Numeric

The cumulative probability value for which to calculate the quantile.

Restriction: 0 < q < 1

If the argument is out of range, a missing value is returned.

theta
Optional argument

Type: Numeric

The location parameter. This defines the location of the distribution's centre of symmetry on the x
axis.

lambda
Optional argument

Type: Numeric

The scale parameter. If used, theta must also be specified.

Restriction: lambda ≥ 0.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1114

Basic example
DATA _NULL_;
S1= QUANTILE("LAPLACE", 0.81606027942, 0, 1);
PUT S1=;
S2= QUANTILE("LAPLACE", 0.81606027942, 0);
PUT S2=;
S3= QUANTILE("LAPLACE", 0.81606027942);
PUT S3=;
RUN;

This produces the following output:

S1=1
S2=1
S3=1

These first three examples are all equivalent and demonstrate the flexible syntax, with each specifying
q = 0.81606027942, and in every case resolving to θ = 0, and λ = 1; therefore returning the same value:
x = 1.

Example – use of scale parameter
DATA _NULL_;
S4 = QUANTILE("LAPLACE", 0.69220062755, 0, 6);
PUT S4=;
RUN;

This produces the following output:

S4=1

This example demonstrates the scale parameter, by retaining the basic examples' x = 1 and θ = 0, but
setting λ = 6 to reduce the height and increase the dispersion of the distribution. This means that a
smaller cumulative density is required to return an x value of 1 compared to the basic examples.

Example – use of location parameter
DATA _NULL_;
S5 = QUANTILE("LAPLACE", 0.9966310265005, 0, 1);
PUT S5=;
S6 = QUANTILE("LAPLACE", 0.9966310265005, -3, 1);
PUT S6=;
RUN;

This produces the following output:

S5=5
S6=2

These two examples demonstrate the location parameter. The same cumulative density is input, but
with the Laplace distribution at two different locations, thus producing different values of x.

Reference for language elements
Version 4.1

1115

Example – invalid syntax
DATA _NULL_;
S7 = QUANTILE("LAPLACE", 0.9966310265005, 1, 0, 1, 0);
PUT S7=;
S8 = QUANTILE("LAPLACE", 0.9966310265005, 1, , 0);
PUT S8=;
RUN;

This produces the following output:

S7=.
S8=.

Neither of these examples are valid; the first has too many parameters, and the second specifies λ
without θ.

Logistic distribution
Functions for the Logistic distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – LOGISTIC ..1116

=

Returns the probability density of the Logistic distribution based on the location and scale
parameters. This function is an alias of PMF – LOGISTIC.

PMF – LOGISTIC ... 1118

=

Returns the probability mass of the Logistic distribution based on the location and scale
parameters. This function is an alias of PDF – LOGISTIC.

LOGPDF – LOGISTIC .. 1120

=

Reference for language elements
Version 4.1

1116

Returns the natural logarithm of the probability density of the Logistic distribution based on the
location and scale parameters. This function is an alias of LOGPMF – LOGISTIC.

LOGPMF – LOGISTIC ..1121

=

Returns the natural logarithm of the probability mass of the Logistic distribution based on the
location and scale parameters. This function is an alias of LOGPDF – LOGISTIC.

CDF – LOGISTIC ..1123
=

Returns the cumulative density of the Logistic distribution based on the location and scale
parameters.

LOGCDF – LOGISTIC .. 1124
=

Returns the natural logarithm of the cumulative density of the Logistic distribution based on the
location and scale parameters.

SDF – LOGISTIC ..1126
=

Returns the survival of the Logistic distribution based on the location and scale parameters.

LOGSDF – LOGISTIC .. 1127
=

Returns the natural logarithm of the survival of the Logistic distribution based on the location and
scale parameters.

QUANTILE – LOGISTIC ... 1129

Returns the quantile of the Logistic distribution for a specified probability value based on the
location and scale parameters.

PDF – LOGISTIC

Returns the probability density of the Logistic distribution based on the location and scale parameters.
This function is an alias of PMF – LOGISTIC.

PDF ("LOGISTIC" , x ,
mu , sigma

)

Reference for language elements
Version 4.1

1117

Calculates the probability density function for the Logistic distribution at point x, based on the location
parameter μ (mu) and the scale parameter σ (sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1118

Examples
In these examples, the probability density of the Logistic distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PDF ("LOGISTIC",0.5,-1,4);
 PUT s1=;
 s2 = PDF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = PDF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = PDF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.0603532253
s2=0.2350037122
s3=0.2350037122
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The probability density function of the Logistic distribution is symmetrical around the location parameter
μ as illustrated in the second and third examples. The function returns the same result for points which
are equidistant from μ.

PMF – LOGISTIC

Returns the probability mass of the Logistic distribution based on the location and scale parameters.
This function is an alias of PDF – LOGISTIC.

PMF ("LOGISTIC" , x ,
mu , sigma

)

Calculates the probability mass function for the Logistic distribution at point x, based on the location
parameter μ (mu) and the scale parameter σ (sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

1119

The point at which to calculate the probability mass.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability mass of the Logistic distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PMF ("LOGISTIC",0.5,-1,4);
 PUT s1=;
 s2 = PMF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = PMF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = PMF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.0603532253
s2=0.2350037122
s3=0.2350037122
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

Reference for language elements
Version 4.1

1120

The probability mass function of the Logistic distribution is symmetrical around the location parameter
μ as illustrated in the second and third examples. The function returns the same result for points which
are equidistant from μ.

LOGPDF – LOGISTIC

Returns the natural logarithm of the probability density of the Logistic distribution based on the location
and scale parameters. This function is an alias of LOGPMF – LOGISTIC.

LOGPDF ("LOGISTIC" , x ,
mu , sigma

)

Calculates the natural logarithm of the probability density function for the Logistic distribution at point x,
based on the location parameter μ (mu) and the scale parameter σ (sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

Reference for language elements
Version 4.1

1121

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Logistic distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF ("LOGISTIC",0.5,-1,4);
 PUT s1=;
 s2 = LOGPDF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = LOGPDF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = LOGPDF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-2.807540889
s2=-1.448153968
s3=-1.448153968
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The natural logarithm of the probability density function of the Logistic distribution is symmetrical around
the location parameter μ as illustrated in the second and third examples. The function returns the same
result for points which are equidistant from μ.

LOGPMF – LOGISTIC

Returns the natural logarithm of the probability mass of the Logistic distribution based on the location
and scale parameters. This function is an alias of LOGPDF – LOGISTIC.

LOGPMF ("LOGISTIC" , x ,
mu , sigma

)

Calculates the natural logarithm of the probability mass function for the Logistic distribution at point x,
based on the location parameter μ (mu) and the scale parameter σ (sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

Reference for language elements
Version 4.1

1122

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Logistic distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF ("LOGISTIC",0.5,-1,4);
 PUT s1=;
 s2 = LOGPMF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = LOGPMF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = LOGPMF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-2.807540889
s2=-1.448153968
s3=-1.448153968
s4=.

Reference for language elements
Version 4.1

1123

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

The natural logarithm of the probability mass function of the Logistic distribution is symmetrical around
the location parameter μ as illustrated in the second and third examples. The function returns the same
result for points which are equidistant from μ.

CDF – LOGISTIC

Returns the cumulative density of the Logistic distribution based on the location and scale parameters.

CDF ("LOGISTIC" , x ,
mu , sigma

)

Calculates the cumulative density function for the Logistic distribution at point x, based on the location
parameter μ (mu) and the scale parameter σ (sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Reference for language elements
Version 4.1

1124

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Logistic distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = CDF ("LOGISTIC",-1,-1,4);
 PUT s1=;
 s2 = CDF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = CDF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = CDF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.5
s2=0.6224593312
s3=0.3775406688
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

LOGCDF – LOGISTIC

Returns the natural logarithm of the cumulative density of the Logistic distribution based on the location
and scale parameters.

LOGCDF ("LOGISTIC" , x ,
mu , sigma

)

Calculates the natural logarithm of the cumulative density function for the Logistic distribution at point x,
based on the location parameter μ (mu) and the scale parameter σ (sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

Reference for language elements
Version 4.1

1125

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Logistic distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF ("LOGISTIC",-1,-1,4);
 PUT s1=;
 s2 = LOGCDF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = LOGCDF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = LOGCDF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-0.693147181
s2=-0.474076984
s3=-0.974076984
s4=.

Reference for language elements
Version 4.1

1126

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

SDF – LOGISTIC

Returns the survival of the Logistic distribution based on the location and scale parameters.

SDF ("LOGISTIC" , x ,
mu , sigma

)

Calculates the survival, or the complement to the cumulative density function, for the Logistic
distribution at point x, based on the location parameter μ (mu) and the scale parameter σ (sigma).

 = =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1127

Examples
In these examples, the survival of the Logistic distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = SDF ("LOGISTIC",-1,-1,4);
 PUT s1=;
 s2 = SDF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = SDF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = SDF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=0.5
s2=0.3775406688
s3=0.6224593312
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

LOGSDF – LOGISTIC

Returns the natural logarithm of the survival of the Logistic distribution based on the location and scale
parameters.

LOGSDF ("LOGISTIC" , x ,

theta , lambda

)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Logistic distribution at point x, based on the location parameter μ (mu) and the scale parameter σ
(sigma).

If sigma is specified, then mu must also be specified.

 = =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

theta
Optional argument

Reference for language elements
Version 4.1

1128

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

lambda
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Logistic distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF ("LOGISTIC",-1,-1,4);
 PUT s1=;
 s2 = LOGSDF ("LOGISTIC",0.5,0,1);
 PUT s2=;
 s3 = LOGSDF ("LOGISTIC",-0.5,0,1);
 PUT s3=;
 s4 = LOGSDF ("LOGISTIC",0.5,-1,-5);
 PUT s4=;
RUN;

This produces the following output:

s1=-0.693147181
s2=-0.974076984
s3=-0.474076984
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

Reference for language elements
Version 4.1

1129

QUANTILE – LOGISTIC

Returns the quantile of the Logistic distribution for a specified probability value based on the location
and scale parameters.

QUANTILE ("LOGISTIC" , q ,
mu , sigma

)

Calculates the quantile x, or the inverse of the cumulative density function, for the Logistic distribution
for probability value q. The quantile function returns point x such that randomly drawn values from the
distribution fall below x with probability q.

If sigma is specified, then mu must also be specified.

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

mu
Optional argument

Type: Numeric

The location parameter.

Default: 0

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument contains a missing value, a missing value is returned.

sigma
Optional argument

Type: Numeric

The scale parameter.

Default: 1

Restriction: must be positive

If sigma is specified, then mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1130

Examples
In these examples, the quantile of the Logistic distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = QUANTILE ("LOGISTIC",0.1,-1,4);
 PUT s1=;
 s2 = QUANTILE ("LOGISTIC",0.9,-1,4);
 PUT s2=;
 s3 = QUANTILE ("LOGISTIC",0.5,-1,4);
 PUT s3=;
 s4 = QUANTILE ("LOGISTIC",-0.5,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=-9.788898309
s2=7.7888983093
s3=-1
s4=.

The first three examples show the output when x lies within the domain bounds. The fourth example
shows the output when x falls outside the domain bounds.

Lognormal distribution
Functions for the Lognormal distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – LOGNORMAL ..1132

Returns the value of the probability density function at the specified point for the Lognormal
distribution with the specified mean and standard deviation. This function is an alias of PMF –
LOGNORMAL.

PMF – LOGNORMAL ... 1134

Reference for language elements
Version 4.1

1131

Returns the value of the probability mass function at the specified point for the Lognormal
distribution with the specified mean and standard deviation. This function is an alias of PDF –
LOGNORMAL.

LOGPDF – LOGNORMAL .. 1137

Returns the value of the natural logarithm of the probability density function at the specified point
for the Lognormal distribution with the specified mean and standard deviation. This function is an
alias of LOGPMF – LOGNORMAL.

LOGPMF – LOGNORMAL ..1139

Returns the value of the natural logarithm of the probability mass function at a specified point for
the Lognormal distribution with the specified mean and standard deviation. This function is an
alias of LOGPDF – LOGNORMAL.

CDF – LOGNORMAL ..1142

Returns the value of the cumulative density function at the specified point for the Lognormal
distribution with the specified mean and standard deviation.

LOGCDF – LOGNORMAL .. 1144

Returns the value of the natural logarithm of the cumulative density function at the specified point
for the Lognormal distribution with the specified mean and standard deviation.

SDF – LOGNORMAL ..1147

Returns the value of the survival function at the specified point for the Lognormal distribution with
the specified mean and standard deviation.

LOGSDF – LOGNORMAL .. 1149

Returns the value of the natural logarithm of the survival function at the specified point for the
Lognormal distribution with the specified mean and standard deviation.

QUANTILE – LOGNORMAL ... 1152

Returns the value of the quantile function at the specified point for the Lognormal distribution with
the specified mean and standard deviation.

Reference for language elements
Version 4.1

1132

RAND – LOGNORMAL ...1154
Returns a random number from the Lognormal distribution.

PDF – LOGNORMAL

Returns the value of the probability density function at the specified point for the Lognormal distribution
with the specified mean and standard deviation. This function is an alias of PMF – LOGNORMAL.

PDF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

 =

where μ is the mean of the natural logarithm of the random variable and σ is the standard deviation of
the natural logarithm of the random variable.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

Reference for language elements
Version 4.1

1133

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Basic example
In this example, PDF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = PDF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = PDF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = PDF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = PDF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = PDF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = PDF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=0.2449736517
s2=0.2449736517
s3=0.2449736517
s4=0.056035057
s5=0.0277021337
s6=0.0050877715

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Reference for language elements
Version 4.1

1134

Argument errors
In this example, PDF – LOGNORMAL is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = PDF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = PDF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = PDF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

PMF – LOGNORMAL

Returns the value of the probability mass function at the specified point for the Lognormal distribution
with the specified mean and standard deviation. This function is an alias of PDF – LOGNORMAL.

PMF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

 =

Reference for language elements
Version 4.1

1135

where μ is the mean of the natural logarithm of the random variable and σ is the standard deviation of
the natural logarithm of the random variable.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1136

Basic example
In this example, PMF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = PMF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = PMF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = PMF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = PMF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = PMF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = PMF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=0.2449736517
s2=0.2449736517
s3=0.2449736517
s4=0.056035057
s5=0.0277021337
s6=0.0050877715

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, PMF – LOGNORMAL is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = PMF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = PMF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = PMF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

Reference for language elements
Version 4.1

1137

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

LOGPDF – LOGNORMAL

Returns the value of the natural logarithm of the probability density function at the specified point for
the Lognormal distribution with the specified mean and standard deviation. This function is an alias of
LOGPMF – LOGNORMAL.

LOGPDF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

 =

where μ is the mean of the natural logarithm of the random variable and σ is the standard deviation of
the natural logarithm of the random variable.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

mu
Optional argument

Type: Numeric

Default: 0

Reference for language elements
Version 4.1

1138

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGPDF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = LOGPDF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = LOGPDF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = LOGPDF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = LOGPDF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = LOGPDF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = LOGPDF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=-1.406604618
s2=-1.406604618
s3=-1.406604618
s4=-2.881777767
s5=-3.58624584
s6=-5.280915362

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

Reference for language elements
Version 4.1

1139

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, LOGPDF – LOGNORMAL is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGPDF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGPDF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = LOGPDF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

LOGPMF – LOGNORMAL

Returns the value of the natural logarithm of the probability mass function at a specified point for the
Lognormal distribution with the specified mean and standard deviation. This function is an alias of
LOGPDF – LOGNORMAL.

LOGPMF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

The calculated value for the Lognormal distribution is

Reference for language elements
Version 4.1

1140

 =

where μ is the mean of the natural logarithm of the random variable and σ is the standard deviation of
the natural logarithm of the random variable.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1141

Basic example
In this example, LOGPMF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = LOGPMF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = LOGPMF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = LOGPMF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = LOGPMF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = LOGPMF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = LOGPMF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=-1.406604618
s2=-1.406604618
s3=-1.406604618
s4=-2.881777767
s5=-3.58624584
s6=-5.280915362

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, LOGPMF – LOGNORMAL is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGPMF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGPMF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = LOGPMF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

Reference for language elements
Version 4.1

1142

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

CDF – LOGNORMAL

Returns the value of the cumulative density function at the specified point for the Lognormal distribution
with the specified mean and standard deviation.

CDF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

 =

where:

• is the error function

• μ is the mean of the natural logarithm of the random variable

• σ is the standard deviation of the natural logarithm of the random variable

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

mu
Optional argument

Reference for language elements
Version 4.1

1143

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Basic example
In this example, CDF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = CDF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = CDF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = CDF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = CDF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = CDF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = CDF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=0.6574321695
s2=0.6574321695
s3=0.6574321695
s4=0.1214390656
s5=0.4949823193
s6=0.8390919839

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

Reference for language elements
Version 4.1

1144

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, CDF – LOGNORMAL is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = CDF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = CDF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = CDF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

LOGCDF – LOGNORMAL

Returns the value of the natural logarithm of the cumulative density function at the specified point for
the Lognormal distribution with the specified mean and standard deviation.

LOGCDF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

Reference for language elements
Version 4.1

1145

 =

where:

• is the error function

• μ is the mean of the natural logarithm of the random variable

• σ is the standard deviation of the natural logarithm of the random variable

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1146

Basic example
In this example, LOGCDF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = LOGCDF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = LOGCDF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = LOGCDF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = LOGCDF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = LOGCDF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = LOGCDF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=-0.419413685
s2=-0.419413685
s3=-0.419413685
s4=-2.10834266
s5=-0.703233236
s6=-0.175434943

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, LOGCDF – LOGNORMAL is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGCDF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGCDF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = LOGCDF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

Reference for language elements
Version 4.1

1147

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

SDF – LOGNORMAL

Returns the value of the survival function at the specified point for the Lognormal distribution with the
specified mean and standard deviation.

SDF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

 =

where:

• is the error function

• μ is the mean of the natural logarithm of the random variable

• σ is the standard deviation of the natural logarithm of the random variable

Return type: Numeric

x

Type: Numeric

The point at which to calculate the value of the survival function.

mu
Optional argument

Reference for language elements
Version 4.1

1148

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Basic example
In this example, SDF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = SDF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = SDF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = SDF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = SDF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = SDF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = SDF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=0.3425678305
s2=0.3425678305
s3=0.3425678305
s4=0.8785609344
s5=0.5050176807
s6=0.1609080161

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

Reference for language elements
Version 4.1

1149

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, SDF – LOGNORMAL is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = SDF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = SDF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = SDF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

LOGSDF – LOGNORMAL

Returns the value of the natural logarithm of the survival function at the specified point for the
Lognormal distribution with the specified mean and standard deviation.

LOGSDF ("LOGNORMAL" , x ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for .

The calculated value for the Lognormal distribution is

Reference for language elements
Version 4.1

1150

 =

where:

• is the error function

• μ is the mean of the natural logarithm of the random variable

• σ is the standard deviation of the natural logarithm of the random variable

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival function.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1151

Basic example
In this example, LOGSDF – LOGNORMAL is called for various Lognormal distributions. The results are
written to the log.

DATA _NULL_;

 s1 = LOGSDF("LOGNORMAL", 1.5, 0, 1);
 PUT s1=;
 s2 = LOGSDF("LOGNORMAL", 1.5, 0);
 PUT s2=;
 s3 = LOGSDF("LOGNORMAL", 1.5);
 PUT s3=;

 s4 = LOGSDF("LOGNORMAL", 3, 2.5, 1.2);
 PUT s4=;
 s5 = LOGSDF("LOGNORMAL", 12, 2.5, 1.2);
 PUT s5=;
 s6 = LOGSDF("LOGNORMAL", 40, 2.5, 1.2);
 PUT s6=;

RUN;

This produces the following output:

s1=-1.071285596
s2=-1.071285596
s3=-1.071285596
s4=-0.129470012
s5=-0.683161839
s6=-1.826922406

The first three examples specify the same point (x = 1.5) in a Lognormal distribution where the mean
of the logarithm of the random variable is 0 and the standard deviation of the logarithm of the random
variable is 1. So s1, s2 and s3 contain the same value.

The remaining three examples specify different points (x = 3, x = 12 and x = 40) in the same Lognormal
distribution, where the mean of the logarithm of the random variable is 2.5 and the standard deviation of
the logarithm of the random variable is 1.2.

Argument errors
In this example, LOGSDF – LOGNORMAL is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGSDF("LOGNORMAL", 1.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGSDF("LOGNORMAL", -1.5, , 2);
 PUT s2=;

 s3 = LOGSDF("LOGNORMAL", 1.5, 1, 0);
 PUT s3=;

RUN;

Reference for language elements
Version 4.1

1152

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

QUANTILE – LOGNORMAL

Returns the value of the quantile function at the specified point for the Lognormal distribution with the
specified mean and standard deviation.

QUANTILE ("LOGNORMAL" , q ,
mu , sigma

)

The Lognormal distribution is a continuous probability distribution where the natural logarithm of the
random variable is normally distributed.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma). The mean and standard
deviation specified are the mean and standard deviation for the (normally-distributed) natural logarithm
of the random variable, not the mean and standard deviation of the random variable itself.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified.

This function is defined for

The calculated value, x, for the Lognormal distribution is

 =

where

•
• inf{x} (infinium) is the greatest lower bound of x

• μ is the mean of the (normally distributed) natural logarithm of the random variable

• σ is the standard deviation of the (normally-distributed) natural logarithm of the random variable

• is the cumulative density function of the Lognormal distribution

Return type: Numeric

q

Type: Numeric

Restriction:

The probability value for which to calculate the quantile.

Reference for language elements
Version 4.1

1153

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 0

The mean of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Default: 1

Restriction: sigma > 0

The standard deviation of the natural logarithm of the random variable.

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Basic example
In this example, QUANTILE – LOGNORMAL is called for different Lognormal distributions. The
returned values are then passed to CDF – LOGNORMAL for the same Lognormal distributions. The
results are written to the log.

The results are written to the log.

DATA _NULL_;

 s1 = QUANTILE("LOGNORMAL", 0.25, 2.5, 1.2);
 s2 = QUANTILE("LOGNORMAL", 0.75, 2.5, 1.2);
 PUT s1= s2=;

 s3 = CDF("LOGNORMAL", s1, 2.5, 1.2);
 s4 = CDF("LOGNORMAL", s2, 2.5, 1.2);
 PUT s3= s4=;

RUN;

This produces the following output:

s1=5.422800068 s2=27.368362698
s3=0.25 s4=0.75

Variable s1=5.422800068 is the value returned by QUANTILE – LOGNORMAL for q=0.25 for a
Lognormal distribution with mean 2.5 and standard deviation 1.2.

Variable s2=27.368362698 is the value returned by QUANTILE – LOGNORMAL for q=0.75.

Reference for language elements
Version 4.1

1154

As a comparison, variables s3 and s4 contain the results of passing s1 and s2 to CDF – LOGNORMAL.
As QUANTILE – LOGNORMAL and CDF – LOGNORMAL are inverse functions, the values
returned from CDF – LOGNORMAL are the same as the values originally passed to QUANTILE –
LOGNORMAL.

Argument errors
In this example, QUANTILE – LOGNORMAL is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = QUANTILE("LOGNORMAL", 0.25, 2.5, 1.2, 3);
 PUT s1=;

 s2 = QUANTILE("LOGNORMAL", 0.25, , 1.2);
 PUT s2=;

 s3 = QUANTILE("LOGNORMAL", 0.25, 2.5, 0);
 PUT s3=;

 s4 = QUANTILE("LOGNORMAL", 0, 2.5, 1.2);
 PUT s4=;

 s5 = QUANTILE("LOGNORMAL", -1, 2.5, 1.2);
 PUT s5=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example specifies sigma but not mu. The third
example specifies an invalid value for sigma.

The fourth and fifth examples specify invalid values for q (q=0 and q=-1 respectively).

RAND – LOGNORMAL

Returns a random number from the Lognormal distribution.

RAND ("LOGNORMAL")

The distribution is parameterised using a mean of 0 and a standard deviation of 1.

This function does not take any variable arguments.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

Reference for language elements
Version 4.1

1155

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

Example
In this example, a random number from the Lognormal distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("LOGNORMAL");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.5024141225
0.3646048429
1.1400518351
4.1975318463
0.1907837004

Running the DATA step again produces the following output.

The random numbers are:
0.1353004462
0.6602126687
2.9420670479
1.2557263294
0.7885070773

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(9);
 DO i = 1 TO 5;
 result = RAND("LOGNORMAL");
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1156

This produces the following output:

The random numbers are:
1.7506445418
0.5203794406
2.9996140074
1.6572896735
0.1503519974

Running the DATA step again produces the same output.

Negative Binomial distribution
Functions for the Negative Binomial distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – NEGBINOMIAL ..1158

Returns the probability density of the Negative Binomial distribution for a specified number of
failures based on the probability of success and the number of successes in Bernoulli trials. This
function is an alias of PMF – NEGBINOMIAL.

PMF – NEGBINOMIAL ... 1159

Returns the probability mass of the Negative Binomial distribution for a specified number of
failures based on the probability of success and the number of successes in Bernoulli trials. This
function is an alias of PDF – NEGBINOMIAL.

LOGPDF – NEGBINOMIAL .. 1161

Returns the natural logarithm of the probability density of the Negative Binomial distribution for a
specified number of failures based on the probability of success and the number of successes in
Bernoulli trials. This function is an alias of LOGPMF – NEGBINOMIAL.

LOGPMF – NEGBINOMIAL ..1162

Reference for language elements
Version 4.1

1157

Returns the natural logarithm of the probability mass of the Negative Binomial distribution for a
specified number of failures based on the probability of success and the number of successes in
Bernoulli trials. This function is an alias of LOGPDF – NEGBINOMIAL.

CDF – NEGBINOMIAL ..1164

 =

Returns the cumulative density of the Negative Binomial distribution for a specified number of
failures based on the probability of success and the number of successes in Bernoulli trials. This
function is similar to PROBNEGB.

PROBNEGB .. 1166

 =

Returns the cumulative density of the Negative Binomial distribution for a specified number of
failures based on the probability of success and the number of successes in Bernoulli trials. This
function is similar to CDF – NEGBINOMIAL.

LOGCDF – NEGBINOMIAL .. 1167

Returns the natural logarithm of the cumulative density of the Negative Binomial distribution for a
specified number of failures based on the probability of success and the number of successes in
Bernoulli trials.

SDF – NEGBINOMIAL ..1169

Returns the survival of the Negative Binomial distribution for a specified number of failures based
on the probability of success and the number of successes in Bernoulli trials.

LOGSDF – NEGBINOMIAL .. 1171

Returns the natural logarithm of the survival of the Negative Binomial distribution for a specified
number of failures based on the probability of success and the number of successes in Bernoulli
trials.

QUANTILE – NEGBINOMIAL ... 1172

Returns the quantile of the Negative Binomial distribution for a specified number of failures based
on the probability of success and the number of successes in Bernoulli trials.

RAND – NEGBINOMIAL ...1174
Returns a random number from the Negative Binomial distribution based on the probability of
success and the number of successes in Bernoulli trials.

Reference for language elements
Version 4.1

1158

PDF – NEGBINOMIAL

Returns the probability density of the Negative Binomial distribution for a specified number of failures
based on the probability of success and the number of successes in Bernoulli trials. This function is an
alias of PMF – NEGBINOMIAL.

PDF ("NEGBINOMIAL" , r , p , k)

Calculates the probability density function for the Negative Binomial distribution for the number of
failures r, based on the probability of success p and the number of successes k in Bernoulli trials.

This function is defined under the following conditions:

 =

Return type: Numeric

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1159

Examples
In these examples, the probability density of the Negative Binomial distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = PDF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = PDF("NEGBINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = PDF("NEGBINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = PDF("NEGBINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = PDF("NEGBINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

This produces the following output:

s1=0.05764801
s2=0
s3=0.0066202107
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

PMF – NEGBINOMIAL

Returns the probability mass of the Negative Binomial distribution for a specified number of failures
based on the probability of success and the number of successes in Bernoulli trials. This function is an
alias of PDF – NEGBINOMIAL.

PMF ("NEGBINOMIAL" , r , p , k)

Calculates the probability mass function for the Negative Binomial distribution for the number of failures
r, based on the probability of success p and the number of successes k in Bernoulli trials.

This function is defined under the following conditions:

 =

Return type: Numeric

Reference for language elements
Version 4.1

1160

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability mass of the Negative Binomial distribution is returned. The results
are written to the log.

DATA _NULL_;
 s1 = PMF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = PMF("NEGBINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = PMF("NEGBINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = PMF("NEGBINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = PMF("NEGBINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

This produces the following output:

s1=0.05764801
s2=0
s3=0.0066202107
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

Reference for language elements
Version 4.1

1161

LOGPDF – NEGBINOMIAL

Returns the natural logarithm of the probability density of the Negative Binomial distribution for a
specified number of failures based on the probability of success and the number of successes in
Bernoulli trials. This function is an alias of LOGPMF – NEGBINOMIAL.

LOGPDF ("NEGBINOMIAL" , r , p , k)

Calculates the natural logarithm of the probability density function for the Negative Binomial distribution
for the number of failures r, based on the probability of success p and the number of successes k in
Bernoulli trials.

This function is defined under the following conditions:

 =

Return type: Numeric

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restrictions:

• r ≥ 0 must be integer

• if p = 0 or p = 1, then r = 0

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1162

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Negative Binomial distribution
is returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = LOGPDF("NEGBINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = LOGPDF("NEGBINOMIAL",0,-1.7,8);
 PUT s3=;
RUN;

This produces the following output:

s1=-2.853399552
s2=.
s3=.

The last two examples return a missing value because one of the arguments is out of range.

LOGPMF – NEGBINOMIAL

Returns the natural logarithm of the probability mass of the Negative Binomial distribution for a specified
number of failures based on the probability of success and the number of successes in Bernoulli trials.
This function is an alias of LOGPDF – NEGBINOMIAL.

LOGPMF ("NEGBINOMIAL" , r , p , k)

Calculates the natural logarithm of the probability mass function for the Negative Binomial distribution
for the number of failures r, based on the probability of success p and the number of successes k in
Bernoulli trials.

Reference for language elements
Version 4.1

1163

This function is defined under the following conditions:

 =

Return type: Numeric

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restrictions:

• r ≥ 0 must be integer

• if p = 0 or p = 1, then r = 0

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1164

Examples
In these examples, the natural logarithm of the probability mass of the Negative Binomial distribution
is returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = LOGPMF("NEGBINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = LOGPMF("NEGBINOMIAL",0,-1.7,8);
 PUT s3=;
RUN;

This produces the following output:

s1=-2.853399552
s2=.
s3=.

The last two examples return a missing value because one of the arguments is out of range.

CDF – NEGBINOMIAL

Returns the cumulative density of the Negative Binomial distribution for a specified number of failures
based on the probability of success and the number of successes in Bernoulli trials. This function is
similar to PROBNEGB.

CDF ("NEGBINOMIAL" , r , p , k)

Calculates the cumulative density function for the Negative Binomial distribution for the number of
failures r, based on the probability of success p and the number of successes k in Bernoulli trials.

This function is defined under the following conditions:

 =

where Ip(k, r+1) is the regularised incomplete Beta function; Β (p; k, r+1) is the incomplete Beta
function; and Β (k, r+1) is the Beta function, see BETA (page 1819).

Return type: Numeric

Reference for language elements
Version 4.1

1165

The return value is less than or equal to one.

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Negative Binomial distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = CDF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = CDF("NEGBINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = CDF("NEGBINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = CDF("NEGBINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = CDF("NEGBINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

This produces the following output:

s1=0.05764801
s2=0
s3=0.993927486
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

Reference for language elements
Version 4.1

1166

PROBNEGB

Returns the cumulative density of the Negative Binomial distribution for a specified number of failures
based on the probability of success and the number of successes in Bernoulli trials. This function is
similar to CDF – NEGBINOMIAL.

PROBNEGB (p , k , r)

Note:
Function PROBNEGB differs from CDF("NEGBINOMIAL", r, p, k) in the order of the arguments and
in the restrictions imposed on k and r.

Calculates the cumulative density function for the Negative Binomial distribution for the number of
failures r, based on the probability of success p and the number of successes k in Bernoulli trials.

This function is defined under the following conditions:

 =

where Ip(k, r+1) is the regularised incomplete Beta function; Β (p; k, r+1) is the incomplete Beta
function; and Β (k, r+1) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is less than or equal to one.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

Reference for language elements
Version 4.1

1167

If the argument is out of range, a missing value is returned.

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Negative Binomial distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = PROBNEGB(0.7,8,0);
 PUT s1=;
 s2 = PROBNEGB(0.7,8,-1);
 PUT s2=;
 s3 = PROBNEGB(-1.7,8,0);
 PUT s3=;
RUN;

This produces the following output:

s3=0.05764801
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

LOGCDF – NEGBINOMIAL

Returns the natural logarithm of the cumulative density of the Negative Binomial distribution for a
specified number of failures based on the probability of success and the number of successes in
Bernoulli trials.

LOGCDF ("NEGBINOMIAL" , r , p , k)

Calculates the natural logarithm of the cumulative density function for the Negative Binomial distribution
for the number of failures r, based on the probability of success p and the number of successes k in
Bernoulli trials.

Reference for language elements
Version 4.1

1168

This function is defined under the following conditions:

 =

where Ip(k, r+1) is the regularised incomplete Beta function; Β (p; k, r+1) is the incomplete Beta
function; and Β (k, r+1) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is negative or zero.

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 < p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1169

Examples
In these examples, the natural logarithm of the cumulative density of the Negative Binomial distribution
is returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = LOGCDF("NEGBINOMIAL",10,0.7,8);
 PUT s2=;
 s3 = LOGCDF("NEGBINOMIAL",0.6,0.7,8);
 PUT s3=;
 s4 = LOGCDF("NEGBINOMIAL",0,-1.7,8);
 PUT s4=;
RUN;

This produces the following output:

s1=-2.853399552
s2=-0.006091027
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

SDF – NEGBINOMIAL

Returns the survival of the Negative Binomial distribution for a specified number of failures based on the
probability of success and the number of successes in Bernoulli trials.

SDF ("NEGBINOMIAL" , r , p , k)

Calculates the survival, or the complement to the cumulative density function, for the Negative Binomial
distribution for the number of failures r, based on the probability of success p and the number of
successes k in Bernoulli trials.

This function is defined under the following conditions:

 = =

Reference for language elements
Version 4.1

1170

where Ip(k, r+1) is the regularised incomplete Beta function; Β (p; k, r+1) is the incomplete Beta
function; and Β (k, r+1) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is less than or equal to one.

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r must be integer

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the survival of the Negative Binomial distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = SDF("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = SDF("NEGBINOMIAL",-1,0.7,8);
 PUT s2=;
 s3 = SDF("NEGBINOMIAL",10,0.7,8);
 PUT s3=;
 s4 = SDF("NEGBINOMIAL",0.6,0.7,8);
 PUT s4=;
 s5 = SDF("NEGBINOMIAL",0,-1.7,8);
 PUT s5=;
RUN;

Reference for language elements
Version 4.1

1171

This produces the following output:

s1=0.94235199
s2=1
s3=0.006072514
s4=.
s5=.

The last two examples return a missing value because one of the arguments is out of range.

LOGSDF – NEGBINOMIAL

Returns the natural logarithm of the survival of the Negative Binomial distribution for a specified number
of failures based on the probability of success and the number of successes in Bernoulli trials.

LOGSDF ("NEGBINOMIAL" , r , p , k)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Negative Binomial distribution for the number of failures r, based on the probability of success p
and the number of successes k in Bernoulli trials.

This function is defined under the following conditions:

 = =

where Ip(k, r+1) is the regularised incomplete Beta function; Β (p; k, r+1) is the incomplete Beta
function; and Β (k, r+1) is the Beta function, see BETA (page 1819).

Return type: Numeric

The return value is negative or zero.

r

Type: Numeric

The number of failures until the specified number of successes has been reached.

Restriction: r must be integer

Reference for language elements
Version 4.1

1172

If the argument is out of range, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p < 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Negative Binomial distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGSDF("NEGBINOMIAL",-1,0.7,8);
 PUT s1=;
 s2 = LOGSDF("NEGBINOMIAL",0,0.7,8);
 PUT s2=;
 s3 = LOGSDF("NEGBINOMIAL",0.6,0.7,8);
 PUT s3=;
 s4 = LOGSDF("NEGBINOMIAL",0,-1.7,8);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=-0.059376412
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

QUANTILE – NEGBINOMIAL

Returns the quantile of the Negative Binomial distribution for a specified number of failures based on
the probability of success and the number of successes in Bernoulli trials.

QUANTILE ("NEGBINOMIAL" , q , p , k)

Reference for language elements
Version 4.1

1173

Calculates the quantile x, or the inverse of the cumulative density function, for the Negative Binomial
distribution for probability value q based on the probability of success p and the number of successes k
in Bernoulli trials.

This function is defined under the following conditions:

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function for the Negative Binomial distribution, see section CDF – NEGBINOMIAL (page 1164).

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 ≤ q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 < p ≤ 1

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k > 0 and must be integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1174

Examples
In these examples, the quantile of the Negative Binomial distribution is returned. The results are
written to the log.

DATA _NULL_;
 s1 = QUANTILE("NEGBINOMIAL",0,0.7,8);
 PUT s1=;
 s2 = QUANTILE("NEGBINOMIAL",0.6,0.7,8);
 PUT s2=;
 s3 = QUANTILE("NEGBINOMIAL",0.6,0,8);
 PUT s3=;
 s4 = QUANTILE("NEGBINOMIAL",0,-1.7,8);
 PUT s4=;
RUN;

This produces the following output:

s1=0
s2=4
s3=.
s4=.

The last two examples return a missing value because one of the arguments is out of range.

RAND – NEGBINOMIAL

Returns a random number from the Negative Binomial distribution based on the probability of success
and the number of successes in Bernoulli trials.

RAND ("NEGBINOMIAL" , p , k)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

p

Type: Numeric

The probability of success in all the trials.

Restriction: 0 ≤ p ≤ 1

Reference for language elements
Version 4.1

1175

If the argument is out of range, a missing value is returned.

k

Type: Numeric

The number of successes.

Restriction: k ≥ 1

If the argument is out of range, a missing value is returned.

Example
In this example, a random number from the Negative Binomial distribution is returned on each iteration
of the loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("NEGBINOMIAL", 0.79,100);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
66.386846036
73.391732883
68.269978958
72.467947197
54.952402765

Running the DATA step again produces the following output.

The random numbers are:
62.835033565
71.090153203
66.894372987
55.933535406
65.669639433

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(9);
 DO i = 1 TO 5;
 result = RAND("NEGBINOMIAL", 0.79,100);
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1176

This produces the following output:

The random numbers are:
63.26274407
69.849910723
61.807560636
64.036333375
73.657909167

Running the DATA step again produces the same output.

Normal distribution
Functions and CALL routines for the Normal distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – NORMAL ... 1178

Returns the value of the probability density function at a given point for the Normal distribution
with the specified mean and standard deviation. This function is an alias of PMF – NORMAL,
PDF – GAUSSIAN and PMF – GAUSSIAN.

PMF – NORMAL ...1181

Returns the value of the probability mass function at a given point for the Normal distribution with
the specified mean and standard deviation. This function is an alias of PDF – NORMAL, PDF –
GAUSSIAN and PMF – GAUSSIAN.

LOGPDF – NORMAL ..1183

Returns the value of the natural logarithm of the probability density function at a given point for
the Normal distribution with the specified mean and standard deviation. This function is an alias
of LOGPMF – NORMAL, LOGPDF – GAUSSIAN and LOGPMF – GAUSSIAN.

Reference for language elements
Version 4.1

1177

LOGPMF – NORMAL ... 1185

Returns the value of the natural logarithm of the probability mass function at a given point for the
Normal distribution with the specified mean and standard deviation. This function is an alias of
LOGPDF – NORMAL, LOGPDF – GAUSSIAN and LOGPMF – GAUSSIAN.

CDF – NORMAL ... 1187

Returns the value of the cumulative density function at a given point for the Normal distribution
with the specified mean and standard deviation. This function is an alias of CDF – GAUSSIAN
and is similar to PROBNORM.

LOGCDF – NORMAL ..1189

Returns the value of the natural logarithm of the cumulative density function at a given point for
the Normal distribution with the specified mean and standard deviation. This function is an alias
of LOGCDF – GAUSSIAN.

SDF – NORMAL ... 1191

Returns the value of the survival function at a given point for the Normal distribution with the
specified mean and standard deviation. This function is an alias of SDF – GAUSSIAN.

LOGSDF – NORMAL ..1194

Returns the value of the natural logarithm of the survival function at a given point for the Normal
distribution with the specified mean and standard deviation. This function is an alias of LOGSDF
– GAUSSIAN.

QUANTILE – NORMAL ...1196

Returns the value of the quantile function at a given point for the Normal distribution with the
specified mean and standard deviation. This function is an alias of QUANTILE – GAUSSIAN and
is similar to PROBIT.

PROBNORM ... 1198

Returns the cumulative density function at a given point for the standard Normal distribution
with mean 0 and standard deviation 1. This function is similar to CDF – NORMAL and CDF –
GAUSSIAN, with the mean and standard deviation set to the default values.

Reference for language elements
Version 4.1

1178

PROBIT ... 1200

Returns the quantile function at a given point for the standard Normal distribution with mean 0
and standard deviation 1. This function is similar to QUANTILE – NORMAL and QUANTILE –
GAUSSIAN with mean and standard deviation set to the default values.

DEVIANCE – NORMAL .. 1202

Returns the deviance of the Normal distribution at a specified point, based on the distribution
mean. This function is an alias of DEVIANCE – GAUSSIAN.

RAND – NORMAL .. 1202
Returns a random number from the Normal distribution based on the mean and variance of the
distribution. This function is similar to RANNOR, NORMAL and CALL RANNOR.

RANNOR ... 1204
Returns a random number from the Normal distribution based on the mean and variance of the
distribution. This function is an alias of NORMAL. This function is similar to RAND – NORMAL
and CALL RANNOR.

NORMAL ... 1206
Returns a random number from the Normal distribution based on the mean and variance of the
distribution. This function is an alias of RANNOR. This function is similar to RAND – NORMAL
and CALL RANNOR.

CALL RANNOR ...1207
Returns a random number from the Normal distribution. This routine is similar to function RAND
– NORMAL, NORMAL and RANNOR.

PDF – NORMAL

Returns the value of the probability density function at a given point for the Normal distribution with
the specified mean and standard deviation. This function is an alias of PMF – NORMAL, PDF –
GAUSSIAN and PMF – GAUSSIAN.

PDF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the probability density
function for the standard Normal distribution at point x.

This function is defined for .

Reference for language elements
Version 4.1

1179

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1180

Example
In this example, the value of the probability density function of the Normal distribution is calculated for
various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = PDF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = PDF("NORMAL", 0, 0);
 PUT s2=;
 s3 = PDF("NORMAL", 0);
 PUT s3=;
 s4 = PDF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = PDF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = PDF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = PDF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = PDF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=0.3989422804
s2=0.3989422804
s3=0.3989422804
s4=0.0647587978
s5=0.0647587978
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0 and
standard deviation 1. So they all return the same value for the probability density function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation 2.
The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation 2.
Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the probability density function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

1181

PMF – NORMAL

Returns the value of the probability mass function at a given point for the Normal distribution with
the specified mean and standard deviation. This function is an alias of PDF – NORMAL, PDF –
GAUSSIAN and PMF – GAUSSIAN.

PMF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the probability mass
function for the standard Normal distributionat point x.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Reference for language elements
Version 4.1

1182

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the probability mass function of the Normal distribution is calculated for
various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = PMF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = PMF("NORMAL", 0, 0);
 PUT s2=;
 s3 = PMF("NORMAL", 0);
 PUT s3=;
 s4 = PMF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = PMF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = PMF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = PMF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = PMF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=0.3989422804
s2=0.3989422804
s3=0.3989422804
s4=0.0647587978
s5=0.0647587978
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0 and
standard deviation 1. So they all return the same value for the probability mass function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation 2.
The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation 2.
Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the probability mass function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

1183

LOGPDF – NORMAL

Returns the value of the natural logarithm of the probability density function at a given point for the
Normal distribution with the specified mean and standard deviation. This function is an alias of
LOGPMF – NORMAL, LOGPDF – GAUSSIAN and LOGPMF – GAUSSIAN.

LOGPDF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the probability density function for the standard Normal distribution at point x.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1184

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the probability density function of the Normal
distribution is calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = LOGPDF("NORMAL", 0, 0);
 PUT s2=;
 s3 = LOGPDF("NORMAL", 0);
 PUT s3=;
 s4 = LOGPDF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = LOGPDF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = LOGPDF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGPDF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = LOGPDF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=-0.918938533
s2=-0.918938533
s3=-0.918938533
s4=-2.737085714
s5=-2.737085714
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0
and standard deviation 1. So they all return the same value for the natural logarithm of the probability
density function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below
the mean, so both examples return the same value for the natural logarithm of the probability density
function.

Reference for language elements
Version 4.1

1185

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

LOGPMF – NORMAL

Returns the value of the natural logarithm of the probability mass function at a given point for the
Normal distribution with the specified mean and standard deviation. This function is an alias of
LOGPDF – NORMAL, LOGPDF – GAUSSIAN and LOGPMF – GAUSSIAN.

LOGPMF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither μ nor σ is specified, μ defaults to 0 and σ defaults to 1, and this function returns the
value of the natural logarithm of the probability mass function for the standard Normal distribution at
point x.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

Reference for language elements
Version 4.1

1186

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the probability mass function of the Normal
distribution is calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = LOGPMF("NORMAL", 0, 0);
 PUT s2=;
 s3 = LOGPMF("NORMAL", 0);
 PUT s3=;
 s4 = LOGPMF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = LOGPMF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = LOGPMF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGPMF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = LOGPMF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=-0.918938533
s2=-0.918938533
s3=-0.918938533
s4=-2.737085714
s5=-2.737085714
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0 and
standard deviation 1. So they all return the same value for the natural logarithm of the probability mass
function.

Reference for language elements
Version 4.1

1187

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below
the mean, so both examples return the same value for the natural logarithm of the probability mass
function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

CDF – NORMAL

Returns the value of the cumulative density function at a given point for the Normal distribution with the
specified mean and standard deviation. This function is an alias of CDF – GAUSSIAN and is similar to
PROBNORM.

CDF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the cumulative density
function for the standard Normal distribution.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

The return value is between 0 and 1 inclusive.

x

Type: Numeric

The point at which to calculate the cumulative density.

Reference for language elements
Version 4.1

1188

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the cumulative density function of the Normal distribution is calculated for
various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = CDF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = CDF("NORMAL", 0, 0);
 PUT s2=;
 s3 = CDF("NORMAL", 0);
 PUT s3=;
 s4 = CDF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = CDF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = CDF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = CDF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = CDF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

Reference for language elements
Version 4.1

1189

This produces the following output:

s1=0.5
s2=0.5
s3=0.5
s4=0.0668072013
s5=0.0668072013
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0 and
standard deviation 1. So they all return the same value for the cumulative density function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation 2.
The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation 2.
Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the cumulative density function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

LOGCDF – NORMAL

Returns the value of the natural logarithm of the cumulative density function at a given point for
the Normal distribution with the specified mean and standard deviation. This function is an alias of
LOGCDF – GAUSSIAN.

LOGCDF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the cumulative density function for the standard Normal distribution at point x.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Reference for language elements
Version 4.1

1190

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the cumulative density function of the Normal
distribution is calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = LOGCDF("NORMAL", 0, 0);
 PUT s2=;
 s3 = LOGCDF("NORMAL", 0);
 PUT s3=;
 s4 = LOGCDF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = LOGCDF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = LOGCDF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGCDF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = LOGCDF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

Reference for language elements
Version 4.1

1191

This produces the following output:

s1=-0.693147181
s2=-0.693147181
s3=-0.693147181
s4=-2.705944401
s5=-2.705944401
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0
and standard deviation 1. So they all return the same value for the natural logarithm of the cumulative
density function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation
2. The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation
2. Although the distribution means are different, both these points are 1.5 standard deviations below
the mean, so both examples return the same value for the natural logarithm of the cumulative density
function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

SDF – NORMAL

Returns the value of the survival function at a given point for the Normal distribution with the specified
mean and standard deviation. This function is an alias of SDF – GAUSSIAN.

SDF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the survival function for
the standard Normal distribution at point x.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

Reference for language elements
Version 4.1

1192

 =

Return type: Numeric

The return value is between 0 and 1 inclusive.

x

Type: Numeric

The point at which to calculate the value of the survival function.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1193

Example
In this example, the value of the survival function of the Normal distribution is calculated for various
values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = SDF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = SDF("NORMAL", 0, 0);
 PUT s2=;
 s3 = SDF("NORMAL", 0);
 PUT s3=;
 s4 = SDF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = SDF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = SDF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = SDF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = SDF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=0.5
s2=0.5
s3=0.5
s4=0.9331927987
s5=0.9331927987
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0 and
standard deviation 1. So they all return the same value for the survival function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation 2.
The fifth example specifies a point, 7, in aNormal distribution with mean 10 and standard deviation 2.
Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the survival function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

1194

LOGSDF – NORMAL

Returns the value of the natural logarithm of the survival function at a given point for the Normal
distribution with the specified mean and standard deviation. This function is an alias of LOGSDF –
GAUSSIAN.

LOGSDF ("NORMAL" , x ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the natural logarithm of
the survival function for the standard Normal distribution at point x.

This function is defined for .

The calculated value for the Normal distribution with mean μ and standard deviation σ is

 =

and the calculated value for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival function.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1195

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the natural logarithm of the survival function of the Normal distribution is
calculated for various values of x, mu and sigma. The results are written to the log.

DATA _NULL_;
 s1 = LOGSF("NORMAL", 0, 0, 1);
 PUT s1=;
 s2 = LOGSDF("NORMAL", 0, 0);
 PUT s2=;
 s3 = LOGSDF("NORMAL", 0);
 PUT s3=;
 s4 = LOGSDF("NORMAL", -3, 0, 2);
 PUT s4=;
 s5 = LOGSDF("NORMAL", 7, 10, 2);
 PUT s5=;
 s6 = LOGSDF("NORMAL", -3, 0, 2, 3);
 PUT s6=;
 s7 = LOGSDF("NORMAL", -3, , 2);
 PUT s7=;
 s8 = LOGSDF("NORMAL", -3, 0, 0);
 PUT s8=;
RUN;

This produces the following output:

s1=-0.693147181
s2=-0.693147181
s3=-0.693147181
s4=-0.069143456
s5=-0.069143456
s6=.
s7=.
s8=.

The first three examples all specify the same point, 0, in a standard Normal distribution with mean 0 and
standard deviation 1. So they all return the same value for the natural logarithm of the survival function.

The fourth example specifies a point, -3, in a Normal distribution with mean 0 and standard deviation 2.
The fifth example specifies a point, 7, in a Normal distribution with mean 10 and standard deviation 2.
Although the distribution means are different, both these points are 1.5 standard deviations below the
mean, so both examples return the same value for the natural logarithm of the survival function.

The last three examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, and the eighth example specifies an invalid value for sigma.

Reference for language elements
Version 4.1

1196

QUANTILE – NORMAL

Returns the value of the quantile function at a given point for the Normal distribution with the specified
mean and standard deviation. This function is an alias of QUANTILE – GAUSSIAN and is similar to
PROBIT.

QUANTILE ("NORMAL" , q ,
mu , sigma

)

The Normal distribution is also known as the Gaussian distribution.

You can optionally specify the mean μ (mu) and standard deviation σ (sigma) of the distribution.

If not specified, mu defaults to 0 and sigma defaults to 1. If sigma is specified, mu must also be
specified. If neither mu nor sigma is specified, this function returns the value of the quantile function for
the standard Normal distribution at q.

This function is defined for

The calculated value, x, for the Normal distribution with mean μ and standard deviation σ, is:

 =

where , inf{x} (infinium) is the greatest lower bound of x, and CDF (x,μ,σ) is the cumulative
density function of the Normal distribution with mean μ and standard deviation σ.

The calculated value, x, for the standard Normal distribution, where μ = 0 and σ = 1, is

 =

where , inf{x} is the greatest lower bound of x, and CDF (x) is the cumulative density function of
the standard Normal distribution.

Return type: Numeric

q

Type: Numeric

Restriction:

The probability value for which to calculate the quantile.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

The mean of the distribution.

Reference for language elements
Version 4.1

1197

Default: 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

sigma
Optional argument

Type: Numeric

The standard deviation of the distribution.

Default: 1

Restriction: sigma > 0

If sigma is specified, mu must also be specified; otherwise a missing value is returned.

If the argument is out of range, a missing value is returned.

Example
In this example, the value of the quantile function of the Normal distribution is calculated for various
values of q, mu and sigma. The results are written to the log.

As this function is the inverse of the cumulative density function, this example demonstrates the
relationship by using the same points in the distribution as the cumulative density function example,
CDF – NORMAL (page 1187). Therefore the q values in this example are the returned values in the
cumulative density function example, and the returned values in this example are the x values in the
cumulative density function example (subject to rounding errors).

DATA _NULL_;
 s1 = QUANTILE("NORMAL", 0.5, 0, 1);
 PUT s1=;
 s2 = QUANTILE("NORMAL", 0.5, 0);
 PUT s2=;
 s3 = QUANTILE("NORMAL", 0.5);
 PUT s3=;
 s4 = QUANTILE("NORMAL", 0.0668072013, 0, 2);
 PUT s4=;
 s5 = QUANTILE("NORMAL", 0.0668072013, 10, 2);
 PUT s5=;
 s6 = QUANTILE("NORMAL", 0.0668072013, 0, 2, 3);
 PUT s6=;
 s7 = QUANTILE("NORMAL", 0.0668072013, , 2);
 PUT s7=;
 s8 = QUANTILE("NORMAL", 0.0668072013, 0, 0);
 PUT s8=;
 s9 = QUANTILE("NORMAL", 1.0, 0, 1);
 PUT s9=;
RUN;

Reference for language elements
Version 4.1

1198

This produces the following output:

s1=0
s2=0
s3=0
s4=-3
s5=7.0000000005
s6=.
s7=.
s8=.
s9=.

The first three examples all specify the same cumulative density value, 0.5, for a standard Normal
distribution with mean 0 and standard deviation 1. So they all return the same value for the quantile
function. In this case, the value is the point in the distribution where the probability is 0.5 that a random
member of the distribution falls below this point. For the standard Normal distribution, this value is the
mean, 0.

The fourth example specifies a cumulative density value of 0.0668072013, a mean of 0 and a standard
deviation of 2. The fifth example specifies the same cumulative density value and standard deviation,
but has a mean of 10. For a Normal distribution with a standard deviation of 2, 0.0668072013 is the
value of the cumulative density function at a point 1.5 standard deviations below the mean. So both
these examples return the point that is 1.5 standard deviations below the mean, although the actual
values returned are different because the examples have different means. There is also a small
rounding error in the last digit of the fifth example.

The last four examples all generate a message in the log, and return a missing value. The sixth
example has the wrong number of arguments, the seventh example incorrectly specifies sigma but not
mu, the eighth example specifies an invalid value for sigma and the ninth example specifies an invalid
value for q, the cumulative density.

PROBNORM

Returns the cumulative density function at a given point for the standard Normal distribution with mean
0 and standard deviation 1. This function is similar to CDF – NORMAL and CDF – GAUSSIAN, with the
mean and standard deviation set to the default values.

PROBNORM (x)

The calculated value is

 =

Return type: Numeric

The return value is between 0 and 1 inclusive.

x

Type: Numeric

Reference for language elements
Version 4.1

1199

The point at which to calculate the cumulative density.

Example
In this example, PROBNORM is used to calculate the value of the cumulative density function for the
standard Normal distribution for various values of x. For comparison, this example also includes calls to
the similar function CDF – NORMAL with mean 0 and standard deviation 1. The results are written to
the log.

DATA _NULL_;

 S1_PN = PROBNORM(0);
 S1_CDF = CDF("NORMAL", 0, 0, 1);
 PUT S1_PN=; PUT S1_CDF=; PUT;

 S2_PN = PROBNORM(-1);
 S2_CDF = CDF("NORMAL", -1, 0, 1);
 PUT S2_PN=; PUT S2_CDF=; PUT;

 S3_PN = PROBNORM(2);
 S3_CDF = CDF("NORMAL", 2, 0, 1);
 PUT S3_PN=; PUT S3_CDF=; PUT;

 S4_PN = PROBNORM(50);
 S4_CDF = CDF("NORMAL", 50, 0, 1);
 PUT S4_PN=; PUT S4_CDF=; PUT;

RUN;

This produces the following output:

S1_PN=0.5
S1_CDF=0.5

S2_PN=0.1586552539
S2_CDF=0.1586552539

S3_PN=0.9772498681
S3_CDF=0.9772498681

S4_PN=1
S4_CDF=1

Each call to PROBNORM(x) returns the value of the cumulative density function at the specified point
for a distribution with mean 0 and standard deviation 1. Each call to CDF("NORMAL",x,0,1) returns
the same result as the equivalent call to PROBNORM(x).

Reference for language elements
Version 4.1

1200

PROBIT

Returns the quantile function at a given point for the standard Normal distribution with mean 0 and
standard deviation 1. This function is similar to QUANTILE – NORMAL and QUANTILE – GAUSSIAN
with mean and standard deviation set to the default values.

PROBIT (q)

This function is the inverse of the PROBNORM function, which returns the cumulative density function
for the standard Normal distribution with mean 0 and standard deviation 1.

This function is defined for .

The calculated value is

 =

where , inf{x} (infinium) is the greatest lower bound of x, and CDF(x) refers to the cumulative
density function of the standard Normal distribution.

Note:
Function PROBIT requires a probability value, q, that satisfies , whereas QUANTILE –
NORMAL requires that q satisfies the stricter condition, .

Return type: Numeric

If the wrong number of arguments are supplied, a missing value is returned.

q

Type: Numeric

The probability value for which to calculate the quantile.

Restriction:

Example
In this example, the PROBIT function is used to calculate the value of the quantile function for the
standard Normal distribution for various values of q. For comparison, this example includes calls to
the similar function QUANTILE – NORMAL with mean 0 and standard deviation 1. This example also
demonstrates the relationship with the two inverse functions, PROBNORM, and CDF – NORMAL.

The results are written to the log.

DATA _NULL_;

 s1_pb = PROBIT(0.5);
 s1_q = QUANTILE("NORMAL", 0.5, 0, 1);
 s1_pn = PROBNORM(0);
 s1_cdf = CDF("NORMAL", 0, 0, 1);
 PUT s1_pb=; PUT s1_q=; PUT s1_pn=; PUT s1_cdf=; PUT ;

Reference for language elements
Version 4.1

1201

 s2_pb = PROBIT(0.1586552539);
 s2_q = QUANTILE("NORMAL", 0.1586552539, 0, 1);
 s2_pn = PROBNORM(-1);
 s2_cdf = CDF("NORMAL", -1, 0, 1);
 PUT s2_pb=; PUT s2_q=; PUT s2_pn=; PUT s2_cdf=; PUT;

 s3_pb = PROBIT(0.9772498681);
 s3_q = QUANTILE("NORMAL", 0.9772498681, 0, 1);
 s3_pn = PROBNORM(2);
 s3_cdf = CDF("NORMAL", 2, 0, 1);
 PUT s3_pb=; PUT s3_q=; PUT s3_pn=; PUT s3_cdf=; PUT;

 s4_pb = PROBIT(1);
 s4_q = QUANTILE("NORMAL", 1, 0, 1);
 s4_pn = PROBNORM(1.797693E308);
 s4_cdf = CDF("NORMAL", 1.797693E308, 0, 1);
 PUT s4_pb=; PUT s4_q=; PUT s4_pn=; PUT s4_cdf=; PUT;

RUN;

This produces the following output:

s1_pb=0
s1_q=0
s1_pn=0.5
s1_cdf=0.5

s2_pb=-1
s2_q=-1
s2_pn=0.1586552539
s2_cdf=0.1586552539

s3_pb=2.0000000009
s3_q=2.0000000009
s3_pn=0.9772498681
s3_cdf=0.9772498681

s4_pb=1.797693E308
s4_q=.
s4_pn=1
s4_cdf=1

Each call to PROBIT (q) returns the value of the quantile function at point q for a distribution with
mean 0 and standard deviation 1.

In most cases, the call to QUANTILE("NORMAL",q,0,1) returns the same result as the call to
PROBIT(q). But the upper limit of q for the PROBIT function is 1, whereas the upper limit of q for the
QUANTILE function is strictly less than 1. So PROBIT(1) returns a large positive value in s4_pb, but
QUANTILE("NORMAL",1,0,1) returns a missing value in s4_q.

Each call to PROBNORM(x) sets x to the value returned from PROBIT(q). Since the value returned
from PROBIT(q) is the point, x, where the value of the cumulative density function is q, the value
returned from PROBNORM(x) is q, the cumulative density at point x. This is the value that was originally
passed to PROBIT.

Each call to CDF("NORMAL",x,0,1) returns the same result as the call to PROBNORM(x).

Reference for language elements
Version 4.1

1202

DEVIANCE – NORMAL

Returns the deviance of the Normal distribution at a specified point, based on the distribution mean.
This function is an alias of DEVIANCE – GAUSSIAN.

DEVIANCE ("NORMAL" , x , mu)

Keyword NORMAL is an alias of GAUSSIAN, see DEVIANCE – GAUSSIAN (page 964).

Calculates the deviance, or goodness of fit, for the generalised linear model of the Normal distribution
at point x based on the distribution mean μ (mu).

Return type: Numeric

If the wrong number of arguments are supplied, a missing value is returned.

x

Type: Numeric

The point at which to calculate the deviance.

If the argument contains a missing value, a missing value is returned.

mu

Type: Numeric

The distribution mean.

If the argument contains a missing value, a missing value is returned.

RAND – NORMAL

Returns a random number from the Normal distribution based on the mean and variance of the
distribution. This function is similar to RANNOR, NORMAL and CALL RANNOR.

RAND ("NORMAL" ,
mean , variance

)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

Reference for language elements
Version 4.1

1203

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

mean
Optional argument

Type: Numeric

The mean of the distribution.

variance
Optional argument

Type: Numeric

The variance of the distribution from the mean.

Example
In this example, a random number from the Normal distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("NORMAL", 10,5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-1.746420844
15.469459744
11.235358351
10.304586073
2.0368974722

Running the DATA step again produces the following output.

The random numbers are:
0.3816704915
0.3473201428
0.372621443
0.3732903865
0.4076553479

Reference for language elements
Version 4.1

1204

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(111);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("NORMAL", 10,5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.3234328459
12.179231016
12.846849506
16.768044651
12.22727412

Running the DATA step again produces the same output.

RANNOR

Returns a random number from the Normal distribution based on the mean and variance of the
distribution. This function is an alias of NORMAL. This function is similar to RAND – NORMAL and
CALL RANNOR.

RANNOR (seed)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1205

Example
In this example, a random number from the Normal distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANNOR(50);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2772581053
-0.059269116
1.7234339317
-0.520585025
1.0438066355

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANNOR(0);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.4764823646
-0.011249625
1.8130791752
0.5788490731
0.0289116327

Running the DATA step again produces the following output.

The random numbers are:
2.1501094753
0.2106955146
1.1363975832
-1.689730536
-0.054892306

Reference for language elements
Version 4.1

1206

NORMAL

Returns a random number from the Normal distribution based on the mean and variance of the
distribution. This function is an alias of RANNOR. This function is similar to RAND – NORMAL and
CALL RANNOR.

NORMAL (seed)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Example
In this example, a random number from the Normal distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = NORMAL(50);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2772581053
-0.059269116
1.7234339317
-0.520585025
1.0438066355

Reference for language elements
Version 4.1

1207

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = NORMAL(0);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
-19.05625376
1.2717209805
5.1594876086
-0.221519437
0.7377019906

Running the DATA step again produces the following output.

The random numbers are:
-1.344530874
0.6393523543
0.6405996383
-0.616669531
0.2737123402

CALL RANNOR

Returns a random number from the Normal distribution. This routine is similar to function RAND –
NORMAL, NORMAL and RANNOR.

CALL RANNOR (seed , x) ;

The distribution is parameterised using a mean of 0 and a standard deviation of 1.

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

Reference for language elements
Version 4.1

1208

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Normal distribution is returned on each iteration of the loop
and stored in ranN. The results are written to the log.

DATA _NULL_;
 DO i = 1 TO 5;
 CALL RANNOR(50, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
-1.668967435
0.1304784715
-2.189174283
-1.682275958
-0.564639193

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 CALL RANNOR(0, ranN);
 PUT ranN;
 END;
RUN;

Reference for language elements
Version 4.1

1209

This produces the following output:

The random numbers are:
-1.111876851
0.1786419171
0.4742460052
-0.957077094
1.1507782067

Running the DATA step again produces the following output.

The random numbers are:
-2.668104217
0.2081139588
0.9526697143
0.5769901728
-1.289722773

Normal mixture distribution
Functions for the Normal mixture distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – NORMALMIX ...1211

Returns the value of the probability density function at a specified point for the Normal mixture
distribution with the specified mixture proportions, means and standard deviations. This function
is an alias of PMF – NORMALMIX.

PMF – NORMALMIX .. 1214

Returns the value of the probability mass function at a specified point for the Normal mixture
distribution with the specified mixture proportions, means and standard deviations. This function
is an alias of PDF – NORMALMIX.

Reference for language elements
Version 4.1

1210

LOGPDF – NORMALMIX ... 1216

Returns the value of the natural logarithm of the probability density function at a specified point
for the Normal mixture distribution with the specified mixture proportions, means and standard
deviations. This function is an alias of LOGPMF – NORMALMIX.

LOGPMF – NORMALMIX ...1219

Returns the value of the natural logarithm of the probability mass function at a specified point
for the Normal mixture distribution with the specified mixture proportions, means and standard
deviations. This function is an alias of LOGPDF – NORMALMIX.

CDF – NORMALMIX ...1222

Returns the value of the cumulative density function at a specified point for the Normal mixture
distribution with the specified mixture proportions, means and standard deviations.

LOGCDF – NORMALMIX ... 1225

Returns the value of the natural logarithm of the cumulative density function at a specified point
for the Normal mixture distribution with the specified mixture proportions, means and standard
deviations.

SDF – NORMALMIX ...1228

Returns the value of the survival function at a specified point for the Normal mixture distribution
with the specified mixture proportions, means and standard deviations.

LOGSDF – NORMALMIX ... 1231

Returns the value of the natural logarithm of the survival function at a specified point for
the Normal mixture distribution with the specified mixture proportions, means and standard
deviations.

QUANTILE – NORMALMIX .. 1234

Reference for language elements
Version 4.1

1211

Returns the value of the quantile function at a given point for the Normal mixture distribution with
the specified mixture proportions, means and standard deviations.

PDF – NORMALMIX

Returns the value of the probability density function at a specified point for the Normal mixture
distribution with the specified mixture proportions, means and standard deviations. This function is an
alias of PMF – NORMALMIX.

PDF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

Reference for language elements
Version 4.1

1212

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, PDF – NORMALMIX is called for various mixtures of Normal distributions. The results
are compared with the values calculated from the weighted sums of the values returned by PDF –
NORMAL for the individual Normal distributions. The results are written to the log.

DATA _NULL_;

 s1 = PDF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = PDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = 1 * PDF("NORMAL", 0, 2, 3);
 s4 = 0.3 * PDF("NORMAL", 1.5, 1, 4) + 0.7 * PDF("NORMAL", 1.5, -3, 0.25);
 PUT s3= s4=;

RUN;

This produces the following output:

s1=0.1064826685 s2=0.0296878265
s3=0.1064826685 s4=0.0296878265

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

Reference for language elements
Version 4.1

1213

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Argument errors
In this example, PDF – NORMALMIX is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = PDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = PDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = PDF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = PDF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = PDF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = PDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

Reference for language elements
Version 4.1

1214

PMF – NORMALMIX

Returns the value of the probability mass function at a specified point for the Normal mixture distribution
with the specified mixture proportions, means and standard deviations. This function is an alias of PDF
– NORMALMIX.

PMF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

n

Type: Numeric

Restriction: Must be a positive integer.

Reference for language elements
Version 4.1

1215

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, PMF – NORMALMIX is called for various mixtures of Normal distributions. The results
are compared with the values calculated from the weighted sums of the values returned by PMF –
NORMAL for the individual Normal distributions. The results are written to the log.

DATA _NULL_;

 s1 = PMF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = PMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = 1 * PMF("NORMAL", 0, 2, 3);
 s4 = 0.3 * PMF("NORMAL", 1.5, 1, 4) + 0.7 * PMF("NORMAL", 1.5, -3, 0.25);
 PUT s3= s4=;

RUN;

This produces the following output:

s1=0.1064826685 s2=0.0296878265
s3=0.1064826685 s4=0.0296878265

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

Reference for language elements
Version 4.1

1216

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Argument errors
In this example, PMF – NORMALMIX is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = PMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = PMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = PMF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = PMF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = PMF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = PMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

LOGPDF – NORMALMIX

Returns the value of the natural logarithm of the probability density function at a specified point for the
Normal mixture distribution with the specified mixture proportions, means and standard deviations. This
function is an alias of LOGPMF – NORMALMIX.

LOGPDF ("NORMALMIX" , x , n ,

,

value- list)

Reference for language elements
Version 4.1

1217

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture

Reference for language elements
Version 4.1

1218

• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, LOGPDF – NORMALMIX is called for various mixtures of Normal distributions. The
results are compared with the values calculated from the natural logarithm of the weighted sums of the
values returned by PDF – NORMAL for the individual Normal distributions. The results are written to the
log.

DATA _NULL_;

 s1 = LOGPDF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = LOGPDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = LOG (PDF("NORMAL", 0, 2, 3));
 s4 = LOG (0.3 * PDF("NORMAL", 1.5, 1, 4) + 0.7 * PDF("NORMAL", 1.5, -3, 0.25));
 PUT s3= s4=;

RUN;

This produces the following output:

s1=-2.239773044 s2=-3.517018199
s3=-2.239773044 s4=-3.517018199

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Reference for language elements
Version 4.1

1219

Argument errors
In this example, LOGPDF – NORMALMIX is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGPDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = LOGPDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = LOGPDF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = LOGPDF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = LOGPDF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = LOGPDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

LOGPMF – NORMALMIX

Returns the value of the natural logarithm of the probability mass function at a specified point for the
Normal mixture distribution with the specified mixture proportions, means and standard deviations. This
function is an alias of LOGPDF – NORMALMIX.

LOGPMF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

Reference for language elements
Version 4.1

1220

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

Reference for language elements
Version 4.1

1221

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, LOGPMF – NORMALMIX is called for various mixtures of Normal distributions. The
results are compared with the values calculated from the natural logarithm of the weighted sums of the
values returned by PMF – NORMAL for the individual Normal distributions. The results are written to the
log.

DATA _NULL_;

 s1 = LOGPMF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = LOGPMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = LOG (PMF("NORMAL", 0, 2, 3));
 s4 = LOG (0.3 * PMF("NORMAL", 1.5, 1, 4) + 0.7 * PMF("NORMAL", 1.5, -3, 0.25));
 PUT s3= s4=;

RUN;

This produces the following output:

s1=-2.239773044 s2=-3.517018199
s3=-2.239773044 s4=-3.517018199

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Reference for language elements
Version 4.1

1222

Argument errors
In this example, LOGPMF – NORMALMIX is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGPMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = LOGPMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = LOGPMF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = LOGPMF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = LOGPMF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = LOGPMF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

CDF – NORMALMIX

Returns the value of the cumulative density function at a specified point for the Normal mixture
distribution with the specified mixture proportions, means and standard deviations.

CDF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

Reference for language elements
Version 4.1

1223

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

Reference for language elements
Version 4.1

1224

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, CDF – NORMALMIX is called for various mixtures of Normal distributions. The results
are compared with the values calculated from the weighted sums of the values returned by CDF –
NORMAL for the individual Normal distributions. The results are written to the log.

DATA _NULL_;

 s1 = CDF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = CDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = CDF("NORMAL", 0, 2, 3);
 s4 = 0.3 * CDF("NORMAL", 1.5, 1, 4) + 0.7 * CDF("NORMAL", 1.5, -3, 0.25);
 PUT s3= s4=;

RUN;

This produces the following output:

s1=0.2524925375 s2=0.8649214674
s3=0.2524925375 s4=0.8649214674

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Reference for language elements
Version 4.1

1225

Argument errors
In this example, CDF – NORMALMIX is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = CDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = CDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = CDF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = CDF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = CDF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = CDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

LOGCDF – NORMALMIX

Returns the value of the natural logarithm of the cumulative density function at a specified point for the
Normal mixture distribution with the specified mixture proportions, means and standard deviations.

LOGCDF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

Reference for language elements
Version 4.1

1226

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

Reference for language elements
Version 4.1

1227

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, LOGCDF – NORMALMIX is called for various mixtures of Normal distributions. The
results are compared with the values calculated from the natural logarithm of the weighted sums of the
values returned by CDF – NORMAL for the individual Normal distributions. The results are written to the
log.

DATA _NULL_;

 s1 = LOGCDF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = LOGCDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = LOG (CDF("NORMAL", 0, 2, 3));
 s4 = LOG (0.3 * CDF("NORMAL", 1.5, 1, 4) + 0.7 * CDF("NORMAL", 1.5, -3, 0.25));
 PUT s3= s4=;

RUN;

This produces the following output:

s1=-1.376373585 s2=-0.145116565
s3=-1.376373585 s4=-0.145116565

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Reference for language elements
Version 4.1

1228

Argument errors
In this example, LOGCDF – NORMALMIX is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGCDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = LOGCDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = LOGCDF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = LOGCDF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = LOGCDF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = LOGCDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

SDF – NORMALMIX

Returns the value of the survival function at a specified point for the Normal mixture distribution with the
specified mixture proportions, means and standard deviations.

SDF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

Reference for language elements
Version 4.1

1229

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the value of the survival function.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

Reference for language elements
Version 4.1

1230

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, SDF – NORMALMIX is called for various mixtures of Normal distributions. The results
are compared with the values calculated from the weighted sums of the values returned by SDF –
NORMAL for the individual Normal distributions. The results are written to the log.

DATA _NULL_;

 s1 = SDF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = SDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = SDF("NORMAL", 0, 2, 3);
 s4 = 0.3 * SDF("NORMAL", 1.5, 1, 4) + 0.7 * SDF("NORMAL", 1.5, -3, 0.25);
 PUT s3= s4=;

RUN;

This produces the following output:

s1=0.7475074625 s2=0.1350785326
s3=0.7475074625 s4=0.1350785326

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Reference for language elements
Version 4.1

1231

Argument errors
In this example, SDF – NORMALMIX is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = SDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = SDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = SDF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = SDF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = SDF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = SDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

LOGSDF – NORMALMIX

Returns the value of the natural logarithm of the survival function at a specified point for the Normal
mixture distribution with the specified mixture proportions, means and standard deviations.

LOGSDF ("NORMALMIX" , x , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

Reference for language elements
Version 4.1

1232

The calculated value for the Normal mixture distribution is

 =

where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

• is the weight that the ith Normal distribution contributes to the mixture

• is the mean of the ith Normal distribution in the mixture

• is the standard deviation of the ith Normal distribution in the mixture

•

• for .

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival function.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

Reference for language elements
Version 4.1

1233

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Basic example
In this example, LOGSDF – NORMALMIX is called for various mixtures of Normal distributions. The
results are compared with the values calculated from the natural logarithm of the weighted sums of the
values returned by SDF – NORMAL for the individual Normal distributions. The results are written to the
log.

DATA _NULL_;

 s1 = LOGSDF("NORMALMIX", 0, 1, 1, 2, 3);
 s2 = LOGSDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s1= s2=;

 s3 = LOG (SDF("NORMAL", 0, 2, 3));
 s4 = LOG (0.3 * SDF("NORMAL", 1.5, 1, 4) + 0.7 * SDF("NORMAL", 1.5, -3, 0.25));
 PUT s3= s4=;

RUN;

This produces the following output:

s1=-0.291010991 s2=-2.001898947
s3=-0.291010991 s4=-2.001898947

Variable s1 contains the value at for a Normal mixture distribution consisting of a single
component with unit weighting, a mean of 2 and a standard deviation of 3.

Variable s2 contains the value at for a Normal mixture distribution consisting of two components
() with weightings of 0.3 and 0.7, means of 1 and -3 and standard deviations of 4 and 0.25.

For comparison, variables s3 and s4 contain the values for the same two mixtures of Normal
distributions as above. Here, the values are calculated directly using weighted sums of the equivalent
Normal distributions. Variable s3 uses the value at for a single Normal distribution with a mean of
2 and a standard deviation of 3. Variable s4 uses the sum of:

• the value at for a Normal distribution with a mean of 1 and a standard deviation of 4,
multiplied by a weighting factor of 0.3

• the value at for a Normal distribution with a mean of -3 and a standard deviation of 0.25,
multiplied by a weighting factor of 0.7

In this example, s1 and s3 are identical and s2 and s4 are identical.

Reference for language elements
Version 4.1

1234

Argument errors
In this example, LOGSDF – NORMALMIX is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = LOGSDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = LOGSDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = LOGSDF("NORMALMIX", 1.5, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = LOGSDF("NORMALMIX", 1.5, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = LOGSDF("NORMALMIX", 1.5, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

 s6 = LOGSDF("NORMALMIX", 1.5, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

QUANTILE – NORMALMIX

Returns the value of the quantile function at a given point for the Normal mixture distribution with the
specified mixture proportions, means and standard deviations.

QUANTILE ("NORMALMIX" , q , n ,

,

value- list)

The Normal mixture distribution is a mixture distribution that is derived as the sum of multiple distinct
Normal distributions, each with a specified mean and standard deviation, combined in specified
proportions.

Argument n specifies the number of Normal distributions in the mixture and argument value-list
specifies the weights, means and standard deviations of the individual distributions in the mixture.

Reference for language elements
Version 4.1

1235

The calculated value, x, for the Normal mixture distribution is

 =

where , inf{x} (infinium) is the greatest lower bound of x, and is the cumulative
density function of the Normal mixture distribution where

• n is the number of components in the mixture
• W is a vector containing the weights to associate with each component in the mixture
• μ is a vector containing the means of the components in the mixture

• σ is a vector containing the standard deviations of the components in the mixture

Return type: Numeric

q

Type: Numeric

Restriction:

The probability value for which to calculate the quantile.

If the argument is out of range, a missing value is returned.

n

Type: Numeric

Restriction: Must be a positive integer.

The number of components in the mixture.

If the argument is out of range, a missing value is returned.

value-list

Type: Numeric

A list of numbers specifying the composition of the mixture, and containing, in this order:

• n values specifying the weights to apply to each of the n Normal distributions in the mixture
• n values specifying the means of each of the n Normal distributions in the mixture
• n values specifying the standard deviations of each of the n Normal distributions in the

mixture

The list must contain exactly 3n items; otherwise a missing value is returned.

The sum of the weights must be exactly 1; otherwise a missing value is returned.

Each standard deviation must be greater than 0 (zero); otherwise a missing value is returned.

Reference for language elements
Version 4.1

1236

Basic example
In this example, QUANTILE – NORMALMIX is called for different mixtures of Normal distributions. The
returned values are then passed to CDF – NORMALMIX for the same mixture distributions. The results
are written to the log.

DATA _NULL_;

 s1 = QUANTILE("NORMALMIX", 0.75, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 s2 = QUANTILE("NORMALMIX", 0.95, 3, 0.2, 0.3, 0.5, 0, 1, 2, 1, 2, 3);
 PUT s1= s2=;

 s3 = CDF("NORMALMIX", s1, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 s4 = CDF("NORMALMIX", s2, 3, 0.2, 0.3, 0.5, 0, 1, 2, 1, 2, 3);
 PUT s3= s4=;

RUN;

This produces the following output:

s1=-2.437161099 s2=5.9172964047
s3=0.75 s4=0.95

Variable s1=-2.437161099 is the value returned by QUANTILE – NORMALMIX for q=0.75 for a Normal
mixture consisting of two components (N=2). The mixture has weightings 0.3 and 0.7, means 1 and -3
and standard deviations 4 and 0.25.

Variable s2 is the value returned by QUANTILE – NORMALMIX for for a Normal mixture
consisting of three components (N=3). The mixture has weightings 0.2, 0.3 and 0.5, means 0, 1 and -2
and standard deviations 1, 2 and 3.

As a comparison, variables s3 and s4 contain the results of passing s1 and s2 to CDF – NORMALMIX.
As QUANTILE – NORMALMIX and CDF – NORMALMIX are inverse functions, the values returned
from CDF – NORMALMIX are the same as the values originally passed to QUANTILE – NORMALMIX.

Argument errors
In this example, QUANTILE – NORMALMIX is called with various combinations of invalid arguments.
The results are written to the log.

DATA _NULL_;

 s1 = QUANTILE("NORMALMIX", 0.8649214674, 2, 0.3, 0.7, 1, -3, 4, 0.25, 1);
 PUT s1=;

 s2 = QUANTILE("NORMALMIX", 0.8649214674, 2, 0.3, 0.7, 1, -3, 4);
 PUT s2=;

 s3 = QUANTILE("NORMALMIX", 0.8649214674, 0, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s3=;
 s4 = QUANTILE("NORMALMIX", 0.8649214674, -1, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s4=;

 s5 = QUANTILE("NORMALMIX", 0.8649214674, 2, 0.3, 0.8, 1, -3, 4, 0.25);
 PUT s5=;

Reference for language elements
Version 4.1

1237

 s6 = QUANTILE("NORMALMIX", 0.8649214674, 2, 0.3, 0.7, 1, -3, -4, 0.25);
 PUT s6=;

 s7 = QUANTILE("NORMALMIX", 0, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s7;
 s8 = QUANTILE("NORMALMIX", -1, 2, 0.3, 0.7, 1, -3, 4, 0.25);
 PUT s8=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example specifies a Normal mixture distribution with two components (), then provides
seven more arguments instead of six. The second example also specifies a Normal mixture distribution
with two components, but only provides five more arguments instead of six.

The third and fourth examples specify invalid values for n (and respectively). The fifth
example has weights that don't sum to unity (0.3 and 0.8), and the sixth example has an invalid
standard deviation of -4.

The seventh and eighth examples specify invalid values for q (and respectively).

Pareto distribution
Functions for the Pareto distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – PARETO ..1238
Returns the probability density of the Pareto distribution. This function is an alias of PMF –
PARETO.

PMF – PARETO ... 1239
Returns the probability mass of the Pareto distribution. This function is an alias of PDF –
PARETO.

LOGPDF – PARETO .. 1239
Returns the natural logarithm of the probability density of the Pareto distribution. This function is
an alias of LOGPMF – PARETO.

LOGPMF – PARETO ..1240
Returns the natural logarithm of the probability mass of the Pareto distribution. This function is
an alias of LOGPDF – PARETO.

Reference for language elements
Version 4.1

1238

CDF – PARETO ..1240
Returns the cumulative density of the Pareto distribution.

LOGCDF – PARETO .. 1241
Returns the natural logarithm of the cumulative density of the Pareto distribution.

SDF – PARETO ..1241
Returns the survival of the Pareto distribution.

LOGSDF – PARETO .. 1242
Returns the natural logarithm of the survival of the Pareto distribution.

QUANTILE – PARETO ... 1243
Returns the quantile of the Pareto distribution.

RAND – PARETO ...1243
Returns a random number from the Pareto distribution based on the shape.

PDF – PARETO

Returns the probability density of the Pareto distribution. This function is an alias of PMF – PARETO.

PDF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1239

PMF – PARETO

Returns the probability mass of the Pareto distribution. This function is an alias of PDF – PARETO.

PMF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGPDF – PARETO

Returns the natural logarithm of the probability density of the Pareto distribution. This function is an
alias of LOGPMF – PARETO.

LOGPDF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

alpha

Type: Numeric

Reference for language elements
Version 4.1

1240

lambda
Optional argument

Type: Numeric

LOGPMF – PARETO

Returns the natural logarithm of the probability mass of the Pareto distribution. This function is an alias
of LOGPDF – PARETO.

LOGPMF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

CDF – PARETO

Returns the cumulative density of the Pareto distribution.

CDF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

1241

The point at which to calculate the cumulative density.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGCDF – PARETO

Returns the natural logarithm of the cumulative density of the Pareto distribution.

LOGCDF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

SDF – PARETO

Returns the survival of the Pareto distribution.

SDF ("PARETO" , x , alpha

, lambda

)

Reference for language elements
Version 4.1

1242

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGSDF – PARETO

Returns the natural logarithm of the survival of the Pareto distribution.

LOGSDF ("PARETO" , x , alpha

, lambda

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1243

QUANTILE – PARETO

Returns the quantile of the Pareto distribution.

QUANTILE ("PARETO" , q , alpha

, lambda

)

Return type: Numeric

q

Type: Numeric

alpha

Type: Numeric

lambda
Optional argument

Type: Numeric

RAND – PARETO

Returns a random number from the Pareto distribution based on the shape.

RAND ("PARETO" , shape)

This function does not take any variable arguments.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

Reference for language elements
Version 4.1

1244

shape

Type: Numeric

The shape of the distribution.

Example
In this example, a random number from the Pareto distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("PARETO", 15);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.1368619062
1.0627707892
1.0061861723
1.0720440322
1.0517167879

Running the DATA step again produces the following output.

The random numbers are:
1.1761579249
1.0538461792
1.0696985308
1.0637153245
1.0401712807

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(12);
 DO i = 1 TO 5;
 result = RAND("PARETO", 15);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.0365897645
1.0258496779
1.0765356555
1.0116339965
1.0525305894

Reference for language elements
Version 4.1

1245

Running the DATA step again produces the same output.

Poisson distribution
Functions and CALL routines for the Poisson distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – POISSON .. 1247

Returns the probability mass for a Poisson distribution for a specified number of events and
mean rate of occurrence. This function is an alias of PMF – POISSON.

PMF – POISSON ..1249

Returns the probability mass for a Poisson distribution for a specified number of events and
mean rate of occurrence. This function is an alias of PDF – POISSON.

LOGPDF – POISSON ...1251

Returns the natural logarithm of the probability mass for a Poisson distribution for a specified
number of events and mean rate of occurrence. This function is an alias of LOGPMF –
POISSON.

LOGPMF – POISSON .. 1253

Returns the natural logarithm of the probability mass for a Poisson distribution for a specified
number of events and mean rate of occurrence. This function is an alias of LOGPDF –
POISSON.

CDF – POISSON .. 1255

Returns the cumulative density for a Poisson distribution up to a specified maximum number of
events and mean rate of occurrence. This function is similar to POISSON.

Reference for language elements
Version 4.1

1246

POISSON .. 1257

Returns the cumulative density for a Poisson distribution up to a specified maximum number of
events and mean rate of occurrence. This function is similar to CDF – POISSON.

LOGCDF – POISSON ...1259

Returns the natural logarithm of the cumulative density for a Poisson distribution up to a specified
maximum number of events and mean rate of occurrence.

SDF – POISSON .. 1261

Returns the survival density for a Poisson distribution for a specified minimum number of events
and mean rate of occurrence.

LOGSDF – POISSON ...1263

Returns the natural logarithm of the survival density for a Poisson distribution, for a specified
minimum number of events and mean rate of occurrence.

QUANTILE – POISSON ..1265

Returns the quantile for a Poisson distribution for a given cumulative density and mean rate of
occurrence.

DEVIANCE – POISSON ... 1267

Returns the deviance of the Poisson distribution at a specified point, based on the distribution
mean.

RAND – POISSON ... 1269
Returns a random number from the Poisson distribution based on the mean. This function is
similar to RANPOI and CALL RANPOI.

RANPOI ...1271
Returns a random number from the Poisson distribution based on the mean. This function is
similar to RAND – POISSON and CALL RANPOI.

CALL RANPOI .. 1272
Returns a random number from the Poisson distribution based on the mean. This routine is
similar to function RAND – POISSON and RANPOI.

Reference for language elements
Version 4.1

1247

PDF – POISSON

Returns the probability mass for a Poisson distribution for a specified number of events and mean rate
of occurrence. This function is an alias of PMF – POISSON.

PDF ("POISSON" , n , lambda)

The probability density function (PDF) for the Poisson distribution gives the probability of a specified
number of events n occurring in a time period, given their mean rate of occurrence λ (lambda) in that
same time period. The probability density function is defined as:

Return type: Numeric

n

Type: Numeric

The number of events for which to return the probability mass. This should be specified for the
same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = PDF("POISSON", 1, 1);
PUT S1=;
S2 = PDF("POISSON", 0, 1);
PUT S2=;
RUN;

This produces the following output:

S1=0.3678794412
S2=0.3678794412

The first example returns the probability mass for 1 event occurring if the rate of occurrence is 1. The
second example repeats this for 0 events, showing that the result is the same.

Reference for language elements
Version 4.1

1248

Example – rate of occurrence
DATA _NULL_;
S3 = PDF("POISSON", 1, 3);
PUT S3=;
S4 = PDF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=0.1493612051
S4=0.0148725131

These two examples show the effect of an increasing rate of occurrence on probability mass.

Example – number of events
DATA _NULL_;
S5 = PDF("POISSON", 3, 1);
PUT S5=;
S6 = PDF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=0.0613132402
S6=0.0005109437

These two examples show the effect of an increasing number of events on probability mass.

Example – decimal values
DATA _NULL_;
S7 = PDF("POISSON", 1, 0.4);
PUT S7=;
S8 = PDF("POISSON", 1.1, 1);
PUT S8=;
RUN;

This produces the following output:

S7=0.2681280184
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

Reference for language elements
Version 4.1

1249

PMF – POISSON

Returns the probability mass for a Poisson distribution for a specified number of events and mean rate
of occurrence. This function is an alias of PDF – POISSON.

PMF ("POISSON" , n , lambda)

The probability mass function (PMF) for a Poisson distribution gives the probability of a specified
number of events n occurring in a time period, given their mean rate of occurrence λ (lambda) in that
same time period. The probability mass function is defined as:

Return type: Numeric

n

Type: Numeric

The number of events for which to return the probability mass. This should be specified for the
same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = PMF("POISSON", 1, 1);
PUT S1=;
S2 = PMF("POISSON", 0, 1);
PUT S2=;
RUN;

This produces the following output:

S1=0.3678794412
S2=0.3678794412

The first example gives the probability mass for 1 event occurring if the rate of occurrence is 1, whilst
the second example repeats this for 0 events, showing that the result is the same.

Reference for language elements
Version 4.1

1250

Example – rate of occurrence
DATA _NULL_;
S3 = PMF("POISSON", 1, 3);
PUT S3=;
S4 = PMF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=0.1493612051
S4=0.0148725131

These two examples show the effect of an increasing rate of occurrence on probability mass.

Example – number of events
DATA _NULL_;
S5 = PMF("POISSON", 3, 1);
PUT S5=;
S6 = PMF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=0.0613132402
S6=0.0005109437

These two examples show the effect of an increasing number of events on probability mass.

Example – decimal values
DATA _NULL_;
S7 = PMF("POISSON", 1, 0.4);
PUT S7=;
S8 = PMF("POISSON", 1.1, 1);
PUT S8=;
RUN;

This produces the following output:

S7=0.2681280184
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

Reference for language elements
Version 4.1

1251

LOGPDF – POISSON

Returns the natural logarithm of the probability mass for a Poisson distribution for a specified number of
events and mean rate of occurrence. This function is an alias of LOGPMF – POISSON.

LOGPDF ("POISSON" , n , lambda)

The natural logarithm of the probability density function (LOGPDF) for a Poisson distribution gives
the natural logarithm of the probability of a specified number of events n occurring in a time period,
given their mean rate of occurrence λ (lambda) in that same time period. The natural logarithm of the
probability density function is defined as:

Return type: Numeric

n

Type: Numeric

The number of events for which to return the natural logarithm of the probability mass. This
should be specified for the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = LOGPDF("POISSON", 1, 1);
PUT S1=;
S2 = LOGPDF("POISSON", 0, 1);
PUT S2=;
RUN;

This produces the following output:

S1=-1
S2=-1

Reference for language elements
Version 4.1

1252

The first example gives the natural logarithm of the probability mass for 1 event occurring if the rate of
occurrence is 1. The second example repeats this for 0 events, showing that the result is the same.

Example – rate of occurrence
DATA _NULL_;
S3 = LOGPDF("POISSON", 1, 3);
PUT S3=;
S4 = LOGPDF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=-1.901387711
S4=-4.208240531

These two examples show the effect of an increasing rate of occurrence on the natural logarithm of the
probability mass.

Example – number of events
DATA _NULL_;
S5 = LOGPDF("POISSON", 3, 1);
PUT S5=;
S6 = LOGPDF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=-2.791759469
S6=-7.579251212

These two examples show the effect of an increasing number of events on the natural logarithm of the
probability mass.

Example – decimal values
DATA _NULL_;
S7 = LOGPDF("POISSON", 1, 0.4);
PUT S7=;
S8 = LOGPDF("POISSON", 1.1, 1);
PUT S8=;
RUN;

This produces the following output:

S7=-1.316290732
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

Reference for language elements
Version 4.1

1253

LOGPMF – POISSON

Returns the natural logarithm of the probability mass for a Poisson distribution for a specified number of
events and mean rate of occurrence. This function is an alias of LOGPDF – POISSON.

LOGPMF ("POISSON" , n , lambda)

The natural logarithm of the probability mass function (LOGPMF) for a Poisson distribution gives
the natural logarithm of the probability of a specified number of events n occurring in a time period,
given their mean rate of occurrence λ (lambda) in that same time period. The natural logarithm of the
probability mass function is defined as:

Return type: Numeric

n

Type: Numeric

The number of events for which to return the natural logarithm of the probability mass. This
should be specified for the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = LOGPMF("POISSON", 1, 1);
PUT S1=;
S2 = LOGPMF("POISSON", 0, 1);
PUT S2=;
RUN;

This produces the following output:

S1=-1
S2=-1

Reference for language elements
Version 4.1

1254

The first example gives the natural logarithm of the probability mass for 1 event occurring if the rate of
occurrence is 1. The second example repeats this for 0 events, showing that the result is the same.

Example – rate of occurrence
DATA _NULL_;
S3 = LOGPMF("POISSON", 1, 3);
PUT S3=;
S4 = LOGPMF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=-1.901387711
S4=-4.208240531

These two examples show the effect of an increasing rate of occurrence on the natural logarithm of the
probability mass.

Example – number of events
DATA _NULL_;
S5 = LOGPMF("POISSON", 3, 1);
PUT S5=;
S6 = LOGPMF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=-2.791759469
S6=-7.579251212

These two examples show the effect of an increasing number of events on the natural logarithm of the
probability mass.

Example – decimal values
DATA _NULL_;
S7 = LOGPMF("POISSON", 1, 0.4);
PUT S7=;
S8 = LOGPMF("POISSON", 1.1, 1);
PUT S8=;
RUN;

This produces the following output:

S7=-1.316290732
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

Reference for language elements
Version 4.1

1255

CDF – POISSON

Returns the cumulative density for a Poisson distribution up to a specified maximum number of events
and mean rate of occurrence. This function is similar to POISSON.

CDF ("POISSON" , n , lambda)

The cumulative density function (CDF) for a Poisson distribution gives the probability of occurrence of
up to and including a specified maximum number of events n in a time period, given their mean rate of
occurrence λ (lambda) in that same time period. The cumulative density function is defined as:

Return type: Numeric

n

Type: Numeric

The upper limit of events for which to return the cumulative density. This should be specified for
the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = CDF("POISSON", 1, 1);
PUT S1=;
S2 = CDF("POISSON", 1, 3);
PUT S2=;
RUN;

This produces the following output:

S1=0.7357588823
S2=0.1991482735

Reference for language elements
Version 4.1

1256

The first example gives the cumulative density for 1 event, which is equivalent to the probability of both
0 events and 1 event occurring. This is calculated with a rate of occurrence of 1. The second example
triples the rate of occurrence of events, reducing the cumulative density.

Example – rate of occurrence
DATA _NULL_;
S3 = CDF("POISSON", 1, 3);
PUT S3=;
S4 = CDF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=0.1991482735
S4=0.0173512652

These two examples show the effect of an increasing rate of occurrence on cumulative density, given
the same number of events.

Example – number of events
DATA _NULL_;
S5 = CDF("POISSON", 3, 1);
PUT S5=;
S6 = CDF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=0.9810118431
S6=0.9999167589

These two examples show the effect of an increasing number of events on the cumulative density,
given the same rate of occurrence.

Example – decimal values
DATA _NULL_;
 S7 = CDF("POISSON", 1, 0.4);
 PUT S7=;
 S8 = CDF("POISSON", 1.1, 0);
 PUT S8=;
RUN;

This produces the following output:

S7=0.9384480644
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

Reference for language elements
Version 4.1

1257

POISSON

Returns the cumulative density for a Poisson distribution up to a specified maximum number of events
and mean rate of occurrence. This function is similar to CDF – POISSON.

POISSON (lambda , n)

Note:
Function POISSON differs from CDF – POISSON in the order of its arguments.

The Poisson function gives the cumulative density for a Poisson distribution. The cumulative density
is defined as the probability of occurrence of up to and including a specified maximum number of
events n in a time period, given their mean rate of occurrence λ (lambda) in that same time period. The
cumulative density function is defined as:

Return type: Numeric

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

n

Type: Numeric

The upper limit of events for which to return the cumulative density. This should be specified for
the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = POISSON(1, 1);
PUT S1=;
S2 = POISSON(3, 1);
PUT S2=;
RUN;

Reference for language elements
Version 4.1

1258

This produces the following output:

S1=0.7357588823
S2=0.1991482735

The first example gives the cumulative density for 1 event, which is equivalent to the probability of both
0 events and 1 event occurring. This is calculated with a rate of occurrence of 1. The second example
triples the rate of occurrence of events, reducing the cumulative density.

Example – rate of occurrence
DATA _NULL_;
S3 = POISSON(3, 1);
PUT S3=;
S4 = POISSON(6, 1);
PUT S4=;
RUN;

This produces the following output:

S3=0.1991482735
S4=0.0173512652

These two examples show the effect of an increasing rate of occurrence on cumulative density, given
the same number of events.

Example – number of events
DATA _NULL_;
S5 = POISSON(1, 3);
PUT S5=;
S6 = POISSON(1, 6);
PUT S6=;
RUN;

This produces the following output:

S5=0.9810118431
S6=0.9999167589

These two examples show the effect of an increasing number of events on cumulative density, given
the same rate of occurrence.

Example – decimal values
DATA _NULL_;
 S7 = POISSON(0.4, 1);
 PUT S7=;
 S8 = POISSON(0, 1.1);
 PUT S8=;
RUN;

Reference for language elements
Version 4.1

1259

This produces the following output:

S7=0.9384480644
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

LOGCDF – POISSON

Returns the natural logarithm of the cumulative density for a Poisson distribution up to a specified
maximum number of events and mean rate of occurrence.

LOGCDF ("POISSON" , n , lambda)

The natural logarithm of the cumulative density function (LOGCDF) for a Poisson distribution gives the
natural logarithm of the probability of occurrence of up to and including a specified maximum number of
events n in a time period, given their mean rate of occurrence λ (lambda) in that same time period. The
natural logarithm of the cumulative density function is defined as:

Return type: Numeric

n

Type: Numeric

The upper limit of events for which to return the natural logarithm of the cumulative density. This
should be specified for the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1260

Basic example
DATA _NULL_;
S1 = LOGCDF("POISSON", 1, 1);
PUT S1=;
S2 = LOGCDF("POISSON", 1, 3);
PUT S2=;
RUN;

This produces the following output:

S1=-0.306852819
S2=-1.613705639

The first example gives the natural logarithm of the cumulative density for 1 event, which is equivalent
to the natural logarithm of the probability of both 0 events and 1 event occurring. This is calculated with
a rate of occurrence of 1. The second example triples the rate of occurrence of events, reducing the
result.

Example – rate of occurrence
DATA _NULL_;
S3 = LOGCDF("POISSON", 1, 3);
PUT S3=;
S4 = LOGCDF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=-1.613705639
S4=-4.054089851

These two examples show the effect of an increasing rate of occurrence on the natural logarithm of the
cumulative density, given the same number of events.

Example – number of events
DATA _NULL_;
S5 = LOGCDF("POISSON", 3, 1);
PUT S5=;
S6 = LOGCDF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=-0.019170747
S6=-0.000083245

These two examples show the effect of an increasing number of events on the natural logarithm of the
cumulative density, given the same rate of occurrence.

Reference for language elements
Version 4.1

1261

Example – decimal values
DATA _NULL_;
 S7 = LOGCDF("POISSON", 1, 0.4);
 PUT S7=;
 S8 = LOGCDF("POISSON", 1.1, 0);
 PUT S8=;
RUN;

This produces the following output:

S7=-0.063527763
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

SDF – POISSON

Returns the survival density for a Poisson distribution for a specified minimum number of events and
mean rate of occurrence.

SDF ("POISSON" , n , lambda)

The survival density function (SDF) for a Poisson distribution gives the probability of more than a
specified number of events n occurring in a time period, given their mean rate of occurrence λ (lambda)
in that same time period. The survival density function is defined as:

Return type: Numeric

n

Type: Numeric

The start of the range of events for which to return the survival density. This should be specified
for the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Reference for language elements
Version 4.1

1262

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = SDF("POISSON", 1, 1);
PUT S1=;
S2 = SDF("POISSON", 1, 3);
PUT S2=;
RUN;

This produces the following output:

S1=0.2642411177
S2=0.8008517265

The first example above gives the survival density for 1 event, which is the probability of 2 or more
events occurring. This is calculated with a rate of occurrence of 1. The second example triples the rate
of occurrence of events, greatly increasing the survival density.

Example – rate of occurrence
DATA _NULL_;
S3 = SDF("POISSON", 1, 3);
PUT S3=;
S4 = SDF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=0.8008517265
S4=0.9826487348

These two examples show the effect of an increasing rate of occurrence on survival density, given the
same number of events.

Example – number of events
DATA _NULL_;
S5 = SDF("POISSON", 3, 1);
PUT S5=;
S6 = SDF("POISSON", 6, 1);
PUT S6=;
RUN;

This produces the following output:

S5=0.0189881569
S6=0.0000832411

These two examples show the effect of an increasing number of events on the survival density, given
the same rate of occurrence.

Reference for language elements
Version 4.1

1263

Example – decimal values
DATA _NULL_;
 S7 = SDF("POISSON", 1, 0.4);
 PUT S7=;
 S8 = SDF("POISSON", 1.1, 0);
 PUT S8=;
RUN;

This produces the following output:

S7=0.0615519356
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

LOGSDF – POISSON

Returns the natural logarithm of the survival density for a Poisson distribution, for a specified minimum
number of events and mean rate of occurrence.

LOGSDF ("POISSON" , n , lambda)

The natural logarithm of the survival density function (LOGSDF) for a Poisson distribution gives the
natural logarithm of the probability of more than a specified number of events n occurring in a time
period, given their mean rate of occurrence λ (lambda) in that same time period. The natural logarithm
of the survival density function is defined as:

Return type: Numeric

n

Type: Numeric

The start of the range of events for which to return the natural logarithm of the survival density.
This should be specified for the same time period as lambda, the mean rate of occurrence.

Restriction: n ≥ 0 and must be integer

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Reference for language elements
Version 4.1

1264

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as n, the number of events.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Example – basic example
DATA _NULL_;
S1 = LOGSDF("POISSON", 1, 1);
PUT S1=;
S2 = LOGSDF("POISSON", 1, 3);
PUT S2=;
RUN;

This produces the following output:

S1=-1.330893268
S2=-0.22207946

The first example above gives the the natural logarithm of the survival density for 1 event, which is
the natural logarithm of the probability of 2 or more events occurring. This is calculated with a rate of
occurrence of 1. The second example triples the rate of occurrence of events, increasing the natural
logarithm of the survival density.

Example – rate of occurrence
DATA _NULL_;
S3 = LOGSDF("POISSON", 1, 3);
PUT S3=;
S4 = LOGSDF("POISSON", 1, 6);
PUT S4=;
RUN;

This produces the following output:

S3=-0.22207946
S4=-0.017503563

These two examples show the effect of an increasing rate of occurrence on survival density, given the
same number of events.

Example – number of events
DATA _NULL_;
S5 = LOGSDF("POISSON", 3, 1);
PUT S5=;
S6 = LOGSDF("POISSON", 6, 1);
PUT S6=;
RUN;

Reference for language elements
Version 4.1

1265

This produces the following output:

S5=-3.963939816
S6=-9.39376875

These two examples show the effect of an increasing number of events on the survival density, given
the same rate of occurrence.

Example – decimal values
DATA _NULL_;
 S7 = LOGSDF("POISSON", 1, 0.4);
 PUT S7=;
 S8 = LOGSDF("POISSON", 1.1, 0);
 PUT S8=;
RUN;

This produces the following output:

S7=-2.78787398
S8=.

These examples show the use of decimal values. The first example uses a decimal rate of occurrence,
which is permitted. The second example uses a decimal number of occurrences, which is not permitted
and therefore returns a missing value.

QUANTILE – POISSON

Returns the quantile for a Poisson distribution for a given cumulative density and mean rate of
occurrence.

QUANTILE ("POISSON" , q , lambda)

The quantile for a cumulative density q gives the smallest positive integer number of events n that
results in that cumulative density in a time period, for a specified mean rate of occurrence λ (lambda) in
that same time period.

where inf{x} is the greatest lower bound of x (infimum) and CDF(x) refers to the cumulative density
function of the Poisson distribution (see section CDF – POISSON (page 1255)).

Return type: Numeric

q

Type: Numeric

Reference for language elements
Version 4.1

1266

The cumulative probability density for which to calculate the quantile. This should be specified for
the same time period as lambda, the mean rate of occurrence.

Restriction: 0 ≤ q < 1

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

The mean rate of occurrence that defines this Poisson distribution. This should be specified for
the same time period as q, the cumulative probability density.

Restriction: lambda > 0

If the argument is out of range, a missing value is returned.

Basic example
DATA _NULL_;
S1 = QUANTILE("POISSON", 0.6288369352, 4);
PUT S1=;
S2 = QUANTILE("POISSON", 0.9196986029, 1);
PUT S2=;
S3 = QUANTILE("POISSON", 0.8, 1);
PUT S3=;
RUN;

This produces the following output:

S1=5
S2=2
S3=2

The first two examples use the exact cumulative density required to give values of n of 5 and 2
respectively. The third example is the same as the second example, but the cumulative density is
reduced from 0.92 to 0.8, and the value of n returned is the same, because it is still the smallest positive
integer value corresponding to this cumulative density.

Example – cumulative density of zero
DATA _NULL_;
S4 = QUANTILE("POISSON", 0, 4);
PUT S4=;
RUN;

This produces the following output:

S4=0;

This example specifies a cumulative density of zero, which will always return a value for n of zero.

Reference for language elements
Version 4.1

1267

Example – invalid syntax
DATA _NULL_;
 S5 = QUANTILE("POISSON", 0, 0);
 PUT S5=;
 S6 = QUANTILE("POISSON", 1.1, 4);
 PUT S6=;
RUN;

This produces the following output:

S5=.
S6=.

These examples are both invalid and return a missing value; the first example because of a zero value
for λ, and the second because q is greater than 1.

DEVIANCE – POISSON

Returns the deviance of the Poisson distribution at a specified point, based on the distribution mean.

DEVIANCE ("POISSON" , x , mu

, epsilon

)

Calculates the deviance, or goodness of fit, for the generalised linear model of the Poisson distribution
at a nonnegative point x based on the distribution mean μ (mu). An optional range correction
parameter ε (epsilon) can be specified. If ε > 0.01, it is set equal to 0.01. If it is not specified or if
ε < 10-12, the value of 10-12 is used for correction. The distribution mean is then adjusted so that
μ ≥ ε:

This adjusted value of μ is used in the subsequent calculation of the deviance.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the deviance.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1268

mu

Type: Numeric

The distribution mean.

Expected: μ > 0. Values not within this range are corrected to fall in this range; this behaviour is
however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

epsilon
Optional argument

Type: Numeric

The range correction parameter.

Default: ε = 10-12

Expected: 10-12 < ε < 0.01. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

Examples – applying correction to the distribution mean
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("POISSON", 0.1, 0.0007, 0.0005);
 PUT g1=;
 g2 = DEVIANCE("POISSON", 0.1, 0.0007, 0.0010);
 PUT g2=;
 g3 = DEVIANCE("POISSON", 0.1, 0.0007, 0.0015);
 PUT g3=;
 g4 = DEVIANCE("POISSON", 0.1, 0.0007);
 PUT g4=;
RUN;

This produces the following output:

g1=0.793769026
g2=0.7230340372
g3=0.6429410156
g4=0.793769026

The value of the distribution mean is not corrected in the first example because μ > ε. However,
this condition does not hold in the second and third example, and correction is applied: μ = ε. This
corrected value is used for calculation, yielding different results.
In the fourth example the ε parameter is omitted, so the default value of ε = 10-12 is used. Here, as in
the first example, μ > ε, so no correction is required.

Reference for language elements
Version 4.1

1269

Examples – parallel scaling
In these examples, the deviance is returned. The results are written to the log.

DATA _NULL_;
 g1 = DEVIANCE("POISSON", 0.01, 0.07);
 PUT g1=;
 g2 = DEVIANCE("POISSON", 0.1 , 0.7);
 PUT g2=;
 g3 = DEVIANCE("POISSON", 1 , 7);
 PUT g3=;
RUN;

This produces the following output:

g1=0.081081797
g2=0.8108179702
g3=8.1081797019

For the Poisson distribution, when both the point of measurement x and the distribution mean μ are
scaled with the same factor, the deviance is scaled with the same factor too.

RAND – POISSON

Returns a random number from the Poisson distribution based on the mean. This function is similar to
RANPOI and CALL RANPOI.

RAND ("POISSON" , mean)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is a positive integer or zero.

mean

Type: Numeric

The mean of the distribution.

Reference for language elements
Version 4.1

1270

Example
In this example, a random number from the Poisson distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("POISSON", 21);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
22
25
18
22
23

Running the DATA step again produces the following output.

The random numbers are:
18
24
22
18
19

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(9);
 DO i = 1 TO 5;
 result = RAND("POISSON", 21);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
23
18
26
23
13

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

1271

RANPOI

Returns a random number from the Poisson distribution based on the mean. This function is similar to
RAND – POISSON and CALL RANPOI.

RANPOI (seed , mean)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

The return value is a positive integer or zero.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

mean

Type: Numeric

The mean of the distribution.

This must be a positive number. If a negative number is used, a missing value is returned from
the function, and a note indicating that the argument is invalid is written to the log.

Example
In this example, a random number from the Poisson distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANPOI(10, 50);
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1272

This produces the following output:

The random numbers are:
57
54
72
52
44

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANPOI(0, 50);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
40
48
44
62
44

Running the DATA step again produces the following output.

The random numbers are:
49
54
56
41
58

CALL RANPOI

Returns a random number from the Poisson distribution based on the mean. This routine is similar to
function RAND – POISSON and RANPOI.

CALL RANPOI (seed , mean , x) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

Reference for language elements
Version 4.1

1273

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The return value is a positive integer or zero.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

mean

Type: Numeric

The mean of the distribution.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Poisson distribution is returned on each iteration of the
loop and stored in ranN. The results are written to the log.

DATA _NULL_;
 DO i = 1 TO 5;
 call ranpoi(10, 1, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
2
1
5
1
0

Running the DATA step again produces the following output.

Reference for language elements
Version 4.1

1274

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call ranpoi(0, 1, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
0
1
1
1
0

Running the DATA step again produces the following output.

The random numbers are:
0
3
2
1
0

Power distribution
Functions for the Power distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – POWER ... 1275
Returns the probability density of the Power distribution. This function is an alias of PMF –
POWER.

PMF – POWER ...1276
Returns the probability mass of the Power distribution. This function is an alias of PDF –
POWER.

Reference for language elements
Version 4.1

1275

LOGPDF – POWER ... 1276
Returns the natural logarithm of the probability density of the Power distribution. This function is
an alias of LOGPMF – POWER.

LOGPMF – POWER ... 1277
Returns the natural logarithm of the probability mass of the Power distribution. This function is
an alias of LOGPDF – POWER.

CDF – POWER ...1277
Returns the cumulative density of the Power distribution.

LOGCDF – POWER ... 1278
Returns the natural logarithm of the cumulative density of the Power distribution.

SDF – POWER ... 1278
Returns the survival of the Power distribution.

LOGSDF – POWER ... 1279
Returns the natural logarithm of the survival of the Power distribution.

QUANTILE – POWER .. 1280
Returns the quantile of the Power distribution.

RAND – POWER .. 1280
Returns a random number from the Power distribution based on the shape.

PDF – POWER

Returns the probability density of the Power distribution. This function is an alias of PMF – POWER.

PDF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1276

PMF – POWER

Returns the probability mass of the Power distribution. This function is an alias of PDF – POWER.

PMF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

LOGPDF – POWER

Returns the natural logarithm of the probability density of the Power distribution. This function is an
alias of LOGPMF – POWER.

LOGPDF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

alpha

Type: Numeric

Reference for language elements
Version 4.1

1277

scale
Optional argument

Type: Numeric

LOGPMF – POWER

Returns the natural logarithm of the probability mass of the Power distribution. This function is an alias
of LOGPDF – POWER.

LOGPMF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

CDF – POWER

Returns the cumulative density of the Power distribution.

CDF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

1278

The point at which to calculate the cumulative density.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

LOGCDF – POWER

Returns the natural logarithm of the cumulative density of the Power distribution.

LOGCDF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

SDF – POWER

Returns the survival of the Power distribution.

SDF ("POWER" , x , alpha

, scale

)

Reference for language elements
Version 4.1

1279

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

LOGSDF – POWER

Returns the natural logarithm of the survival of the Power distribution.

LOGSDF ("POWER" , x , alpha

, scale

)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1280

QUANTILE – POWER

Returns the quantile of the Power distribution.

QUANTILE ("POWER" , q , alpha

, scale

)

Return type: Numeric

q

Type: Numeric

alpha

Type: Numeric

scale
Optional argument

Type: Numeric

RAND – POWER

Returns a random number from the Power distribution based on the shape.

RAND ("POWER" , shape)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

shape

Type: Numeric

Reference for language elements
Version 4.1

1281

The shape of the distribution.

Example
In this example, a random number from the Power distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("POWER", 5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.9213691046
0.8019731289
0.784980668
0.7568561993
0.9939329395

Running the DATA step again produces the following output.

The random numbers are:
0.9315627133
0.7662125504
0.9704090536
0.8353239284
0.8949201734

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(12);
 DO i = 1 TO 5;
 result = RAND("POWER", 5);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.8977992771
0.9262939355
0.801520703
0.9658946335
0.8576218172

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

1282

Rayleigh distribution
Functions for the Rayleigh distribution.

RAND – RAYLEIGH ... 1282
Returns a random number from the Rayleigh distribution.

RAND – RAYLEIGH

Returns a random number from the Rayleigh distribution.

RAND ("RAYLEIGH")

The distribution is parameterised using a scale of 2.0.

This function does not take any variable arguments.

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

Example
In this example, a random number from the Rayleigh distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("RAYLEIGH");
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1283

This produces the following output:

The random numbers are:
1.8860668102
1.6524286007
1.8905569244
0.983327276
1.5175924268

Running the DATA step again produces the following output.

The random numbers are:
2.0536582778
1.9443191378
0.9008592528
1.3204158219
0.362170589

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(12);
 DO i = 1 TO 5;
 result = RAND("RAYLEIGH");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1.0383099623
0.8750066843
1.4874289125
0.5890715218
1.239322594

Running the DATA step again produces the same output.

Student's T distribution
Functions for the Student's T distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

Reference for language elements
Version 4.1

1284

PDF – T .. 1284
Returns the probability density of the Student's T distribution. This function is an alias of PMF –
T.

PMF – T .. 1285
Returns the probability mass of the Student's T distribution. This function is an alias of PDF – T.

LOGPDF – T ...1285
Returns the natural logarithm of the probability density of the Student's T distribution. This
function is an alias of LOGPMF – T.

LOGPMF – T .. 1286
Returns the natural logarithm of the probability mass of the Student's T distribution. This
function is an alias of LOGPDF – T.

CDF – T .. 1286
Returns the cumulative density of the Student's T distribution.

LOGCDF – T ...1286
Returns the natural logarithm of the cumulative density of the Student's T distribution.

SDF – T .. 1287
Returns the survival of the Student's T distribution.

LOGSDF – T ...1287
Returns the natural logarithm of the survival of the Student's T distribution.

QUANTILE – T ..1288
Returns the quantile of the Student's T distribution.

PROBT .. 1288

TINV .. 1289

RAND – T ... 1289
Returns a random number from the Student's T distribution based on the number of degrees of
freedom.

PDF – T

Returns the probability density of the Student's T distribution. This function is an alias of PMF – T.

PDF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

Reference for language elements
Version 4.1

1285

df

Type: Numeric

PMF – T

Returns the probability mass of the Student's T distribution. This function is an alias of PDF – T.

PMF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

df

Type: Numeric

LOGPDF – T

Returns the natural logarithm of the probability density of the Student's T distribution. This function is
an alias of LOGPMF – T.

LOGPDF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

df

Type: Numeric

Reference for language elements
Version 4.1

1286

LOGPMF – T

Returns the natural logarithm of the probability mass of the Student's T distribution. This function is an
alias of LOGPDF – T.

LOGPMF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

df

Type: Numeric

CDF – T

Returns the cumulative density of the Student's T distribution.

CDF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

df

Type: Numeric

LOGCDF – T

Returns the natural logarithm of the cumulative density of the Student's T distribution.

LOGCDF ("T" , x , df)

Reference for language elements
Version 4.1

1287

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the cumulative density.

df

Type: Numeric

SDF – T

Returns the survival of the Student's T distribution.

SDF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

df

Type: Numeric

LOGSDF – T

Returns the natural logarithm of the survival of the Student's T distribution.

LOGSDF ("T" , x , df)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

Reference for language elements
Version 4.1

1288

df

Type: Numeric

QUANTILE – T

Returns the quantile of the Student's T distribution.

QUANTILE ("T" , q , df)

Return type: Numeric

q

Type: Numeric

df

Type: Numeric

PROBT

PROBT (x , df
, nc

)

Return type: Numeric

x

Type: Numeric

df

Type: Numeric

nc
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1289

TINV

TINV (probability , degree- of- freedom
, nc

)

Return type: Numeric

probability

Type: Numeric

degree-of-freedom

Type: Numeric

nc
Optional argument

Type: Numeric

RAND – T

Returns a random number from the Student's T distribution based on the number of degrees of
freedom.

RAND ("T" , degrees- of- freedom)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

degrees-of-freedom

Type: Numeric

The number of degrees of freedom.

Reference for language elements
Version 4.1

1290

Example
In this example, a random number from the Student's T distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("T", 10);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.1970340178
2.2774759968
0.7133708614
1.6070218831
-0.539787121

Running the DATA step again produces the following output.

The random numbers are:
1.4278503855
-1.424301771
-0.525567429
1.1571239401
-0.379811436

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(20);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("T", 10);
 PUT result;
 END;
run

This produces the following output:

The random numbers are:
-0.037470678
0.3981560865
1.3624854501
2.4989899483
-0.798725141

Running the DATA step again produces the same output.

Reference for language elements
Version 4.1

1291

Table distribution
Functions and CALL routines for the Table distribution.

RAND – TABLE .. 1291
Returns a random number from the Table distribution based on the probabilities for each
category. This function is similar to RANTBL and CALL RANTBL.

RANTBL .. 1293
Returns a random number from the Table distribution based on the probabilities for each
category. This function is similar to RAND – TABLE and CALL RANTBL.

CALL RANTBL .. 1298
Returns a random number from the Table distribution based on the probabilities for each
category. This routine is similar to function RAND – TABLE and RANTBL.

RAND – TABLE

Returns a random number from the Table distribution based on the probabilities for each category.
This function is similar to RANTBL and CALL RANTBL.

RAND ("TABLE" ,

,

probability)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

The number returned will be the number randomly of a selected category. If the probabilities sum to
1, an ordinal number will be applied to each probability in the order they are specified. For example,
in rantbl(5, 0.75,0.25) the 0.75 probability will be assigned to category 1, and 0.25 assigned
to category 2. The random numbers returned would then be either 1 or 2, and would be expected to
occur, on average, 75% and 25% of the time respectively. If you specified rantbl(5, 0.25, 0.25,
0.5, 0.25):

• The first 0.25 probability will be assigned to category 1
• The second 0.25 probability assigned to category 2
• The 0.5 probability assigned to category 3
• The final 0.25 probability to category 4

Reference for language elements
Version 4.1

1292

The random numbers returned would then be in the range 1 through 4; the numbers 1, 2 and 4 would
appear, on average, 25% of the time, while the number 3 would appear, on average 50% of the time.

If the numbers sum to less than 1, then a category is created that represents the probability required to
sum to 1. For example, rantbl(5,0.5,0.2,0.1) would result in four categories, with the number 4
assigned to the probability 0.2 that would be required to sum the probabilities to 1.

If the numbers sum to greater than 1, the result depends on which of the arguments caused the
probability to sum to 1. If it is the final argument, then the category assigned will only represent
the probability required to sum to 1. For example, rantbl(5,0.5,0.3,0.3) would result in
three categories, with the number 3 assigned the probability 0.2 that would be required to sum the
probabilities to 1; that is, 3 would only be expected to be returned 20% of the time, rather than 30%
of the time. If the probabilities sum to 1 before the final argument, then the arguments beyond the
argument that causes the probabilities to sum to 1 are discarded. For example, if you specified
rantbl(5,0.6,0.6,0.3,0.2), only two categories would be specified: category 1 with a probability
of occurring, on average, 60% of the time, and 2 occurring, on average, 40% of the time.

Return type: Numeric

probability

Type: Numeric

A probability from the table probability.

Example
In this example, a random number from the Table distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("TABLE",0.2,0.5,0.2,0.1);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1
3
3
3
1

Reference for language elements
Version 4.1

1293

Running the DATA step again produces the following output.

The random numbers are:
3
2
2
3
2

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 PUT "The random numbers are:";
 CALL STREAMINIT(9);
 DO i = 1 TO 5;
 result = result = RAND("TABLE",0.7);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
3
2
3
2
1
2
2
4
2
2

Running the DATA step again produces the same output.

RANTBL

Returns a random number from the Table distribution based on the probabilities for each category.
This function is similar to RAND – TABLE and CALL RANTBL.

RANTBL (seed ,

,

prob)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

Reference for language elements
Version 4.1

1294

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

The number returned will be the number of a randomly selected category. If the probabilities sum to
1, an ordinal number will be applied to each probability in the order they are specified. For example,
in rantbl(5, 0.75,0.25) the 0.75 probability will be assigned to category 1, and 0.25 assigned
to category 2. The random numbers returned would then be either 1 or 2, and would be expected to
occur, on average, 75% and 25% of the time respectively. If you specified rantbl(5, 0.25, 0.25,
0.5, 0.25):

• The first 0.25 probability will be assigned to category 1
• The second 0.25 probability assigned to category 2
• The 0.5 probability assigned to category 3
• The final 0.25 probability to category 4

The random numbers returned would then be in the range 1 through 4; the numbers 1, 2 and 4 would
appear, on average, 25% of the time, while the number 3 would appear, on average 50% of the time.

If the numbers sum to less than 1, then a category is created that represents the probability required to
sum to 1. For example, rantbl(5,0.5,0.2,0.1) would result in four categories, with the number 4
assigned to the probability 0.2 that would be required to sum the probabilities to 1.

If the numbers sum to greater than 1, the result depends on which of the arguments caused the
probability to sum to 1. If it is the final argument, then the category assigned will only represent
the probability required to sum to 1. For example, rantbl(5,0.5,0.3,0.3) would result in
three categories, with the number 3 assigned the probability 0.2 that would be required to sum the
probabilities to 1; that is, 3 would only be expected to be returned 20% of the time, rather than 30%
of the time. If the probabilities sum to 1 before the final argument, then the arguments beyond the
argument that causes the probabilities to sum to 1 are discarded. For example, if you specified
rantbl(5,0.6,0.6,0.3,0.2), only two categories would be specified: category 1 with a probability
of occurring, on average, 60% of the time, and 2 occurring, on average, 40% of the time.

Return type: Numeric

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

prob

Type: Numeric

A discrete probability.

Reference for language elements
Version 4.1

1295

Basic example
In this example, a random number from the Table distribution is returned on each iteration of the loop.
The result is written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 10;
 result = RANTBL(5, 0.25, 0.25, 0.5, 0.25);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
3
3
3
2
3
3
3
3
1
2

Running the DATA step again produces the following output.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANTBL(0, 0.7, 0.2, 0.1);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
1
1
2
1
3

Running the DATA step again produces the following output.

The random numbers are:
3
1
1
1
1

Reference for language elements
Version 4.1

1296

Example – probabililities sum to greater than 1
In this example, probabilities sum to more than 1. The result is written to the log.

DATA _NULL_;
 o = 0;
 x = 0;
 y = 0;

 average_x=0;
 average_y=0;

 toax=0;
 toay=0;
 overall_average_x=0;
 overall_average_y=0;
 m = 0;

 DO k = 1 TO 100;

 DO i = 1 TO 500;
 result = RANTBL(0, 0.6, 0.6, 0.3, 0.2);
 if result = 1 then x = x + 1;
 if result = 2 then y = y + 1;
 o = o + 1;
 END;

 average_x = x/o*100;
 average_y = y/o*100;

 overall_average_x = overall_average_x + average_x;
 overall_average_y = overall_average_y + average_y;

 m = m + 1;

 END;

 toax = overall_average_x/m;
 toay = overall_average_y/m;

 put "Average occurrence of 1 = " toax;
 put "Average occurrence of 2 = " toay;

RUN;

This produces the following output:

Average occurrence of 1 = 60.109367963
Average occurrence of 2 = 39.890632037

The last two probabilities in the list of arguments provided to the function are ignored, as the list of
probabilities sum to greater than 1. The second argument (0.6) is instead given the value 0.4 so that
the probabilities sum to 1. Only two values are then returned, 1 and 2. 1 will be returned, on average,
60% of the time, matching the specified argument of 0.6, while the 2 will be returned 40% of the time,
matching the redefined second argument. The values returned by the example match these averages.

Reference for language elements
Version 4.1

1297

Example – probabililities sum to less than 1
In this example, probabilities sum to less than 1. The result is written to the log.

DATA _NULL_;

 m = 0;
 o = 0;
 v = 0;
 w = 0;
 x = 0;
 y = 0;
 average_x = 0;
 average_y = 0;
 average_v = 0;
 average_w = 0;
 toav = 0;
 toaw = 0;
 toax = 0;
 toay = 0;
 overall_average_x = 0;
 overall_average_y = 0;
 overall_average_v = 0;
 overall_average_w = 0;

 DO k = 1 TO 100;

 DO i = 1 TO 500;
 result = RANTBL(0, 0.4, 0.2, 0.2);
 if result = 1 then x = x + 1;
 if result = 2 then y = y + 1;
 if result = 3 then v = v + 1;
 if result = 4 then w = w + 1;
 o = o + 1;
 END;
 average_x = x/o*100;
 average_y = y/o*100;
 average_v = v/o*100;
 average_w = w/o*100;

 overall_average_x = overall_average_x + average_x;
 overall_average_y = overall_average_y + average_y;
 overall_average_w = overall_average_w + average_w;
 overall_average_v = overall_average_v + average_v;
 m = m + 1;

 END;

 toax = overall_average_x/m;
 toay = overall_average_y/m;
 toav = overall_average_v/m;
 toaw = overall_average_w/m;

 put "Average occurrence of 1 = " toax;
 put "Average occurrence of 2 = " toay;
 put "Average occurrence of 3 = " toav;
 put "Average occurrence of 4 = " toaw;

RUN;

Reference for language elements
Version 4.1

1298

This produces the following output:

Average occurrence of 1 = 39.654043034
Average occurrence of 2 = 20.068023606
Average occurrence of 3 = 20.077069785
Average occurrence of 4 = 20.200863575

As the results show, although only three arguments are supplied, results for four categories are
returned. Because the probabilities supplied as arguments to the function sum to less than 1, a fourth
argument is assumed by the function, having a value that causes all probabilities to sum to 1. In this
example, four values are then returned, 1 through 4, where 4 which will be returned, on average, 20%
of the time; that is, the assumed argument is given a probability of 0.2, to make the arguments sum to
1. The values returned by the example the average number of times each category is returned.

CALL RANTBL

Returns a random number from the Table distribution based on the probabilities for each category.
This routine is similar to function RAND – TABLE and RANTBL.

CALL RANTBL (seed ,

,

prob) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The last argument in the list of probabilities is the output parameter where the result is stored.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1299

prob

Type: Numeric

A discrete probability.

The last argument in the list is where the result is stored. The other arguments are not updated.

Basic examples
In this example, a random number from the Table distribution is returned on each iteration of the loop.
The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 10;
 result = CALL RANTBL(5, 0.25, 0.25, 0.5, 0.25);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
4
3
4
1
3
3
3
3
1
1

Running the DATA step again produces the following output.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 10;
 call rantbl(0, 0.4, 0.2, 0.3, 0.1, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
4
3
3
1
1
2
1
1
3
3

Reference for language elements
Version 4.1

1300

Running the DATA step again produces the following output.

TThe random numbers are:
2
1
3
1
1
1
4
2
1
3

Example – probabililities sum to greater than 1
In this example, the probabilities sum to more than 1. The result is written to the log.

DATA _NULL_;
 o = 0;
 x = 0;
 y = 0;
 toax=0;
 toay=0;
 overall_average_x=0;
 overall_average_y=0;
 m = 0;

 DO k = 1 TO 100;

 DO i = 1 TO 500;
 result = CALL RANTBL(0, 0.6, 0.6, 0.3, 0.2);
 if result = 1 then x = x + 1;
 if result = 2 then y = y + 1;
 o = o + 1;
 END;

 overall_average_x = overall_average_x + x/o*100;
 overall_average_y = overall_average_y + y/o*100;

 m = m + 1;

 END;

 toax = overall_average_x/m;
 toay = overall_average_y/m;

 put "Average occurrence of 1 = " toax;
 put "Average occurrence of 2 = " toay;

RUN;

This produces the following output:

Average occurrence of 1 = 60.109367963
Average occurrence of 2 = 39.890632037

Reference for language elements
Version 4.1

1301

The last two probabilities in the list of arguments provided to the function are ignored, as the list of
probabilities sum to greater than 1. The second argument (0.6) is instead given the value 0.4 so that
the probabilities sum to 1. Only two values are then returned, 1 and 2. 1 will be returned, on average,
60% of the time, matching the specified argument of 0.6, while the 2 will be returned 40% of the time,
matching the redefined second argument. The values returned by the example match these averages.

Example – probabililities sum to less than 1
In this example, probabilities sum to less than 1. The result is written to the log.

DATA _NULL_;

 m = 0;
 o = 0;
 v = 0;
 w = 0;
 x = 0;
 y = 0;
 toav = 0;
 toaw = 0;
 toax = 0;
 toay = 0;
 overall_average_x = 0;
 overall_average_y = 0;
 overall_average_v = 0;
 overall_average_w = 0;

 DO k = 1 TO 100;

 DO i = 1 TO 500;
 call rantbl(0, 0.4, 0.2, 0.2, nN);
 if nN = 1 then x = x + 1;
 if nN = 2 then y = y + 1;
 if nN = 3 then v = v + 1;
 if nN = 4 then w = w + 1;
 o = o + 1;
 END;

 overall_average_x = overall_average_x + x/o*100;
 overall_average_y = overall_average_y + y/o*100;
 overall_average_w = overall_average_w + w/o*100;
 overall_average_v = overall_average_v + v/o*100;

 m = m + 1;

 END;

 toax = overall_average_x/m;
 toay = overall_average_y/m;
 toav = overall_average_v/m;
 toaw = overall_average_w/m;

 put "Average occurrence of 1 = " toax;
 put "Average occurrence of 2 = " toay;
 put "Average occurrence of 3 = " toav;
 put "Average occurrence of 4 = " toaw;

RUN;

Reference for language elements
Version 4.1

1302

This produces the following output:

Average occurrence of 1 = 40.554983457
Average occurrence of 2 = 20.050067559
Average occurrence of 3 = 19.616092583
Average occurrence of 4 = 19.778856401

As the results show, although only three arguments are supplied, results are returned for four
categories. Because the probabilities supplied as arguments to the function sum to less than 1, a fourth
argument is assumed by the function, having a value that causes all probabilities to sum to 1. In this
example, four values are then returned, 1 through 4, where 4 which will be returned, on average, 20%
of the time; that is, the assumed argument is given a probability of 0.2, to make the arguments sum to
1. The values returned by the example the average number of times each category is returned.

Triangular distribution
Functions and CALL routines for the Triangular distribution.

RAND – TRIANGLE ..1302
Returns a random number from the Triangular distribution based on the mode. This function is
similar to RANTRI and CALL RANTRI.

RANTRI ... 1304
Returns a random number from the Triangular distribution based on the mode. This function is
similar to RAND – TRIANGLE and CALL RANTRI.

CALL RANTRI ...1306
Returns a random number from the Triangular distribution based on the mode. This routine is
similar to function RAND – TRIANGLE and RANTRI.

RAND – TRIANGLE

Returns a random number from the Triangular distribution based on the mode. This function is similar
to RANTRI and CALL RANTRI.

RAND ("TRIANGLE" , mode)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Reference for language elements
Version 4.1

1303

Return type: Numeric

The return value is between 0 and 1, inclusive.

mode

Type: Numeric

The mode of the distribution.

Example
In this example, a random number from the Triangular distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("TRIANGLE",0.78);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2909909069
0.5297777426
0.2778985607
0.7423049924
0.7418666133

Running the DATA step again produces the following output.

The random numbers are:
0.4241274196
0.5446775117
0.7673564187
0.4422557575
0.7960401493

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(9);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("TRIANGLE",0.78);
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1304

This produces the following output:

The random numbers are:
0.7453581494
0.4475660965
0.8270281223
0.7353654381
0.1505576581

Running the DATA step again produces the same output.

RANTRI

Returns a random number from the Triangular distribution based on the mode. This function is similar
to RAND – TRIANGLE and CALL RANTRI.

RANTRI (seed , mode)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

The return value is between 0 and 1, inclusive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

mode

Type: Numeric

The mode for the triangular distribution.

Reference for language elements
Version 4.1

1305

Example
In this example, a random number from the Triangular distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANTRI(50, 0.34);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2904542769
0.4280975752
0.9238560636
0.8591287731
0.1650570317

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RANTRI(0, 0.34);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.9258540423
0.3679089951
0.8142370697
0.4901708232
0.5053367342

Running the DATA step again produces the following output.

The random numbers are:
0.2809093445
0.2274784681
0.3597153279
0.3133674246
0.7264610997

Reference for language elements
Version 4.1

1306

CALL RANTRI

Returns a random number from the Triangular distribution based on the mode. This routine is similar
to function RAND – TRIANGLE and RANTRI.

CALL RANTRI (seed , mode , x) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The return value is between 0 and 1, inclusive.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

mode

Type: Numeric

The mode of distribution.

x

Type: Numeric

The argument into which the random number is returned.

Reference for language elements
Version 4.1

1307

Example
In this example, a random number from the Triangular distribution is returned on each iteration of the
loop and stored in ranN. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call rantri(50, 0.34, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2904542769
0.4280975752
0.9238560636
0.8591287731
0.1650570317

Running the DATA step again produces the following output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = CALL RANTRI(0);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.461364197
0.8069769932
0.4751027529
0.5706897081
0.412730761

Running the DATA step again produces the following output.

The random numbers are:
0.5723194432
0.357089012
0.5004735172
0.1554828266
0.3989297724

Reference for language elements
Version 4.1

1308

Tweedie distribution
Functions for the Tweedie distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – TWEEDIE .. 1308
PMF – TWEEDIE ..1309
LOGPDF – TWEEDIE ...1309
LOGPMF – TWEEDIE .. 1310
CDF – TWEEDIE .. 1311
LOGCDF – TWEEDIE ...1311
SDF – TWEEDIE .. 1312
LOGSDF – TWEEDIE ...1312
QUANTILE – TWEEDIE ..1313

PDF – TWEEDIE

PDF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1309

phi
Optional argument

Type: Numeric

PMF – TWEEDIE

PMF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

LOGPDF – TWEEDIE

LOGPDF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

Reference for language elements
Version 4.1

1310

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

LOGPMF – TWEEDIE

LOGPMF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1311

CDF – TWEEDIE

CDF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

LOGCDF – TWEEDIE

LOGCDF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

Reference for language elements
Version 4.1

1312

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

SDF – TWEEDIE

SDF ("TWEEDIE" , y , p ,
mu , phi

)

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

LOGSDF – TWEEDIE

LOGSDF ("TWEEDIE" , y , p ,
mu , phi

)

Reference for language elements
Version 4.1

1313

Return type: Numeric

y

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Type: Numeric

QUANTILE – TWEEDIE

QUANTILE ("TWEEDIE" , q , p ,
mu , phi

)

Return type: Numeric

q

Type: Numeric

p

Type: Numeric

mu
Optional argument

Type: Numeric

phi
Optional argument

Reference for language elements
Version 4.1

1314

Type: Numeric

Uniform distribution
Functions and CALL routines for the Uniform distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – UNIFORM ..1315

Returns the probability density of the Uniform distribution at a specified point within the specified
domain limits. This function is an alias of PMF – UNIFORM.

PMF – UNIFORM ... 1317

Returns the probability mass of the Uniform distribution at a specified point within the specified
domain limits. This function is an alias of PDF – UNIFORM.

LOGPDF – UNIFORM .. 1319

Returns the natural logarithm of the probability density of the Uniform distribution at a specified
point within the specified domain limits. This function is an alias of LOGPMF – UNIFORM.

LOGPMF – UNIFORM ..1320

Returns the natural logarithm of the probability mass of the Uniform distribution at a specified
point within the specified domain limits. This function is an alias of LOGPDF – UNIFORM.

CDF – UNIFORM ..1322

Returns the cumulative density of the Uniform distribution at a specified point within the specified
domain limits.

Reference for language elements
Version 4.1

1315

LOGCDF – UNIFORM .. 1323

Returns the natural logarithm of the cumulative density of the Uniform distribution at a specified
point within the specified domain limits.

SDF – UNIFORM ..1325

Returns the survival of the Uniform distribution at a specified point within the specified domain
limits.

LOGSDF – UNIFORM .. 1326

Returns the natural logarithm of the survival of the Uniform distribution at a specified point within
the specified domain limits.

QUANTILE – UNIFORM ... 1328

Returns the quantile of the Uniform distribution for a specified probability value within the
specified domain limits.

RAND – UNIFORM ...1329
Returns a random number from the Uniform distribution. This function is similar to RANUNI,
UNIFORM and CALL RANUNI.

RANUNI ...1331
Returns a random number from the Uniform distribution. This function is an alias of UNIFORM.
This function is similar to RAND – UNIFORM and CALL RANUNI.

UNIFORM ..1333
Returns a random number from the Uniform distribution. This function is an alias of RANUNI.
This function is similar to RAND – UNIFORM and CALL RANUNI.

CALL RANUNI .. 1333
Returns a random number from the Uniform distribution. This routine is similar to function RAND
– UNIFORM, UNIFORM and RANUNI.

PDF – UNIFORM

Returns the probability density of the Uniform distribution at a specified point within the specified
domain limits. This function is an alias of PMF – UNIFORM.

PDF ("UNIFORM" , x ,

lower , upper
)

Reference for language elements
Version 4.1

1316

Calculates the probability density function for the Uniform distribution at point x. The last two arguments
specify domain bounds for point x. If they are omitted, the following defaults are used: lower = 0 and
upper = 1. These optional arguments must be either both specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1317

Examples
In these examples, the probability density of the Uniform distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = PDF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = PDF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = PDF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = PDF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=0.2
s2=0.2
s3=0
s4=0

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

PMF – UNIFORM

Returns the probability mass of the Uniform distribution at a specified point within the specified domain
limits. This function is an alias of PDF – UNIFORM.

PMF ("UNIFORM" , x ,

lower , upper
)

Calculates the probability mass function for the Uniform distribution at point x. The last two arguments
specify domain bounds for point x. If they are omitted, the following defaults are used: lower = 0 and
upper = 1. These optional arguments must be either both specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

Reference for language elements
Version 4.1

1318

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the probability mass of the Uniform distribution is returned. The results are written to
the log.

DATA _NULL_;
 s1 = PMF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = PMF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = PMF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = PMF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=0.2
s2=0.2
s3=0
s4=0

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

Reference for language elements
Version 4.1

1319

LOGPDF – UNIFORM

Returns the natural logarithm of the probability density of the Uniform distribution at a specified point
within the specified domain limits. This function is an alias of LOGPMF – UNIFORM.

LOGPDF ("UNIFORM" , x ,

lower , upper
)

Calculates the natural logarithm of the probability density function for the Uniform distribution at point x.
The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability density.

Restriction: lower ≤ x ≤ upper

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

Reference for language elements
Version 4.1

1320

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability density of the Uniform distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = LOGPDF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = LOGPDF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = LOGPDF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.609437912
s2=-1.609437912
s3=.
s4=.

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

LOGPMF – UNIFORM

Returns the natural logarithm of the probability mass of the Uniform distribution at a specified point
within the specified domain limits. This function is an alias of LOGPDF – UNIFORM.

LOGPMF ("UNIFORM" , x ,

lower , upper
)

Calculates the natural logarithm of the probability mass function for the Uniform distribution at point x.
The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

Reference for language elements
Version 4.1

1321

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the probability mass of the Uniform distribution is returned.
The results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = LOGPMF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = LOGPMF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = LOGPMF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.609437912
s2=-1.609437912
s3=.
s4=.

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

Reference for language elements
Version 4.1

1322

CDF – UNIFORM

Returns the cumulative density of the Uniform distribution at a specified point within the specified
domain limits.

CDF ("UNIFORM" , x ,

lower , upper
)

Calculates the cumulative density function for the Uniform distribution at point x. The last two arguments
specify domain bounds for point x. If they are omitted, the following defaults are used: lower = 0 and
upper = 1. These optional arguments must be either both specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

Reference for language elements
Version 4.1

1323

If the argument is out of range, a missing value is returned.

Examples
In these examples, the cumulative density of the Uniform distribution is returned. The results are written
to the log.

DATA _NULL_;
 s1 = CDF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = CDF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = CDF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = CDF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=0.1
s2=0.8
s3=0
s4=1

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

LOGCDF – UNIFORM

Returns the natural logarithm of the cumulative density of the Uniform distribution at a specified point
within the specified domain limits.

LOGCDF ("UNIFORM" , x ,

lower , upper
)

Calculates the natural logarithm of the cumulative density function for the Uniform distribution at point x.
The last two arguments specify domain bounds for point x. If they are omitted, the following defaults are
used: lower = 0 and upper = 1. These optional arguments must be either both specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

Reference for language elements
Version 4.1

1324

The point at which to calculate the natural logarithm of the cumulative density.

Restriction: x ≥ lower

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the cumulative density of the Uniform distribution is
returned. The results are written to the log.

DATA _NULL_;
 s1 = LOGCDF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = LOGCDF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = LOGCDF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = LOGCDF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=-2.302585093
s2=-0.223143551
s3=.
s4=0

Reference for language elements
Version 4.1

1325

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

SDF – UNIFORM

Returns the survival of the Uniform distribution at a specified point within the specified domain limits.

SDF ("UNIFORM" , x ,

lower , upper
)

Calculates the survival, or the complement to the cumulative density function, for the Uniform
distribution at point x. The last two arguments specify domain bounds for point x. If they are omitted,
the following defaults are used: lower = 0 and upper = 1. These optional arguments must be either both
specified or both omitted.

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the survival.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Reference for language elements
Version 4.1

1326

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the survival of the Uniform distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = SDF("UNIFORM",-0.5,-1,4);
 PUT s1=;
 s2 = SDF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = SDF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = SDF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=0.9
s2=0.2
s3=1
s4=0

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

LOGSDF – UNIFORM

Returns the natural logarithm of the survival of the Uniform distribution at a specified point within the
specified domain limits.

LOGSDF ("UNIFORM" , x ,

lower , upper
)

Calculates the natural logarithm of the survival, or the complement to the cumulative density function,
for the Uniform distribution at point x. The last two arguments specify domain bounds for point x. If they
are omitted, the following defaults are used: lower = 0 and upper = 1. These optional arguments must
be either both specified or both omitted.

 =

Reference for language elements
Version 4.1

1327

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival.

Restriction: x ≤ upper

If the argument is out of range, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the survival of the Uniform distribution is returned. The
results are written to the log.

DATA _NULL_;
 s1 = LOGSDF("UNIFORM",0.5,-1,4);
 PUT s1=;
 s2 = LOGSDF("UNIFORM",3,-1,4);
 PUT s2=;
 s3 = LOGSDF("UNIFORM",-3,-1,4);
 PUT s3=;
 s4 = LOGSDF("UNIFORM",7,-1,4);
 PUT s4=;
RUN;

Reference for language elements
Version 4.1

1328

This produces the following output:

s1=-0.105360516
s2=-1.609437912
s3=0
s4=.

The first and second example show the output when x lies within the domain bounds. The third and
fourth example show the output when x falls outside the domain bounds.

QUANTILE – UNIFORM

Returns the quantile of the Uniform distribution for a specified probability value within the specified
domain limits.

QUANTILE ("UNIFORM" , q ,

lower , upper
)

Calculates the quantile x, or the inverse of the cumulative density function, for the Uniform distribution
for probability value q. The last two arguments specify domain bounds for point x. If they are omitted,
the following defaults are used: lower = 0 and upper = 1. These optional arguments must be either both
specified or both omitted.

The quantile function returns point x such that randomly drawn values from the distribution fall below x
with probability q.

Return type: Numeric

q

Type: Numeric

The probability value for which the quantile is to be calculated.

Restriction: 0 < q < 1

If the argument is out of range or contains a missing value, a missing value is returned.

lower
Optional argument

Type: Numeric

The lower domain bound for point x.

Default: 0

Restriction: lower < upper

If lower is specified, upper must also be specified.

Reference for language elements
Version 4.1

1329

If the argument is out of range, a missing value is returned.

upper
Optional argument

Type: Numeric

The upper domain bound for point x.

Default: 1

Restriction: upper > lower

If upper is specified, lower must also be specified.

If the argument is out of range, a missing value is returned.

Examples
In these examples, the quantile of the Uniform distribution is returned. The results are written to the log.

DATA _NULL_;
 s1 = QUANTILE("UNIFORM",0.1,-1,4);
 PUT s1=;
 s2 = QUANTILE("UNIFORM",0.8,-1,4);
 PUT s2=;
 s3 = QUANTILE("UNIFORM",0,-1,4);
 PUT s3=;
 s4 = QUANTILE("UNIFORM",1,-1,4);
 PUT s4=;
RUN;

This produces the following output:

s1=-0.5
s2=3
s3=.
s4=.

The first and second example show the output when q lies within the domain bounds. The third and
fourth example show the output when q falls outside the domain bounds.

RAND – UNIFORM

Returns a random number from the Uniform distribution. This function is similar to RANUNI, UNIFORM
and CALL RANUNI.

RAND ("UNIFORM")

This function does not take any variable arguments.

Reference for language elements
Version 4.1

1330

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is between 0 and 1, not including the bounds.

Example
In this example, a random number from the Uniform distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("UNIFORM");
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.954524576
0.5654623868
0.0192114085
0.6654482979
0.5257064517

Running the DATA step again produces the following output.

The random numbers are:
0.5894905933
0.3842783501
0.2755029649
0.2809083956
0.8773915851

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(9);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("UNIFORM");
 PUT result;
 END;
RUN;

Reference for language elements
Version 4.1

1331

This produces the following output:

The random numbers are:
0.7122548345
0.2568146291
0.864003316
0.6932850354
0.0290610364

Running the DATA step again produces the same output.

RANUNI

Returns a random number from the Uniform distribution. This function is an alias of UNIFORM. This
function is similar to RAND – UNIFORM and CALL RANUNI.

RANUNI (seed)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

The return value is between 0 and 1, not including the bounds.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1332

Example
In this example, a random number from the Uniform distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result=ranuni(4);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.7398502793
0.8803548626
0.5992972244
0.0375945815
0.6864103115

Running the DATA step again produces the same output.

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result=ranuni(0);
 PUT result;
 END;
RUN;

This produces the following output:

The random numbers are:
0.7800924917
0.3883556134
0.5708876502
0.858912955
0.1047348027

Running the DATA step again produces the following output.

The random numbers are:
0.4455223314
0.9903660994
0.239625964
0.9134768769
0.2687704215

Reference for language elements
Version 4.1

1333

UNIFORM

Returns a random number from the Uniform distribution. This function is an alias of RANUNI. This
function is similar to RAND – UNIFORM and CALL RANUNI.

UNIFORM (seed)

The first time you execute this function within a DATA step, the stream of random numbers is initialised
seed; in all subsequent calls to this function seed is ignored. To generate the same sequence of
random numbers each time the DATA step is executed, set seed to a negative value or zero. To
generate a different sequence of random numbers each time the DATA step is executed, set seed to a
positive value greater than or equal to 1. If the value specified for seed is fractional, it is truncated to the
nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
function, a new random number is generated; this includes the first use of this function within a DATA
step. The first random number is returned immediately after the random stream has been initialised.

Return type: Numeric

The return value is between 0 and 1, not including the bounds.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

CALL RANUNI

Returns a random number from the Uniform distribution. This routine is similar to function RAND –
UNIFORM, UNIFORM and RANUNI.

CALL RANUNI (seed , x) ;

Important:
The argument seed must be specified as a variable. If you specify a literal number here, the routine
might return invalid results.

The first time you execute this routine within a DATA step, the stream of random numbers is initialised
with the specified seed. Every time you update the seed, the stream is re-initialised.

Reference for language elements
Version 4.1

1334

To generate the same sequence of random numbers each time the DATA step is executed, set seed
to a negative value or zero. This enables you to generate several reproducible sequences of random
numbers from the same DATA step. To generate a different sequence of random numbers each time the
DATA step is executed, set seed to a positive value greater than or equal to 1. If the value specified for
seed is fractional, it is truncated to the nearest integer.

The random numbers are generated using the linear congruential generator. Each time you execute this
routine, a new random number is generated; this includes each use with an updated seed. The random
number is generated immediately after the stream has been initialised.

The return value is between 0 and 1, not including the bounds.

seed

Type: Numeric

The number used to initialise the random number generator.

If the argument contains a missing value, a missing value is returned.

x

Type: Numeric

The argument into which the random number is returned.

Example
In this example, a random number from the Uniform distribution is returned on each iteration of the loop
and stored in ranN. The results are written to the log.

DATA _NULL_;
 DO i = 1 TO 5;
 call ranuni(4, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
0.7398502793
0.8803548626
0.5992972244
0.0375945815
0.6864103115

Running the DATA step again produces the following output.

Reference for language elements
Version 4.1

1335

If the initial seed is set to zero, each run of the DATA step produces a different sequence of random
numbers. For example:

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 call ranuni(0, ranN);
 PUT ranN;
 END;
RUN;

This produces the following output:

The random numbers are:
0.2629459092
0.6250730639
0.047694399
0.561057254
0.2579885285

Running the DATA step again produces the following output.

The random numbers are:
0.9078109664
0.448588825
0.8284740643
0.1039238833
0.9260302335

Wald distribution
Functions for the Wald distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – WALD .. 1337

Returns the value of the probability density function at a specified point for the Wald distribution
with the specified shape and mean. This function is an alias of PMF – WALD, PDF – IGAUSS
and PMF – IGAUSS.

Reference for language elements
Version 4.1

1336

PMF – WALD ..1339

Returns the value of the probability mass function at a specified point for the Wald distribution
with the specified shape and mean. This function is an alias of PDF – WALD, PDF – IGAUSS
and PMF – IGAUSS.

LOGPDF – WALD ...1341

Returns the value of the natural logarithm of the probability density function at a specified point
for the Wald distribution with the specified shape and mean. This function is an alias of LOGPMF
– WALD, LOGPDF – IGAUSS and LOGPMF – IGAUSS.

LOGPMF – WALD .. 1344

Returns the value of the natural logarithm of the probability mass function at a specified point for
the Wald distribution with the specified shape and mean. This function is an alias of LOGPDF –
WALD, LOGPDF – IGAUSS and LOGPMF – IGAUSS.

CDF – WALD .. 1346

Returns the value of the cumulative density function at a specified point for the Wald distribution
with the specified shape and mean. This function is an alias of CDF – IGAUSS.

LOGCDF – WALD .. 1349

Returns the value of the natural logarithm of the cumulative density function at a specified point
for the Wald distribution with the specified shape and mean. This function is an alias of LOGCDF
– IGAUSS.

SDF – WALD .. 1351

Returns the value of the survival function at a specified point for the Wald distribution with the
specified shape and mean. This function is an alias of SDF – IGAUSS.

LOGSDF – WALD ...1354

Returns the value of the natural logarithm of the survival function at a specified point for the Wald
distribution with the specified shape and mean. This function is an alias of LOGSDF – IGAUSS.

Reference for language elements
Version 4.1

1337

QUANTILE – WALD ... 1356

Returns the value of the quantile function at a specified point for the Wald distribution with the
specified shape and mean. This function is an alias of QUANTILE – IGAUSS.

DEVIANCE – WALD ... 1359

Returns the deviance of the Wald distribution at a specified point, based on the distribution mean.
This function is an alias of DEVIANCE – IGAUSS.

PDF – WALD

Returns the value of the probability density function at a specified point for the Wald distribution with
the specified shape and mean. This function is an alias of PMF – WALD, PDF – IGAUSS and PMF –
IGAUSS.

PDF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability density.

lambda

Type: Numeric

Restriction: lambda > 0

Reference for language elements
Version 4.1

1338

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, PDF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = PDF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = PDF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = PDF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = PDF("WALD", 3.5, 2, 1);
 PUT s4=;

 s5 = PDF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=0.6429310692
s2=0.0562223942
s3=0.9678828981
s4=0.0144476475
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Reference for language elements
Version 4.1

1339

Argument errors
In this example, PDF – WALD is called with various combinations of invalid arguments. The results are
written to the log.

DATA _NULL_;

 s1 = PDF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = PDF("WALD", 0.5);
 PUT s2=;

 s3 = PDF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = PDF("WALD",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

PMF – WALD

Returns the value of the probability mass function at a specified point for the Wald distribution with
the specified shape and mean. This function is an alias of PDF – WALD, PDF – IGAUSS and PMF –
IGAUSS.

PMF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point x is

 =

Reference for language elements
Version 4.1

1340

Return type: Numeric

x

Type: Numeric

The point at which to calculate the probability mass.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, PMF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = PMF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = PMF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = PMF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = PMF("WALD", 3.5, 2, 1);
 PUT s4=;

 s5 = PMF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

Reference for language elements
Version 4.1

1341

This produces the following output:

s1=0.6429310692
s2=0.0562223942
s3=0.9678828981
s4=0.0144476475
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Argument errors
In this example, PMF – WALD is called with various combinations of invalid arguments. The results are
written to the log.

DATA _NULL_;

 s1 = PMF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = PMF("WALD", 0.5);
 PUT s2=;

 s3 = PMF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = PMF("WALD",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

LOGPDF – WALD

Returns the value of the natural logarithm of the probability density function at a specified point for the
Wald distribution with the specified shape and mean. This function is an alias of LOGPMF – WALD,
LOGPDF – IGAUSS and LOGPMF – IGAUSS.

LOGPDF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

Reference for language elements
Version 4.1

1342

This function is defined for:

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

Restriction: x > 0

The point at which to calculate the natural logarithm of the probability density.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1343

Basic example
In this example, LOGPDF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = LOGPDF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGPDF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGPDF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGPDF("WALD", 3.5, 2, 1);
 PUT s4=;

RUN;

This produces the following output:

s1=-0.441717762
s2=-2.878440129
s3=-0.032644172
s4=-4.237223681

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1.

Argument errors
In this example, LOGPDF – WALD is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;
 s1 = LOGPDF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGPDF("WALD", 0.5);
 PUT s2=;

 s3 = LOGPDF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGPDF("WALD",0.5, 1, 0);
 PUT s4=;

 s5 = LOGPDF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

Reference for language elements
Version 4.1

1344

This produces the following output:

s1=.
s2=.
s3=.
s4=.
s5=M

The first four examples generate a message in the log, and return a missing value. The first example
has too many arguments. The second example has too few arguments. The third example specifies an
invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth example generates a message in the log and returns MISSING_M, the missing value
corresponding to . This example specifies an invalid value for x, which results in an attempt to
calculate the natural logarithm of 0 (zero).

LOGPMF – WALD

Returns the value of the natural logarithm of the probability mass function at a specified point for the
Wald distribution with the specified shape and mean. This function is an alias of LOGPDF – WALD,
LOGPDF – IGAUSS and LOGPMF – IGAUSS.

LOGPMF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for:

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the probability mass.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1345

lambda

Type: Numeric

Restriction: x > 0

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGPMF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = LOGPMF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGPMF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGPMF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGPMF("WALD", 3.5, 2, 1);
 PUT s4=;

RUN;

This produces the following output:

s1=-0.441717762
s2=-2.878440129
s3=-0.032644172
s4=-4.237223681

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1.

Reference for language elements
Version 4.1

1346

Argument errors
In this example, LOGPMF – WALD is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;
 s1 = LOGPMF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGPMF("WALD", 0.5);
 PUT s2=;

 s3 = LOGPMF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGPMF("WALD",0.5, 1, 0);
 PUT s4=;

 s5 = LOGPMF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=.
s2=.
s3=.
s4=.
s5=M

The first four examples generate a message in the log, and return a missing value. The first example
has too many arguments. The second example has too few arguments. The third example specifies an
invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth example generates a message in the log and returns MISSING_M, the missing value
corresponding to . This example specifies an invalid value for x, which results in an attempt to
calculate the natural logarithm of 0 (zero).

CDF – WALD

Returns the value of the cumulative density function at a specified point for the Wald distribution with
the specified shape and mean. This function is an alias of CDF – IGAUSS.

CDF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

Reference for language elements
Version 4.1

1347

This function is defined for

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the cumulative density.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1348

Basic example
In this example, CDF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = CDF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = CDF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = CDF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = CDF("WALD", 3.5, 2, 1);
 PUT s4=;

 s5 = CDF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=0.2492117733
s2=0.8481757552
s3=0.2323571892
s4=0.9888921338
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Argument errors
In this example, CDF – WALD is called with various combinations of invalid arguments. The results are
written to the log.

DATA _NULL_;

 s1 = CDF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = CDF("WALD", 0.5);
 PUT s2=;

 s3 = CDF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = CDF("WALD",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

Reference for language elements
Version 4.1

1349

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

LOGCDF – WALD

Returns the value of the natural logarithm of the cumulative density function at a specified point for the
Wald distribution with the specified shape and mean. This function is an alias of LOGCDF – IGAUSS.

LOGCDF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for:

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

Restriction: x > 0

The point at which to calculate the natural logarithm of the cumulative density.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Reference for language elements
Version 4.1

1350

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGCDF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = LOGCDF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGCDF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGCDF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGCDF("WALD", 3.5, 2, 1);
 PUT s4=;

RUN;

This produces the following output:

s1=-1.389452249
s2=-0.164667406
s3=-1.459479483
s4=-0.011170019

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1.

Reference for language elements
Version 4.1

1351

Argument errors
In this example, LOGCDF – WALD is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = LOGCDF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGCDF("WALD", 0.5);
 PUT s2=;

 s3 = LOGCDF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGCDF("WALD",0.5, 1, 0);
 PUT s4=;

 s5 = LOGCDF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=.
s2=.
s3=.
s4=.
s5=M

The first four examples generate a message in the log, and return a missing value. The first example
has too many arguments. The second example has too few arguments. The third example specifies an
invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth example generates a message in the log and returns MISSING_M, the missing value
corresponding to . This example specifies an invalid value for x, which results in an attempt to
calculate the natural logarithm of 0 (zero).

SDF – WALD

Returns the value of the survival function at a specified point for the Wald distribution with the specified
shape and mean. This function is an alias of SDF – IGAUSS.

SDF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

Reference for language elements
Version 4.1

1352

This function is defined for

The calculated value is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the value of the survival function.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1353

Basic example
In this example, SDF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = SDF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = SDF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = SDF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = SDF("WALD", 3.5, 2, 1);
 PUT s4=;

 s5 = SDF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=0.7507882267
s2=0.1518242448
s3=0.7676428108
s4=0.0111078662
s5=1

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Argument errors
In this example, SDF – WALD is called with various combinations of invalid arguments. The results are
written to the log.

DATA _NULL_;

 s1 = SDF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = SDF("WALD", 0.5);
 PUT s2=;

 s3 = SDF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = SDF("WALD",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

Reference for language elements
Version 4.1

1354

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

LOGSDF – WALD

Returns the value of the natural logarithm of the survival function at a specified point for the Wald
distribution with the specified shape and mean. This function is an alias of LOGSDF – IGAUSS.

LOGSDF ("WALD" , x , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point x is

 =

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm of the survival function.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1355

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Basic example
In this example, LOGSDF – WALD is called for distributions with various distribution parameters. The
results are written to the log.

DATA _NULL_;

 s1 = LOGSDF("WALD", 0.5, 1, 2);
 PUT s1=;
 s2 = LOGSDF("WALD", 3.5, 1, 2);
 PUT s2=;

 s3 = LOGSDF("WALD", 0.5, 2, 1);
 PUT s3=;
 s4 = LOGSDF("WALD", 3.5, 2, 1);
 PUT s4=;

 s5 = LOGSDF("WALD", -0.5, 1, 2);
 PUT s5=;

RUN;

This produces the following output:

s1=-0.286631655
s2=-1.885031712
s3=-0.264430744
s4=-4.500101754
s5=0

The first two examples specify two points in a distribution with a shape parameter (lambda) of 1 and a
mean (mu) of 2. The third and fourth examples specify the same two points in a distribution with shape
parameter 2 and mean 1. The fifth example specifies a negative value for x.

Reference for language elements
Version 4.1

1356

Argument errors
In this example, LOGSDF – WALD is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = LOGSDF("WALD", 0.5, 1, 2, 3);
 PUT s1=;

 s2 = LOGSDF("WALD", 0.5);
 PUT s2=;

 s3 = LOGSDF("WALD", 0.5, 0, 2);
 PUT s3=;

 s4 = LOGSDF("WALD",0.5, 1, 0);
 PUT s4=;

RUN;

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

QUANTILE – WALD

Returns the value of the quantile function at a specified point for the Wald distribution with the specified
shape and mean. This function is an alias of QUANTILE – IGAUSS.

QUANTILE ("WALD" , q , lambda
, mu

)

The Wald distribution is also known as the Inverse Gaussian distribution.

The distribution parameters are λ (lambda), the shape, and μ (mu), the mean. mu is optional. If mu is
not specified, mu defaults to 1.

This function is defined for

The calculated value at point q is

 =

where

•

Reference for language elements
Version 4.1

1357

• inf{x} (infinium) is the greatest lower bound of x

• λ is the shape parameter

• μ is the mean

• is the cumulative density function

Return type: Numeric

q

Type: Numeric

Restriction:

The probability value for which to calculate the quantile.

If the argument is out of range, a missing value is returned.

lambda

Type: Numeric

Restriction: lambda > 0

The shape parameter.

If the argument is out of range, a missing value is returned.

mu
Optional argument

Type: Numeric

Default: 1

Restriction: mu > 0

The mean of the distribution.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1358

Basic example
In this example, QUANTILE – WALD is called twice, with two different probability values from the same
distribution. The returned values are then passed to CDF – WALD for the same distribution. The results
are written to the log.

DATA _NULL_;

 s1 = QUANTILE("WALD", 0.25, 1, 2);
 PUT s1=;
 s2 = QUANTILE("WALD", 0.75, 1, 2);
 PUT s2=;

 s3 = CDF("WALD", s1, 1, 2);
 PUT s3=;
 s4 = CDF("WALD", s2, 1, 2);
 PUT s4=;

RUN;

This produces the following output:

s1=0.5012268362
s2=2.2841739815
s3=0.25
s4=0.75

As QUANTILE – WALD and CDF – WALD are inverse functions, the values returned from CDF –
WALD are the same as those originally passed to QUANTILE – WALD.

Argument errors
In this example, QUANTILE – WALD is called with various combinations of invalid arguments. The
results are written to the log.

DATA _NULL_;

 s1 = QUANTILE("WALD", 0.25, 1, 2, 3);
 PUT s1=;

 s2 = QUANTILE("WALD", 0.25);
 PUT s2=;

 s3 = QUANTILE("WALD", 0.25, 0, 2);
 PUT s3=;

 s4 = QUANTILE("WALD", 0.25, 1, 0);
 PUT s4=;

 s5 = QUANTILE("WALD", 0, 1, 0);
 PUT s5=;

 s6 = QUANTILE("WALD", -1, 1, 0);
 PUT s6=;

RUN;

Reference for language elements
Version 4.1

1359

All these examples generate a message in the log, and return a missing value.

The first example has too many arguments. The second example has too few arguments. The third
example specifies an invalid value for lambda and the fourth example specifies an invalid value for mu.

The fifth and sixth examples specify invalid values for q.

DEVIANCE – WALD

Returns the deviance of the Wald distribution at a specified point, based on the distribution mean. This
function is an alias of DEVIANCE – IGAUSS.

DEVIANCE ("WALD" , x , mu

, epsilon

)

Keyword WALD is an alias of IGAUSS, see DEVIANCE – IGAUSS (page 1040).

Calculates the deviance, or goodness of fit, for the generalised linear model of the Wald distribution at
a nonnegative point x based on the distribution mean μ (mu). An optional range correction parameter
ε (epsilon) can be specified. If ε > 0.01, it is set equal to 0.01. If it is not specified or if ε < 10-12, the
value of 10-12 is used for correction. The distribution mean is then adjusted so that μ ≥ ε:

If x ≥ 0, it is adjusted so that x ≥ ε:

These adjusted values of μ and x are used in the subsequent calculation of the deviance.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the deviance.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

mu

Type: Numeric

The distribution mean.

Reference for language elements
Version 4.1

1360

Expected: μ > 0. Values not within this range are corrected to fall in this range; this behaviour is
however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

epsilon
Optional argument

Type: Numeric

The range correction parameter.

Default: ε = 10-12

Expected: 10-12 < ε < 0.01. Values not within this range are corrected to fall in this range; this
behaviour is however, deprecated, and might be removed in future.

If the argument contains a missing value, a missing value is returned.

Weibull distribution
Functions for the Weibull distribution.

Both the probability density function and the probability mass function are defined for this distribution.
These functions return identical results.

Probability functions are related to each other as follows:

• The cumulative density function is the cumulative version of the probability density function over the
distribution domain.

• The survival function is the complement to the cumulative density function.
• The quantile function is the inverse of the cumulative density function.

PDF – WEIBULL ...1361
PMF – WEIBULL .. 1361
LOGPDF – WEIBULL ... 1362
LOGPMF – WEIBULL ...1362
CDF – WEIBULL ...1363
LOGCDF – WEIBULL ... 1363
SDF – WEIBULL ...1364
LOGSDF – WEIBULL ... 1364
QUANTILE – WEIBULL .. 1365
RAND – WEIBULL ..1365

Returns a random number from the Weibull distribution based on the shape and scale.

Reference for language elements
Version 4.1

1361

PDF – WEIBULL

PDF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

PMF – WEIBULL

PMF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1362

LOGPDF – WEIBULL

LOGPDF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGPMF – WEIBULL

LOGPMF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1363

CDF – WEIBULL

CDF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGCDF – WEIBULL

LOGCDF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1364

SDF – WEIBULL

SDF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

LOGSDF – WEIBULL

LOGSDF ("WEIBULL" , x , k

, lambda

)

Return type: Numeric

x

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1365

QUANTILE – WEIBULL

QUANTILE ("WEIBULL" , q , k

, lambda

)

Return type: Numeric

q

Type: Numeric

k

Type: Numeric

lambda
Optional argument

Type: Numeric

RAND – WEIBULL

Returns a random number from the Weibull distribution based on the shape and scale.

RAND ("WEIBULL" , shape , scale)

Each time you execute this function within a DATA step, a new random number is generated using
the Mersenne Twister algorithm, see: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on
Modeling and Computer Simulation (TOMACS) - Special issue on uniform random number generation
8, no. 1 (1998), 3-30.

If the random stream is not initialised, repeated executions of the same DATA step produce different
sequences of random numbers. To initialise the random stream, use CALL STREAMINIT (page
777) before this function.

Return type: Numeric

The return value is positive.

shape

Type: Numeric

The shape of the distribution.

Reference for language elements
Version 4.1

1366

scale

Type: Numeric

The scale of the distribution.

Example
In this example, a random number from the Weibull distribution is returned on each iteration of the
loop. The results are written to the log.

DATA _NULL_;
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("WEIBULL", 5,20);
 PUT result;
 END;
run

This produces the following output:

The random numbers are:
11.45651107
10.633667085
19.256692236
14.987748594
11.624668812

Running the DATA step again produces the following output.

The random numbers are:
14.192837117
21.534350475
19.95207052
20.571542546
18.188153803

However, if you first use CALL STREAMINIT to specify a seed, then each time you run the DATA step,
it produces the same output.

DATA _NULL_;
 CALL STREAMINIT(9);
 PUT "The random numbers are:";
 DO i = 1 TO 5;
 result = RAND("WEIBULL", 5,20);
 PUT result;
 END;
RUN;;

This produces the following output:

The random numbers are:
1.7506445418
0.5203794406
2.9996140074
1.6572896735
0.1503519974

Reference for language elements
Version 4.1

1367

Running the DATA step again produces the same output.

External file functions
Open and close files that have formats external to WPS, and perform other operations using those files.

WPS and the SAS language create particular kinds of files in which they store datasets. These datasets
are the default type of files written and read. Other file types, known as external files, can also be read.
For example, a Windows text file, or a comma-separated values file can be opened and read and
written to.

When external files are read, records are stored in the File Data Buffer (FDB), which acts as a staging
area between the WPS environment and external files. Records can be obtained from the FDB and
placed in variables. The information in those variables can then be written back to external files, to
datasets, or manipulated in the DATA step. The figure below shows the flow of data through the FDB,
and the four external file functions used to read and write FDB records.

FREAD reads a record from the external file, and puts it into the FDB. You then use FGET to obtain the
record from the FDB an store it in a variable. FPUT puts the data in a variable into the FDB. FWRITE
then writes the data to the external file.

You can perform operations on both folders and files. A folder or file must be first be opened before
use, which creates an identifier that is then used by other functions to identify that file or folder. The
folder or file should be closed after use; this also releases the identifier for use in subsequent open
operations.

DCLOSE ..1369
Closes a folder opened with the DOPEN function, and releases the identifier associated with it.

DCREATE ... 1370
Creates a directory or folder in a specified folder.

DINFO ... 1372
Returns a specified property of the specified folder or directory.

DNUM ..1373
Returns the number of items in a folder.

DOPEN ..1374
Returns an identifier for a specified directory or folder that can then be used in other folder
functions.

DOPTNAME .. 1375
Returns a specified option or property for an open folder.

Reference for language elements
Version 4.1

1368

DOPTNUM .. 1376
Returns the number of properties associated with a specified folder.

DREAD .. 1377
Returns the name of an item in a folder at a specified index position.

DROPNOTE .. 1378
Drops a note previously created using FNOTE, and releases the note identifier.

DSNCATLGD .. 1379
Returns a value that indicates whether the specified dataset is cataloged. (z/OS only).

FCLOSE .. 1380
Closes a file opened with the FOPEN function, and release the identifier associated with it.

FCOL ... 1380
Returns the character (column) position of the file pointer in the current record in the File Data
Buffer.

FDELETE .. 1382
Deletes the specified file.

FEXIST .. 1383
Returns a value that indicates whether a fileref exists, where that fileref has been created using
FILENAME.

FGET ... 1383
Gets a record from the File Data Buffer and puts it into memory.

FILEEXIST ...1388
Returns a value that indicates whether a specified file exists, based on its physical location.

FILENAME ...1389
Creates a reference to a file or fileref that can be used in other external file functions, such as
FOPTNAME and FINFO

FILEREF ..1390
Returns a value indicating whether a specified file reference has been assigned.

FINFO ..1391
Returns the value of a specified property of a file.

FNOTE .. 1392
Returns an identifier for a record in the File Data Buffer. The record can then be located using
FPOINT and the identifier.

FOPEN .. 1393
Returns an identifier for a specified file that can then be used in other file functions to specify the
file.

FOPTNAME ...1396
Returns a specified option or property for an open file.

FOPTNUM ...1397
Returns the number of properties associated with a specified file.

Reference for language elements
Version 4.1

1369

FPOINT ... 1398
Points the file pointer at a record in the File Data Buffer specified by a note identifier. A note
identifier is defined using FNOTE.

FPOS ...1399
Positions the file pointer at the specified column in the current row in the file.

FPUT ... 1401
Puts (writes) a record into the File Data Buffer (FDB).

FREAD .. 1404
Reads a record from a specified file to the File Data Buffer (FDB).

FRECCNT ... 1405
Returns the number of records in a file opened with FOPEN.

FREWIND ..1405
Positions the file pointer before the first record.

FRLEN ...1408
Returns the length of the current record.

FSEP ... 1409
Specifies the separator for the record obtained by an FREAD function.

FWRITE ...1410
Writes a record from the File Data Buffer to a specified file.

MOPEN ... 1413
Returns an identifier for a specified member or file that can then be used in other file functions to
specify the member or file.

PATHNAME ...1415
Returns the full pathname for a folder or filename that has already been specified using
FILENAME or LIBNAME.

SYSMSG ... 1418
Returns an error message for the external file functions.

SYSRC .. 1418
Returns the error code for an external file function.

DCLOSE
Closes a folder opened with the DOPEN function, and releases the identifier associated with it.

DCLOSE (directory- id)

The folder with the specified identifier is closed. An identifier is obtained using the DOPEN (page
1374) function. When the folder is closed, the identifier is released and becomes available to a
subsequent DOPEN function.

Return type: Numeric

Reference for language elements
Version 4.1

1370

0 (zero) is always returned.

directory-id

Type: Numeric

The identifier of a folder previously opened using DOPEN (page 1374).

Example
In this example, the DOPEN function returns an identifier for the specified folder references. The
references are created by the FILENAME function. The folders are closed and the identifiers
deassigned using the DCLOSE function. The result is written to the log.

DATA _NULL_;

 rc = FILENAME("mydir1","C:\");
 dir_id=DOPEN("mydir1");
 PUT "The identifier is: " dir_id;
 y = DCLOSE(dir_id);

 rc = FILENAME("mydir2","c:\temp");
 dir_id=DOPEN("mydir2");
 PUT "The identifier is: " dir_id;
 y = DCLOSE(dir_id);

RUN;

This produces the following output:

The identifier is: 1
The identifier is: 1

In this example:

• The first identifier returned is 1, because C:\ is a valid pathname
• The second identifier returned is 1, because the pathname is valid, and the DCLOSE function was

used before this DOPEN to close the previously opened folder and release the identifier

DCREATE
Creates a directory or folder in a specified folder.

DCREATE (directory- name

, parent- directory

)

Return type: Character

The pathname of the folder created.

Reference for language elements
Version 4.1

1371

directory-name

Type: Character

The name of the folder to be created.

parent-directory
Optional argument

Type: Character

The folder in which you want to create the folder.

If parent-directory is not specified, the pathname of the folder is returned, but no folder is created.

Example
In this example, the function creates a new subfolder in the specified folder. The result is written to the
log.

DATA _NULL_;
 y = DCREATE("test", "c:\temp");
 PUT y= ;
RUN;

This produces the following output:

y=c:\temp\test

In this example, a new folder test is created in the folder C:\temp. The pathname of the new folder is
saved in variable y, enabling you to specify this folder in other functions. In the figures below, you can
see the list of items before the new folder is created, and after the folder is created, respectively.

Reference for language elements
Version 4.1

1372

DINFO
Returns a specified property of the specified folder or directory.

DINFO (directory- id , property)

Each folder or directory has a number of properties or options associated with it, such as the type,
name, and so on. You can get a list of the properties using the DOPTNUM (page 1375) and
DOPTNAME (page 1375) functions, and then use this function to get the value of a property in that list.

The properties available depend on the operating system.

The folder is specified using an identifier generated by DOPEN (page 1374).

Return type: Character

directory-id

Type: Numeric

The identifier of a folder previously opened using DOPEN (page 1374).

property

Type: Character

The name of a property returned by DOPTNAME. The properties returned, and the values
associated with them, depend on the operating system.

Example
In this example, the value of all properties for the specified folder are returned. The number of
properties is first returned using FOPTNUM, the names of the properties are returned using FOPTNAME,
and the values for each property are then returned using FINFO. The result is written to the log.

Reference for language elements
Version 4.1

1373

Note:
On Windows operating systems, the only property available is the folder name.

DATA _NULL_;
 rc = FILENAME("mydir","C:\temp");
 o = DOPEN("mydir");
 x = DOPTNUM(o);
 DO i = 1 TO x;
 y = DOPTNAME(o,i);
 n = DINFO(o, y);
 PUT "The value of the property " y "is: " n;
 END;
RUN;

This produces the following output:

The value of the property Directory is: C:\temp

DNUM
Returns the number of items in a folder.

DNUM (directory- id)

The items in a folder might be subfolders, files, shortcuts, and so on. The count does not include items
in subfolders.

Return type: Numeric

directory-id

Type: Numeric

The identifier of a folder previously opened using DOPEN (page 1374).

Example
In this example, the number of items in the folder is returned. The folder is opened using DOPEN, which
also returns an identifier for the specified folder reference. The reference is created by the FILENAME
function. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("mydir","C:\temp");
 dir_id = DOPEN("mydir");
 x = DNUM(dir_id);
 PUT "The number of items in the folder is: " x;
RUN;

This produces the following output:

The number of items in the folder is: 5

Reference for language elements
Version 4.1

1374

In this example, the contents of the folder are :

As can be seen, the folder C:\temp does contain five items.

DOPEN
Returns an identifier for a specified directory or folder that can then be used in other folder functions.

DOPEN (f ileref)

You cannot get an identifier for a specified folder directly. You must first use the FILENAME function to
assign a folder reference, and then use DOPEN to specify an identifier for that reference.

Return type: Numeric

An integer greater than or equal to 0.

fileref

Type: Character

A name, assigned in the FILENAME function, that is the reference for the folder pathname.

If the folder does not exist, the identifier 0 is returned. If the folder exists, the identifier 1 is assigned
to the first folder opened. If another folder is then opened, the identifier is set to 2. The identifier
increments by one for each folder opened within the same DATA step, unless a previously opened
folder is closed using DCLOSE, in which case the released identifier is used.

For Windows, the drive or partition letter (for example, C:) is not accepted as the root of the drive.
Instead, you must specify the top-level directory, specified using the drive letter and backslash; for
example, C:\.

Reference for language elements
Version 4.1

1375

Example
In this example, the function returns identifiers for the specified folder references. The references are
specified using the FILENAME function. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("mydir","C:");
 dir_id=DOPEN("mydir");
 PUT "The identifier is: " dir_id;
 rc = FILENAME("mydir2","C:\");
 dir_id=DOPEN("mydir2");
 PUT "The identifier is: " dir_id;
 y = dclose(dir_id);
 rc = FILENAME("mydir3","c:\temp");
 dir_id=DOPEN("mydir3");
 PUT "The identifier is: " dir_id;
 rc = FILENAME("mydir4","m:\");
 dir_id=DOPEN("mydir4");
 PUT "The identifier is: " dir_id;
 rc = FILENAME("mydir5","c:\temp\books");
 dir_id=DOPEN("mydir5");
 PUT "The identifier is: " dir_id;
RUN;

This produces the following output:

The identifier is: 0
The identifier is: 1
The identifier is: 1
The identifier is: 2
The identifier is: 3

In this example:

• The first identifier returned is 0, because C: is not a valid pathname.
• The second identifier returned is 1, because C:\ is a valid pathname.
• The third identifier returned is 1, because the pathname is valid, and DCLOSE was used before this

DOPEN to close the previously-opened directory and release the identifier.
• The fourth identifier returned is 2, because the pathname is valid, and the identifier has been

incremented by one.
• The fifth identifier returned is 3, because the pathname is valid, and the identifier has been

incremented by one.

DOPTNAME
Returns a specified option or property for an open folder.

DOPTNAME (directory- id , index)

Reference for language elements
Version 4.1

1376

Each folder has a number of properties or options associated with it, such as the type, or the originating
user, and so on. The properties or options are organised as a list. To find how many properties or
options the folder has, use DOPTNUM, and then use this function to list a specified property or option at a
specified position in the list.

The properties available depend on the operating system.

The folder is specified using an identifier generated by DOPEN (page 1374).

Return type: Character

directory-id

Type: Numeric

The identifier of a folder previously opened using DOPEN (page 1374).

index

Type: Numeric

The position of the property to return in the list of properties or options.

Example
In this example, the number of properties or options is returned by DOPTNUM, and then each property or
option is returned using DOPTNAME. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("mydir","C:\temp");
 dir_id=DOPEN("mydir");
 DO i = 1 TO DOPTNUM(dir_id);
 y = DOPTNAME(dir_id,i);
 PUT "property " i "is " y;
 END;
RUN;

This produces the following output:

property 1 is Directory

For this folder, there is only one property, Directory.

DOPTNUM
Returns the number of properties associated with a specified folder.

DOPTNUM (directory- id)

Reference for language elements
Version 4.1

1377

Each folder has a number of properties or options associated with it, such as the type, or the originating
user, and so on. You can find how many properties or options there are with this function, and then use
DOPTNAME to list all the properties or options.

The properties available depend on the operating system.

The folder is specified using an identifier generated by DOPEN (page 1374).

Return type: Numeric

directory-id

Type: Numeric

The identifier of a folder previously opened using DOPEN (page 1374).

Example
In this example, the number of properties or options is returned by DOPTNUM, and then each property or
option is returned using DOPTNAME. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("mydir","C:\temp");
 dir_id=DOPEN("mydir");
 DO i = 1 TO DOPTNUM(dir_id);
 y = DOPTNAME(dir_id,i);
 PUT "property " i "is " y;
 END;
RUN;

This produces the following output:

property 1 is Directory

For this folder, there is only one property, Directory.

DREAD
Returns the name of an item in a folder at a specified index position.

DREAD (directory- id , index)

Items in a folder, such as files and subfolders, are organised by this function into alphabetical order.
The function finds the item at the specified position in the list. For example, you can find the fourth item
in a list of five items in a specified folder and return the name of that item.

The folder is specified using an identifier generated by DOPEN.

Return type: Character

Reference for language elements
Version 4.1

1378

directory-id

Type: Numeric

The identifier of a folder previously opened using DOPEN (page 1374).

index

Type: Numeric

The ordinal position in the list of items. For example, if you want to find the name of the fourth
item in the list of items, enter 4.

Example
In this example, the name of the fourth item in a folder is returned. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("mydir","C:\temp");
 dir_id = DOPEN("mydir");
 x = DREAD(dir_id, 4);
 PUT "The name of the specified item is: " x;
RUN;

This produces the following output:

The name of the specified item is: examples.7z

In this example, the contents of the folder are:

As can be seen, the fourth item in folder C:\temp is examples.7z .

DROPNOTE
Drops a note previously created using FNOTE, and releases the note identifier.

DROPNOTE (dataset- or- f ile- id , note- id)

Reference for language elements
Version 4.1

1379

Return type: Numeric

dataset-or-file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

note-id

Type: Numeric

A note identifier, created using FNOTE (page 1392).

Example
In this example, the specified file is read from beginning to end; the 1000th character is written to the
log and noted using FNOTE. The file pointer is then repositioned using FPOINT, where the record
is obtained an written to the log. The note is then dropped, and the note identifier released, using
DROPNOTE.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");
 rec = QUOTE("r");
 z = 1;
 IF f_id1 = 1;
 DO UNTIL (z = 2010);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec);
 IF z = 1000 THEN ni = FNOTE(f_id1);
 IF z = 1000 THEN PUT rec=;
 z = z + 1;
 END;
 rc = FPOINT(f_id1, ni);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec);
 PUT rec=;
 rc = DROPNOTE(f_id1, ni);
 rc = FCLOSE(f_id1);
RUN;

This produces the following output:

rec=Breakfast
rec=Breakfast

DSNCATLGD
Returns a value that indicates whether the specified dataset is cataloged. (z/OS only).

DSNCATLGD (dataset- name)

Reference for language elements
Version 4.1

1380

Only available in WPS on the z/OS operating system.

Return type: Numeric

1 if the dataset is cataloged; 0 otherwise.

dataset-name

Type: Character

The name of the dataset to be checked.

FCLOSE
Closes a file opened with the FOPEN function, and release the identifier associated with it.

FCLOSE (f ile- id)

The file with the specified identifier is closed. The identifier is created by the FOPEN function. The
identifier is released, and becomes available to a subsequent FOPEN function.

Return type: Numeric

0 (zero) is always returned.

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Example
In this example, a file is opened and then closed.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\examples.7z");
 f_id=FOPEN("myfile");
 rc = FCLOSE(f_id);
RUN;

FCOL
Returns the character (column) position of the file pointer in the current record in the File Data Buffer.

FCOL (f ile- id)

Reference for language elements
Version 4.1

1381

Return type: Numeric

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Example
In this example, a string is written to the file at position 10 in the record. The FCOL function then returns
the position of the pointer in the record after this operation. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\example.txt");
 f_id1 = FOPEN("myfile", "o");
 wrrec = "A record for the file";
 rc = FPOS(f_id1,10);
 rc = FPUT(f_id1, wrrec);
 x = FCOL(f_id1);
 PUT "The pointer is at character position " x "in the record";
 rc = FWRITE(f_id1);
 RUN;

This produces the following output:

The pointer is at character position 31 in the record

In this example, the FPOS function first positions the pointer at position 10 in the record in the File
Data Buffer (FDB). The FPUT function then puts the string into the FDB at that position. The string is
21 characters long. When FPUT finishes putting the string in the FDB, the pointer is at the end of the
record, which is, therefore, position 31.

The value returned by the function depends on the operations that have occurred before it is executed.
For example, if the FCOL statement and PUT in the previous example are moved to after the FWRITE
function:

 rc = FPOS(f_id1,10);
 rc = FPUT(f_id1, wrrec);
 rc = FWRITE(f_id1);
 x = FCOL(f_id1);
 PUT "The pointer is at character position " x "in the record";

then the following is written to the log:

The pointer is at character position 1 in the record

Because the FWRITE function has now written the record from the FDB to the file, the current record is
empty and the pointer is pointing at character position 1.

Reference for language elements
Version 4.1

1382

FDELETE
Deletes the specified file.

FDELETE (f ileref- or- directory)

Return type: Numeric

If the specified file or folder is successfully deleted, 0 (zero) is returned; if it is not, the code 20004 is
returned.

fileref-or-directory

Type: Character

A name, assigned by the FILENAME function, that is the reference for the pathname or file to be
deleted.

If you are running WPS on z/OS, this function can only delete empty partitioned datasets (PDS or
PDSE).

Example
In this example, the function deletes the specified files. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile", "C:\temp\test");
 rc = FDELETE("myfile");
 PUT rc=;
 rc = FILENAME("myfile", "C:\temp\test_1.txt");
 rc = FDELETE("myfile");
 PUT rc=;
RUN;

The folder C:\temp\test and the file test_1.txt in the folder C:\temp are deleted. The following
values are returned, because the files were successfully deleted:

rc=0
rc=0

If you were to run the same DATA step again, the values returned would be:

rc=20004
rc=20004

because the files have already been deleted and so cannot be found.

Reference for language elements
Version 4.1

1383

FEXIST
Returns a value that indicates whether a fileref exists, where that fileref has been created using
FILENAME.

FEXIST (f ileref)

1 if the file exists; 0 otherwise.

Return type: Numeric

1 if the file exists; 0 otherwise.

fileref

Type: Character

A variable containing the pathname and filename, specified using FILENAME.

Example
In this example, a fileref is specified using the FILENAME function. The FEXIST function is then used
to check that the file corresponding to that fileref exists, and returns a value indicating whether it does.
That value is used to generate a message using IFC (page 671). The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile" ,"C:\temp\books\books.accdb");
 rc = FEXIST("myfile");
 yn = IFC(rc, "The file exists", "The file does not exist");
 PUT yn;
RUN;

This produces the following output:

The file exists

FGET
Gets a record from the File Data Buffer and puts it into memory.

FGET (f ile- id , variable

, ulength

)

Records in the File Data Buffer (FDB) are placed there after being read from a file by FREAD.

Return type: Numeric

1 if the record exists, 0 (zero) otherwise.

Reference for language elements
Version 4.1

1384

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

variable

Type: Character

The name of the variable that contains the data to be obtained from the FDB.

ulength
Optional argument

Type: Numeric

The number of characters to read from the record in the FDB.

If you specify ulength, the length of the record returned might be shorter than the specified length,
because a separator character might first occur.

variable must contain a string. It can be a quoted string you enter, for example, sl = "xxxxxxx", or a
string you create in another function, for example, gs = QUOTE("r").

The way in which you define the string has affects the way the data is obtained from the FDB. If you
enter a string for value (for example, sl = "xxxxxxx"), this becomes a mask, starting at position 1 of
the record, for the contents of the record. For example, if you specify value as the string "record":

 sl = "xxxxxxx"
 rc = FREAD(f_id1);
 rc = FGET(f_id1, sl);

 rc = FPUT(f_id2, sl);
 rc = FWRITE(f_id2);

and the file opened and identified by the identifier f_id1 contains the records:

Title Type Author Read?
Origins and Growth of Sociology, The Soc Abraham, J H n y
First Light N Ackroyd, Peter n y
Book of Visions, The Ref Albery, Nicholas (Ed) c n
How to Build a Mind Sci Aleksander, Igor n y
English Common Reader, The History Altick, Richard D a n

then, if the other statements in the DATA step obtained each record from the input file, the records
written to the file specified in the FPUT statement would be:

Origin
First
Book o
How to
Defenc
Main C
Main C

Reference for language elements
Version 4.1

1385

That is, only the number of characters that match the length of the string xxxxxxx are read from the
input file.

If you create a string for value using another function, the record in the FDB can be read up to the first
separator, or, if you specify a length, up to that length:

 rname = QUOTE("r");
 rc = FREAD(f_id1);
 rc = FGET(f_id1, rname);

 rc = FPUT(f_id2, rname);
 rc = FWRITE(f_id2);

In this example, the variable rname contains the value created using the QUOTE function, which in this
case is "r". However, because FGET does not have a length specified, only the characters up to the
first separator character are obtained from the record and written to the FDB.

If the file opened and identified by the identifier f_id1 contained the records described in the earlier
examples, and if the other statements in the DATA step obtained each record from the input file, the
records written to the file identified by the identifier f_id2 would be:

Title Type Author Read?
Origins
First
Book
How
English
Water,
Okri,
Periodic

The records have been read until the first separator character is met; by default, this is space or
comma. Tab is not a default separator, as can be seen in the first line.

Basic example
In this example, records are read from a file, and then characters from that record are written to the log.

DATA _NULL_;
 i = 0;
 rc = FILENAME("myfile","C:\temp\books\books_read.txt");
 f_id1 = FOPEN("myfile");
 rname = QUOTE("r");
 IF f_id1 = 1;
 DO UNTIL (i = 10);
 rc = FREAD(f_id1);
 rc = FGET(f_id1, rname);
 PUT rname=;
 i = i + 1;
 END;
 rc = FCLOSE(f_id1);
RUN;

Reference for language elements
Version 4.1

1386

This produces the following output:

Title Type Author Read?
Origins
First
Book
How
English
Water,
Defence
Battle
Main

In this example, the characters up to the first separator are obtained. By default, the separator is the
space character. Because the variables in the records are tab-separated, the title line has no spaces,
so the function gets the whole record.

Example – reading from and writing to external files using a mask-
type value
In this example, a record is obtained from an external text file (that uses a comma as the separator) and
put into the FDB to be written into a file of another type (a plain text file). The separators , used in the
input file has been specified. The record obtained will be truncated either at the first separator, or at 30
characters as specified by the length of the string xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.

Note:
Any separators in the first column are removed, but they do not cause the record to truncate at that
point.

DATA _NULL_;

 rc = FILENAME('myfile','C:\temp\books\books_read.txt');
 f_id1 = FOPEN('myfile');
 rc = FILENAME('myfile2','C:\temp\books\books_read_out.txt');
 f_id2 = FOPEN('myfile2','o');

 rname = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx';
 rc = FSEP(f_id1,',');

 IF f_id1 = 1;
 DO UNTIL (rr = -1);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rname);
 rc = FPUT(f_id2, rname);
 rc = FWRITE(f_id2);
 END;

RUN;

Reference for language elements
Version 4.1

1387

This creates a file named books_read.txt, in the directory C:\temp\books, that contains the first
thirty characters of all records, unless there is a separator first. If the first few lines of the input file look
like this:

Origins and Growth of Sociology, The Soc Abraham, J H n y
First Light N Ackroyd, Peter n y
How to Build a Mind,Sci Aleksander, Igor n y
Water, Leisure and Culture Culture Anderson, Susan C, and Bruce H Tabb n y
Defence of the Realm, The Hist Andrew, Christopher n y
Main Currents in Sociological Thought Vol1 Soc Aron, Raymond n y
Main Currents in Sociological Thought Vol2 Soc Aron, Raymond n y

The first few lines of the books_read.txt would look like this:

Origins and Growth of Sociolog
First Light
Book of Visions
How to Build a Mind
Water
Defence of the Realm
Main Currents in Sociological
Main Currents in Sociological

The first, last and penultimate lines have been truncated after 30 characters; all other lines end where
there was either a comma or quote mark, as specified by the FSEP function.

Reading from an external file and writing to a dataset
In this example, the records are read from one type of external file (a text file) into a dataset named
example in the WORK library. The pointer is positioned at character 56 of the record, and then 55
characters of the record are obtained from memory and written to the FDB.

DATA example;
 KEEP x;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile","s");
 rec = QUOTE("r");
 IF f_id1 = 1;
 DO UNTIL (rr = -1);
 rr = FREAD(f_id1);
 rc = fpos(f_id1,54);
 rc = FGET(f_id1, rec, 55);
 x = rec;
 OUTPUT;
 END;
RUN;

If the first few lines of the contains these records:

Title Type Author
Origins and Growth of Sociology, The Soc Abraham, J H
First Light N Ackroyd, Peter
Book of Visions, The Ref Albery, Nicholas (Ed)
How to Build a Mind Sci Aleksander, Igor
Defence of the Realm, The Hist Andrew, Christopher
Main Currents in Sociological Thought Vol1 Soc Aron, Raymond

Reference for language elements
Version 4.1

1388

Main Currents in Sociological Thought Vol2 Soc Aron, Raymond

The first few lines of books_read.txt would contain these records:

 Type Author
 Soc Abraham, J H
 N Ackroyd, Peter
 Ref Albery, Nicholas (Ed)
 Sci Aleksander, Igor
 Hist Andrew, Christopher
 Soc Aron, Raymond
 Soc Aron, Raymond

FILEEXIST
Returns a value that indicates whether a specified file exists, based on its physical location.

FILEEXIST (physical- locat ion)

Return type: Numeric

1 if the specified exists, 0 (zero) otherwise.

physical-location

Type: Character

The pathname and filename of the file.

Example
In this example, the function returns a value indicating whether the file exists or not. The value is used
to generate a message using IFC (page 671). The result is written to the log.

DATA _NULL_;
 rc = FILEEXIST("C:\temp\examples.7z");
 yn = IFC(rc, "The file exists", "The file does not exist");
 PUT YN;
 rc = FILEEXIST("C:\temp\notexist.txt");
 yn = IFC(rc, "The file exists", "The file does not exist");
 PUT YN;
RUN;

This produces the following output:

The file exists
The file does not exist

Reference for language elements
Version 4.1

1389

FILENAME
Creates a reference to a file or fileref that can be used in other external file functions, such as
FOPTNAME and FINFO

FILENAME (f ileref ,

locat ion

,

device- type , opt ions

)

Return type: Numeric

fileref

Type: Character

The file reference. This is a character string.

location
Optional argument

Type: Character

The pathname and filename of the file. If no value is assigned to this item, the reference

device-type
Optional argument

Type: Character

Specifes the type of device on which the file is stored. The devices can be any of the devices
described in FILENAME statements in the section Global statements, such as DISK, PIPE,
HADOOP, and CATALOG.

options
Optional argument

Type: Character

Options associated with the device defined by device-type. These options are described in the
corresponding entries for the device in the section FILENAME statements.

Reference for language elements
Version 4.1

1390

Example
In this example, the function specifies a reference for the specified filename, which is then used by
FEXIST to check that the filename exists. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile", "C:\temp\books\books.accdb",disk);
 rc = FEXIST("myfile");
 yn = IFC(rc, "The file exists", "The file does not exist");
 PUT yn;
 rc = FILENAME("myfile");
 rc = FEXIST("myfile");
 yn = IFC(rc, "The file exists", "The file does not exist");
 PUT yn;
RUN;

This produces the following output:

The file exists
The file does not exist

In the first use of the function, the specified file is assigned to the reference myfile. In the second use
of the function, no file is specified to myfile; the file previously assigned is no longer attached to the
reference.

FILEREF
Returns a value indicating whether a specified file reference has been assigned.

FILEREF (f ileref)

Return type: Numeric

0 The file reference exists, and the filename associated with it is valid.
2004 The file reference does not exist (that is, the reference specified has not

been defined in the DATA step in a FILENAME function).
-2006 The file reference exists (that is, the reference specified has been defined

in the DATA step in a FILENAME function), but the file assigned to the
reference does not exist.

fileref

Type: Character

A file reference created by FILENAME (page 1389)

Reference for language elements
Version 4.1

1391

Example
In this example, a file reference for the pathname and filename of a file is created using the FILENAME
function. The FILEREF function is then used to check whether the file reference and the file associated
with it exist. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile", "C:\temp\books\books_read.txt");
 f_id = FOPEN("myfile");
 var = FILEREF("myfile");
 PUT "reference = " var;
 msg = SYSMSG();
 PUT msg;
 var = FILEREF("myfile2");
 PUT "reference = " var;
 msg = SYSMSG();
 PUT msg;
run;

This produces the following output:

reference = 0
reference = 20004
The fileref myfile2 is not assigned

In the first use of the function, the file reference exists and references an existing file, and so returns 0.
In the second use of the function, the file reference does not exist, so the value 2004 is returned.

In this example, the SYSMSG function has also been used to display the associated messages. No
message is associated with the return code 0.

FINFO
Returns the value of a specified property of a file.

FINFO (f ile- id , property)

Each file has a number of properties or options associated with it, such as the type, or record size, and
so on. You can get a list of the properties using the FOPTNUM (page 1396) and FOPTNAME (page
1396) functions, and then use this function to get the value of a specified property.

The properties available depend on the operating system.

The file is specified using an identifier generated by FOPEN (page 1393).

Return type: Character

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Reference for language elements
Version 4.1

1392

property

Type: Character

The value of a property returned by FOPTNAME. The properties returned, and the values
associated with them, depend on the operating system and file-type.

Example
In this example, the value of all properties for the specified file are returned. The number of properties
is first returned using FOPTNUM, the names of the properties are returned using FOPTNAME, and the
values for each property are then returned using FINFO. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.txt");
 z = FEXIST("myfile");
 o = FOPEN("myfile");
 x = FOPTNUM(o);
 DO i = 1 TO x;
 y = FOPTNAME(o,i);
 n = FINFO(o, y);
 PUT "The value of the property " y "is: " n;
 END;
RUN;

This produces the following output:

The value of the property File Name is: 'C:\temp\books\books_read.txt'
The value of the property Lrecl is: 256
The value of the property Recfm is: V

In this example, the file has a record length of 256 bytes and a record format of V, that is, variable-
length.

FNOTE
Returns an identifier for a record in the File Data Buffer. The record can then be located using FPOINT
and the identifier.

FNOTE (f ile- id)

This function should only be used with files specified as random access files. No identifier will be
returned if the file is specified as a sequential file.

Return type: Numeric

Returns 0 (zero) if there is an error, otherwise the identifier is a positive integer. The integer increases
by one for each new note, unless a previous identifier is released by dropping the corresponding note
using DROPNOTE, in which case FNOTE will use the released identifier.

Reference for language elements
Version 4.1

1393

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Example
In this example, all records of a file are read from a specified file into the FDB; the 1000th and 1500th
record are noted using FNOTE. The result is written to the log. You could subsequently find these
records in the FDB using FPOINT, if required. See FPOINT (page 1398) for an example of using
FNOTE and FPOINT to note a record and then get that record.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");
 rec = QUOTE("r");
 z = 1;
 IF f_id1 = 1;
 DO UNTIL (z = 2010);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec);
 IF z = 1000 THEN ni1 = FNOTE(f_id1);
 IF z = 1500 THEN ni2 = FNOTE(f_id1);
 z = z + 1;
 END;
 PUT ni1=;
 PUT ni2=;
RUN;

This produces the following output:

ni1=1
ni2=2

FOPEN
Returns an identifier for a specified file that can then be used in other file functions to specify the file.

FOPEN (f ileref ,

open- mode

,

record- length

, record- format

)

You cannot get an identifier for a file directly. You must first use the FILENAME (page 1389) function
to specify a reference for a filename, and then use FOPEN to specify an identifier for that reference.

Return type: Numeric

Reference for language elements
Version 4.1

1394

fileref

Type: Character

A reference for the filename, specified using the FILENAME function.

open-mode
Optional argument

Type: Character

The mode in which the dataset is opened. If the file is to be used as an input file, this can be:

"I"
Random access mode.

"S"

Sequential access mode in which observations are read from beginning to end, but
previous observations can be read.

If the file is to be used as an output file, this can be:

"A"

Opens an existing file and appends records to the end of it. If the file does not exist, it is
created.

"O"

Opens a file and adds records to it. If the file does not exist, it is created. If the file already
exists, the file is overwritten.

.

"U"

Opens a file for update. The file can be read or written to.

Using any other character is not allowed; if you do use a character not in this list, the file is not
opened, and the identifier 0 is returned.

record-length
Optional argument

Type: Numeric

The record length defined for the file, in bytes.

record-format
Optional argument

Type: Character

The format of records in the file:

Reference for language elements
Version 4.1

1395

"B"

Binary.

"D"

Default. This is FB on MVS, V on any other operating system.

"F"

Fixed length.

"P"

Print file.

"V"
Variable length.

Options can be combined where appropriate; for example FB for a file with fixed-length binary
records.

Using any other character is not allowed; if you do use a character not in this list, the file is not
opened, the identifier 0 is returned.

If the file does not exist, the identifier 0 is returned. If the file exists, the identifier 1 is assigned to the
first file opened. If another file is then opened, the identifier is set to 2. The identifier increments by one
for each file opened in the same DATA step unless a previously opened file is closed using FCLOSE, in
which case the released identifier is used.

All open files are closed and their identifiers are released when the DATA step ends.

Example
In this example, the function returns an identifier for the specified folder references. The references are
specified using the FILENAME function. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\author_srted.wpd");
 f_id=FOPEN("myfile");
 PUT "The identifier is: " f_id;
 rc = FILENAME("myfile2","C:\temp\books\author_sorted.wpd");
 f_id=FOPEN("myfile2");
 PUT "The identifier is: " f_id;
 rc = FILENAME("myfile3","C:\temp\Code.sas");
 f_id=FOPEN("myfile3");
 PUT "The identifier is: " f_id;
 y = FCLOSE(f_id);
 rc = FILENAME("myfile4","C:\temp\examples.7z");
 f_id=FOPEN("myfile4");
 PUT "The identifier is: " f_id;
 rc = FILENAME("myfile5","C:\temp\short_text_example.pdf");
 f_id=FOPEN("myfile5");
 PUT "The identifier is: " f_id;
RUN;

Reference for language elements
Version 4.1

1396

This produces the following output:

The identifier is: 0
The identifier is: 1
The identifier is: 2
The identifier is: 2
The identifier is: 3

In this example:

• The first identifier returned is 0, because the specified file does not exist.
• The second identifier returned is 1. The specified file exists, so the first identifier is set.
• The third identifier returned is 1, because the specified file exists, and the FCLOSE function was

used before this FOPEN to close the previously opened file and release the identifier.
• The fourth identifier returned is 2 The specified file exists, so the identifier has been incremented by

one.
• The fifth identifier returned is 3. The specified file exists, so the identifier has been incremented by

one.

FOPTNAME
Returns a specified option or property for an open file.

FOPTNAME (f ile- id , index)

Each file has a number of properties or options associated with it, such as the type, or record size,
and so on. You can find how many properties or options the file has with FOPTNUM function, and then
use this function to list a specified property or option. The properties or options exist as a list; use this
function to select a specific item in the list.

The properties available depend on the operating system.

The file is specified using an identifier generated by FOPEN (page 1393).

Return type: Character

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

index

Type: Numeric

The position of the property to return in the list of properties or options.

Reference for language elements
Version 4.1

1397

Example
In this example, the number of properties or options is returned by FOPTNUM, and then each property or
option is returned using FOPTNAME. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.txt");
 f_id=FOPEN("myfile");
 DO i = 1 TO FOPTNUM(f_id);
 y = FOPTNAME(f_id,i);
 PUT "property " i "is " y;
 END;
RUN;

This produces the following output:

property 1 is File Name
property 2 is Lrecl
property 3 is Recfm

FOPTNUM
Returns the number of properties associated with a specified file.

FOPTNUM (f ile- id)

Each file has a number of properties or options associated with it, such as the type, or the originating
user, and so on. You can find how many properties or options there are with this function, and then use
DOPTNAME to list all the properties or options.

The properties available depend on the operating system.

Return type: Numeric

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Reference for language elements
Version 4.1

1398

Example
In this example, the number of properties or options is returned by FOPTNUM, and then each property or
option is returned using FOPTNAME. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("fname","C:\temp\books\books_read.prn");
 fid=FOPEN("fname");
 DO i = 1 TO FOPTNUM(fid);
 y = FOPTNAME(fid,i);
 PUT "property " i "is " y;
 END;
RUN;

This produces the following output:

property 1 is File Name
property 2 is Lrecl
property 3 is Recfm

You can then use FINFO to get information about each of the properties, if required. For example, you
could use FINFO to return the value of Lrecl, which contains the maximum record length of the file.

FPOINT
Points the file pointer at a record in the File Data Buffer specified by a note identifier. A note identifier is
defined using FNOTE.

FPOINT (f ile- id , note- id)

Return type: Numeric

Returns 1 if the note identifier exists, 0 (zero) otherwise.

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

note-id

Type: Numeric

A note identifier, created using FNOTE (page 1392).

Reference for language elements
Version 4.1

1399

Example
In this example, the specified file is read from beginning to end; the 1000th character is written to the
log and noted using FPOINT. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");
 rec = QUOTE("r");
 z = 1;
 IF f_id1 = 1;
 DO UNTIL (z = 2010);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec);
 IF z = 1000 THEN ni = FNOTE(f_id1);
 IF z = 1000 THEN PUT rec=;
 z = z + 1;
 END;
 rc = FPOINT(f_id1, ni);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec);
 PUT rec=;
 rc = DROPNOTE(f_id1, ni);
 rc = FCLOSE(f_id1);
RUN;

This produces the following output:

rec=Breakfast
rec=Breakfast

The 1000th record is written to the log during the DO loop. The record is also noted with FNOTE.
FPOINT is subsequently used to reposition the file pointer at that record, at which point it is read from
the FDB using FREAD and FGET.

FPOS
Positions the file pointer at the specified column in the current row in the file.

FPOS (f ile- id , posit ion)

For an input file, the current record will be read from the specified position. For an output file, the
current record will be written at the specified position.

Return type: Numeric

Returns 0 if the record exists, 1 if not.

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Reference for language elements
Version 4.1

1400

position

Type: Numeric

The position in the record at which to start reading or writing.

The position of this function in the DATA step is important. It must come before an FPUT (which itself
must come before an FGET).

Example – positioning the pointer for input
In this example, a string is saved to a variable, and then that variable is written to a file at the specified
position in the record.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\example.txt");
 f_id1 = FOPEN("myfile", "o");
 wrrec = "A record for the file";
 rc = FPOS(f_id1, 10);
 rc = FPUT(f_id1, wrrec);
 rc = FWRITE(f_id1);
 rc = FCLOSE(f_id1);
RUN;

This creates a file named example.txt in the directory C:\temp. The file contains the text of the
specified variable, starting at column ten of the record:

 A record for the file

Example – positioning the pointer for input
In this example, the record in the file created in the previous example is read into the FDB, and then ten
characters from that record are obtained from the FDB starting at character position 12. The result is
written to another file.

DATA _NULL_;
 rec = QUOTE("r");
 rc = FILENAME("ifile","C:\temp\example.txt");
 inf = FOPEN("ifile");
 rc = FILENAME("ofile","C:\temp\example_o.txt");
 outf = FOPEN("ofile","o");
 rc = FREAD(inf);
 rc = FPOS(inf, 12);
 rc = FGET(inf, rec, 10);
 rc = FPUT(outf, rec);
 rc = FWRITE(outf);
 rc = FCLOSE(inf);
 rc = FCLOSE(outf);
RUN;

This creates a file named example_o.txt in the directory C:\temp. The file contains one record,
consisting of the specified characters from the input file:

record for

Reference for language elements
Version 4.1

1401

FPUT
Puts (writes) a record into the File Data Buffer (FDB).

FPUT (f ile- id , value)

Return type: Numeric

This function would typically be used with the FWRITE function that would subsequently write the record
put into the FDB to a specified file.

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

value

Type: Character

A variable containing the data to be put into the FDB.

The data put to the FDB will be affected by whether the argument supplied is a string or a
variable. See the section below for details.

The way in which value is specified in the corresponding FGET will affect the data written to the variable
value; see FGET (page 1383) for details.

Basic example
In this example, a string is saved to a variable, then that variable is written to a file using FPUT and
FWRITE.

DATA _NULL_;

 rcfn = FILENAME('myfile','C:\temp\example.txt');
 f_id1 = FOPEN('myfile', 'o');

 wrrec = 'A record for the file';

 rcfp = FPUT(f_id1, wrrec);
 rcfw = FWRITE(f_id1);

RUN;

This creates a file named example.txt in the directory C:\temp that contains the text:

A record for the file

Reference for language elements
Version 4.1

1402

Example – reading from and writing to external files
In this example, selected records are read from one type of external file (.prn) into a file of another type
(a .txt file).those records containing a specified string are written to a new file.

DATA _NULL_;
 rc = FILENAME('myfile','C:\temp\books\books_read.prn');
 f_id1 = FOPEN('myfile');
 rc = FILENAME('myfile2','C:\temp\books\sociology_books.txt');
 f_id2 = FOPEN('myfile2','o');
 rname = QUOTE('r');
 IF f_id1 = 1;
 DO UNTIL (rr = -1);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rname, 110);
 IF (contains(rname, ' Soc ')) THEN
 DO;
 rc = FPUT(f_id2, trim(rname));
 rc = FWRITE(f_id2);
 END;
 END;
RUN;

This creates a file named sociology_books.txt in the directory C:\temp\books that contains a
list of all the records containing the string Soc, which indicates a book in the genre of sociology. The
first four lines of the file would look like this:

Origins and Growth of Sociology, The Soc Abraham, J H
Main Currents in Sociological Thought Vol1 Soc Aron, Raymond
Main Currents in Sociological Thought Vol2 Soc Aron, Raymond
Sociology of Science Soc of Sci Barnes, Barry (Ed)

The example also shows a variable created using the QUOTE function, and how the length of the record
required is specified using the FGET function.

Example – reading from and writing to external files using a mask-
type value
In this example, a record is obtained from an external text file (that uses a comma as the separator) and
put into the FDB to be written into a file of another type (a plain text file). The separators , used in the
input file has been specified. The record obtained will be truncated either at the first separator, or at 30
characters as specified by the length of the string xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.

Reference for language elements
Version 4.1

1403

Note:
Any separators in the first column are removed, but they do not cause the record to truncate at that
point.

DATA _NULL_;

 rc = FILENAME('myfile','C:\temp\books\books_read.txt');
 f_id1 = FOPEN('myfile');
 rc = FILENAME('myfile2','C:\temp\books\books_read_out.txt');
 f_id2 = FOPEN('myfile2','o');

 rname = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx';
 rc = FSEP(f_id1,',');

 IF f_id1 = 1;
 DO UNTIL (rr = -1);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rname);
 rc = FPUT(f_id2, rname);
 rc = FWRITE(f_id2);
 END;

RUN;

This creates a file named books_read.txt, in the directory C:\temp\books, that contains the first
thirty characters of all records, unless there is a separator first. If the first few lines of the input file look
like this:

Origins and Growth of Sociology, The Soc Abraham, J H n y
First Light N Ackroyd, Peter n y
How to Build a Mind,Sci Aleksander, Igor n y
Water, Leisure and Culture Culture Anderson, Susan C, and Bruce H Tabb n y
Defence of the Realm, The Hist Andrew, Christopher n y
Main Currents in Sociological Thought Vol1 Soc Aron, Raymond n y
Main Currents in Sociological Thought Vol2 Soc Aron, Raymond n y

The first few lines of the books_read.txt would look like this:

Origins and Growth of Sociolog
First Light
Book of Visions
How to Build a Mind
Water
Defence of the Realm
Main Currents in Sociological
Main Currents in Sociological

The first, last and penultimate lines have been truncated after 30 characters; all other lines end where
there was either a comma or quote mark, as specified by the FSEP function.

Reference for language elements
Version 4.1

1404

FREAD
Reads a record from a specified file to the File Data Buffer (FDB).

FREAD (f ile- id)

The file to be read is specified using the file identifier created by the FOPEN function. This function is
typically used with an FGET function, which gets the record from the FDB and puts it into a variable.

Return type: Numeric

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Example
In this example, the first ten records are read from a specified file into the FDB; the first 100 characters
of the records are then obtained from the FDB using FGET. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");
 i = 0;
 rec = QUOTE("r");
 IF f_id1 = 1;
 DO UNTIL (i eq 10);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec, 100);
 PUT rec;
 i = i + 1;
 END;
RUN;

This produces the following output:

Title Type Author
Origins and Growth of Sociology, The Soc Abraham, J H
First Light N Ackroyd, Peter
Book of Visions, The Ref Albery, Nicholas (Ed)
How to Build a Mind Sci Aleksander, Igor
Defence of the Realm, The Hist Andrew, Christopher
Main Currents in Sociological Thought Vol1 Soc Aron, Raymond
Main Currents in Sociological Thought Vol2 Soc Aron, Raymond

Reference for language elements
Version 4.1

1405

FRECCNT
Returns the number of records in a file opened with FOPEN.

FRECCNT (f ile- id)

Return type: Numeric

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

If you want to find the number of records before performing some other operation on the file, such as
reading records from the file sequentially using a DO loop, you will have to rewind the file to the first
record using FREWIND.

Example
In this example, the number of records in the specified file is returned. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("mydir","C:\temp");
 dir_id=DOPEN("mydir");
 DO i = 1 TO DOPTNUM(dir_id);
 y = DOPTNAME(dir_id,i);
 PUT "property " i "is " y;
 END;
RUN;

This produces the following output:

The number of records in the file is: 2011

FREWIND
Positions the file pointer before the first record.

FREWIND (f ile- id)

Return type: Numeric

file-id

Type: Numeric

Reference for language elements
Version 4.1

1406

The identifier of a file previously opened using FOPEN (page 1393).

You can rewind input or output files. In some file modes, if you rewind an output file, existing records
are deleted and records are added starting at the first record; in others, records will not be deleted, and
records will be appended at the end of the file.

Basic example
In this example, the first and last records of an external file are read up to the first separator, and then
written to the log file. The file is the rewound to the first record, and the first record is again read up to
the first separator, and then written to the log.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");
 rec = QUOTE("r");
 z = 1;
 IF f_id1 = 1;
 DO UNTIL (z = 2010);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec);
 IF z = 1 THEN PUT "The first record is: " rec;
 IF z = 2008 THEN PUT "The last record is: " rec;
 z = z + 1;
 END;
 rc = FREWIND(f_id1);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec, 50);
 PUT "After rewind the record read is: " rec;
 rc = FCLOSE(f_id1);
RUN;

This produces the following output:

Characters from the first record: Title
Characters from the last record: Middle
After rewind, characters are: Title

Example with output
In this example, a file is read from an input file until the 10th record, and the first fifty characters of
each record are written to another external file. The file is then rewound, and the same operation is
performed again.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");
 rc = FILENAME("myfile2","C:\temp\books\books_read_out.txt");
 f_id2 = FOPEN("myfile2","a");
 rec = QUOTE("r");
 z = 0;
 IF f_id1 = 1;
 DO UNTIL (z=10);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec,50);
 rc= FPUT(f_id2, rec);

Reference for language elements
Version 4.1

1407

 rc = FWRITE(f_id2);
 z = z + 1;
 END;
 z= 0;
 rc = FREWIND(f_id1);
 DO UNTIL (z=10);
 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec,50);
 rc = FPUT(f_id2, rec);
 rc = FWRITE(f_id2);
 z = z + 1;
 END;
 rc = FCLOSE(f_id1);
 rc = FCLOSE(f_id2);
RUN;

The following records will be written to the file:

Title
Origins and Growth of Sociology, The
First Light
How to Build a Mind
English Common Reader, The
Water, Leisure and Culture
Defence of the Realm, The
Main Currents in Sociological Thought Vol1
Main Currents in Sociological Thought Vol2
Nightfall
Title
Origins and Growth of Sociology, The
First Light
How to Build a Mind
English Common Reader, The
Water, Leisure and Culture
Defence of the Realm, The
Main Currents in Sociological Thought Vol1
Main Currents in Sociological Thought Vol2
Nightfall

Because FREWIND has been specified the file pointer has been repositioned at the first record in the
file, and then ten records read from that point in the following DO loop.

If FREWIND had not been specified, the output would instead have been:

Title
Origins and Growth of Sociology, The
First Light
How to Build a Mind
English Common Reader, The
Water, Leisure and Culture
Defence of the Realm, The
Main Currents in Sociological Thought Vol1
Main Currents in Sociological Thought Vol2
Nightfall
Periodic Kingdom, The
Behind the Scenes at the Museum
Case Histories
Emotionally Weird
Not the End of the World
One Good Turn

Reference for language elements
Version 4.1

1408

Started Early, Took my Dog
When Will there be Good News?
Knowledge and Explanation in History
Emma

That is, the input file would not have been rewound, and the first FREAD in the second DO loop would
read the record after the last record read in the previous DO loop.

FRLEN
Returns the length of the current record.

FRLEN (f ile- id)

Return type: Numeric

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

Example
In this example, the length of each record in a file is checked, and the value of the longest is stored and
then written to the log.

DATA _NULL_;

 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile");

 IF f_id1 = 1;
 DO UNTIL (gno = -1);
 gno = FREAD(f_id1);
 rl = FRLEN(f_id1);
 IF rl > trl THEN trl = rl;
 END;

 PUT "The longest record contains: " trl "characters";
RUN;

This produces the following output:

The longest record contains: 179 characters

Reference for language elements
Version 4.1

1409

FSEP
Specifies the separator for the record obtained by an FREAD function.

FSEP (f ile- id , characters

, X

)

Return type: Numeric

Returns 1 if the function was successful, 0 (zero) otherwise.

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

characters

Type: Character

One or more characters that specify the separator. For example, you might specify comma (,) or
quotation mark ("), or you might specify both (,").

X
Optional argument
Must be "X".

"X"

Specifies that the separator in the argument characters is a hexadecimal value. For
example, if the separator is the tab character, you can specify this instead with the string
"09"

Reference for language elements
Version 4.1

1410

Example
In this example, the separator is defined as the tab character. The result is written to the log.

DATA _NULL_;

 rc = FILENAME("myfile","C:\temp\books\books_read.txt");
 f_id1 = FOPEN("myfile");
 i = 0;

 rec = QUOTE("r");

 IF f_id1 = 1;
 DO UNTIL (i eq 12);
 rr = FREAD(f_id1);
 rc = FSEP(f_id1,"09","X");
 rc = FGET(f_id1, rec);
 PUT rec;
 i = i + 1;
 END;

RUN;

This produces the following output:

Title
Origins and Growth of Sociology, The
First Light
How to Build a Mind
English Common Reader, The
Defence of the Realm, The
Main Currents in Sociological Thought Vol1
Main Currents in Sociological Thought Vol2
Nightfall
Okri, Ben
Periodic Kingdom, The
Behind the Scenes at the Museum

Each record is read up to the first tab character.

FWRITE
Writes a record from the File Data Buffer to a specified file.

FWRITE (f ile- id
, cc

)

The file to which the record is written is specified using the file identifier created by the FOPEN function.
This function is typically used with an FPUT function, which puts the record into the File Data Buffer.

Return type: Numeric

Reference for language elements
Version 4.1

1411

file-id

Type: Numeric

The identifier of a file previously opened using FOPEN (page 1393).

cc
Optional argument

Type: Character

A character used to specify the type of carriage control to be inserted at the end or beginning of
the written record. This can be:

0 Inserts two carriage return and line feed combinations (double spacing)
- Inserts three carriage return and line feed combinations (triple spacing)
1 Inserts a form-feed at the beginning of the line. This has an effect in some file formats,

such as Microsoft Word, where a page break is inserted. In other file formats, a
character representing the control character might be visible. See examples below.

+ If the output is directed to a printer, or is a printer file, or to some displays, the record
will overwrite the previous record. This can be used to create boldface or underlined
text. This has no effect in most files.

By default, the record is written to the next line (carriage return and line feed).

Basic example
In this example, a string is saved to a variable, then that variable is written to a file using FPUT and
FWRITE.

DATA _NULL_;

 rcfn = FILENAME('myfile','C:\temp\example.txt');
 f_id1 = FOPEN('myfile', 'o');

 wrrec = 'A record for the file';

 rcfp = FPUT(f_id1, wrrec);
 rcfw = FWRITE(f_id1);

RUN;

This creates a file named example.txt in the directory C:\temp that contains the text:

A record for the file

Writing a file with carriage control characters
In this example, records are read from an external file, and then the first ten records are written to
another external file. Various carriage control characters are also appended to the written records.

DATA _NULL_;

Reference for language elements
Version 4.1

1412

 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 f_id1 = FOPEN("myfile","s");

 rc = FILENAME("myfile2","C:\temp\books\books_read_out.txt");
 f_id2 = FOPEN("myfile2","o");

 rec = quote("r");
 z = 0;

 IF f_id1 = 1;
 DO UNTIL (z=10);

 rr = FREAD(f_id1);
 rc = FGET(f_id1, rec,50);

 rc= FPUT(f_id2, rec);
 if z <= 2 then rc = FWRITE(f_id2);
 if z GT 2 & z LE 5 then rc = FWRITE(f_id2,"-");
 if z GT 5 & z LE 7 then rc = FWRITE(f_id2,"0");
 if z GT 7 & z LE 10 then rc = FWRITE(f_id2,"1");

 z = z + 1;

 END;

 rc = fclose(f_id1);
 rc = fclose(f_id2);

RUN;

This creates the following text in the file books_read_out.txt:

Title
Origins and Growth of Sociology, The
First Light

How to Build a Mind

English Common Reader, The

Water, Leisure and Culture

Defence of the Realm, The

Main Currents in Sociological Thought Vol1
↑Main Currents in Sociological Thought Vol2
↑Nightfall

The first two lines have default spacing. The next three lines are followed by three line feeds. The next
two lines are followed by two line feeds. The final two lines are prepended with a form feed. This has no
affect in the text file, but the ↑ character shows where the form feeds are. If you were to open this file
in Microsoft Word, the last two records would be on new pages (that is, they would be preceded by a
Word page break).

Reference for language elements
Version 4.1

1413

MOPEN
Returns an identifier for a specified member or file that can then be used in other file functions to
specify the member or file.

MOPEN (directory- id , member ,

open- mode

,

record- length , record- format

)

Opens a member or file in a directory or folder, and returns an identifier. The containing file or folder
must first have been opened using DOPEN (page 1374).

Return type: Numeric

directory-id

Type: Numeric

Identifier of the directory or folder containing the file to be opened. The identifier is created using
DOPEN (page 1374).

member

Type: Character

open-mode
Optional argument

Type: Character

The mode in which the dataset is opened. If the file is to be used as an input file, this can be:

"I"
Random access mode.

"S"

Sequential access mode in which observations are read from beginning to end, but
previous observations can be read.

If the file is to be used as an output file, this can be:

"A"

Opens an existing file and appends records to the end of it. If the file does not exist, it is
created.

Reference for language elements
Version 4.1

1414

"O"

Opens a file and adds records to it. If the file does not exist, it is created. If the file already
exists, the file is overwritten.

"U"

Opens a file for update. The file can be read or written to.

Using any other character is not allowed; if you do use a character not in this list, the file is not
opened, and the identifier 0 is returned.

record-length
Optional argument

Type: Numeric

record-format
Optional argument

Type: Character

The format of records in the file:

"B"

Binary.

"D"

Default. This is FB on MVS, V on any other operating system.

"F"

Fixed length.

"P"

Print file.

"V"
Variable length.

If the file does not exist, the identifier 0 is returned. If the file exists, the identifier 1 is assigned to the
first file opened. If another file is then opened, the identifier is set to 2. The identifier increments by one
for each file opened in the same DATA step unless a previously opened file is closed using FCLOSE, in
which case the released identifier is used.

All open files are closed and their identifiers are released when the DATA step ends.

Reference for language elements
Version 4.1

1415

Example
In this example, the function returns an identifier for the specified folder references. The references are
specified using the FILENAME function. The result is written to the log.

DATA _NULL_;
 d_id = DOPEN("mydir");
 f_id=MOPEN(d_id,"books_read.txt");
 PUT "The identifier is: " f_id;
 f_id=MOPEN(d_id,"books_read.prn");
 PUT "The identifier is: " f_id;
 rc = fclose(f_id);
 f_id=MOPEN(d_id,"books_read.csv");
 PUT "The identifier is: " f_id;
RUN;

This produces the following output:

The identifier is: 0

In this example:

• The first identifier returned is 1. The specified file exists, so the first identifier is set.
• The second identifier returned is 2.
• The third identifier returned is 2 because the specified file exists, and the FCLOSE function was used

before this MOPEN to close the previously opened file and release the identifier.

PATHNAME
Returns the full pathname for a folder or filename that has already been specified using FILENAME or
LIBNAME.

PATHNAME (f ileref- or- libref

, type

)

Whether the function returns a pathname to a folder or directory, or to a pathname including a filename,
depends on whether you specify:

• A reference to a library, created with LIBNAME (page 618)
• A reference to a file or folder, created with FILENAME (page 1389)

and the option you also specify.

Return type: Character

fileref-or-libref

Type: Character

Reference for language elements
Version 4.1

1416

The file reference specified for a pathname or filename in a FILENAME function , or the libref
specified using LIBNAME.

type
Optional argument

Type: Character

The type of reference. If the reference does not match the type of reference, an error message is
returned.

"L"

fileref-or-libref is a libref. This is the default if fileref-or-libref is a libref.

"F"

fileref-or-libref is a file reference. This is the default if fileref-or-libref is a file reference.

If F is specified, the function assumes that the value to be returned is either:

• A filename, including the pathname, if you specified a reference created with FILENAME that
refers to a file

• A folder or directory name, including the pathname, if you specified a reference created with
FILENAME that refers to a folder or directory

If you specify F for a libref, an error is returned.

If you specify L for type, the function assumes that the value to be returned is a pathname
previously defined using LIBNAME. If you specify L for a file identifier, an error is returned.

Basic example
In this example, the pathname and filename of a file are specified using the FILENAME function. The
PATHNAME function is then used to return those names.

DATA _NULL_;
 rc = FILENAME("myfile","C:\temp\books\books_read.prn");
 rc = FILENAME("mydir","C:\temp\books");
 pn = PATHNAME("mydir");
 PUT "The pathname is: " pn;
 pn = PATHNAME("myfile");
 PUT "The pathname is: " pn;
RUN;

This produces the following output:

The pathname is: C:\temp\books
The pathname is: C:\temp\books\books_read.prn

Reference for language elements
Version 4.1

1417

Example – using options and creating errors
In this example, the pathname and filename of a file are specified using the FILENAME function, and a
libref is created using LIBNAME. The PATHNAME function is then used to return the pathnames, using
type to specify whether the pathname to be returned was set using FILENAME or LIBNAME.

libname books 'C:\temp\books';
DATA _NULL_;

 rc = FILENAME("myfile","C:\temp\books\books_read.prn");

 pn = PATHNAME("myfile");
 PUT "The pathname is a FILENAME ref - using default option: " pn;

 pn = PATHNAME("myfile","F");
 PUT "The pathname is a FILENAME ref - using F option: " pn;

 pn = PATHNAME("myfile","L");
 PUT "The pathname is a FILENAME ref - using L option:" pn;

 PUT "===========================";

 pn = PATHNAME("books");
 PUT "The pathname is a libref - using default option: " pn;

 pn = PATHNAME("books","F");
 PUT "The pathname is a libref - using F option: " pn;

RUN;

This produces the following output:

The pathname is a FILENAME ref - using default option: C:\temp\books\books_read.prn
The pathname is a FILENAME ref - using F option: C:\temp\books\books_read.prn
NOTE: Argument 1 to function PATHNAME at line 4567 column 8 is invalid
The pathname is a FILENAME ref - using L option:
===========================
The pathname is a libref - using default option: C:\temp\books
NOTE: Argument 1 to function PATHNAME at line 4575 column 8 is invalid
The pathname is a libref - using F option:

The example shows where that if type is the default or F, the pathname is returned successfully if used
with a reference created using FILENAME, but that if used with L, no pathname is returned and an error
message is generated.

Similarly, if type is the default (equivalent to L), the pathname is returned successfully if used with a
reference created using LIBNAME, but if used with F, no pathname is returned and an error message is
generated.

Reference for language elements
Version 4.1

1418

SYSMSG
Returns an error message for the external file functions.

SYSMSG ()

This function has no arguments. It returns a message based on the numeric return code generated
by external file functions. If the external file function is successful, the code generated is 0, and no
message is returned.

Return type: Character

Example
In this example, a file reference for the pathname and filename of a file is created using the FILENAME
function. The FILEREF function is then used to check whether the file reference and the file associated
with it exist. The result is written to the log.

DATA _NULL_;
 rc = FILENAME("myfile", "C:\temp\books\book_read.txt");
 f_id = FOPEN("myfile");
 var = FILEREF("myfile");
 PUT "reference = " var;
 msg = SYSMSG();
 PUT msg;
 var = FILEREF("myfile2");
 PUT "reference = " var;
 msg = SYSMSG();
 PUT msg;
RUN;

This produces the following output:

reference = -20006
The physical file C:\temp\books\book_read.txt associated with fileref myfile does
 not exist
reference = 0

In the first use of the function, the file reference exists, but the file does not, so the value -2006 is
returned. In the second use of the function, the file reference exists and references an existing file, so 0
is returned.

SYSRC
Returns the error code for an external file function.

SYSRC ()

Reference for language elements
Version 4.1

1419

This function has no arguments. It returns the numeric code returned by the external file function last
executed. If the external file function is successful, the code generated is 0.

Return type: Numeric

Example
In this example, a file reference for the pathname and filename of a file is created using the FILENAME
function. The FILEREF function is then used to check whether the file reference and the file associated
with it exist. The result is written to the log.

DATA _NULL_;

 rc = FILENAME("myfile", "C:\temp\books\books_read.txt");
 f_id = FOPEN("myfile");

 var = FILEREF("myfile");
 rc = SYSRC();
 PUT "return code is = " rc;
 msg = SYSMSG();
 PUT msg;

 rc = FILENAME("myfile", "C:\temp\books\book_read.txt");
 f_id = FOPEN("myfile");

 var = FILEREF("myfile");
 rc = SYSRC();
 PUT "return code is = " rc;
 msg = SYSMSG();
 PUT msg;

 var = FILEREF("myfile2");
 rc = SYSRC();
 PUT "return code is = " rc;
 msg = SYSMSG();
 PUT msg;

RUN;

This produces the following output:

reference = 0

reference = -20006
The physical file C:\temp\books\book_read.txt associated with FILEREF myfile does
 not exist
reference = 20004
The FILEREF myfile2 is not assigned

In the first use of the function, the file reference exists and references an existing file, and so returns 0.
In the second use of the function, the file reference exists, but the file does not, so the value -2006 is
returned. In the third use of the function, the file reference does not exist, so the value 2004 is returned.
SYSRC is used to return a code, and SYSMSG is used to display the messages associated with those
return codes.

Reference for language elements
Version 4.1

1420

External module functions and CALL routines
Execute code stored in external modules.

The external modules can be any compiled program in a file or library, such as Windows functions,
user-created C programs and routines, compiled COBOL programs, and so on. A module can be in a
dynamic link library (.dll) on Windows, or a shared object (.so) file on Linux. On z/OS, the module
can be a fetchable module.

To call a module on any platform except z/OS, any options or parameters required by the module, and
the type of data output by the module must be defined an attribute table. The attribute table is stored as
text in a file or in a catalog entry referenced by the name SASCBTBL. The format of the attribute table is
described below. The file referenced by SASCBTBL can contain more than one attribute table.

On z/OS, you do not have to define SASCBTBL, as all arguments are passed by address, and each
program comprises a module.

Note:
If the modules are contained in a Windows .dll, the .dll must contain an exports table that lists the
modules that can be accessed.

The attribute table ...1420
MODULEN ...1425

Runs an external module that returns a numeric value.

MODULEC ...1428
Runs an external module that returns a character value.

CALL MODULE ...1431
Runs an external module that does not return a value.

The attribute table
To enable an external module to be called from a WPS program, on all platforms except z/OS, you
must create an attribute table that defines the parameters and outputs of the module. This table is then
used by the external routine functions to define the values specified in them.

For example, it is possible to call the Windows CopyFileA function using MODULEN. The attribute table
would define how many parameters are required by CopyFileA, the format of those parameters, what
the output will be, and so on. This enables the MODULEN function to correctly pass parameters to the
function and receive output, such as a return value, from the function.

Reference for language elements
Version 4.1

1421

The attribute table must be stored in a text file or catalog entry that is referenced with the name
SASCBTBL. This can contain as many attribute tables as required. An attribute table has the following
format:

ROUTINE name-of-module
MODULE = libname
MINARG = min-args
MAXARG = max-args
CALLSEQ = val-or-addr
STACKORDER = arg-order
STACKPOP = memorymanager
RETURNS = return-type
;
ARG n action arg-type required addressing FDSTART FORMAT=format;
...

where:

name-of-module The name of the module. For example, if this attribute table provides the
information required for a Windows function, the name of the module might
be CopyA or DeleteA. The name specified here is the name will be used in
MODULEN, MODULEC or CALL MODULE.

libname The name of the library that contains the module. This might be a .dll or .so
file. For example, if the module you are calling is a Windows function, the library
might be KERNEL32. The library should be in a folder specified on the PATH
environment variable, or in the same folder as the program that contains the
external function.

min-args The minimum number of arguments required by the module. The module might
not require all arguments; that is, some might be optional. Arguments can be
defined as optional by setting the NOTREQD option for ARG.

max-args The maximum number of arguments required by the module.
val-or-addr The method used to pass values to the module. Can be:

BYVALUE

Values are passed directly.

BYADDR

A reference to the memory address that contains the value is passed.
This is the default.

The method specified here applies to all arguments. You can, however, override
this setting for individual arguments by setting the addressing option of ARG.

arg-order Specifes the order in which the arguments specified for the module are read
onto the stack. This can be:

Reference for language elements
Version 4.1

1422

R2L

The arguments defined for the function are placed on the stack to be read
by the module in right to left order. The last argument is therefore first on
the stack, and the first argument last.

L2R

The arguments defined for the function are placed on the stack to be read
by the module in left to right order. The first argument is therefore first on
the stack, and the last argument last. This is the default.

Note:
This option is currently unsupported.

memorymanager Specifies whether the called module, or the calling WPS program, will update
the stack pointer on return from the module. The value can be CALLER (the
calling program) or CALLED (the called module). The default is CALLER.

return-type The type of the value that will be returned by the module. This can be:

CHARn
Pointer to a character string of n bytes. n is mandatory.

DOUBLE
Double-precision floating-point number. Maximum 8 bytes.

DBLPTR
Pointer to a double-precision floating-point number. Maximum 8 bytes.

INT32
Signed integer. Maximum 4 bytes.

UINT32
Unsigned integer. Maximum 4 bytes.

INT64
Signed integer. Maximum 8 bytes.

UINT64
Unsigned integer. Maximum 8 bytes.

LONG
Long integer. Maximum 4 bytes.

ULONG
Unsigned long integer. Maximum 4 bytes.

SHORT
Short integer. Maximum 2 bytes.

Reference for language elements
Version 4.1

1423

USHORT
Unsigned short integer. Maximum 2 bytes.

n For each argument that is required by the module, an ARG parameter is defined.
The arguments are numbered, starting from 1; the number defines the position
of the argument in the command line.

action Can be:

INPUT

The value in the argument is passed to the module.

OUTPUT

The argument receives a value passed back from the module.

UPDATE

The argument can contain a value that is passed to a module, and then a
value returned from the module.

OUTPUT and UPDATE can only be specified if their values are variables; they
cannot be used if the values are constants or expressions.

arg-type The type of the argument:

CHAR
The argument contains character data.

NUM
The argument contains numeric data.

required Optional. Specifies whether the argument is optional:

REQUIRED
The argument is required by the module. This is the default.

NOTREQD
The argument is not required by the module.

addressing Optional. Specifies how the value of the argument is passed to the module:

BYVALUE

The value is passed directly.

BYADDR

A reference to the memory address that contains the value to be passed.
This is the default.

Reference for language elements
Version 4.1

1424

FDSTART Optional. The value of the argument is a pointer to a block of values grouped
into a structure. All subsequent arguments are assumed to contain values that
are successive elements of the struncture until another ARG with the option
FDSTART is encountered.

format The SAS language storage format of the value; for example $CSTR200. or
RB8. If the argument is receiving data from the module (that is, it has been
specified as OUTPUT or UPDATE), then this option should be a valid informat.

The format or informat can be any SAS language format or informat, or a user-
defined format.

For example, if you want to use the Windows CopyFileA function from a DATA step, you would use
it through the MODULEN function, because CopyFileA returns a numeric value indicating success or
failure. First, however, you would need to define the following attribute table in the file SASCBTBL:

ROUTINE CopyFileA
 MODULE = KERNEL32
 MINARG = 3
 MAXARG = 3
 STACKPOP = CALLER
 RETURNS = USHORT
 ;
 ARG 1 INPUT CHAR FORMAT=$CSTR200.;
 ARG 2 INPUT CHAR FORMAT=$CSTR200.;
 ARG 3 INPUT NUM FORMAT=PIB4. BYVALUE;

This specfies that the function you want to use:

• Is named CopyFileA (which is the ANSI version of CopyFile)
• Is in the KERNEL32 Windows module
• Must have three arguments
• Returns an unsigned short

The stack pointer will be updated by the calling DATA step.

The first two arguments (the file to copy and the destination filename) are character values; the third
argument is a number that specifies what should happen if the file already exists.

You could then specify MODULEN in a DATA step to use the CopyFileA function:

DATA _NULL_;
 rc = MODULEN('*E', 'CopyFileA', 'c:\temp\logfile', 'c:\temp\logfile2', 0);
RUN;

Note:
You can get information on the parameters required by Windows functions from the Microsoft developer
Web site.

Reference for language elements
Version 4.1

1425

Creating and referencing SASCBTBL
The file referenced by SASCBTBL is a plain text file. This file can be created and stored on your
computer or on a network, and referenced using a filename reference. For example, you could create
an attributes table on Windows in a filename attributes in c:\temp, and then use a filename
reference to access it:

FILENAME SASCBTBL "c:\temp\attributes";
DATA _NULL_
 rc = MODULEN("*E", "CopyFileA", "c:\temp\test.txt", "c:\temp\test2.txt",0);
RUN;

You can also create an attributes file using a DATA step. You could, for example, write the attribute file
required by a module to a catalog. For example:

FILENAME SASCBTBL CATALOG "WORK.ATTRIBUTES.COPYFILE.SOURCE"
DATA _NULL_;
 FILE SASCBTBL;
 PUT 'routine CopyFileA';
 PUT 'module = KERNEL32';
 PUT 'minarg = 3';
 PUT 'maxarg = 3';
 PUT 'stackpop = called';
 PUT 'returns = ushort';
 PUT ';';
 PUT 'arg 1 input char format=$cstr200.;';
 PUT 'arg 2 input char format=$cstr200.;';
 PUT 'arg 3 input num format pib4. byvalue;';
run;
DATA _NULL_
 rc = MODULEN("*E", "CopyFileA", "c:\temp\test.txt", "c:\temp\test2.txt",0);
RUN;

This creates an attribute table as a source element in the COPYFILE entry of the ATTRIBUTES catalog
in the WORK library. This catalog entry is then accessed by the subsequent DATA step.

Using a catalog to store an attribute table that is created when it is needed ensures that the attribute
table entries are available when the program is run, and provides a clean-up facility when the WPS
session is ended.

MODULEN
Runs an external module that returns a numeric value.

MODULEN (opt ion- string , funct ion_ident if ier

,

,

funct ion_argument

)

Reference for language elements
Version 4.1

1426

MODULEN (funct ion_ident if ier

,

,

funct ion_argument

)

This function must be used with modules that return numeric values. If a module returns a character,
or returns no value, an error is returned. To run a module that returns a character, use MODULEC
(page 1428); to run a module that returns no value, use CALL MODULE (page 1431).

Return type: Numeric

option-string

Type: Character

A character, preceded by *, that specifies the type of information returned to the log:

*E

Error messages.

*H

A short help text.

*I

Detailed information about the parameters specified to the module, and the values of those
parameters in both text and hexadecimal.

*T

Summary information about the definition of the parameters in the attributes table for this
module.

function_identifier

Type: Character

The name of the module (function) to be called.

function_argument
Optional argument

Type: Character or numeric value

The value required by an argument or option to a module.

The module name specified by function_identifier must have a corresponding attribute table, unless it is
a module on z/OS; see The attribute table (page 1420) for details

Reference for language elements
Version 4.1

1427

Basic example
In this example, the Windows CopyFileA function is executed. The parameters required by
CopyFileA are first assigned to an attribute table in the catalog entry SASCBTBL using a DATA step.
The result of the return value is written to the log.

FILENAME SASCBTBL CATALOG "work.attributes.copyfile.source";
DATA _NULL_;
 FILE SASCBTBL;
 PUT 'routine CopyFileA';
 PUT 'module = KERNEL32';
 PUT 'minarg = 3';
 PUT 'maxarg = 3';
 PUT 'stackpop = called';
 PUT 'returns = ushort';
 PUT ';';
 PUT 'arg 1 input char format=$cstr200.;';
 PUT 'arg 2 input char format=$cstr200.;';
 PUT 'arg 3 input num format=pib4. byvalue;';
RUN;

DATA _NULL_;

 rc = MODULEN("*E", "CopyFileA", "c:\temp\test.txt", "c:\temp\test2.txt",0);

 msg = IFC(rc, "The file copied successfully", "The file failed to copy");
 PUT msg;

RUN;

This produces the following output:

The file copied successfully

The third parameter in this example is set to 0 (zero). For CopyFileA, this enables the copied file to
overwrite any existing file. If the parameter had been set to 1, and the file already existed, the copied
file would not be able to overwrite the existing file, and the DATA step would return the message The
file failed to copy.

Example – attribute table stored in file and detailed information
returned
In this example, the Windows CopyFileA function is executed. The required attributes table has been
already created and saved in the file c:\temp\attributes. The result of the return value, and of
setting option-string to *I, is written to the log.

FILENAME SASCTBL "c:\temp\attributes";
DATA _NULL_;

 rc = MODULEN("*E", "CopyFileA", "c:\temp\test.txt", "c:\temp\test2.txt",0);

 msg = IFC(rc, "The file copied successfully", "The file failed to copy");
 PUT msg;

RUN;

Reference for language elements
Version 4.1

1428

This produces the following output:

---PARM LIST FOR MODULEN ROUTINE---
CHR PARM 1 0000000052F5A620 2A49 (*I)
CHR PARM 2 0000000052F5A1C0 436F707946696C6541 (CopyFileA)
CHR PARM 3 000000004C891170 633A5C74656D705C746573742E747874 (c:\temp\test.txt)
CHR PARM 4 000000004C890C30 633A5C74656D705C74657374322E747874 (c:\temp\test2.txt)
NUM PARM 5 000000005316EFD8 0000000000000000 (0.00)
---ROUTINE CopyFileA LOADED AT ADDRESS 00000000158CA370 (PARMLIST AT
 000000004C70AF20)---
PARM 1 000000004C89A1B0
 633A5C74656D705C746573742E74787400000000000000000F0000000000000000464646
46464646464646464646464600000000000000000F00000000000000330000004135463200516F4C1D02
000000A1894C
1D02000000000000000000000F0000000000000000000000FF070080005FA5F2FC7F00007002EF521D02
000000000000
000000000F00000000000000805DA5F2FC7F00008C1E37890010008078F0CEF6FC7F000000000000FC7F
000001000000
07000000010000000A000000000000001D020000
PARM 2 000000004C89A278
 633A5C74656D705C74657374322E747874000000000000000000000000000
00000000037
30221B0000000000000000000F00000000000000310000000000000000656469756D0000000000000000
000000000000
000000000F00000000000000010000000000000000656469756D0000483817F3FC7F0000000000000000
00000F000000
00000000F0A2894C1D020000981E23891D11008078F0CEF6FC7F00000000000000000000007261706846
696E616C004C
1D02000000000000000000000F00000000000000
PARM 3 00000000 <CALL-BY-VALUE>
---VALUES UPON RETURN FROM CopyFileA ROUTINE---
PARM 1 000000004C89A1B0
PARM 2 000000004C89A278
PARM 3 00000000 <CALL-BY-VALUE>
---VALUES UPON RETURN FROM MODULEN ROUTINE---
CHR PARM 3 000000004C891170 633A5C74656D705C746573742E747874 (c:\temp\test.txt)
CHR PARM 4 000000004C890C30 633A5C74656D705C74657374322E747874 (c:\temp\test2.txt)
NUM PARM 5 000000005316EFD8 0000000000000000 (0.00)

The file copied successfully

Because *I has been specified, detailed information is returned about the parameters.

MODULEC
Runs an external module that returns a character value.

MODULEC (opt ion- string , funct ion_ident if ier

,

,

funct ion_argument

)

Reference for language elements
Version 4.1

1429

MODULEC (funct ion_ident if ier

,

,

funct ion_argument

)

This function must be used with modules that return character values. If a module returns a numeric
value or returns no value, an error is returned. To run a module that returns a numeric value, use
MODULEN (page 1428); to run a module that returns no value, use CALL MODULE (page 1431).

Return type: Character

option-string

Type: Character

A character, preceded by * (asterisk), that specifies the type of information returned to the log:

*E

Error messages.

*H

A short help text.

*I

Detailed information about the parameters specified to the module, and the values of those
parameters, in both text and hexadecimal.

*T

Summary information about the definition of the parameters in the attributes table for this
module.

function_identifier

Type: Character

The name of the module (function) to be called.

function_argument
Optional argument

Type: Character or numeric value

The value required by an argument or option to a module.

The module name specified by function_identifier must have a corresponding attribute table, unless it is
a module on z/OS; see The attribute table (page 1420) for details

Reference for language elements
Version 4.1

1430

Basic example
In this example, the C++ program createNewFileTrueFalse is executed. It is contained in a .dll
called wpsExampledll. The createNewFileTrueFalse program creates a specified file and
returns T or F, depending on whether the file was created, and whether it overwrote an existing file.

The parameters required by createNewFileTrueFalse program are first assigned in an attribute
table in a catalog entry SASCBTBL created in a DATA step. The result of the return value is written to the
log. In this example, the .dll is assumed to be in the same folder as the WPS program, or in a folder
specified on the PATH environment variable.

FILENAME SASCBTBL CATALOG "work.attributes.copyfile.source";
DATA _NULL_;
 FILE SASCBTBL;
 PUT 'ROUTINE createNewFileTrueFalse';
 PUT 'MODULE = wpsExampledll';
 PUT 'MINARG = 2';
 PUT 'MAXARG = 2';
 PUT 'CALLSEQ = byvalue';
 PUT 'STACKPOP = called';
 PUT 'RETURNS = char1';
 PUT ';';
 PUT 'ARG 1 INPUT CHAR REQUIRED FORMAT=$CSTR200.;';
 PUT 'ARG 2 INPUT CHAR FORMAT=$CSTR1.';
RUN;

DATA _NULL_;

 rt = MODULEC("*E", "createNewFileTrueFalse", "c:\temp\test3.txt", "Y");
 PUT rt=;

RUN;

This produces the following output:

rt=T

The second parameter in this example is set to Y. This enables a new file to overwrite an existing file
with the same name.

Example – attribute table stored in file and detailed information
returned
In this example, the C++ program createNewFileTrueFalse is executed. It is contained in a .dll
called wpsExampledll. The createNewFileTrueFalse program creates a specified file and
returns T or F, depending on whether the file was created, and whether it overwrote an existing file.

The parameters required by createNewFileTrueFalse program are first assigned in an attribute
table in a catalog entry SASCBTBL created in a DATA step. The result of the return value is written to the
log. In this example, the .dll is assumed to be in the same folder as the WPS program, or in a folder
specified on the PATH environment variable.

Reference for language elements
Version 4.1

1431

The required attributes table has already been created and saved in the file c:\temp\attributes.
The result of the return value, and of setting option-string to *I, is written to the log.

FILENAME SASCBTBL "c:\temp\attributes";
DATA _NULL_;

 rt = MODULEC("*I", "createNewFileTrueFalse", "c:\temp\test9.txt", "N");

 PUT rt=;

RUN;

This produces the following output:

---PARM LIST FOR MODULEC ROUTINE---
CHR PARM 1 00000000C4DFCBF0 2A49 (*I)
CHR PARM 2 00000000BDE25B10 6372656174654E657746696C655472756546616C7365
 (createNewFileTrueFalse
)
CHR PARM 3 00000000BAED0BC0 633A5C74656D705C74657374392E747874 (c:\temp\test9.txt)
CHR PARM 4 00000000C4DFC410 59 (Y)
---ROUTINE createNewFileTrueFalse LOADED AT ADDRESS 000000001CE51130 (PARMLIST AT
00000000BAF82AF0)---
PARM 1 00000000BE55B360
 633A5C74656D705C74657374392E74787400000000000000000000000000000000000000
00
000000000000
00
000000000000
000
000
PARM 2 00000000BE55B428 00
---VALUES UPON RETURN FROM createNewFileTrueFalse ROUTINE---
PARM 1 00000000BE55B360
PARM 2 00000000BE55B428
---VALUES UPON RETURN FROM MODULEC ROUTINE---
CHR PARM 3 00000000BAED0BC0 633A5C74656D705C74657374392E747874 (c:\temp\test9.txt)
CHR PARM 4 00000000C4DFC410 59 (Y)
rt=F

Because *I has been specified, detailed information is returned about the parameters.

CALL MODULE
Runs an external module that does not return a value.

CALL MODULE (opt ion- string , funct ion_ident if ier

,

,

funct ion_argument

) ;

Reference for language elements
Version 4.1

1432

CALL MODULE (funct ion_ident if ier

,

,

funct ion_argument

) ;

This function must be used with modules that do not return a value. To run a module that returns
a numeric value, use MODULEN (page 1428); to run a module that returns a character, use
MODULEC (page 1428).

Note:
You can use this routine to run a module or program that returns a number or character, but you cannot
access that return value.

option-string

Type: Character

A character, preceded by * (asterisk), that specifies the type of information returned to the log:

*E

Error messages.

*H

A short help text.

*I

Detailed information about the parameters specified to the module, and the values of those
parameters, in both text and hexadecimal.

*T

Summary information about the definition of the parameters in the attributes table for this
module.

function_identifier

Type: Character

The name of the module (function) to be called.

function_argument
Optional argument

Type: Character or numeric value

The value required by an argument or option to a module.

The module name specified by function_identifier must have a corresponding attribute table, unless it is
a module on z/OS; see The attribute table (page 1420) for details

Reference for language elements
Version 4.1

1433

Basic example
In this example, the C++ program createNewFile is executed. It is contained in a .dll called
wpsExampledll. The createNewFile program creates a specified file. No value is returned.

The parameter required by createNewFile program is first defined in an attribute table in a catalog
entry SASCBTBL, created in a DATA step. In this example, the .dll is assumed to be in the same folder
as the WPS program, or in a folder specified on the PATH environment variable.

FILENAME SASCBTBL CATALOG "work.attributes.copyfile.source";
DATA _NULL_;
 FILE SASCBTBL;
 PUT 'ROUTINE createNewFile';
 PUT 'MODULE = wpsExampledll';
 PUT 'MINARG = 1';
 PUT 'MAXARG = 1';
 PUT 'STACKPOP = called';
 PUT ';';
 PUT 'ARG 1 INPUT CHAR REQUIRED FORMAT=$CSTR200.;';
 ;
RUN;

DATA _NULL_;

 CALL MODULE("*I", "createNewFile", "c:\temp\mynewfile");

RUN;

Example – attribute table stored in file and detailed information
returned
In this example, the C++ program createNewFile is executed. It is contained in a .dll called
wpsExampledll. The createNewFile program creates a specified file. No value is returned.

The parameter required by createNewFile program is first defined in an attribute table in a catalog
entry SASCBTBL, created in a DATA step. In this example, the .dll is assumed to be in the same folder
as the WPS program, or in a folder specified on the PATH environment variable.

The required attributes table has already been created and saved in the file c:\temp\attributes.
The result of the return value, and of setting option-string to *I, is written to the log.

filename SASCBTBL "c:\temp\attributes";
DATA _NULL_;

 CALL MODULE("*I", "createNewFile", "c:\temp\mynewfile");

RUN;

This produces the following output:

---PARM LIST FOR MODULE ROUTINE---
CHR PARM 1 00000000C4FE35A0 2A49 (*I)
CHR PARM 2 00000000C4FE4830 6372656174654E657746696C65 (createNewFile)
CHR PARM 3 00000000BDDF4560 633A5C74656D705C6D796E657766696C65 (c:\temp\mynewfile)
---ROUTINE createNewFile LOADED AT ADDRESS 000000001A7C1000 (PARMLIST AT
 00000000BAF73E10)---

Reference for language elements
Version 4.1

1434

PARM 1 00000000BE2A5F20
 633A5C74656D705C6D796E657766696C6500000000000000000000000000000000000000
000
00000000000
00
000000000000
00
000000000000
00
---VALUES UPON RETURN FROM createNewFile ROUTINE---
PARM 1 00000000BE2A5F20
---VALUES UPON RETURN FROM MODULE ROUTINE---
CHR PARM 3 00000000BDDF4560 633A5C74656D705C6D796E657766696C65 (c:\temp\mynewfile)

Because *I has been specified, detailed information is returned about the parameters.

Example – COBOL example on z/OS
In this example, two COBOL programs are executed. The programs reads data from a dataset, which is
then returned in variables to the calling WPS program.

Because the programs are COBOL programs on z/OS, no attribute table is required.

DATA _NULL_;
 company_name $40;
 short_name $20;
 init_name $10;
 abv_name $03;

 CALL MODULE('*EI', 'utlpname', delim, company_name,short_name, init_name,
 abv_name)

 PUT company_name short_name init_name abv_name;

 CALL MODULE('*EI', 'utlpnum', company_num, short_num)

 PUT company_name short_name company_num short_num;

This produces the following output:

Magnificent Bicycles MagBikes MB MB1
207 27

Financial functions
Get information about various kinds of financial transactions, such as investments, assets, risk and so
on.

These functions provide information on financial transactions and investments, such as:

• The future value of investments
• The total amount paid for loans at specified interest rates
• The performance of bonds and treasury bills

Reference for language elements
Version 4.1

1435

• Depreciation of assets
• Exposure to risk

BLACKCLPRC ...1437
Returns the price for a European call option using Black's model.

BLACKPTPRC ...1438
Returns the price for a European put option using Black's model.

BLKSHCLPRC ...1440
Returns the price for a European call option using the Black-Scholes model.

BLKSHPTPRC ...1441
Returns the price for a European put option using the Black-Scholes model.

COMPOUND ... 1442
Returns information about the compounding of a principal.

CONVX ..1445
Returns the convexity for a series of cash flows.

CONVXP ... 1446
Returns the convexity of a bond.

CUMIPMT ..1447
Returns the cumulative interest paid over a specified period for a constant payment loan or
investment.

CUMPRINC ... 1449
Returns the cumulative price for a loan over a specified time period.

DACCDB ... 1451
Returns the accumulated declining-balance depreciation, based on a depreciation rate you
specify.

DACCDBSL ... 1452
Returns the accumulated declining-balance depreciation using double-declining and straight-line
methods.

DACCSL .. 1453
Returns the accumulated depreciation on an asset using a straight-line method.

DACCSYD ... 1454
Returns the accumulated depreciation using the sum of the years' digits method.

DACCTAB ... 1455
Returns the accumulated depreciation on an asset using a set of specified depreciation rates.

DEPDB .. 1456
Returns the declining-balance depreciation of an asset for a particular period in a specified
number of periods, using a specified depreciation rate.

DEPDBSL ..1458
Returns the depreciation of an asset using both declining and straight-line methods, for an
asset at a particular period in a specified number of periods, using a specified declining balance
depreciation rate.

Reference for language elements
Version 4.1

1436

DEPSL ...1459
Returns the straight-line depreciation on an asset for a particular period in a specified number of
periods.

DEPSYD ..1460
Returns the depreciation of an asset for a particular year in a specified number of years, using
the sum of the years' digits method.

DEPTAB .. 1461
Returns the depreciation of an asset for a particular period, using a set of depreciation rates
specified for each period.

DUR ...1462
Returns the modified duration for a specified set of cash flows.

DURP .. 1463
Returns the modified duration for a periodic cashflow, such as that generated by a bond.

EFFRATE .. 1464
Returns the effective interest rate.

FINANCE ...1465
GARKHCLPRC ..1549

Returns the price for a European call option using the Garman-Kohlhagen model.

GARKHPTPRC ..1551
Returns the price for a European put option using the Garman-Kohlhagen model.

INTRR ..1552
Returns the internal rate of return for a supplied series of periodic cashflows.

IPMT .. 1553
Returns the interest paid for a specific period of a loan or investment that is being paid with
constant periodic payments and has a constant interest rate.

IRR .. 1555
Returns the internal rate of return for a supplied series of periodic cashflows.

MARGRCLPRC ... 1556
Returns the price for a European call option using Margrabe's formula.

MARGRPTPRC ... 1557
Returns the price for a European put option using Margrabe's formula.

MORT .. 1558
Returns information about the amortisation of a loan.

NETPV ...1560
Returns the net present value of an investment, based on a specified discount rate.

NOMRATE ...1562
Returns the nominal annual interest rate.

NPV ... 1563
Returns the net present value of an investment, based on a specified discount rate. The rate is
specified as a percentage.

Reference for language elements
Version 4.1

1437

PMT ... 1565
Returns the periodic payment necessary to pay off a loan, where the interest rate is constant.

PPMT ...1567
Returns the payment necessary to repay the principal of a loan or to pay into an investment for a
specified period, where the interest rate is constant and periodic payments are made.

PVP ... 1569
Returns the present value of a future amount, where the initial capital is repaid at maturity.

SAVING ... 1570
Returns the amount that would be saved based on a specified interest rate, term and payments.

SAVINGS ...1572
Returns the value of savings based on consistent deposits.

TIMEVALUE .. 1574
Returns the value of interest on savings plus the savings if interest is applied at a specified future
date while the term of the principal remains the same.

YIELDP ..1577
Returns the yield to maturity for a security for specified periodic cash flows.

BLACKCLPRC
Returns the price for a European call option using Black's model.

BLACKCLPRC (exercise- price , t ime , future- price , rate , volat ility)

Return type: Numeric

exercise-price

Type: Numeric

The exercise or current price for the call option.

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

future-price

Type: Numeric

The assumed strike price for the option.

Reference for language elements
Version 4.1

1438

rate

Type: Numeric

An annualised, continuously compounded, risk-free rate of return over the life of the option. For
example, if the rate is 9%, you can enter 0.09, or 9/100.

volatility

Type: Numeric

The annualised future price volatility; this should be a positive decimal number. For example, if
the volatility is 25%, you can enter 0.25, or 25/100.

Example
In this example, the function returns the price of a European call option that will expire in four months.
The exercise price and future price are both €20; the volatility is 25% per annum, and the risk-free rate
is 9% per annum. The result is written to the log.

DATA _NULL_;
 cp=BLACKCLPRC(20, 0.333, 20, 0.09, 0.25);
 PUT 'The call price is: ' cp euro5.2;
RUN;

This produces the following output:

The call price is: E1.12

You could also enter time as a fraction:

cp=blackclprc(20,4/12,20,0.09,0.25);

This would return the same result.

BLACKPTPRC
Returns the price for a European put option using Black's model.

BLACKPTPRC (exercise- price , t ime , future- price , rate , volat ility)

Return type: Numeric

exercise-price

Type: Numeric

The exercise or current price for the call option.

Reference for language elements
Version 4.1

1439

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

future-price

Type: Numeric

The assumed strike price for the option.

rate

Type: Numeric

An annualised, continuously compounded, risk-free rate of return over the life of the option. For
example, if the rate is 9%, you can enter 0.09, or 9/100.

volatility

Type: Numeric

The annualised future price volatility; this should be a positive decimal number. For example, if
the volatility is 25%, you can enter 0.25, or 25/100.

Example
In this example, the function returns the price of a European put option that will expire in four months.
The exercise price and future price are both €20; the volatility is 25% per annum, and the risk-free rate
is 9% per annum. The result is written to the log.

DATA _NULL_;
 pp = BLKPTPRC(20, 0.333, 20, 0.09, 0.25);
 PUT 'The put price is: ' pp euro5.2;
RUN;

This produces the following output:

The put price is: E1.12

You could also enter time as a fraction:

pp=blackptprc(20,4/12,20,0.09,0.25);

This would return the same result.

Reference for language elements
Version 4.1

1440

BLKSHCLPRC
Returns the price for a European call option using the Black-Scholes model.

BLKSHCLPRC (exercise- price , t ime , share- price , rate , volat ility)

Return type: Numeric

exercise-price

Type: Numeric

The exercise or current price for the call option.

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

share-price

Type: Numeric

The assumed strike price for the option.

rate

Type: Numeric

An annualised, continuously compounded, risk-free rate of return over the life of the option. For
example, if the rate is 9%, you can enter 0.09, or 9/100.

volatility

Type: Numeric

The annualised future price volatility; this should be a positive decimal number. For example, if
the volatility is 25%, you can enter 0.25, or 25/100.

Example
In this example, the function returns the price of a European call option that will expire in four months.
The exercise price and future price are both €20; the volatility is 25% per annum, and the risk-free rate
is 9% per annum. The result is written to the log.

DATA _NULL_;
 cp=BLKSHCLPRC(20, 0.333, 20, 0.09, 0.25);
 PUT 'The call price is: ' cp euro5.2;
RUN;

Reference for language elements
Version 4.1

1441

This produces the following output:

The call price is: E1.45

You could also enter time as a fraction:

cp=BLKSHCLPRC(20, 4/12, 20, 0.09, 0.25);

This would return the same result.

BLKSHPTPRC
Returns the price for a European put option using the Black-Scholes model.

BLKSHPTPRC (exercise- price , t ime , share- price , rate , volat ility)

Return type: Numeric

exercise-price

Type: Numeric

The exercise or current price for the call option.

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

share-price

Type: Numeric

The assumed strike price for the option.

rate

Type: Numeric

An annualised, continuously compounded, risk-free rate of return over the life of the option. For
example, if the rate is 9%, you can enter 0.09, or 9/100.

volatility

Type: Numeric

The annualised future price volatility; this should be a positive decimal number. For example, if
the volatility is 25%, you can enter 0.25, or 25/100.

Reference for language elements
Version 4.1

1442

Example
In this example, the function returns the price of a European put option that expires in four months. The
exercise price and future price are both €20; the volatility is 25% per annum, and the risk-free rate is
9% per annum. The result is written to the log.

DATA EXAMPLE;
 pp=BLKSHPTPRC(20, 0.333, 20, 0.09, 0.25);
 PUT 'The put price is: ' pp euro5.2;
RUN;

This produces the following output:

The put price is: E0.86

You could also enter time as a fraction:

pp=BLKSHPTPRC(20, 4/12, 20, 0.09, 0.25);

This would return the same result.

COMPOUND
Returns information about the compounding of a principal.

COMPOUND (p , f , i , n)

You can calculate one of the following:

• The principal
• The payment at each period
• The interest rate
• The period

For example, if you know the principal amount, the future amount, and the number of years for which
the principal is compounded, you can determine the interest rate applied. See the sections below for
examples of usage.

The interest is compounded periodically (that is, every month, or every year).

Return type: Numeric

p

Type: Numeric

The principal amount to be compounded.

f

Type: Numeric

Reference for language elements
Version 4.1

1443

The future amount after compound interest has been applied.

i

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

n

Type: Numeric

The number of periods over which the interest is compounded.

To obtain the value of any variable in the function, you omit the variable. The value of that variable is
then returned by the function. For example, to obtain the future value, you would specify:

ret=compound(3000,.,0.05,5);

Or, to calculate the interest rate required to increase £3000 to £3200 over five years, you would use the
following

ret=compound(3000,3200,.,5);

The omitted arguments can be represented by nulls, or by missing values:

compound(3000,3200,,5);

is equivalent to:

compound(3000,3200,.,5);

Example – calculating the future amount
In this example, the function calculates the future amount after an interest rate of 2% has been applied
to the principal of £3000 for a number of years. The result is written to the log.

DATA _NULL_;
 amount=COMPOUND(3000,,2/100,5);
 PUT 'The amount after compounding is: ' amount nlmnlgbp10.0;
RUN;

This produces the following output:

The amount after compounding is: £3,312.24

Reference for language elements
Version 4.1

1444

Example – calculating the principal amount
In this example, the function calculates the principal required to return a future amount of £3312 after
compounding for five years at an interest rate of 2%. The result is written to the log.

DATA _NULL_
 pp=COMPOUND(.,3312.24,2/100,5);
 PUT 'The principal is: ' pp nlmnlgbp10.0;
RUN;

This produces the following output:

The principal is: £3,000.00

Example – calculating the interest rate
In this example, the function calculates the interest rate that would return a future amount of £3312 on a
principal of £3,000 after five years. The result is written to the log.

DATA _NULL_;
 interest=compound(3000,3312,.,5);
 PUT 'The interest rate is: ' interest percent7.2;
RUN;

This produces the following output:

The interest rate is: 2.00%

Example – calculating the number of years
In this example, the function calculates the number of years required to increase a principal of £3,000 to
a future value of £3312 if the interest rate is 2%. The result is written to the log.

DATA _NULL_;
 time=compound(3000,3312,2/100,);
 PUT 'The number of months required to return the future amount is: ' time 4.;
RUN;

This produces the following output:

The number of years required to return the future amount is: 5

Example – calculating the number of months
In this example, the function calculates the number of months required to increase a principal of £3,000
to a future value of £3312 if the interest rate is 2%. To do this, it also makes use of the NOMRATE
function to calculate the nominal interest rate for monthly repayments. The result is written to the log.

DATA _NULL_;
 time=COMPOUND(3000,3312,nomrate("month",2)/12,);
 PUT 'The number of months required to return the future amount is: ' time 4.;
RUN;

Reference for language elements
Version 4.1

1445

This produces the following output:

The number of months required to return the future amount is: 60

CONVX
Returns the convexity for a series of cash flows.

CONVX (yield , freq ,

,

cash- f low)

Return type: Numeric

yield

Type: Numeric

The security's yield, as a percentage. You can enter this as a fraction (for example, 5/100), or as
a decimal (for example, 0.05).

freq

Type: Numeric

The number of coupons per period. This might, for example, be one a year, or one a month, or
twelve a year.

cash-flow

Type: Numeric

A cashflow for a period. Cashflows should be entered as negative numbers if they are outgoings.
Typically, the first number entered for a cashflow will be an outgoing.

Example
In this example, the convexity is calculated for a series of cash flows for a yield of 2% where the
payment frequency is twice a year. The result is written to the log.

DATA _NULL_;
 cvx = CONVX(2/100,2,-1000,250,100,104,100,104,200,250,100,104,100,104,106);
 PUT 'The convexity is: ' cvx 7.2;
RUN;

This produces the following output:

The convexity is: 49.55

Reference for language elements
Version 4.1

1446

CONVXP
Returns the convexity of a bond.

CONVXP (par- value , rate , numeric , K , k0 , yield)

Return type: Numeric

par-value

Type: Numeric

The par value of the bond.

rate

Type: Numeric

The coupon rate for the bond.

numeric

Type: Numeric

The number of coupons per period. This might, for example, be one a year, or one a month, or
twelve a year.

K

Type: Numeric

The number of remaining coupon payments.

k0

Type: Numeric

The time to the first coupon. This should be greater than 0 and less than 1/numeric. For example,
if coupons are monthly, and there are 28 days until the next coupon, you might enter this value
as 28/30 * 1/12, or as 0.078.

yield

Type: Numeric

The current continuously compounded yield.

Reference for language elements
Version 4.1

1447

Example
In this example, the convexity is calculated for a bond with a par value of £100, a coupon rate of 5%,
coupon payments twice a year with four further payments until expiry, and with a yield of 3%. There are
two months until the next coupon payment. The result is written to the log.

DATA _NULL_;
 cvx = CONVXP(100,0.05,2,4,2/6*1/2,0.03);
 PUT 'The convexity is: ' cvx 6.2;
RUN;

This produces the following output:

The convexity is: 3.32

CUMIPMT
Returns the cumulative interest paid over a specified period for a constant payment loan or investment.

CUMIPMT

(rate , number- payments , present- value ,

start- period

,

f inal- period , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

number-payments

Type: Numeric

The number of payments to be made into the loan or investment. For example, this might be five
years, in which case you would specify 5, or 60 months, in which case you would specify 60.

present-value

Type: Numeric

The current value of the loan or investment.

Reference for language elements
Version 4.1

1448

start-period
Optional argument

Type: Numeric

The period within the specified number of periods at which to start calculating the cumulative
interest. For example, if you want to calculate the cumulative interest from the eighth month to
the 24th month of a 60 month loan, you would specify 8. If you specify this variable, you must
also specify the final period as described below.

final-period
Optional argument

Type: Numeric

The period within the specified number of periods at which to stop calculating the cumulative
interest. For example, if you want to calculate the cumulative interest from the eighth month to
the 24th month of a 60 month loan, you would specify 24. If you specify this argument, you must
also specify the first period as described above.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If you specify this argument, you must also specify start-period and final-period.

Basic example
In this example, the total interest is calculated for a loan whose present value is £5,000 after five years
at an interest rate of 3.45%. The interest is calculated yearly. The result is written to the log.

DATA _NULL_;
 ret = CUMIPMT(3.45/100, 5, 5000);
 PUT 'The cumulative interest: ' ret 10.2 ;
RUN;

This produces the following output:

The cumulative interest: 529.20

Reference for language elements
Version 4.1

1449

Note:
This result is the same as the total provided by summing the result of the IPMT (page 1553) function
for each of the five years. See the example in the IPMT function.

Example – calculating the cumulative interest for a period within the
term
In this example, the total interest for years four through ten is calculated for a loan of £10,000 with a
term of twelve years at an interest rate of 3.45%. The result is written to the log.

DATA _NULL_;
 ci = CUMIPMT((3.45/100), 12, 10000, 4,10);
 PUT 'The cumulative interest: ' ci 10.2;
RUN;

This produces the following output:

The cumulative interest: 658.19

CUMPRINC
Returns the cumulative price for a loan over a specified time period.

CUMPRINC

(rate , number- payments , present- value ,

start- period

,

f inal- period , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate.

number-payments

Type: Numeric

The number of payment over which the loan is repaid.

present-value

Type: Numeric

The current or final value of the loan.

start-period
Optional argument

Reference for language elements
Version 4.1

1450

Type: Numeric

The payment in the range number-payments at which to start calculating principal. For example,
to start at the second payment, you would enter 2.

final-period
Optional argument

Type: Numeric

The payment in the range of number-payments at which to stop calculating principal. For
example, to stop at the tenth payment, you would enter 10.

If omitted, the default is the final payment.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If you do not specify start-period, final-period, and type, the value returned will always be present-value.

Example
In this example, the total amount repaid over 60 months (five years) between months 24 and 40 is
calculated for a loan whose final value is £15000 with an interest rate of 5%. As the period is monthly,
and the rate is speficied annually, the NOMRATE function is also used to return the appropriate nominal
interest rate. The interest is calculated at the beginning of the loan periods (the default). The result is
written to the log.

DATA _NULL_;
 npv = CUMPRINC(NOMRATE("month",5)/12,60,15000,24,40);
 PUT 'The cumulative principal is: ' npv nlmnlgbp12.2;
RUN;

The result is written to the log.

The cumulative principal is: £4,266.26

Reference for language elements
Version 4.1

1451

DACCDB
Returns the accumulated declining-balance depreciation, based on a depreciation rate you specify.

DACCDB (period , balance , l ifet ime , rate)

Return type: Numeric

period

Type: Numeric

The number of periods (for example, years or months), starting from the first period for which you
want the value of the accumulated depreciation. For example, if you specify 3, the calculation will
apply to periods one through three.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The useful life of the asset, specified as a number of periods.

rate

Type: Numeric

The depreciation rate. Typically, 2 (for 200%), would be used to specify a double-declining
balance.

If you set period to the same value as lifetime, the accumulated depreciation will equal balance.

Example
In this example, the accumulated value of the depreciation is calculated for years one through three of a
five year depreciation on an asset worth £100,000. The result is written to the log.

DATA _NULL_;
 dac = DACCDB(3, 100000, 5,1.5);
 PUT 'The accumulated depreciation is: ' dac 10.2;
RUN;

This produces the following output:

The accumulated depreciation is: 65700.00

This is the accumulated straight-line depreciation over the first three years.

Reference for language elements
Version 4.1

1452

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DACCDBSL
Returns the accumulated declining-balance depreciation using double-declining and straight-line
methods.

DACCDBSL (period , balance , l ifet ime , rate)

|The function uses a declining-balance method until the mid-point of the asset's value, and then uses a
straight-line depreciation model.

For example, if your asset was worth £10,000, a declining balance method would be used until the
asset was worth £5,000, after which straight line depreciation would be used.

Return type: Numeric

period

Type: Numeric

The number of periods (for example, years or months), starting from the first period for which you
want the value of the accumulated depreciation. For example, if you specify 3, the calculation will
apply to periods one through three.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The useful life of the asset, specified as a number of periods.

rate

Type: Numeric

The depreciation rate. Typically, 2 (for 200%), would be used to specify a double-declining
balance.

If you set period to the same value as lifetime, the accumulated depreciation will equal balance.

Reference for language elements
Version 4.1

1453

Example
In this example, the accumulated value of the depreciation is calculated for years one through three of
a five year depreciation on an asset worth £100,000. The declining-balance depreciation rate is set to
1.5. The result is written to the log.

DATA _NULL_;
 dac = DACCDBSL(3, 100000, 5,1.5);
 PUT 'The accumulated depreciation is: ' dac 10.2;
RUN;

This produces the following output:

The accumulated depreciation is: 67333.33

This is the accumulated depreciation with declining depreciation for the first 50% of the depreciation,
and straight-line depreciation afterwards.

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DACCSL
Returns the accumulated depreciation on an asset using a straight-line method.

DACCSL (period , balance , l ifet ime)

Return type: Numeric

period

Type: Numeric

The number of periods (for example, years or months), starting from the first period for which you
want the value of the accumulated depreciation. For example, if you specify 3, the calculation will
apply to periods one through three.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The useful life of the asset, specified as a number of periods.

Reference for language elements
Version 4.1

1454

If you set period to the same value as lifetime, the accumulated depreciation will equal balance.

Example
In this example, the accumulated value of the straight-line depreciation is calculated for years one
through three of a five year depreciation on an asset worth £100,000. The result is written to the log.

DATA _NULL_;
 dac = DACCDL(3, 100000, 5);
 PUT 'The accumulated depreciation is: ' dac 10.2;
RUN;

This produces the following output:

The accumulated depreciation is: 60000.00

Note:
Although this example has been described as applying to years, the example would be the same if the
periods were months, or quarters, and so on.

DACCSYD
Returns the accumulated depreciation using the sum of the years' digits method.

DACCSYD (period , balance , l ifet ime)

Return type: Numeric

period

Type: Numeric

The number of periods (for example, years or months), starting from the first period for which you
want the value of the accumulated depreciation. For example, if you specify 3, the calculation will
apply to periods one through three.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The useful life of the asset, specified as a number of periods.

If you set period to the same value as lifetime, the accumulated depreciation will equal balance.

Reference for language elements
Version 4.1

1455

This function takes the asset's expected life specified in lifetime, and adds together the digits for each
year. If, for example, the asset is expected to last five years, the sum of the years' digits is obtained
by adding: 5 + 4 + 3 + 2 + 1 to get a total of 15. Each digit is then divided by this sum to determine the
percentage by which the asset should be depreciated each year, starting with the largest; using the
previous example, in the first year the depreciation would be 5/15, or 33.3%.

Example
In this example, the accumulated value of the depreciation is calculated for years one through three of a
five year depreciation on an asset worth £100,000. The result is written to the log.

DATA _NULL_;
 dac = DACCDBSL(3, 100000, 5,1.5);
 PUT 'The accumulated depreciation is: ' dac 10.2;
RUN;

This produces the following output:

The accumulated depreciation is: 80000.00

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DACCTAB
Returns the accumulated depreciation on an asset using a set of specified depreciation rates.

DACCTAB (period , balance ,

,

rate)

Return type: Numeric

period

Type: Numeric

The number of periods (for example, years or months), starting from the first period for which you
want the value of the accumulated depreciation. For example, if you specify 3, the calculation will
apply to periods one through three.

balance

Type: Numeric

The value of the asset before depreciation.

Reference for language elements
Version 4.1

1456

rate

Type: Numeric

This is the rate at which the asset depreciates at a given period for a particular period.

You do not need to specify the same number of rates as there are periods; the function takes into
account that the specified period might be greater than the number of fractional depreciations and
interpolates. However, if you specify more rates than there are periods, only the rates required to equal
the number of periods are used.

Example
In this example, the accumulated value of depreciation using a set of rates is calculated for years one
through three for an asset worth £100,000.

This produces the following output:

DATA _NULL_;
 y = 3;
 dac = DEPTAB(y, 173400, 0.5, 0.25, 0.2, 0.15);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 3 is: 34680.00

As only the accumulated depreciation until year three is required, the depreciation rate for year four is
ignored.

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DEPDB
Returns the declining-balance depreciation of an asset for a particular period in a specified number of
periods, using a specified depreciation rate.

DEPDB (period , balance , l ifet ime , rate)

Return type: Numeric

period

Type: Numeric

Reference for language elements
Version 4.1

1457

The period within the asset's lifetime for which you want the depreciation. For example, if you
want the depreciation in the third year of a five-year lifetime, you would specify 3.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The number of periods over which the asset is to be depreciated. A period can represent years,
or months, or quarters and so on.

rate

Type: Numeric

The depreciation rate. Typically, 2 (for 200%), would be used to specify a double-declining
balance.

For example, if the asset is depreciating over five years, you can calculate the depreciation that will
occur in the second year; if the asset is depreciating over 24 months, you can calculate the depreciation
at the 15th month.

Example
In this example, the value of the depreciation is calculated for the second year of a five-year
depreciation on an asset worth £100,000. The result is written to the log.

DATA _NULL_;
 y = 2;
 dac = DEPDB(y, 100000, 5, 1.25);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 18750.00

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

Reference for language elements
Version 4.1

1458

DEPDBSL
Returns the depreciation of an asset using both declining and straight-line methods, for an asset at a
particular period in a specified number of periods, using a specified declining balance depreciation rate.

DEPDBSL (period , balance , l ifet ime , rate)

Return type: Numeric

period

Type: Numeric

The period within the asset's lifetime for which you want the depreciation. For example, if you
want the depreciation in the third year of a five-year lifetime, you would specify 3.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The number of periods over which the asset is to be depreciated. A period can represent years,
or months, or quarters and so on.

rate

Type: Numeric

The depreciation rate. Typically, 2 (for 200%), would be used to specify a double-declining
balance.

For example, if the asset is depreciating over five years, you can calculate the depreciation that will
occur in the second year; if over 17 months, you can calculate the depreciation that will occur in the
eleventh month.

Example
In this example, the value of the depreciation is calculated for year two of a five-year depreciation on an
asset worth £100,000. The result is written to the log.

DATA _NULL_;
 y = 2;
 diy = DEPDBSL(y, 100000, 5, 1.25);
 PUT 'The depreciation in year ' y 'is: ' diy 10.2;
RUN;

Reference for language elements
Version 4.1

1459

This produces the following output:

The depreciation in year 2 is: 18750.00

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DEPSL
Returns the straight-line depreciation on an asset for a particular period in a specified number of
periods.

DEPSL (period , balance , l ifet ime)

Return type: Numeric

period

Type: Numeric

The period within the asset's lifetime for which you want the depreciation. For example, if you
want the depreciation in the third year of a five-year lifetime, you would specify 3.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The number of periods over which the asset is to be depreciated. A period can represent years,
or months, or quarters and so on.

For example, if the asset is depreciating over five years, you can calculate the depreciation that will
occur in the second year; if over 36 months, you can calculate the depreciation that will occur in the
24th month.

Reference for language elements
Version 4.1

1460

Example
In this example, the value of the depreciation is calculated for year four of a seven-year depreciation on
an asset worth £173,500. The result is written to the log.

DATA _NULL_;
 i = 4;
 diy = DEPSL(i, 173500, 7);
 PUT 'The depreciation in year ' i 'is: ' diy 10.2;
RUN;

This produces the following output:

The depreciation in year 4 is: 24785.71

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DEPSYD
Returns the depreciation of an asset for a particular year in a specified number of years, using the sum
of the years' digits method.

DEPSYD (period , balance , l ifet ime)

Return type: Numeric

period

Type: Numeric

The period within the asset's lifetime for which you want the depreciation. For example, if you
want the depreciation in the third year of a five-year lifetime, you would specify 3.

balance

Type: Numeric

The value of the asset before depreciation.

lifetime

Type: Numeric

The number of years over which the asset is to be depreciated.

For example, if the asset is depreciating over five years, you can calculate the depreciation that will
occur in the second year.

Reference for language elements
Version 4.1

1461

Example
In this example, the value of the depreciation is calculated for year two of a five-year depreciation on an
asset worth £100,000. The result is written to the log.

DATA _NULL_;
 y = 2;
 dac = depsyd(y, 100000, 5);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 26666.67

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DEPTAB
Returns the depreciation of an asset for a particular period, using a set of depreciation rates specified
for each period.

DEPTAB (period , balance ,

,

rate)

Return type: Numeric

period

Type: Numeric

The period within the asset's lifetime for which you want the depreciation. For example, if you
want the depreciation in the third year of a five-year lifetime, you would specify 3.

If you specify a period that is greater than rate, then an error message is returned. For example,
if you specify 4 for rate but set this argument to 5, an error results.

balance

Type: Numeric

The value of the asset before depreciation.

rate

Type: Numeric

A rate of depreciation for a period.

Reference for language elements
Version 4.1

1462

For example, if the asset is depreciating over five years, and you have the rate for each of those years,
you can calculate the depreciation that will occur in the second year.

Example
In this example, the value of the depreciation is calculated for year two where the rates for three years
of depreciation have been specified. The initial value of the asset is £100,000. The result is written to
the log.

DATA _NULL_;
 y = 2;
 dac = DEPTAB(y, 100000, 5/100, 3/100, 4/100);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 3000.00

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

DUR
Returns the modified duration for a specified set of cash flows.

DUR (yield , freq ,

,

cash- f lows)

Return type: Numeric

yield

Type: Numeric

The yield for the bond.

freq

Type: Numeric

The number of payments to maturity.

cash-flows

Type: Numeric

The value of a cashflow.

Reference for language elements
Version 4.1

1463

Example
In this example, the value of the modified duration is calculated for a bond with a yield of 10% over
three years with the specified cashflows. The result is written to the log.

DATA _NULL_;
 y = 3;
 dac = DUR(10, y, 95.24, 90.70, 950.22);
 PUT 'The modified duration is: ' dac;
RUN;

This produces the following output:

The modified duration is: 0.07

DURP
Returns the modified duration for a periodic cashflow, such as that generated by a bond.

DURP (par- value , rate , numeric , K , k0 , yield)

Return type: Numeric

par-value

Type: Numeric

The par value of the bond.

rate

Type: Numeric

The coupon rate for the bond.

numeric

Type: Numeric

The number of coupons per period. This might, for example, be one a year, or one a month, or
twelve a year.

K

Type: Numeric

The number of remaining coupon payments.

k0

Type: Numeric

Reference for language elements
Version 4.1

1464

The time to the first coupon. This should be greater than 0 and less than 1/numeric. For example,
if coupons are monthly, and there are 28 days until the next coupon, you might enter this value
as 28/30 * 1/12, or as 0.078.

yield

Type: Numeric

Yield per period to maturity.

Example
In this example, the duration for a periodic cashflow is calculated for a bond with a par value of £100,
a coupon rate of 5%, coupon payments twice a year with four further payments until expiry, and with a
yield of 3%. There are two months until the next coupon payment. The result is written to the log.

dDATA _NULL_;
 dp = DURP(100,0.05,2,4,2/6*1/2,0.03);
 PUT 'The duration: ' dp 6.2;
run;

This produces the following output:

The duration: 1.57

EFFRATE
Returns the effective interest rate.

EFFRATE (period , rate)

The effective annual interest rate is determined by the periods over which interest is calculated: daily,
monthly, and so on.

Return type: Numeric

period

The period at the end of which the interest rate is applied.

"CONTINUOUS"

Interest is applied continuously.

"DAY"

Interest is applied every day.

"SEMIMONTH"

Interest is applied at the middle and end of each month.

Reference for language elements
Version 4.1

1465

"MONTH"

Interest is applied at the end of each month.

"QUARTER"

Interest is applied at the end of each quarter.

"SEMIYEAR"

Interest is applied at the end of semiyear (that is, half-yearly).

"YEAR"

Interest is applied at the end of each year.

rate

Type: Numeric

The interest rate, as a percentage; for example, specify 5 for 5%.

Example
In this example, the function returns the effective annual interest rate for monthly and continuous
compounding. The result is written to the log.

DATA _NULL_;
 eir = EFFRATE("month",5);
 PUT 'The effective annual interest rate is: ' eir percent8.3;

 eir = EFFRATE("continuous",5) * 100;
 PUT 'The effective annual interest rate is: ' eir '%';

RUN;

This produces the following output:

The effective annual interest rate is: 5.116%
The effective annual interest rate is: 5.1271096376 %

FINANCE

The functions described in this section provide similar functionality to the equivalent Microsoft Excel
financial functions, and enable users familiar with those functions to develop programs that will return
equivalent values.

Reference for language elements
Version 4.1

1466

ACCRINT Calculation

Return the accrued interest for a security that pays interest at maturity.

FINANCE

("ACCRINT" , issue , f irst_interest , sett lement , rate , par , frequency

, basis

)

Return type: Numeric

issue

Type: Numeric

The date on which the security was issued.

first_interest

Type: Numeric

The date on which interest will be first paid for the security.

settlement

Type: Numeric

The date on which the security will be settled.

rate

Type: Numeric

The annual coupon rate of the security.

par

Type: Numeric

The par value of the security.

frequency

Type: Numeric

The number of coupon payments per year. This must be 1, 2 or 4.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1467

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Basic example
In this example, the accrued interest for a bond with a par value of £21,000 is calculated. The coupon
rate is 5%, and coupon payments are made twice a year for five years. The default day count basis is
used. The result is written to the log.

DATA _NULL_;
 ai = FINANCE("ACCRINT", mdy(09,11,2016), mdy(10,11,2016), mdy(09,11,2021), 5/100,
 21000, 2);
 PUT 'The accrued interest is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The accrued interest is: £5,250.00

Example – using a different day count basis
In this example, the accrued interest for a bond with a par value of £21,000 is calculated. The coupon
rate is 5%, and coupon payments are made twice a year for five years. The day count basis is specified
as actual/360; a month is treated as having the actual number of days, the year as 360. The result is
written to the log.

DATA _NULL_;
 ai = FINANCE("ACCRINT", mdy(09,11,2016), mdy(10,11,2016), mdy(09,11,2021), 5/100,
 21000, 2, 2);
 PUT 'The accrued interest is: ' ai nlmnlgbp10.0;
run;

Reference for language elements
Version 4.1

1468

This produces the following output:

The accrued interest is: The accrued interest is: £5,258.75

Because a different day count basis has been used, the value returned is different to that returned in
the previous example.

ACCRINTM Calculation

Returns the accrued interest that will be paid at maturity for a security.

FINANCE

("ACCRINTM" , issue , sett lement , rate , par

, basis

)

Return type: Numeric

issue

Type: Numeric

The date on which the security was issued.

settlement

Type: Numeric

The date on which the security will be settled.

rate

Type: Numeric

The annual coupon rate of the security.

par

Type: Numeric

The par value of the security.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1469

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Basic example
In this example, the accrued interest at maturity for a security with a par value of £21,000 is calculated.
The coupon rate is 5%, and coupon payments are made twice a year for five years. The default day
count basis is used. The result is written to the log.

DATA _NULL_;
 ai = FINANCE("ACCRINTM", mdy(09,11,2016), mdy(10,11,2021), 5/100, 21000);
 PUT 'The accrued interest is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The accrued interest is: £5,337.50

Example – using a different day count basis
In this example, the accrued interest at maturity for a security with a par value of £21,000 is calculated.
The coupon rate is 5%, and coupon payments are made twice a year for five years. The day count
basis is specified as actual/360; a month is treated as having the actual number of days, the year as
360. The result is written to the log.

DATA _NULL_;
 ai = FINANCE("ACCRINTM", mdy(09,11,2016), mdy(10,11,2021), 5/100, 21000,2);
 PUT 'The accrued interest is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The accrued interest is: £5,413.33

Reference for language elements
Version 4.1

1470

Because a different day count basis has been used, the value returned is different to that returned in
the previous example.

AMORDEGRC Calculation

Returns the depreciation for a specified accounting period. A depreciation coefficient is applied,
depending on the life of the asset. If an asset is purchased in the middle of the accounting period, the
prorated depreciation is taken into account. This function is provided for the French accounting system.

FINANCE

("AMORDEGRC" , cost , date_purchased , f irst_period , salvage , period , rate

, basis

)

Return type: Numeric

cost

Type: Numeric

The cost of the asset.

date_purchased

Type: Numeric

The date on which the asset was purchased.

first_period

Type: Numeric

The date at the end of the first period.

salvage

Type: Numeric

The salvage value of the asset at the end of its life.

period

Type: Numeric

The period for which the depreciation is to be calculated.

rate

Type: Numeric

The depreciation rate.

Reference for language elements
Version 4.1

1471

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Note:
The actual/360 day count basis is not available with this function.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Basic example
In this example, depreciation on an asset worth £50,000, with a final value of £15,000 is calculated for
the fourth period. The depreciation rate is 5%. The default day count basis is used. The result is written
to the log.

DATA _NULL_;
 per = 4;
 ai = FINANCE("AMORDEGRC", 50000, mdy(09,11,2016), mdy(10,11,2016), 15000, per,
 5/100);
 PUT 'The amount of depreciation in period ' per 'is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The amount of depreciation in period 4 is: £4,143.00

Reference for language elements
Version 4.1

1472

Example – using a different day count basis
In this example, depreciation is calculated for the fourth period for an asset worth £50,000, with a final
value of £15,000. The depreciation rate is 5%. The day count basis is specified as actual/actual; that is,
the months and year are treated as having the actual number of days. The result is written to the log.

DATA _NULL_;
 per = 4;
 ai = FINANCE("AMORDEGRC", 50000, mdy(09,11,2016), mdy(10,11,2016), 15000, per,
 5/100,1);
 PUT 'The amount of depreciation in period ' per 'is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The amount of depreciation in period 4 is: £4,144.00

Because a different day count basis has been used, the value returned is different to that returned in
the previous example.

AMORLINC Calculation

Returns the prorated linear depreciation for an asset for a specified accounting period.

FINANCE

("AMORLINC" , cost , date_purchased , f irst_period , salvage , period , rate

, basis

)

Return type: Numeric

cost

Type: Numeric

The cost of the asset.

date_purchased

Type: Numeric

The date on which the asset was purchased.

first_period

Type: Numeric

The date at the end of the first period.

salvage

Type: Numeric

Reference for language elements
Version 4.1

1473

The salvage value of the asset at the end of its life.

period

Type: Numeric

The period for which the depreciation is to be calculated.

rate

Type: Numeric

The depreciation rate.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Note:
The actual/360 day count basis is not available with this function.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Reference for language elements
Version 4.1

1474

Basic example
In this example, depreciation on an asset worth £50,000, with a final value of £15,000 is calculated for
the fourth period. The depreciation rate is 5%. The default day count basis is used. The result is written
to the log.

DATA _NULL_;
 per = 4;
 ai = FINANCE("AMORLINC", 50000, mdy(09,11,2016), mdy(10,11,2016), 15000, per,
 5/100);
 PUT 'The amount of depreciation in period ' per 'is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The amount of depreciation in period 4 is: £2,500.00

Example – using a different day count basis
In this example, depreciation is calculated for the fourth period for an asset worth £50,000, with a final
value of £15,000. The depreciation rate is 5%. The day count basis is specified as actual/actual; that is,
the months and year are treated as having the actual number of days. The result is written to the log.

DATA _NULL_;
 per = 13;
 ai = FINANCE("AMORLINC", 50000, mdy(09,11,2016), mdy(10,11,2017), 15000, per,
 5/100,1);
 PUT 'The amount of depreciation in period ' per 'is: ' ai nlmnlgbp10.0;
RUN;

This produces the following output:

The amount of depreciation in period 13 is: £2,298.22

Because a different day count basis has been used, the value returned is different to that returned in
the previous example.

COUPDAYBS Calculation

Returns, for the coupon period that contains the settlement date, the number of days from the beginning
of the period until the settlement date.

FINANCE

("COUPDAYBS" , sett lement , maturity , frequency

, basis

)

Reference for language elements
Version 4.1

1475

For example, suppose that a ten year security matures on 06 June 2025. If coupons are paid quarterly,
coupons will be paid on at 06 March, June, September and December of each year until maturity. If the
security is settled on 01 January 2016, this will be 25 days after the beginning of the coupon period in
which the settlement occurs, assuming a day count basis of 30/360. The coupon period would have
started on 06 December 2015.

The value returned by this function depends on the day-count basis specified.

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the principal will be repaid. This must be later than settlement, otherwise an error
message is returned.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

Reference for language elements
Version 4.1

1476

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Basic example
In this example, the number of days in the coupon period through to the settlement date is calculated
for a security. The default day count basis is used. The result is written to the log.

DATA _NULL_;
 days = FINANCE("COUPDAYBS", "01-Jan-2016"d, "06-Jun-2025"d, 4,0);
 PUT 'The number of days is ' days;
RUN;

This produces the following output:

The number of days is 25

Example – using a different day count basis
In this example, the number of days in the coupon period through to the settlement date is calculated
for a security. The actual/actual day count basis is used. The result is written to the log.

DATA _NULL_;
 days = FINANCE("COUPDAYBS", "01-Jan-2016"d, "06-Jun-2025"d, 4,1);
 PUT 'The number of days is ' days;
RUN;

This produces the following output:

The number of days is 26

COUPDAYS Calculation

Returns the number of days in the coupon period containing a settlement date.

FINANCE

("COUPDAYS" , sett lement , maturity , frequency

, basis

)

Reference for language elements
Version 4.1

1477

For example, suppose the settlement date is 01 January 2016 for a ten-year bond that matures on 06
June 2025. The start date for the security would, therefore, be 06 June 2015. Suppose the coupons
are paid quarterly. Coupons will therefore be paid on 06 September and 06 December 2015. As the
security is settled on 01 January 2016, the coupon period containing that settlement date will contain
90 days. This assumes a day count value of 30/360. The value returned will depend on the day count
basis, which can be specified to the function.

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the principal will be repaid. This must be later than settlement, otherwise an error
message is returned.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

Reference for language elements
Version 4.1

1478

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Basic example
In this example, the number of days in the coupon period containing the settlement date is calculated
for a security. The default day count basis is used. The result is written to the log.

DATA _NULL_;
 days = FINANCE("COUPDAYS", "01-Jan-2016"d, "06-Jun-2025"d, 2);
 PUT 'The number of days is ' days;
RUN;

This produces the following output:

The number of days is 180

Example – using a different day count basis
In this example, the number of days in the coupon period containing the settlement date is calculated
for a security. The actual/actual day count basis is used. The result is written to the log.

DATA _NULL_;
 days = FINANCE("COUPDAYS", "01-Jan-2016"d, "06-Jun-2025"d, 2,1);
 PUT 'The number of days is ' days;
RUN;

This produces the following output:

The number of days is 183

COUPDAYSNC Calculation

Returns, for the coupon period that contains the settlement date, the number of days from the
settlement date to the next next coupon date.

FINANCE

("COUPDAYSNC" , sett lement , maturity , frequency

, basis

)

Reference for language elements
Version 4.1

1479

For example, suppose the settlement date is 01 January 2016 for a ten-year bond that matures on 06
June 2025. The start date for the security would, therefore, be 06 June 2015. Suppose the coupons are
paid quarterly. Coupons will therefore be paid on 06 September and 06 December 2015. As the security
is settled on 01 January 2016, this will be 65 days from the settlement date until the next coupon date.
This assumes a day count basis of 30/360. The value returned will depend on the day count basis,
which can be specified to the function.

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the principal will be repaid. This must be later than settlement, otherwise an error
message is returned.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

Reference for language elements
Version 4.1

1480

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Basic example
In this example, the number of days from the settlement date until the next coupon date is calculated for
a security. The default day count basis is used. The result is written to the log.

DATA _NULL_;
 days = FINANCE("COUPDAYSNC", "01-Jan-2016"d, "06-Jun-2025"d, 2);
 PUT 'The number of days is ' days;
RUN;

This produces the following output:

The number of days is 155

Example – using a different day count basis
In this example, the number of days from the settlement date until the next coupon date is calculated for
a security. The actual/actual day count basis is used. The result is written to the log.

DATA _NULL_;
 days = FINANCE("COUPDAYSNC", "01-Jan-2016"d, "06-Jun-2025"d, 2,1);
 PUT 'The number of days is ' days;
RUN;

This produces the following output:

The number of days is 157

COUPNCD Calculation

Returns the next coupon date after the specified settlement date.

FINANCE

("COUPNCD" , sett lement , maturity , frequency

, basis

)

Reference for language elements
Version 4.1

1481

For example, suppose the settlement date is 01 January 2016 for a ten-year bond that matures on
06 June 2025. The start date for the security would, therefore, be 06 June 2015. If the coupons are
paid quarterly, coupons will be paid on 06 September, 06 December 2015, and 06 December 2016
(continuing quarterly thereafter). As the security is settled on 01 January 2016, the next coupon date
would be 06 March 2016.

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the principal will be repaid. This must be later than settlement, otherwise an error
message is returned.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Reference for language elements
Version 4.1

1482

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the next coupon date from the settlement date is returned for a bond. The default day
count basis is used. The result is written to the log.

DATA _NULL_;
 dt = FINANCE("COUPNCD", "01-Jan-2016"d, "28-Feb-2025"d,2);
 PUT 'The next coupon date is ' dt date.;
RUN;

This produces the following output:

The next coupon date is 28FEB16

COUPNUM Calculation

Returns the number of coupon periods remaining between the settlement date and maturity date.

FINANCE

("COUPNUM" , sett lement , maturity , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the principal will be repaid. This must be later than settlement, otherwise an error
message is returned.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

Reference for language elements
Version 4.1

1483

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the number coupon periods from the settlement date until the maturity date is
calculated for a security. The default day count basis is used. The result is written to the log.

DATA _NULL_;
 cn = FINANCE("COUPNUM", "01-Jan-2016"d, "28-Feb-2025"d,2);
 PUT 'The number of coupons remaining is ' cn ;
RUN;

This produces the following output:

The number of coupons remaining is 19

Reference for language elements
Version 4.1

1484

COUPPCD Calculation

Returns the starting date of the last coupon period before the settlement date.

FINANCE

("COUPPCD" , sett lement , maturity , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the principal will be repaid. This must be later than settlement, otherwise an error
message is returned.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

Reference for language elements
Version 4.1

1485

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the date of the last coupon period before the settlement date is calculated for a
security. The default day count basis is used. The result is written to the log.

DATA _NULL_;
 cn = FINANCE("couppcd", "01-Jan-2016"d, "28-Feb-2025"d,4,4);
 PUT 'The date of the previous coupon period is ' cn date. ;
RUN;

This produces the following output:

The date of the previous coupon period is 28NOV15

CUMIPMT Calculation

Returns the cumulative interest paid over a specified period for a constant payment loan or investment.

FINANCE

("CUMIPMT" , rate , nper , pv , start_period , end_period

, type

)

This function is similar to the CUMIPMT function, except that the period for which the interest is to be
calculated must be specified.

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

Reference for language elements
Version 4.1

1486

nper

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

pv

Type: Numeric

The current value of the loan or investment.

start_period

Type: Numeric

The period within the specified number of periods at which to start calculating the cumulative
interest. For example, if you want to calculate the cumulative interest from the eighth month to
the 24th month of a 60 month loan, you would specify 8. If you specify this variable, you must
also specify the final period as described below.

end_period

Type: Numeric

The period within the specified number of periods at which to stop calculating the cumulative
interest. For example, if you want to calculate the cumulative interest from the eighth month to
the 24th month of a 60 month loan, you would specify 24. If you specify this argument, you must
also specify the first period as described above.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

Example
In this example, the cumulative interest is calculated for months 18 through 36 for a £10,000 loan with a
term of five years (60 months). The interest rate is 3%.The result is written to the log.

DATA _NULL_;
 ret = FINANCE("CUMIPMT", 0.03/12, 60, 10000, 18, 24);
 PUT 'The cumulative interest is ' ret nlmnlgbp12.0;
RUN;

Reference for language elements
Version 4.1

1487

This produces the following output:

The cumulative interest is (£119.54)

As the cumulative interest is an outgoing, it is returned as a negative number (which is shown in
brackets in this output format).

CUMPRINC Calculation

Returns the cumulative principal paid over a specified period for a constant payment loan or investment.

FINANCE

("CUMPRINC" , rate , nper , pv , start_period , end_period

, type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

nper

Type: Numeric

The number of payments to be made into the loan or investment. For example, this might be five
years, in which case you would specify 5, or 60 months, in which case you would specify 60.

pv

Type: Numeric

The current value of the loan or investment.

start_period

Type: Numeric

Reference for language elements
Version 4.1

1488

The period within the specified number of periods at which to start calculating the cumulative
interest. For example, if you want to calculate the cumulative interest from the eighth month to
the 24th month of a 60 month loan, you would specify 8. If you specify this variable, you must
also specify the final period as described below.

end_period

Type: Numeric

The period within the specified number of periods at which to stop calculating the cumulative
interest. For example, if you want to calculate the cumulative interest from the eighth month to
the 24th month of a 60 month loan, you would specify 24. If you specify this argument, you must
also specify the first period as described above.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If you specify this argument, you must also specify start-period and final-period.

Example
In this example, the total amount of principal repaid over five years between years two and seven is
calculated for a loan that has a final value is £100,000, an interest rate of 3% and an overall repayment
schedule of 10 years. Interest is applied at the beginning of the period. The result is written to the log.

DATA _NULL_;
 cp = CUMPRINC(3/100, 10, 100000,2,7,1);
 PUT 'The cumulative payments are: ' cp 10.2;
RUN;

This produces the following output:

The cumulative payments are: 56424.27

Reference for language elements
Version 4.1

1489

DB Calculation

Returns the depreciation of an asset for a specified ordinal year using the fixed declining-balance
method.

FINANCE

("DB" , cost , salvage , l ife , period

, month

)

For example, for an asset that depreciates over five years, you can calculate the amount of depreciation
that occurs in the second year.

Return type: Numeric

cost

Type: Numeric

The value of the asset before depreciation.

salvage

Type: Numeric

The value of the asset at the end of the specified number of periods.

life

Type: Numeric

The useful life of the asset, specified as a number of periods.

period

Type: Numeric

The number of periods (for example, years or months), starting from the first period for which you
want the value of the accumulated depreciation. For example, if you specify 3, the calculation will
apply to periods one through three.

month
Optional argument

Type: Numeric

The number of months of the year used in the calculation of the first period of depreciation. For
example, if you want the calculation of depreciation to start six months after the beginning of the
first year, then you set this argument to 6.

If this argument is specified, the number of months in the last period of depreciation is calculated
as 12 - month.

If this argument is omitted, a default value of 12 is used.

Reference for language elements
Version 4.1

1490

The declining-balance method used by this function employs a fixed depreciation rate to calculate the
amount of depreciation at the start of each period. The depreciation rate is calculated using the formula:

rate = 1 - (salvage/cost)1/life

Basic example
In this example, the value of the depreciation is calculated for year two of a five-year depreciation on an
asset worth £100,000, where the final value is £25,000. The result is written to the log.

DATA _NULL_;
 y = 2;
 dac = FINANCE("db", 100000, 25000, 5, y);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 18343.60

Example – depreciation begins after specified number of months
In this example, the same values are used as in the previous example; however, the calculation of
deprecation doesn't begin until six months into the life of the asset. The result is written to the log.

DATA _NULL_;
 y = 2;
 dac = FINANCE("db", 100000, 25000, 5, y, 6);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 21271.80

DDB Calculation

Reeturns the depreciation of an asset for a specified year. You can specify that the depreciation is
calculated using a double-declining balance method, or using a specified depreciation rate.

FINANCE

("DDB" , cost , salvage , l ife , period

, factor

)

Return type: Numeric

Reference for language elements
Version 4.1

1491

cost

Type: Numeric

The value of the asset before depreciation.

salvage

Type: Numeric

The value of the asset at the end of the period.

life

Type: Numeric

The useful life of the asset, specified as a number of periods.

period

Type: Numeric

The period within life for which you want the depreciation. For example, if you wanted the
depreciation in the third year of a five-year life, you would specify 3.

factor
Optional argument

Type: Numeric

The depreciation rate. Typically, 2 (for 200%), would be used to specify a double-declining
balance.

The default value is 2.

Basic example
In this example, the value of the depreciation is calculated for year two of a five-year depreciation on an
asset worth £100,000, where the final value is £25,000. The result is written to the log.

DATA _NULL_;
 y = 2;
 dac = FINANCE("DDB", 100000, 25000, 5, y);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 24000.00

Reference for language elements
Version 4.1

1492

Example – using a specified depreciation rate
In this example, the same values are used as in the previous example; however, the depreciation rate
is specified as 1.25%. The result is written to the log.

DATA _NULL_;
 y = 2;
 dac = FINANCE("DDB", 100000, 25000, 5, y, 1.25);
 PUT 'The depreciation in year ' y 'is: ' dac 10.2;
RUN;

This produces the following output:

The depreciation in year 2 is: 18750.00

DISC Calculation

Returns the discount rate for a bond.

FINANCE

("DISC" , sett lement , maturity , pr , redemption

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

pr

Type: Numeric

Price of the security.

redemption

Type: Numeric

Redemption value of the security.

Reference for language elements
Version 4.1

1493

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Example
In this example, a bond is bought for £95 and matures with a value £105 two years later. The result is
written to the log.

DATA _NULL_;
 dsc = FINANCE("disc", "1-Dec-2017"d, "1-Dec-2019"d, 95, 105);
 PUT 'The discount rate for the security is:' dsc percent7.3;
RUN;

This produces the following output:

The discount rate for the security is: 4.76%

DOLLARDE Calculation

Returns as a decimal value a security price originally quoted as a fractional value.

FINANCE ("DOLLARDE" , fract ional_dollar , fract ion)

For example, a price might be quoted as 1 and 1/16 of a particular currency; this function can be used
to convert to the decimal equivalent, 1.0625.

Return type: Numeric

Reference for language elements
Version 4.1

1494

fractional_dollar

Type: Numeric

The fractional price of the security. For example, if the price is 1 and 1/16 of a dollar, specify
1.01; if 1 and 10/16 of a dollar, specify 1.10.

fraction

Type: Numeric

The denominator for the fraction. For example, if the price is 1 and 1/16 of a dollar, specify 16; if
the price is 1 and 3/8 of a dollar, specify 8. This value should be greater than 1. If you specify 0,
an error is returned.

Note:
If the value after the period in fractional_dollar is equal to or greater than fraction, the value before the
period is incremented in the result. For example, if fraction is 16 and the fractional_dollar value is 1.16,
the result will be 2. If fraction is 16 and the fractional_dollar value is 1.17, the result will be 2.0625.

Example
In this example, the decimal value is calculated for a security quoted as 1 and 3/16 of a dollar. The
result is written to the log.

DATA _NULL_;
 ret = FINANCE("DOLLARDE", 1.03, 16);
 PUT 'The decimal value is: ' ret;
RUN;

This produces the following output:

The decimal value is: 1.1875

DOLLARFR Calculation

Returns as a fractional value a security price orginally quoted as a decimal value.

FINANCE ("DOLLARFR" , decimal_dollar , fract ion)

For example, a price might be quoted as 1.0625. This function can be used to convert to a decimal
equivalent, such as 1 and 1/16th of a dollar.

Converted values are returned in the form n.f, where f represents the numerator for a specified
fractional value. For example, a price quoted as 1.0625 would be returned as 1.01 if the fractional
value is 16. In this case, .01 represents 1/16. Similarly, 1.625 would be returned as 1.1, where the .1
represents 10/16.

Return type: Numeric

Reference for language elements
Version 4.1

1495

decimal_dollar

Type: Numeric

The decimal price of the security; for example, 1.625.

fraction

Type: Numeric

The denominator for the fraction. For example, if you want the price returned in sixteenths of a
dollar, specify 16; if in eighths, specify 8. This value should be greater than 1. If you specify 0, an
error is returned.

Example
In this example, the value of a security is quoted as $1.25. The fractional value is calculated, using
eighths as the appropriate fraction. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("DOLLARFR", 1.25, 8);
 PUT 'The fractional value is: ' ret;
RUN;

This produces the following output:

The fractional value is: 1.2

where 2 indicates 2/8 of a dollar.

DURATION Calculation

Returns the Macaulay duration of a security that pays periodic interest. The par value for the security is
assumed to be $100.

FINANCE

("DURATION" , sett lement , maturity , coupon , yld , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

Reference for language elements
Version 4.1

1496

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

coupon

Type: Numeric

The annual coupon rate for the security. This is a percentage and should be expressed as a
fraction or decimal number; for example, 10/100 or 0.10 for 10%.

yld

Type: Numeric

The annual yield for the security. This is a percentage and should be expressed as a fraction; for
example, 8/100 or 0.08 for 8%.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Reference for language elements
Version 4.1

1497

Basic example
In this example, the duration is calculated for a security. The default day count basis is used. The result
is written to the log.

DATA _NULL_;
 ret = FINANCE("DURATION", "01-Apr-2015"d, "31-Mar-2025"d, 10/100, 8/100,4);
 PUT 'The duration is ' ret 7.5;
RUN;

This produces the following output:

The duration is 6.67165

Example – using a different day count basis
In this example, the duration is calculated for a security. The actual/actual day count basis is used. The
result is written to the log.

DATA _NULL_;
 ret = FINANCE("DURATION", "01-Apr-2015"d, "31-Mar-2025"d, 10/100, 8/100,4,1);
 PUT 'The duration is ' ret 7.5;
RUN;

This produces the following output:

The duration is 6.67168

EFFECT Calculation

Returns the effective interest rate.

FINANCE ("EFFECT" , nominal_rate , npery)

The effective annual interest rate is determined by the periods over which interest is calculated: daily,
monthly, and so on. The effective rate is returned as a percentage.

Return type: Numeric

nominal_rate

Type: Numeric

The nominal interest rate.

npery

Type: Numeric

The number of periods. For example, payments twice a year (semi-annually) should be specified
as 2; payments 4 times a year (quarterly) should be specified as 4.

Reference for language elements
Version 4.1

1498

Example
In this example, the function returns the effective annual interest rate for semiannual compounding. The
result is written to the log.

DATA _NULL_;
 eir = FINANCE("effect",5/100,4);
 PUT 'The effective annual interest rate is:' eir percent7.4;
RUN;

This produces the following output:

The effective annual interest rate is: 5.09%

FV Calculation

Returns the future value of an investment that has periodic constant payments, and to which a constant
interest rate is applied.

FINANCE

("FV" , rate , nper ,

pmt

,
pv , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

nper

Type: Numeric

The number of periods over which payments will be made to the investment. For example, five
years might be specified as 5, or as 60, for 60 months.

pmt
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1499

The payment amount per period.

This should be negative as it is an outgoing payment.

pv
Optional argument

The current value of the investment.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If you omit pmt, but want to include additional arguments, remember to include its corresponding
comma, as shown in the first example below.

Example – future value of an initial investment
In this example, the function returns the future value for an initial investment of £10,000 that is
compounded annually with an interest rate of 5%. The result is written to the log.

DATA _NULL_;
 tfvis = FINANCE("FV", 5/100, 4,,-10000);
 PUT 'The future value is: ' tfvis ;
RUN;

This produces the following output:

The future value is: 12155.0625

In this example, there is no monthly payment, so the pmt parameter has been omitted. If you omit an
argument, the corresponding comma should still be used to delimit it. You can also specify a missing
value; for example:

finance("FV", 5/100, 4,.,-10000);

Reference for language elements
Version 4.1

1500

Example – future value of monthly investments
In this example, the function returns the future value for monthly payments of £100 for five years that
are compounded annually with a 5% interest rate. The result is written to the log.

DATA _NULL_;
 tfvis = FINANCE("fv", (5/100)/12, 60,-100);
 PUT 'The future value is: ' tfvis nlmnlgbp12.0 ;
RUN;

This produces the following output:

The future value is: £6,800.61

Example – future value with an investment and monthly payments
In this example, the function returns the future value for monthly payments of £100 for ten years, with
an initial deposit of £10,000, and with an annual interest rate of 5%. In this example, payments are
made at the beginning of each period. In this example, payments are made at the beginning of the
period. The result is written to the log.

DATA _NULL_;
 tfvis = FINANCE("fv", (5/100)/12, 60,-100, -10000,1);
 PUT 'The future value is: ' tfvis nlmnlgbp12.0 ;
RUN;

This produces the following output:

The future value is: £19,662.53

FVSCHEDULE Calculation

Returns the future value of an investment using variable interest rates over a number of periods.

FINANCE ("FVSCHEDULE" , principal ,

,

schedule- n)

Return type: Numeric

principal

Type: Numeric

The amount invested

schedule-n

Type: Numeric

Reference for language elements
Version 4.1

1501

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

You specify as many schedule-n as there are periods of interest. You can specify a different interest
rate for each period; see the example below for an illustration.

Example
In this example, the function returns the future value for an initial investment of £10,000 that is
compounded annually with an interest rate of 5% for two years, and an interest rate of 3.5% for the
following three years. This produces the following output:

DATA _NULL_;
 tfvis = FINANCE("FVSCHEDULE", 10000, 5/100, 5/100, 3.5/100, 3.5/100, 3.5/100);
 PUT 'The future value is: ' tfvis nlmnlgbp12.0 ;
RUN;

This produces the following output:

The future value is: £12,223.61

INTRATE Calculation

Returns the interest rate for a security.

FINANCE

("INTRATE" , sett lement , maturity , investment , redemption

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

investment

Type: Numeric

Reference for language elements
Version 4.1

1502

The amount invested into the security.

redemption

Type: Numeric

The amount to be received at maturity.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Example
In this example, the function returns the interest rate for a security which has an initial value of £10,000
and a maturity value of £14,700. In this example, payments are made at the beginning of the period.
The result is written to the log.

DATA _NULL_;
 tiris = FINANCE("INTRATE", "01-Jan-2015"d, "2-Jun-2025"d, 10000, 14700);
 PUT 'The interest rate is: ' tiris percent6.4 ;
RUN;

This produces the following output:

The interest rate is: 4.5%

Reference for language elements
Version 4.1

1503

IPMT Calculation

Returns the interest paid or received for a specified period of a loan or investment that is being paid
with constant periodic payments with a constant interest rate.

FINANCE

("IPMT" , rate , period , nper , pv ,

fv , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

period

Type: Numeric

The period for which the interest payment is to be calculated. This must be an integer between 1
and number-payments. For example, this might be two, in which case you would specify 2, or the
24th month, in which case you would specify 24.

nper

Type: Numeric

The number of payments to be made into the loan or investment. For example, this might be five
years, in which case you would specify 5, or 60 months, in which case you would specify 60.

pv

Type: Numeric

The current value of the loan or investment.

fv
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1504

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If you specify this variable, you must also specify start-period and final-period.

Basic example
In this example, the interest paid is calculated for a loan that has an interest rate of 3.5% and a present
value of £5,000. The interest to be paid is calculated for year two of a five year loan period. The interest
is calculated at the end of each period. The result is written to the log.

DATA _NULL_;
 tipis = FINANCE("IPMT", 3.5/100, 2, 5, 5000);
 PUT 'The interest for the period is: ' tipis 6.4;
RUN;

This produces the following output:

The interest for the period is: (£142.37)

The number returned is a negative number, indicating that this is an outgoing.

Example – investment with present and future values
In this example, the interest paid is calculated for an investment that loan that has an interest rate of
3.5%, a present value of £0 and a future value of £7,500. The interest paid is calculated for years two of
the investment period. The interest is calculated at the beginning of each period. The result is written to
the log.

DATA _NULL_;
 tipis = FINANCE("IPMT", 3.5/100, 2, 5, 0, 7500,1);
 PUT 'The interest for the period is: ' tipis nlmnlgbp12.0;
RUN;

This produces the following output:

The interest for the period is: £47.30

Reference for language elements
Version 4.1

1505

IRR Calculation

Returns the internal rate of return for a supplied series of periodic cashflows.

FINANCE ("IRR" ,

,

value)

Return type: Numeric

The internal rate of return is returned as a percentage.

value

Type: Numeric

A cashflow for a period.

The first cashflow specified should be the initial investment, and should thus be entered as a
negative number.

If the cash flows are non-periodic, you should use the FINANCE XIRR (page 1542) function.

Example
In this example, the internal rate of return is calculated for a supplied series of cashflows. The result is
written to the log.

DATA _NULL_;
 rr = FINANCE("irr", -100, 20, 24, 28.80, 34.56, 41.47);
 PUT 'The internal rate of return is: ' rr percent7.3;
RUN;

This produces the following output:

The internal rate of return is: 13.057575638

MDURATION Calculation

Returns the modified Macaulay duration of a security.

FINANCE

("MDURATION" , sett lement , maturity , coupon , yld , frequency

, basis

)

Return type: Numeric

The duration is returned as the number of years.

Reference for language elements
Version 4.1

1506

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

coupon

Type: Numeric

The annual coupon rate.

yld

Type: Numeric

The security's yield, as a percentage. You can enter this as a fraction (for example, 5/100), or as
a decimal (for example, 0.05).

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

Reference for language elements
Version 4.1

1507

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Example
In this example, the value of the modified duration for a bond with an annual yield of 8% and a coupon
rate of 10% is calculated over three years with the semi-annual periods. The result is written to the log.

DATA _NULL_;
 md = FINANCE("mduration", "12-Feb-2015"d, "11-Feb-2018"d, 10/100, 8/100, 2);
 PUT 'The modified duration is: ' md ;
RUN;

This produces the following output:

The modified duration is: 2.568919923

MIRR Calculation

Returns the modified internal rate of return (MIRR) for a series of periodic cashflows.

FINANCE ("MIRR" ,

,

value- n)

The MIRR differs from the internal rate of return (IRR) by considering both the initial cost of the
investment and the interest received on the reinvestment of cash.

Return type: Numeric

The value is returned as a fraction. To show this as a percentage, you can multiply the value by 100, or
format it as a percentage as shown in the example below.

value-n

Type: Numeric

One of the following:

• A cashflow for a period
• The interest rate applied to the money in the cash flow (the finance rate)
• The interest rate applied to a reinvested cash flow (the reinvestment rate)

Interest rates should be entered as fractions or decimal numbers; for example, 5/100 or 0.05.

The variables supplied in value-n must be specified in the following order:

1. One or more cashflows. The first cashflow specified should be the initial investment, and should thus
be entered as a negative number

2. The finance rate

Reference for language elements
Version 4.1

1508

3. The reinvestment rate

See below for ane example of how to specify cash flows and rates.

Example
In this example, the internal rate of return is calculated for a supplied series of cashflows. The finance
rate is 6.5%, and the reinvestment rate is 6%. The result is written to the log.

DATA _NULL_;
 err = FINANCE("MIRR", -100, 15, 21.50, 18.80, 22.50, 30, 6.5/100, 6/100);
 PUT 'The modified internal rate of return is: ' err percent8.2;
RUN;

This produces the following output:

The modified internal rate of return is: 3.63%

NOMINAL Calculation

Returns the annual nominal interest rate.

FINANCE ("NOMINAL" , effect_rate , npery)

Return type: Numeric

effect_rate

Type: Numeric

The effective annual interest rate.

npery

Type: Numeric

The number of compounding periods in a year.

Example
In this example, the nominal interest rate is returned for an interest rate of 2.5% per annum
compounded quarterly. The result is written to the log.

DATA _NULL_;
 npv = FINANCE("nominal", 2.5/100, 4);
 PUT 'The nominal interest rate is: ' npv percent7.2;
RUN;

Reference for language elements
Version 4.1

1509

This produces the following output:

The nominal interest rate is: 2.48%

NPER Calculation

Returns the number of periods required to pay back a loan, or the number of payments required to save
a specified amount, based on a particular interest rate.

FINANCE

("NPER" , rate , pmt , pv ,

fv , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

pmt

Type: Numeric

The payment amount per period.

As this is an outgoing amount, you should enter this as a negative number. For example if the
payment is £1,000 a month, enter -1000.

pv

Type: Numeric

The current value of the loan or investment.

For a loan, this might be, for example, 5000; for savings, this might be 0.

fv
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1510

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

If you wanted to know the number of payments until a loan is paid off, you would enter 0; if
you wanted to know the number of payments between an initial loan amount of £5,000 and
an outstanding amount of £1,000, you would enter 1000. If you wanted to know how many
payments you would need to reach savings of £10,000, you would enter 10000.

If this argument is not specified, the default value is 0 (zero).

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

Basic example
In this example, the number of payments is calculated for a loan of £10,000 repaid at £1,000 per month.
The future value has been omitted, and will default to 0 (zero). The result is written to the log.

DATA _NULL_;
 np = FINANCE("NPER", (2.5/100)/12, -1000, 10000);
 PUT 'The number of repayments is: ' np;
RUN;

This produces the following output:

The number of repayments is: 10.116159468

That is, about 10 months and 3 days.

Example – paying into savings
In this example, the number of payments required to reach an amount of £10,000, with an initial deposit
of £2,000, paid at £1,000 per quarter,with an annual interest rate of 2.5%. The payment in this example
is made at the beginning of the period. The result is written to the log.

DATA _NULL_;
 np = FINANCE("NPER", (2.5/100)/4, -1000, 2000, 10000, 1);
 PUT 'The number of repayments is: ' np;
RUN;

Reference for language elements
Version 4.1

1511

This produces the following output:

The number of repayments is: 11.749108338

That is, approximately 11 quarters and three-quarters of a quarter, or two years and three months.

NPV Calculation

Returns the net present value of an investment, based on a specified percentage discount rate.

FINANCE ("NPV" , rate ,

,

value)

Return type: Numeric

rate

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

value

Type: Numeric

A payment or income. If a payment, specify as a negative number; if income, specify as a postive
number.

You should enter cash flows in the same sequence as they came in or were deposited. The
function assumes that each cash flow occurs at the end of each period, and that each period is
equal in length.

The annual discount rate might represent the rate of inflation, or it might represent the interest rate of a
competing investment.

The investment begins one period before the date of the first cash flow and ends with the last cash flow
in the list. The calculation is based on future cash flows; therefore, if the first cash flow occurs at the
beginning of the first period, you should add this value to the result of this function, and not include it in
the values.

Reference for language elements
Version 4.1

1512

Basic example
In this example, the net present value is calculated for an investment of £10,000 with the subsequent
specified cash flows. The discount rate is 2%. In this example, there are five cash flows, so the NPV is
calculated over five years. The result is written to the log.

DATA _NULL_;
 pv = FINANCE("NPV", 0.02, -10000, 2500, 2600, 2900, 3700, 4200);
 PUT 'The net present value is: ' pv nlmnlgbp12.2;
RUN;

This produces the following output:

The net present value is: £4,808.87

Example – payment at beginning of first period
In this example, the variables are the same as the previous example, except the initial payment of
£10,000 is made at the beginning of the first period. The result is written to the log.

DATA _NULL_;
 pv = -10000 + finance("NPV", 0.02, 2500, 2600, 2900, 3700, 4200);
 PUT 'The net present value is: ' pv nlmnlgbp12.2;
RUN;

This produces the following output:

The net present value is: £4,905.05

ODDFPRICE Calculation

Returns the price of a security with an odd (that is, a short or long) first period. The calculation is based
on a $100 face value for the security.

FINANCE

("ODDFPRICE" , sett lement , maturity , issue , f irst_coupon , rate , yld , redemption , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Reference for language elements
Version 4.1

1513

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

issue

Type: Numeric

Date on which the security was issued. This must be earlier than settlement, otherwise an error
message is returned.

first_coupon

Type: Numeric

Date on which the first coupon is paid. This must be earlier than maturity but later than
settlement, otherwise an error message is returned.

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

yld

Type: Numeric

The security's yield, as a percentage. You can enter this as a fraction (for example, 5/100), or as
a decimal (for example, 0.05).

redemption

Type: Numeric

The redemption value, per $100 face value.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

Reference for language elements
Version 4.1

1514

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the price of a bond with an odd first period is calculated over three years. The bond has
an annual coupon rate of 5.5%, a yield of 3.5%, and pays quarterly. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("ODDFPRICE", "01-Feb-2011"d, "31-Mar-2015"d, "01-Dec-2010"d,
 "31-Mar-2011"d, 5.5/100, 3.5/100, 100, 4);
 PUT 'The return is: ' oddp ;
RUN;

This produces the following output:

The return is: 107.70358549

ODDFYIELD Calculation

Returns the yield for a security with an odd (that is, a short or long) first period. The calculation is based
on a $100 face value for the security.

FINANCE

("ODDFYIELD" , sett lement , maturity , issue , f irst_coupon , rate , pr , redemption , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

Reference for language elements
Version 4.1

1515

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

issue

Type: Numeric

Date on which the security was issued. This must be earlier than settlement, otherwise an error
message is returned.

first_coupon

Type: Numeric

Date on which the first coupon is paid. This must be earlier than maturity but later than
settlement, otherwise an error message is returned.

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

pr

Type: Numeric

The price of the security at maturity.

redemption

Type: Numeric

The redemption value, per $100 face value.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1516

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the yield of a bond with an odd first period is calculated over three years. The bond has
an annual coupon rate 5.5% and a price of $100. The bond pays quarterly. The result is written to the
log.

DATA _NULL_;
 oddyd = FINANCE("ODDFYIELD", "01-Feb-2011"d, "31-Mar-2015"d, "01-Dec-2010"d,
 "31-Mar-2011"d, 5.5/100, 95, 110, 4);
 PUT 'The return is: ' oddyd percent7.2;
RUN;

This produces the following output:

The return is: 8.96%

ODDLPRICE Calculation

Returns the price of a security with an odd (that is, a short or long) last period. The calculation is based
on a $100 face value for the security.

FINANCE

("ODDLPRICE" , sett lement , maturity , last_interest , rate , yld , redemption , frequency

, basis

)

Return type: Numeric

Reference for language elements
Version 4.1

1517

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

last_interest

Type: Numeric

Date on which the last coupon is paid. This must be earlier than maturity but later than
settlement, otherwise an error message is returned.

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

yld

Type: Numeric

The security's yield, as a percentage. You can enter this as a fraction (for example, 5/100), or as
a decimal (for example, 0.05).

redemption

Type: Numeric

The redemption value, per $100 face value.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1518

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the value of a bond with an odd last period is calculated. The bond has an annual
coupon rate 5.5% and a yield of 3.5%. The security pays quarterly. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("oddlprice", "01-Jun-2016"d, "31-Aug-2016"d, "4-Jan-2016"d,
 5.5/100, 3.5/100, 100, 4);
 PUT 'The return is: ' oddp;
RUN;

This produces the following output:

The return is: 100.47618236

ODDLYIELD Calculation

Returns the yield for a security with an odd (that is, a short or long) last period. The calculation is based
on a $100 face value for the security.

FINANCE

("ODDLYIELD" , sett lement , maturity , last_interest , rate , pr , redemption , frequency

, basis

)

Return type: Numeric

Reference for language elements
Version 4.1

1519

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

last_interest

Type: Numeric

Date on which the last coupon is paid. This must be earlier than settlement, otherwise an error
message is returned.

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

pr

Type: Numeric

The price of the security at maturity.

redemption

Type: Numeric

The redemption value, per $100 face value.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1520

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the yield of a bond with an odd last period is calculated. The bond has an annual
coupon rate 5.5%, and the price is $99.5. The security pays quarterly. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("oddlyield", "15-Apr-2016"d, "30-Jun-2016"d, "31-Jan-2016"d,
 5/100, 99.5, 100, 4);
 PUT 'The yield is: ' oddp percent7.2;
RUN;

This produces the following output:

The yield is: 7.36%

PMT Calculation

Returns the periodic payment necessary to pay off a loan, where the interest rate is constant.

FINANCE

("PMT" , rate , nper , pv ,

fv , type

)

Return type: Numeric

Reference for language elements
Version 4.1

1521

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

nper

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

pv

Type: Numeric

The current value of the loan or investment.

fv
Optional argument

Type: Numeric

The value of the loan after period payments.

If this argument is not specified, the default value is 0 (zero).

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

Reference for language elements
Version 4.1

1522

Basic example
The following example calculates the monthly payment required to completely repay a loan over five
years. The payments are made monthly. The interest is calculated at the end of each period. The result
is written to the log.

DATA _NULL_;
 pymt = FINANCE("pmt", 0.05/12, 60, 50000);
 PUT 'The payments are: ' pymt nlmnlgbp12.2;
RUN;

This produces the following output:

The payments are: (£943.56)

The payment is a negative number (indicated by the brackets in this format), as it is an outgoing.

Paying for an investment
The following example calculates the quarterly payments for a five year investment with a current value
of £20,000 and a future value of £50,000. The interest is calculated at the end of each period. The
result is written to the log.

DATA _NULL_;
 pymt = FINANCE("PMT", NOMRATE("QUARTER", 0.05)/4, 5*4, 20000, 50000,1);
 PUT 'The payments are: ' pymt nlmnlgbp12.2;
RUN;

This produces the following output:

The payments are: (£3,497.91)

As the payments are made quarterly, the effective interest rate based on quarterly payments is
calculated using the EFFRATE function. The loan period of five years needs to be multiplied by four to
ensure the correct number of repayment periods is specified.

The payment is a negative number (indicated by the brackets in this format), as it is an outgoing.

PPMT Calculation

Returns the payment necessary to pay off the principal of a loan or investment for a specified period,
where the interest rate is constant and periodic payments are made.

FINANCE

("PPMT" , rate , per , nper , pv ,

fv , type

)

Return type: Numeric

Reference for language elements
Version 4.1

1523

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

per

Type: Numeric

The period for which the interest payment is calculated. This must be an integer between 1
and number-payments. For example, you might want the payment for the second year in all
payments, in which case you would specify 2, if the number of payments is specified in years, or
24, if the number of payments is specified in months.

nper

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

pv

Type: Numeric

The current value of the loan or investment.

fv
Optional argument

Type: Numeric

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

Reference for language elements
Version 4.1

1524

1

Payment is made at the beginning of the period.

Example
In this example, the interest paid is calculated for a loan that has an interest rate of 5% and a present
value of £5,000. The interest to be paid is calculated for each year of a five year loan period. The
interest is calculated at the end of each period. The result is written to the log.

DATA _NULL_;
 i = 3;
 pymt = finance("PPMT", EFFRATE("monthly",12)/12, i, 60, 50000);
 PUT 'The payment for month ' i 'is : ' pymt nlmnlgbp12.2;
RUN;

This produces the following output:

The payment for month 3 is : (£743.33)

The payment is a negative number (indicated by the brackets in this format), as it is an outgoing.

As the payments are made monthly, the effective interest rate based on monthly payments is calculated
using the EFFRATE function. The loan period of five years is specified as 60 months.

PRICE Calculation

Returns the price of a security for which periodic interest is paid. The security is assumed to have a
$100 face value.

FINANCE

("PRICE" , sett lement , maturity , rate , yld , redemption , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

Reference for language elements
Version 4.1

1525

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

yld

Type: Numeric

The security's yield, as a percentage. You can enter this as a fraction (for example, 5/100), or as
a decimal (for example, 0.05).

redemption

Type: Numeric

The redemption value, per $100 face value.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Reference for language elements
Version 4.1

1526

Example
In this example, the price per $100 face value for a security three years bond with an annual coupon
rate 5.5% and a yield of 3.5%. The security pays quarterly. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("price", "01-Feb-2011"d, "31-Mar-2015"d, 5.5/100, 3.5/100, 100, 4);
 PUT 'The return is: ' oddp nlmnlgbp12.2;
RUN;

This produces the following output:

The return is: £107.72

PRICEDISC Calculation

Returns the price of a discounted security. The security is assumed to have a $100 face value.

FINANCE

("PRICEDISC" , sett lement , maturity , discount , redemption

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

discount

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

redemption

Type: Numeric

The redemption value, per $100 face value.

Reference for language elements
Version 4.1

1527

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the discounted price for a bond with a value of $110 face value for a security over three
years with a discount rate of 5.5%. The security pays quarterly. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("pricedisc", "01-Feb-2015"d, "31-Mar-2018"d, 5.5/100, 110, 4);
 PUT 'The discount price is: ' oddp nlmnlgbp12.2;
RUN;

This produces the following output:

The discount value is: £90.86

PRICEMAT Calculation

Returns the price, per $100 face value, of a security that pays interest at maturity.

FINANCE

("PRICEMAT" , sett lement , maturity , issue , rate , yld

, basis

)

Reference for language elements
Version 4.1

1528

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

issue

Type: Numeric

The issue date of the security. This must be earlier than settlement, otherwise an error message
is returned.

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

yld

Type: Numeric

The security's yield, as a percentage. You can enter this as a fraction (for example, 5/100), or as
a decimal (for example, 0.05).

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

Reference for language elements
Version 4.1

1529

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the value is calculated at maturity for a security that has an annual coupon rate 5.5%
and a yield of 3.5%. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("PRICEMAT", "01-Feb-2015"d, "31-Mar-2018"d, "01-Jan-2015"d,
 5.5/100, 3.5/100);
 PUT 'The discount price is: ' oddp nlmnlgbp12.2;
RUN;

This produces the following output:

The discount price is: £105.66

PV Calculation

Returns the present value of an investment, based on a series of future payments.

FINANCE

("PV" , rate , nper , pmt ,

fv , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

Reference for language elements
Version 4.1

1530

nper

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

pmt

Type: Numeric

The payment per period.

fv
Optional argument

Type: Numeric

The value of the investment after the specified number of payments.

If this argument is not specified, the default value is 0 (zero).

type
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Reference for language elements
Version 4.1

1531

Example – present value of future savings
In this example, the present value is calculated for future savings of £7,200 paid at £120 per month,
over five years with an annual interest rate of 2%. The result is written to the log.

DATA _NULL_;
 pv = FINANCE("PV", 2/100, 5, -100);
 PUT 'The present value is: ' pv nlmnlgbp12.2;
RUN;

pmt has been entered as a negative number as it is an outgoing payment.

The example produces the following output:

The present value is: £6,846.28

That is, £7,200 in five years at 2% interest a year has a present value of £6,846.28.

Example – present value required for an annuity
In this example, the function calculates the principal – that is, the present value – required if you want
to receive an annuity of £500 per month, over 20 years with an annual interest rate of 8%. Interest is
applied at the beginning of the period. As the annual interest rate is applied monthly, the EFFRATE
function has been used to calculate the effective interest rate. The result is written to the log.

DATA _NULL_;
 pv = FINANCE("PV", EFFRATE("MONTH", 8)/12, 20*12, 500,,1);
 PUT 'The present value is: ' pv nlmnlgbp15.2;
RUN;

pmt has been entered as a positive number as it is an incoming payment.

The example produces the following output:

The present value is: (£58,870.00)

That is, to ensure the specified monthly payment, you would have to invest £58,870.00. As this is an
investment, the value returned is a negative number (shown in parentheses in this format).

Example – present value required for annuity with a retained future
value
In this example, the function calculates the principal – that is, the present value – required if you want
to receive an annuity of £500 per month, over 20 years with an annual interest rate of 8%, but want to
retain £60,000 of the future value. As the annual interest rate is applied monthly, the EFFRATE function
has been used to calculate the effective interest rate. The result is written to the log.

DATA _NULL_;
 pv = FINANCE("PV", (8/100)/12, 20*12, 500, 60000);
 PUT 'The present value is: ' pv nlmnlgbp15.2;
RUN;

pmt has been entered as a positive number as it is an incoming payment.

Reference for language elements
Version 4.1

1532

The example produces the following output:

The present value is: (£69,939.44)

That is, to ensure the specified monthly payment and a future value of £60,000 you would have
to invest £69,939.44. As this is an investment, the value returned is a negative number (shown in
parentheses in this format).

RATE Calculation

Returns the interest rate required to pay off a specified amount of a loan, or to reach a target amount on
an investment, over a number of periods with known payments.

FINANCE

("RATE" , nper , pmt , pv ,

fv , type

)

Return type: Numeric

nper

Type: Numeric

The number of periods over which payments will be made to the investment. For example, five
years might be specified as 5, or as 60, for 60 months.

pmt

Type: Numeric

The payment amount per period.

As this is an outgoing, this should be entered as a negative number. If you do not enter a
negative number, an error message is returned.

pv

Type: Numeric

The current value of the loan or investment.

fv
Optional argument

Type: Numeric

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

Reference for language elements
Version 4.1

1533

type
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Example – interest rate required for specified loan payments
In this example, the interest rate is calculated that would apply to a loan of £6,000 that is fully paid off
over 60 months (five years) and paid at £200 per month. The result is written to the log.

DATA _NULL_;
 ir = FINANCE("RATE",60, -200, 6000);
 PUT 'The interest rate is: ' ir percent7.2;
RUN;

pmt has been entered as a negative number as it is an outgoing payment.

The example produces the following output:

The interest rate is: 2.63%

Example – interest rate required for specified investment
In this example, the interest rate is calculated to reach a final investment value of £6,000, where £90 is
paid monthly over 60 months (5 years). The result is written to the log.

DATA _NULL_;
 ir = FINANCE("RATE",60,-90,0,6000);
 PUT 'The interest rate is: ' ir percent7.2 ;
RUN;

pmt has been entered as a negative number as it is an outgoing payment.

Reference for language elements
Version 4.1

1534

The example produces the following output:

The interest rate is: 0.35%

RECEIVED Calculation

Returns the amount that will be received at the maturity of a fully-invested security.

FINANCE

("RECEIVED" , sett lement , maturity , investment , discount

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

investment

Type: Numeric

The value of the investment at maturity.

discount

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1535

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Example
In this example, the amount received at maturity is calculated for a security with an initial price of
£5,000 that is invested for four years with a discount rate of 3.5%. The result is written to the log.

DATA _NULL_;
 oddp = FINANCE("RECEIVED", "01-Feb-2011"d, "31-Mar-2015"d, 5000, 3.5/100);
 PUT 'The return is: ' oddp nlmnlgbp12.2;
RUN;

This produces the following output:

The return is: £5,853.66

SLN Calculation

Returns the straight-line depreciation per period for an asset over a specified period.

FINANCE ("SLN" , cost , salvage , l ife)

Return type: Numeric

cost

Type: Numeric

The value of the asset before depreciation.

salvage

Type: Numeric

Reference for language elements
Version 4.1

1536

The value of the asset at the end of the specified number of periods.

life

Type: Numeric

The useful life of the asset, specified as a number of periods.

Example
In this example, the straight-line depreciation is calculated for an asset with a life of five years, and
initial and salvage costs of £100,000 and £60,000, respectively. The result is written to the log.

DATA _NULL_;
 dac = FINANCE("SLN", 100000, 60000, 5);
 put 'The depreciation is ' dac nlmnlgbp12.2 'per year';
RUN;

This produces the following output:

The depreciation is £8,000.00 per year

Note:
Although this example has been described as applying to years, the result would be the same if the
periods were months, or quarters, and so on.

SYD Calculation

Returns the depreciation of an asset, using the sum of the years' digits method.

FINANCE ("SYD" , cost , salvage , l ife , period)

The depreciation is calculated for a specified number of years beginning from the first year.

Return type: Numeric

cost

Type: Numeric

The value of the asset before depreciation.

salvage

Type: Numeric

The value of the asset after depreciation.

life

Type: Numeric

Reference for language elements
Version 4.1

1537

The number of periods over which the asset is depreciated.

period

Type: Numeric

The period within the asset's lifetime for which you want the depreciation. For example, if you
want the depreciation in the third year of a five-year lifetime, you would specify 3.

Example
In this example, the value of the depreciation is calculated for year four of a seven-year depreciation on
an asset worth £173,500. The result is written to the log.

DATA _NULL_;
 P = 4;
 diy = FINANCE("SYD", 173500, 20000, 7, p);
 PUT 'The depreciation for year ' p 'is:' diy 10.2;
RUN;

This produces the following output:

The depreciation for year 4 is: 21928.57

TBILLEQ Calculation

Returns the bond-equivalent yield for a Treasury Bill based on a specified discount rate.

FINANCE ("TBILLEQ" , sett lement , maturity , discount)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the bill will be repaid. This must be later than settlement, otherwise an error
message is returned, but should also be within one year of settlement.

discount

Type: Numeric

Reference for language elements
Version 4.1

1538

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the yield is calculated for a treasury bill held for eleven months with a discount rate of
5%. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("tbilleq", mdy(07,11,2014), mdy(07,10,2015),5/100);
 PUT 'The yield is: ' ret percent7.2;
RUN;

This produces the following output:

The yield is: 5.27%

TBILLPRICE Calculation

Returns the price, per $100 face value, of a Treasury Bill.

FINANCE ("TBILLPRICE" , sett lement , maturity , discount)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the bill will be repaid. This must be later than settlement, otherwise an error
message is returned, but should also be within one year of settlement.

discount

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

Reference for language elements
Version 4.1

1539

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the price is calculated for a treasury bill held for eleven months with a discount rate of
5%. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("tbillprice", mdy(07,11,2014), mdy(07,10,2015),5/100);
 PUT 'The price is: ' ret nlmnlgbp12.0;
RUN;

This produces the following output:

The price is: £94.94

TBILLYIELD Calculation

Returns the percentage yield of a Treasury Bill with a $100 face value.

FINANCE ("TBILLYIELD" , sett lement , maturity , pr)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the bill will be repaid. This must be later than settlement, otherwise an error
message is returned, but should also be within one year of settlement.

pr

Type: Numeric

The price of the treasury bill. This is the price relative to the $100 face price that will be used to
calculate the yield.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Reference for language elements
Version 4.1

1540

Example
In this example, the percentage yield is calculated for a treasury bill held for eleven months with a
purchase price of £95. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("tbillyield", mdy(07,11,2014), mdy(07,10,2015),95);
 PUT 'The yield is: ' ret percent7.2;
RUN;

This produces the following output:

The yield is: 5.21%

VDB Calculation

Returns the depreciation of an asset. By default, the function uses the double declining balance
method, but you can specify a different depreciation rate if required.

FINANCE

("VDB" , cost , salvage , l ife , start_period , end_period ,

factor , no_switch

)

The depreciation is calculated over specified periods.

Return type: Numeric

cost

Type: Numeric

The value of the asset before depreciation.

salvage

Type: Numeric

The value of the asset at the end of the specified number of periods.

life

Type: Numeric

The useful life of the asset, specified as a number of periods.

start_period

Type: Numeric

The period from which depreciation is calculated.

Reference for language elements
Version 4.1

1541

end_period

Type: Numeric

The last period for which depreciation is calculated.

factor
Optional argument

Type: Numeric

The depreciation rate. Typically, 2 (for 200%), would be used to specify a double-declining
balance.

no_switch
Optional argument

Type: Numeric

Specifies whether the function should calculate depreciation using a straight line method if the
straight line depreciation would be greater than that calculated using the declining balance
method:

1
Do not switch to the straight-line depreciation method. This is the default.

0
Switch to the straight-line depreciation method.

Basic example
In this example, the depreciation is calculated for years two through four of an asset with an initial
value of £100,000, a salvage value of £25,000 and a lifetime of five years. The default double declining
balance method is used. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("VDB", 100000, 25000,5,2,4);
 PUT 'The amount is: ' ret nlmnlgbp12.0;
RUN;

This produces the following output:

The amount is: £23,040.00

Example – depreciation with specified rate
In this example, the depreciation is calculated for years two through four of an asset with an initial value
of £100,000, a salvage value of £25,000, a lifetime of five years, and a depreciation rate of 1.75%. The
result is written to the log.

DATA _NULL_;
 ret = FINANCE("VDB", 100000, 5000,5,2,4,1.75);
 PUT 'The amount is: ' ret nlmnlgbp12.0;
RUN;

Reference for language elements
Version 4.1

1542

This produces the following output:

The amount is: £24,399.38

Example – converting to straight line depreciation
In this example, the depreciation is calculated for years two through four of an asset with an initial value
of £100,000, a salvage value of £25,000, a lifetime of five years, and a depreciation rate of 1.75%. The
switch is set so that the straight line depreciation method will be used if necessary. The result is written
to the log.

DATA _NULL_;
 ret = FINANCE("VDB", 100000, 5000,5,2,4,1.5,0);
 PUT 'The amount is: ' ret nlmnlgbp12.0;
RUN;

This produces the following output:

The amount is: £29,350.00

XIRR Calculation

Returns the internal rate of return for specified cash flows.

FINANCE ("XIRR" ,

,

argument- n)

The cash flows are specified as a set of values that includes an initial investment value and a series of
net incomes, and the dates on which those payments are made.

Unlike the FINANCE IRR or IRR (page 1555) functions, the series of cashflows specified in this
function do not have to be periodic.

Return type: Numeric

argument-n

Type: Numeric

This argument consists of a pair of values, a date and a payment made at that date. The date
can be entered in any of the ways in which dates can be represented in WPS, such as a numeric
value or using a function. For example, if you want to enter a payment of £1,000, received on the
10th of August 2016, you could specify this argument as:

mdy(08,10,2016), 1000

../FINANCE_IRR.dita

Reference for language elements
Version 4.1

1543

The values entered for argument-n represent the payments made to the investment and the payments
received. The first pair of values usually represent the payment and the date it was made. A payment
should be entered as a negative number. See the section below for an example of specifying values for
argument-n.

Example
In this example, the internal rate of return is calculated for an investment of £10,000 with subsequent
cash flows received on the specified dates. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("XIRR", mdy(01,01,2016),-10000, mdy(02,01,2016), 2000,
 mdy(05,01,2016),2400, mdy(07,01,2016), 2900, mdy(11,01,2016), 3500,
 mdy(01,01,2017),4100);
 PUT 'The internal rate of return is: ' ret percent7.2;
RUN;

This produces the following output:

The internal rate of return is: 4.84%

XNPV Calculation

Returns the Net Present Value for a series of cash flows; these cash flows do not have to be periodic.

FINANCE ("XNPV" , rate ,

,

argument- n)

Return type: Numeric

rate

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

argument-n

Type: Numeric

Either a cash flow, or the date a cash flow was received.

Entries need to be paired; a cash flow must correspond to its received date. There would typically
be a series of cash flows and dates. The function expects cash flows to be grouped together first,
and then the dates corresponding to these cash flows. For example:

-10000, 2000, 2400, 2900, "01-Jan-2016"d, "01-Feb-2016"d, "01-May-2016"d, "01-
Jul-2016"d

Reference for language elements
Version 4.1

1544

A cash flow might be a payment to an investment, or a payment received. A payment to an
investment must be entered as a negative number.

Dates can be entered in any of the ways in which they can be represented in WPS, such as a
numeric value, a function or a date literal. For example, if you want to enter a payment of £1,000,
received on the 10th of August 2016, you could specify this argument as:

mdy(08,10,2016), 1000

If the number of dates and cash flows do not match, an error message is returned.

Example
In this example, the net present value is calculated for an investment of £10,000 with subsequent cash
flows received on the specified dates. The discount rate is 5%. The result is written to the log.

DATA _NULL_;
 ret = FINANCE("XNPV", 5/100, mdy(01,01,2016),-10000, mdy(02,01,2016), 2000,
 mdy(05,01,2016),2400, mdy(07,01,2016),2900,mdy(11,01,2016),3500,
 mdy(01,01,2017),4100);
 PUT 'The net present value: ' ret nlmnlgbp12.2;
RUN;

This produces the following output:

The net present value: (£4,731.52)

YIELD Calculation

Returns the yield for a security that pays periodic interest for specified periodic cash flows.

FINANCE

("YIELD" , sett lement , maturity , rate , pr , redemption , frequency

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

Reference for language elements
Version 4.1

1545

rate

Type: Numeric

The annual coupon rate.

pr

Type: Numeric

The price of the security. The face value is assumed to be $100.

redemption

Type: Numeric

The redemption value of the security. The face value is assumed to be $100.

frequency

Type: Numeric

The number of coupon payments per year; this must be 1, 2 or 4. If you use any other value, an
error message is returned.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Reference for language elements
Version 4.1

1546

Example
In this example, the yield is calculated for a bond with a par value of £100 bought on January 10th 2016
for a price of £97. The coupon rate is 5%, and coupon payments are made twice a year for the next two
years. The redemption value is expectd to be £102. The result is written to the log.

DATA _NULL_;
 yp= FINANCE("yield","10-Jan-2016"d, "10-Jan-2018"d,(5/100),97,102,2);
 PUT 'The yield is: ' yp percent10.2;
run;

This produces the following output:

The yield is: 7.59%

YIELDDISC Calculation

Returns the annual yield of a discounted security.

FINANCE

("YIELDDISC" , sett lement , maturity , rate , pr , redemption

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

rate

Type: Numeric

The annual coupon rate.

pr

Type: Numeric

The price of the security. The face value is assumed to be $100.

Reference for language elements
Version 4.1

1547

redemption

Type: Numeric

The redemption value of the security. The face value is assumed to be $100.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the yield of a discounted security is calculated for a bond bought on January 10th 2016
for a price of £97. The redemption value is expected to be £102. The result is written to the log.

DATA _NULL_;
 yp= FINANCE("YIELDDISC","10-Jan-2016"d, "10-Jan-2018"d,97,102,3);
 PUT 'The yield to maturity is: ' yp percent10.2;
RUN;

This produces the following output:

The yield to maturity is: 2.57%

Reference for language elements
Version 4.1

1548

YIELDMAT Calculation

Returns the annual yield of a security that pays interest at maturity.

FINANCE

("YIELDMAT" , sett lement , maturity , issue , rate , pr

, basis

)

Return type: Numeric

settlement

Type: Numeric

The settlement date of the security. This must be earlier than maturity, otherwise an error
message is returned.

maturity

Type: Numeric

Date on which the security matures; that is, the date on which the coupon expires. This must be
later than settlement, otherwise an error message is returned.

issue

Type: Numeric

Date on which the security was issued. This must be earlier than settlement, otherwise an error
message is returned.

rate

Type: Numeric

The annual coupon rate.

pr

Type: Numeric

The price of the security. The face value is assumed to be $100.

basis
Optional argument

Type: Numeric

The day count basis used by the function for the calculation. This can be one of the following:

Reference for language elements
Version 4.1

1549

0

30/360 (US). This is the default. A month is treated as having 30 days, the year as 360.
Adjustments use US conventions.

1

Actual/actual. Months and years are treated as having their actual number of days.

2
Actual/360. A month is treated as having the actual number of days, the year as 360.

3
Actual/365. A month is treated as having the actual number of days, the year as 365.

4
30/360 (European). A month is treated as having 30 days, the year as 360. Adjustments
use European conventions.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

Example
In this example, the yield to maturity is calculated for a bond with a par value of £100 bought on
January 10th 2016 for a price of £97. The result is written to the log.

DATA _NULL_;
 yp= FINANCE("yieldmat","10-Jan-2016"d, "10-Jan-2018"d,"10-Dec-2015"d, 5/100, 97);
 PUT 'The yield to maturity is: ' yp percent10.2;
RUN;

This produces the following output:

The yield to maturity is: 6.67%

GARKHCLPRC
Returns the price for a European call option using the Garman-Kohlhagen model.

GARKHCLPRC (exercise- price , t ime , spot- price , rate- domest ic , rate- foreign , volat ility)

Return type: Numeric

exercise-price

Type: Numeric

The exercise or current price for the call option.

Reference for language elements
Version 4.1

1550

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

spot-price

Type: Numeric

The assumed strike price for the option.

rate-domestic

Type: Numeric

The domestic risk free simple interest rate over the life of the option. For example, if the rate is
9%, you can enter 0.09, or 9/100

rate-foreign

Type: Numeric

The foreign risk free simple interest rate over the life of the option. For example, if the rate is 9%,
you can enter 0.09, or 9/100

volatility

Type: Numeric

The annualised future price volatility; this should be a positive decimal number. For example, if
the volatility is 25%, you can enter 0.25, or 25/100.

Example
In this example, the function returns the price of a European call option that will expire in four months.
The exercise price and future price are both €20; the volatility is 25% per annum, the domestic risk-free
rate is 9% per annum, and the foreign risk-free rate is 15% per annum. The result is written to the log.

DATA _NULL_;
 cp=garkhclprc(20, 0.333, 20, 0.09, 0.15, 0.25);
 PUT 'The call price is: ' cp euro5.2;
RUN;

This produces the following output:

The call price is: E0.92

You could also enter time as a fraction:

cp=garkhclprc(20, 4/12, 20, 0.09, 0.15, 0.25);

This would return the same result.

Reference for language elements
Version 4.1

1551

GARKHPTPRC
Returns the price for a European put option using the Garman-Kohlhagen model.

GARKHPTPRC (exercise- price , t ime , spot- price , rate- domest ic , rate- foreign , volat ility)

Return type: Numeric

exercise-price

Type: Numeric

The exercise or current price for the call option.

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

spot-price

Type: Numeric

The assumed strike price for the option.

rate-domestic

Type: Numeric

The domestic risk free simple interest rate over the life of the option. For example, if the rate is
9%, you can enter 0.09, or 9/100

rate-foreign

Type: Numeric

The foreign risk free simple interest rate over the life of the option. For example, if the rate is 9%,
you can enter 0.09, or 9/100

volatility

Type: Numeric

The annualised future price volatility; this should be a positive decimal number. For example, if
the volatility is 25%, you can enter 0.25, or 25/100.

Reference for language elements
Version 4.1

1552

Example
In this example, the function returns the price of a European put option that will expire in four months.
The exercise price and future price are both €20; the volatility is 25% per annum, the domestic risk-free
rate is 9% per annum, and the foreign risk-free rate is 15% per annum. The result is written to the log.

DATA _NULL_;
 cp=garkhclprc(20, 0.333, 20, 0.09, 0.15, 0.25);
 PUT 'The call price is: ' cp euro5.2;
RUN;

This produces the following output:

The put price is: E1.31

You could also enter time as a fraction:

pp=garkhptprc(20, 4/12, 20, 0.09, 0.15, 0.25);

This would return the same result.

INTRR
Returns the internal rate of return for a supplied series of periodic cashflows.

INTRR (freq ,

,

cash- f low- n)

Return type: Numeric

The value is returned as a decimal number which can be formatted as a percentage using the PERCENT
format or multiplied by 100 to generate a percentage.

freq

Type: Numeric

The number of payments made per period. For example, if you specify 2, then two payments
are made per period, two per month or two per year. Specify 0 (zero) to enable continuous
compounding.

cash-flow-n

Type: Numeric

A cashflow for a period.

The first cashflow specified should be the initial investment, and should thus be entered as a
negative number.

Reference for language elements
Version 4.1

1553

Example
In this example, the internal rate of return is calculated for a supplied series of cashflows. The
frequency is specified as 2, meaning there are two payments a period. There are six payments, so the
cashflows are spread over three years. The result is written to the log.

DATA _NULL_;
 rr = intrr(2, -100, 20, 24, 28.80, 34.56, 41.47, 20);
 PUT 'The internal rate of return is: ' rr percent10.4;
 RUN;

This produces the following output:

The internal rate of return is: 35.0225%

IPMT
Returns the interest paid for a specific period of a loan or investment that is being paid with constant
periodic payments and has a constant interest rate.

IPMT

(rate , period , number- payments , present- value ,

future- value , type

)

Return type: Numeric

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

period

Type: Numeric

The period for which the interest payment is calculated. This must be an integer between 1 and
number-payments. For example, this might be two years, in which case you would specify 2, or
24 months, in which case you would specify 24.

Reference for language elements
Version 4.1

1554

number-payments

Type: Numeric

The number of payments required to repay the loan or pay the investment. For example, this
might be five years, in which case you would specify 5, or 60 months, in which case you would
specify 60.

present-value

Type: Numeric

The current value of the loan or investment.

future-value
Optional argument

Type: Numeric

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

Example
In this example, the interest paid is calculated for a loan that has an interest rate of 3.45% and a
present value of £5,000. The interest to be paid is calculated for each year of a five year loan period.
The interest is calculated at the end of each period. The result is written to the log.

DATA _NULL_;
 t = 0;
 DO i = 1 TO 5;
 ip= IPMT((3.45/100), i, 5, 5000, 0);
 PUT 'The interest for the period (year) ' i 'is: : ' ip 10.2;
 t = t + ip;
 END;
PUT 'Total interest paid: ' t 10.2;

RUN;

Reference for language elements
Version 4.1

1555

This produces the following output:

The interest for the period (year) 1 is: : 172.50
The interest for the period (year) 2 is: : 140.30
The interest for the period (year) 3 is: : 106.99
The interest for the period (year) 4 is: : 72.53
The interest for the period (year) 5 is: : 36.88
Total interest paid: 529.20

Note:
This result is the same as the result of the CUMIPMT function for five years. See the first example in the
section describing CUMIPMT (page 1447) function.

IRR
Returns the internal rate of return for a supplied series of periodic cashflows.

IRR (freq ,

,

cash- f low- n)

Return type: Numeric

The value is returned as a decimal number which can be formatted as a percentage using the PERCENT
format or multiplied by 100 to generate a percentage.

freq

Type: Numeric

The number of cashflows.

cash-flow-n

Type: Numeric

A cashflow for a period.

The first cashflow specified should be the initial investment, and should thus be entered as a
negative number.

If the cash flows are non-periodic, you should use the FINANCE XIRR (page 1542) function.

Reference for language elements
Version 4.1

1556

Example
In this example, the internal rate of return is calculated for a supplied series of cashflows. The result is
written to the log.

DATA _NULL_;
 rr = irr(1, -100, 20, 24, 28.80, 34.56, 41.47);
 PUT 'The internal rate of return is: ' rr;
RUN;

This produces the following output:

The internal rate of return is: 13.1%

MARGRCLPRC
Returns the price for a European call option using Margrabe's formula.

MARGRCLPRC (s1 , t ime , s2 , sigma1 , sigma2 , rho)

Return type: Numeric

s1

Type: Numeric

The price of the first asset.

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

s2

Type: Numeric

The price of the second asset.

sigma1

Type: Numeric

The volatility of s1.

sigma2

Type: Numeric

The volatility of s1.

Reference for language elements
Version 4.1

1557

rho

Type: Numeric

The correlation between s1 and s2.

Example
In this example, the function returns the price of a European call option that will expire in four months.
The asset prices are both €20; the volatility each asset is 25% and 30% per annum, and the correlation
between the two asset prices is 20%. The result is written to the log.

DATA _NULL_;
 cp=margrclprc(20, 0.333, 20, 0.25, 0.3, 0.15);
 PUT 'The call price is: ' cp euro5.2;
RUN;

This produces the following output:

The call price is: E1.66

You could also enter time as a fraction:

cp=margrclprc(20, 4/12, 20, 0.25, 0.3, 0.15);

This would return the same result.

MARGRPTPRC
Returns the price for a European put option using Margrabe's formula.

MARGRPTPRC (s1 , t ime , s2 , sigma1 , sigma2 , rho)

Return type: Numeric

s1

Type: Numeric

The price of the first asset.

time

Type: Numeric

The number of years until the option expires. Must be greater than 0. For example, six months
could be specified as 6/12 or as 0.5; two years could be entered as 2 or 24/12.

s2

Type: Numeric

Reference for language elements
Version 4.1

1558

The price of the second asset.

sigma1

Type: Numeric

The volatility of s1.

sigma2

Type: Numeric

The volatility of s2.

rho

Type: Numeric

The correlation between s1 and s2.

Example
In this example, the function returns the price of a European put option that will expire in four months.
The asset prices are both €20; the volatility is 25% and 30% per annum, and the correlation between
the two asset prices is 20%. The result is written to the log.

DATA _NULL_;
 pp=margrptprc(20, 0.333, 20, 0.25, 0.3, 0.15);
 PUT 'The put price is: ' pp euro5.2;
RUN;

This produces the following output:

The put price is: E1.66

You could also enter time as a fraction:

pp=margrptprc(20, 4/12, 20, 0.25, 0.3, 0.15);

This would return the same result.

MORT
Returns information about the amortisation of a loan.

MORT (p , a , i , n)

You can calculate one of:

• The amount of a loan (p)
• The payment at each period required to amortise the loan (a)

Reference for language elements
Version 4.1

1559

• The interest rate of the loan (i)
• The period over which the loan will be amortised (n)

if you provide to the function the corresponding information about the loan. That is, you can calculate
the interest rate if you know the amount of the loan, the number of payments and the amount to be paid
at each period. Similarly, you can calculate the size of the loan if you know the interest rate, the number
of payments and the amount to be paid at each period. You do this by omitting the relevant argument
and supplying the others. The section Example provides example of usage.

Return type: Numeric

p

Type: Numeric

The loan principal.

a

Type: Numeric

The repayment amount.

i

Type: Numeric

The interest rate.

n

Type: Numeric

The number of payments

The omitted arguments can be represented by nulls, or by missing values:

mort(50000,, 5/100, 60)

is equivalent to:

mort(50000,., 5/100, 60)

Reference for language elements
Version 4.1

1560

Example
In this example, the function first returns the repayment amount for a loan of £50,000 over five years
with an interest rate of 5%. Having obtained the repayment, the function is then used to calculate values
for the other arguments. The CUMIPMT (page 1447) function is also used to get the cumulative
interest so that the total amount repaid can be shown. The result is written to the log.

DATA _NULL_;

 am=mort(50000,.,0.05,5);
 PUT 'The yearly repayments are: ' am nlmnlgbp12.2;

 am=mort(50000,11548.74,.,5);
 PUT 'The interest rate is: ' am percent6.3;

 am=mort(50000, 11548.74 ,0.05,);
 PUT 'The number of repayments is: ' am 3.;

 am=mort(,11548.74 ,0.05,5);
 PUT 'The amount to be repaid is: ' am nlmnlgbp12.0;

 totwint = cumipmt(0.05,5,50000) + 50000;

 PUT 'Total repaid including cumulative interest: ' totwint nlmnlgbp12.2;

RUN;

This produces the following output:

The yearly repayments are: £11,548.74
The interest rate is: 5.0%
The number of repayments is: 5
The amount to be repaid is: £50,000.00
Total repaid including cumulative interest: £57,743.70

NETPV
Returns the net present value of an investment, based on a specified discount rate.

NETPV (rate , freq , c0 ,

,

c- n)

Return type: Numeric

rate

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

Reference for language elements
Version 4.1

1561

freq

Type: Numeric

The number of payments made per period. For example, if you specify 2, then two payments
are made per period, two per month or two per year. Specify 0 (zero) to enable continuous
compounding.

c0

Type: Numeric

The initial investment. This should be entered as a negative number.

c-n

Type: Numeric

The payment per period.

A period is unit-less, and is not specified in the function. The period is whatever is of interest to you.
For example, if you enter a value for freq of 1, the rate is applied once to the period; that will therefore
be yearly, if that is the period of interest, or monthly if that is the period of interest. Similarly, a value of 2
is applied twice to the period, which will be twice a year, twice a month, or twice a day, and so on; while
a value of 0.5 would apply the rate every other period every other year or month, and so on. The cash
flows are made at each subsequent period to the initial investment. These cash flows follow the same
freq; if freq is 1, the payments are once a period, if 2, twice a period, if 0.5, every other period, and so
on. A value of 0.5 would apply the rate every other year, or every other month, and so on.

Basic example
In this example, the net present value is calculated for an investment of £5,000 with the subsequent
specified cash flows. The discount rate is 2%, and the frequency of payment is 2 (that is, twice a year,
or twice a month, and so on). The result is written to the log.

DATA _NULL_;
 npv=netpv(2/100,2,-5000, 800, 950, 1080, 1220, 1500, 300);
 PUT 'The net present value is: ' npv nlmnlgbp12.2;
RUN;

In this example, the period is 2, so payments and discounts occur twice each period. As there are six
cash flows, the NPV is calculated over three years, if the period of interest is yearly, or over six months,
if the period of interest is monthly. The example produces the following output:

This produces the following output:

The net present value is: £654.75

Reference for language elements
Version 4.1

1562

Example – four payments a period
In this example, the net present value is calculated for an investment of £5,000 with subsequent
specified cash flows and discounted four times a period. The discount rate is 2%. The result is written to
the log and to the example dataset.

DATA _NULL_;
 npv=netpv(2/100, 4, -5000, 800, 950, 1080,1220, 1500, 950,
 1000, 1080, 1220, 1500, 950, 800);
 PUT 'The net present value is: ' npv nlmnlgbp12.2;
RUN;

In this example, the period is four. Thus, if the period is a year, there would be four payments a year.
The example produces the following output:

The net present value is: £7,634.26

Example – payments every other period
In this example, the net present value is calculated for an investment of £5,000 with subsequent
specified cash flows and discounted every other period. The discount rate is 2%. The result is written to
the log.

DATA _NULL_;
 npv=netpv(2/100, 1/2, -5000, 800, 950, 1080, 1220, 1500, 950,
 1000, 1080, 1220, 1500, 950, 800);
 PUT 'The net present value is: ' npv nlmnlgbp12.2;
RUN;

In this example, the period is set to 0.5, which implies a discount and return every other period. Thus,
if the period is a year, the rate would be applied every other year; if the period is a month, the rate is
applied every two months, and so on. Payments would also be made at the same frequency, so if the
period of interest is a year, a payment would be made and a discount applied every other year; if the
period is a month, a payment would be made and a discount applied every other month. The example
produces the following output:

The net present value is: £5,146.57

NOMRATE
Returns the nominal annual interest rate.

NOMRATE (period , rate)

The period over which the nominal rate is calculated is defined as a year. You can define the periodicity
of compounding over the year.

Return type: Numeric

Reference for language elements
Version 4.1

1563

period

The compounding period.

rate

Type: Numeric

The number of compounding periods per year.

Example
In this example, the nominal interest rate is returned for an interest rate of 2.5% per annum
compounded quarterly. The result is written to the log.

DATA _NULL_;
nr=NOMRATE('quarter',2.5);
PUT 'The nominal interest rate is: ' nr percent7.2;
RUN;

This produces the following output:

The nominal interest rate is: 2.48%

NPV
Returns the net present value of an investment, based on a specified discount rate. The rate is
specified as a percentage.

NPV (rate , freq , c0 ,

,

c- n)

Return type: Numeric

rate

Type: Numeric

The discount rate. The rate must be specified as a fraction or decimal number. For example, 5%
should be entered as 5/100 or as 0.05.

freq

Type: Numeric

The frequency at which the rate is applied for a period.

c0

Type: Numeric

Reference for language elements
Version 4.1

1564

The initial investment. This should be entered as a negative number.

c-n

Type: Numeric

The payment per period.

A period is unit-less, and is not specified in the function. The period is whatever is of interest to you. For
example, if you enter a value for freq of 1, the rate is applied once to the period; that will therefore be
yearly, if that is the period of interest, or monthly if that is the period of interest. Similarly, a value of 2 is
applied twice to the period, which will be twice a year, twice a month, or twice a day, and so on; while
a value of 0.5 would apply the rate every other period every other year or month, and so on. The cash
flows are made at each subsequent period to the initial investment. These cash flows follow the same
freq; if freq is 1, the payments are once a period, if 2, twice a period, if 0.5, every other period, and so
on. For example, a value of 0.5 would apply the rate every other year, or every other month, and so
on.

Basic example
In this example, the net present value is calculated for an investment of £5,000 with the subsequent
specified cash flows. The discount rate is 2%, and the frequency of payment is 1. The result is written to
the log.

DATA _NULL_;
 pv=npv(2/100,1,-5000, 800,950,1080,1220,1500);
 PUT 'The net present value is: ' pv nlmnlgbp12.2;
RUN;

In this example, the period is 1, which implies payments and discounting every year if the period is
yearly. As there are five cash flows, the NPV is calculated over five years if the period of interest is
yearly.

This produces the following output:

The net present value is: £546.34

Example – four payments per period
In this example, the net present value is calculated for an investment of £5,000 with subsequent
specified cash flows and discounted four times a year. The discount rate is 2%. The result is written to
the log.

DATA _NULL_;
 npv=netpv(2, 4, -5000, 800, 950, 1080,1220, 1500, 950,
 1000, 1080, 1220, 1500, 950, 800);
 PUT 'The net present value is: ' npv nlmnlgbp12.2;
RUN;

Reference for language elements
Version 4.1

1565

The period is four, which creates four discounts. Thus, if the period is a year, the rate would be applied
four times in the year; if the period is monthly, the rate would be applied approximately every week,
and so on. Payments would also be made at the same frequency; if the period of interest is a year, four
payments a year would be made over three years, while if the period is a month, then four payments a
month would be made over three months.

This produces the following output:

The net present value is: £7,634.26

Example – payments every other period
In this example, the net present value is calculated for an investment of £5,000 with subsequent
specified cash flows and discounted every other period. The discount rate is 2%. The result is written to
the log.

DATA _NULL_;
 npv=npv(2, 1/2, -5000, 800, 950, 1080, 1220, 1500, 950,
 1000, 1080, 1220, 1500, 950, 800);
 PUT 'The net present value is: ' npv nlmnlgbp12.2;
RUN;

The period is set to 0.5, which implies a discount and return every other period. Thus, if the period is a
year, the rate would be applied every other year; if the period is a month, the rate is applied every two
months, and so on. Payments would also be made at the same frequency; so, if the period of interest
is a year, a payment would be made and a discount applied every other year; if the period is a month, a
payment would be made and a discount applied every other month.

This produces the following output:

The net present value is: £5,146.57

PMT
Returns the periodic payment necessary to pay off a loan, where the interest rate is constant.

PMT

(rate , period , present- value ,

future- value , type

)

Return type: Numeric

rate

Type: Numeric

Reference for language elements
Version 4.1

1566

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

period

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

present-value

Type: Numeric

The current value of the loan or investment.

future-value
Optional argument

Type: Numeric

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If this argument is not specified, the default value is 0 (zero).

You can omit future-value, but if you do so and want to specify type, you should ensure you demarcate
the missing option with commas; for example:

pmt(0.05, 5, 50000,,0)

Reference for language elements
Version 4.1

1567

Basic example
The following example calculates the monthly payment required to completely repay a loan over five
years. The payments are made monthly. The interest is calculated at the end of each period. The
EFFRATE function has been used to calculate the effective interest rate at each period. The result is
written to the log.

DATA _NULL_;
 pymt=pmt(effrate("month", 0.05/12), 60, 50000);
 PUT 'The payments are: ' pymt nlmnlgbp12.2;
RUN;

This produces the following output:

The payments are: £834.39

Paying for an investment
The following example calculates the quarterly payments for a five year investment with a current value
of £20,000 and a future value of £50,000. The interest is calculated at the end of each period. The
EFFRATE function has been used to calculate the effective interest rate at each period. The result is
written to the log and to the example dataset.

DATA _NULL_;
 pymt=pmt(effrate("quarter", 0.05/12), 5*4, 20000, 50000,1);
 PUT 'The payments are: ' pymt nlmnlgbp12.2;
RUN;

This produces the following output:

The payments are: £3,499.30

The loan period of five years is multiplied by four to specify the correct number of repayment periods.

PPMT
Returns the payment necessary to repay the principal of a loan or to pay into an investment for a
specified period, where the interest rate is constant and periodic payments are made.

PPMT

(rate , period , number- payments , present- value ,

future- value , type

)

Return type: Numeric

rate

Type: Numeric

Reference for language elements
Version 4.1

1568

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

period

Type: Numeric

number-payments

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

present-value

Type: Numeric

The current value of the loan or investment.

future-value
Optional argument

Type: Numeric

The value of the loan or investment after the specified number of payments. If this is not
specified, the default is 0.

type
Optional argument

Type: Numeric

Specify whether payments are made at the beginning or end of a period. Enter one of the
following values:

0
Payment is made at the end of the period. This is the default.

1

Payment is made at the beginning of the period.

If this argument is not specified, the default value is 0 (zero).

Reference for language elements
Version 4.1

1569

Example
In this example, the interest paid is calculated for a loan that has an interest rate of 3.5% and a present
value of £5,000. The interest to be paid is calculated for each year of a five year loan period. The
interest is calculated at the end of each period. The result is written to the log.

DATA _NULL_;
 i = 3;
 pymt=ppmt(5/100, i, 5, 50000);
 PUT 'The payment for year ' i 'is : ' pymt nlmnlgbp12.2;
RUN;

This produces the following output:

The payment for year 3 is : £9,976.24

PVP
Returns the present value of a future amount, where the initial capital is repaid at maturity.

PVP (par- value , rate , numeric , K , k0 , yield)

Return type: Numeric

par-value

Type: Numeric

The par value or face value of a bond.

rate

Type: Numeric

The coupon rate of the bond.

numeric

Type: Numeric

Number of coupons per period.

K

Type: Numeric

The number of remaining coupon payments

k0

Type: Numeric

Reference for language elements
Version 4.1

1570

The time to the first coupon. This should be greater than 0 and less than 1/numeric. For example,
if coupons are monthly, and there are 28 days until the next coupon, you might enter this value
as 28/30 * 1/12, or as 0.078.

yield

Type: Numeric

Yield per period to maturity.

Example
In this example, the present value of an investment is calculated for a coupon that has an interest rate
of 3.5%, a par value of £95, coupon payments twice a year with four further payments until expiry, and
with a yield of 6.5%. There are two months until the next coupon payment. The result is written to the
log.

DATA _NULL_;
 ret = pvp(95, 3.5/100, 1, 5, 11/09/2014, 6.5/100);
 PUT 'The present value is: ' ret nlmnlgbp12.0;
RUN;

This produces the following output:

The present value is: £89.83

SAVING
Returns the amount that would be saved based on a specified interest rate, term and payments.

SAVING (value , payment , rate , term)

You can also use this function to calculate the interest rate, term or payments when you have any of
the other values. For example, if you know the amount saved, the number of years over which savings
occurred, and the payments you can determine the interest rate applied.

Return type: Numeric

value

Type: Numeric

The amount saved.

payment

Type: Numeric

The monthly payment amount.

Reference for language elements
Version 4.1

1571

rate

Type: Numeric

The interest rate. The rate must be specified as a fraction or decimal number, not as a percent.
For example, 5.25% should be entered as 5.25/100 or as 0.0525, not as 5.25 or 5.25%. The
rate applies to a period. For an interest rate specified annually, this would be year. The interest
rate you specify should take account of the periods used to specify period.

If the period specified is monthly, and the rate yearly, you will need to use a function such as
EFFRATE to first calculate the monthly interest rate. You might need to do the same if the period
specified is quarterly, semi-annually, and so on.

term

Type: Numeric

The number of periods over which payments will be made to the loan or investment. For
example, five years might be specified as 5, or as 60, for 60 months.

The argument for which you want a value returned can be represented using a period (.) or a null.

Example – calculating the saved amount
In this example, the function calculates the saved amount after an interest rate of 2% has been applied
to monthly payments of £500 a month for five years. The result is written to the log.

DATA _NULL_;
 ret = saving(,500,effrate("month",2)/12,60);
 PUT 'The amount saved: ' ret nlmnlgbp12.0;
RUN;

This produces the following output:

The amount saved: £31,591.23

Example – calculating payments
In this example, the function calculates what monthly payments would be required to save £31,576.22
over five years at an interest rate of 2%. The result is written to the log.

DATA _NULL_;
 ret = saving(31576.22,,effrate("month",2)/12,60);
 PUT 'The amount to save: ' ret nlmnlgbp10.0;
RUN;

This produces the following output:

The amount to save: £499.76

Reference for language elements
Version 4.1

1572

SAVINGS
Returns the value of savings based on consistent deposits.

SAVINGS

(base_date , init ial_deposit_date , deposit_amount , deposit_number , deposit_interval , compounding_interval , date- 1 , rate- 1

,

,

date- or- rate- n

)

The interest rates can be varied over time if required.

Return type: Numeric

base_date

Type: Numeric

The end date on which the calculation is based.

initial_deposit_date

Type: Numeric

The date on which the first deposit is made.

deposit_amount

Type: Numeric

The amount deposited each month.

deposit_number

Type: Numeric

The number of deposits that will be made over the course of the period.

deposit_interval

Type: Character

The interval at which each deposit is made, such as monthly or quarterly. See below for
information on the values you can enter.

compounding_interval

Type: Character

The interval at which compounding of interest occurs, such as monthly or quarterly.

An interval can be:

'DAY'

Compounding occurs at the end of each day.

Reference for language elements
Version 4.1

1573

'SEMIMONTH'

Compounding occurs at the middle and end of each month.

'MONTH'

Compounding occurs at the end of each months.

'QUARTER'

Compounding occurs at the end of each quarter year.

'SEMIYEAR'

Compounding occurs at the end of each half year.

'YEAR'

Compounding occurs at the end of each year.

date-1

Type: Numeric

The date at which the interest rate rate-1 is valid.

rate-1

Type: Numeric

The interest rate expected at date-1 entered as a percentage, for example 5 for 5%.

date-or-rate-n
Optional argument

Type: Numeric

A pair of comma-separated values. The first is a date at which an interest rate rate-n becomes
valid, and the second is the interest rate at that date. The date and interest rate must be specified
as pairs. If the function finds unpaired values, an error occurs.

Dates are expected in numeric date format; if you want to specify dates in standard forms, you will need
to use a suitable date time function or date literal, or format the data on input.

date-1 sets the date from which access to the principal begins. date-1 cannot therefore be earlier than
initial_deposit_date.

Reference for language elements
Version 4.1

1574

Example – calculating the saved amount
In this example, the function calculates the amount saved, including interest, where deposits are £500
over 36 months. The result is written to the log.

DATA _NULL_;
 ret = savings(mdy(06,11,2017), mdy(07,11,2014), 500, 36, 'month', 'month',
 mdy(07,11,2014),5);
 PUT 'The amount saved: ' ret nlmnlgbp12.0 ;
RUN;

This produces the following output:

The amount saved: £18,900.63

Example – calculating the saved amount with changes in interest
rate
In this example, the function calculates the amount saved, including interest, where deposits are £500
over 36 months. The result is written to the log.

DATA _NULL_;
 ret = savings(mdy(06,11,2017), mdy(07,11,2014), 500, 36, 'month', 'month',
 mdy(07,11,2014),5, mdy(07,11,2015), 2);
 PUT 'The amount saved: ' ret nlmnlgbp12.0 ;
RUN;

This produces the following output:

The amount saved: £18,152.63

In this example, the amount returned is less than that returned in the previous example as the interest
rate decreased from 5% to 2% after a year.

TIMEVALUE
Returns the value of interest on savings plus the savings if interest is applied at a specified future date
while the term of the principal remains the same.

TIMEVALUE

(base_date , reference_date , reference_amount , compounding_interval , date- 1 , rate- 1

,

,

date- or- rate- n

)

For example, if you have access to a principal for five years, you can calculate the value of that
principal with interest, if interest were to be applied six months after you had access to the principal.

Return type: Numeric

Reference for language elements
Version 4.1

1575

base_date

Type: Numeric

The date to which the money will be held.

reference_date

Type: Numeric

The date from which interest will be applied.

reference_amount

Type: Numeric

The principal to which the interest is applied.

compounding_interval

Type: Character

The interval at which compounding of interest occurs, such as monthly or quarterly.

An interval can be:

'DAY'

Compounding occurs at the end of each day.

'SEMIMONTH'

Compounding occurs at the middle and end of each month.

'MONTH'

Compounding occurs at the end of each months.

'QUARTER'

Compounding occurs at the end of each quarter year.

'SEMIYEAR'

Compounding occurs at the end of each half year.

'YEAR'

Compounding occurs at the end of each year.

date-1

Type: Numeric

The date at which the interest rate rate-1 is valid.

Reference for language elements
Version 4.1

1576

rate-1

Type: Numeric

The interest rate expected at date-1 entered as a percentage, for example 5 for 5%.

date-or-rate-n
Optional argument

Type: Numeric

A pair of comma-separated values. The first is a date at which an interest rate rate-n becomes
valid, and the second is the interest rate at that date. The date and interest rate must be specified
as pairs. If the function finds unpaired values, an error occurs.

Dates are expected in numeric date format; if you want to specify dates in typical formats, such as 01
Jan 2017 or 09/11/2016, you will need to use a suitable function or format the data on input.

date-1 sets the date from which access to the principal begins. date-1 must therefore be earlier than
base_date.

Example – saved amount from specified time
In this example, the function calculates the amount saved, including interest, on a principal of £1,800
starting at the sixth months after savings could have started. Interest is compounded yearly. The result
is written to the log.

DATA _NULL_;
 ret = timevalue(mdy(06,11,2019), mdy(12,11,2016), 18000, 'year',
 mdy(07,11,2016),5);
 PUT 'The amount saved: ' ret nlmnlgbp12.0 ;
RUN;

This produces the following output:

The amount saved: £20,340.87

Example – saved amount from specified time with changes to
interest rate
In this example, the function calculates the amount saved, including interest, on a principal of £1,800
starting at the sixth months after savings could have started. Interest is compounded yearly. The
interest rate decreases to 2% a year after the initial rate is set. The result is written to the log.

DATA _NULL_;
 ret = timevalue(mdy(06,11,2019), mdy(12,11,2016), 18000, 'year',
 mdy(07,11,2016),5,mdy(07,11,2018), 2);
 PUT 'The amount saved: ' ret nlmnlgbp12.0 ;
RUN;

This produces the following output:

The amount saved: £19,804.04

Reference for language elements
Version 4.1

1577

In this example, the amount returned is less than that returned in the previous example as the interest
rate decreased from 5% to 2% after a year.

YIELDP
Returns the yield to maturity for a security for specified periodic cash flows.

YIELDP (par- value , coupon- rate , numeric , K , k0 , price)

Return type: Numeric

par-value

Type: Numeric

The par value of the bond.

coupon-rate

Type: Numeric

The annual coupon rate.

numeric

Type: Numeric

The number of coupons per period. This might, for example, be one a year, or one a month, or
twelve a year.

K

Type: Numeric

The number of remaining coupon payments.

k0

Type: Numeric

The time to the first coupon. This should be greater than 0 and less than 1/numeric. For example,
if coupons are monthly, and there are 28 days until the next coupon, you might enter this value
as 28/30 * 1/12, or as 0.078.

price

Type: Numeric

The current price of the bond.

Reference for language elements
Version 4.1

1578

If the values supplied to the function result in a yield to maturity greater than 1 or less than 0, an error
message is returned.

Example
In this example, the yield to maturity is calculated for a bond with a par value of £100, a coupon rate
of 5%, coupon payments twice a year with four further payments until expiry, and with a price of £95.
There are two months until the next coupon payment. The result is written to the log and to the example
dataset.

DATA _NULL_;
 yp= yieldp(100,(5/100),2,4,2/6*1/2,95);
 PUT 'The yield to maturity is: ' yp percent6.4;
RUN;

This produces the following output:

The yield to maturity is: 9.4%

Internet functions
Send and receive information from internet-based resources. These functions can only be used in
programs executed by an Application Server with a WPS Web application.

APPSRVGETC .. 1579
Returns the value of an Application Server configuration setting.

APPSRVGETN .. 1580
Returns the value of an Application Server configuration setting.

APPSRV_AUTHCLS ... 1582
Returns a WHERE clause.

APPSRV_AUTHDS ... 1583
Modifies the dataset associated with authorisation functions.

APPSRV_AUTHLIB ...1585
Tests access to individual items such as binaries, catalogs, datasets, and entities.

APPSRV_HEADER ... 1586
Modifies a list of HTTP headers according to set conditions.

APPSRV_SESSION .. 1587
The functions described in this section create or end a session for the current request, depending
on the arguments provided.

APPSRV_SET ... 1588
Alters the value of the numeric setting of an Application Server for a request being executed.

APPSRV_UNSAFE ... 1590
Protects applications from code injection attacks through macro variables.

Reference for language elements
Version 4.1

1579

APPSRVSET ... 1591
The APPSRVSET function is an alias for the APPSRV_SET function. It alters the value of the
numeric setting of an Application Server for a request being executed.

APPSRVGETC
Returns the value of an Application Server configuration setting.

APPSRVGETC (opt ion- name)

The name of the setting to be retrieved is provided as an argument to the function and must be present
in the information below. If an invalid name is provided, an error is returned to the execution log. The
names of settings are case insensitive.

Return type: Character

The returned type depends on the option specified.

option-name

Type: Character

The name of the setting to be retrieved.

The options are as follows:

charset
Specifies that the value of the Application Server CHARSET option is to be returned.
Returns an empty string if the NOCHARSET option was specified.

log file
Specifies that the path of the current log file being used by the Application Server is to be
returned. The path will include any expanded substitution characters.

request init
Specifies that the name of the program an Application Server includes before every
requested program, is to be returned. As specified in the INIT option of the REQUEST
statement in the APPSRV procedure.

request term
Specifies that the name of the program an Application Server includes after every
requested program, is to be returned. As specified in the TERM option of the REQUEST
statement in the APPSRV procedure.

session invess
Specifies that the name of the program the Application Server executes when a user
connects with an invalid session ID, is to be returned. As specified by the value of the
INVESS option of the SESSION statement in the APPSRV procedure.

Reference for language elements
Version 4.1

1580

session term
Specifies that the name of the program that an Application Server executes when a
session expires, is to be returned. As specified by the TERM option of the SESSION
statement in the APPSRV procedure.

statistics data
Specifies that the name of the dataset used by the Application Server for recording request
statistics, is to be returned.

version
Specifies that the version of the WPS software that the Application Server is using to
execute the requested program, is to be returned.

Example
In this example, an HTTP response is returned that contains the version string of the WPS software
running the Application Server.

DATA _NULL_;
 FILE _WEBOUT;
 version = APPSRVGETC('version');
 PUT 'Content-type: text/plain';
 PUT;
 PUT version;
RUN;

APPSRVGETN
Returns the value of an Application Server configuration setting.

APPSRVGETN (opt ion- name)

This function is similar to APPSRVGETC but returns numeric values. If an invalid name is provided, an
error is returned to the execution log. The names of settings are case insensitive.

Return type: Numeric

The value returned depends on the option specified.

option-name

Type: Character

The name of the setting to be retrieved.

The options are as follows:

automatic headers
Specifies that if the automatic header system is enabled for the program currently being
executed, then 1 is returned, otherwise 0 is returned.

Reference for language elements
Version 4.1

1581

netbuffk
Specifies that the size of Application Server net buffer is to be returned. The buffer size is
defined by the NETBUFFK option of the PROC APPSRV statement. The value returned is
the size of the buffer in kilobytes.

port
Specifies that the port number the Application Server is listening on, is to be returned. As
specified in the PORT option of the PROC APPSRV statement in the APPSRV procedure.

program error
Specifies the error code that will be returned by the APPSRV_SET function if a bad value is
provided in the option-name.

request maxtimeout
Specifies that the maximum value of the TIMEOUT option of the REQUEST statement can
take, to be returned. As specified by the MAXTIMEOUT option of the REQUEST statement
in the APPSRV procedure.

request timeout
Specifies that the timeout value for program execution in seconds, before it is terminated
by the Application Server, is to be returned. As specified by the TIMEOUT option of the
REQUEST statement in the APPSRV procedure.

request read
Specifies that the timeout value in seconds for reading requests from a Broker, is to be
returned. As specified by the READ option of the REQUEST statement in the APPSRV
procedure.

server starttime
Specifies that the Coordinated Universal Time (UTC) timestamp of the exact time the
Application Server started, is to be returned.

session timeout
Specifies that the timeout value of sessions in seconds is to be returned. As specified by
the TIMEOUT option of the SESSION statement in the APPSRV procedure.

statistics writecount
Specifies that the number of statistics observations that are buffered before they are
written to the Application Server's statistics dataset is to be returned. As defined by the
WRITECOUNT option of the STATISTICS statement in the APPSRV procedure.

statistics writeevery
Specifies that the maximum delay in minutes before the statistics buffer is flushed to the
Application Server statistics dataset, is to be returned. As defined by the WRITEEVERY
option of the STATISTICS statement in the APPSRV procedure.

version
Specifies that the version number of the WPS software executing the program, is to be
returned.

Reference for language elements
Version 4.1

1582

Example
In this example, an HTTP response is returned that contains the port number to which the Application
Server is bound. The result is written to the log.

DATA _NULL_;
 FILE _WEBOUT;
 port = APPSRVGETN('port');
 PUT 'Content-type: text/plain';
 PUT;
 PUT port;
RUN;

APPSRV_AUTHCLS
Returns a WHERE clause.

APPSRV_AUTHCLS (type)

The WHERE clause can be used with metadata views, for example dictionary, to subset available
resources corresponding to those authorised to be used by a program.

Return type: Character

type

Type: Character

The functions argument is the type of the item to be selected. This can be one of:

• MEMBER.

• CATALOGENTRY.

• LIBRARY.

Reference for language elements
Version 4.1

1583

Example
In this example, an HTML table is produced containing details of all datasets accessible according to
the authorisation mechanism.

ODS HTML body=_webout path=&_tmpcat (url=&_replay) gpath=&_tmpcat (url=&_replay);

DATA _NULL_;
 FILE _WEBOUT;
 rc = APPSRV_AUTHCLS('MEMBER');
 CALL SYMPUT('where', rc);
RUN;

PROC SQL;
 select * from dictionary.members WHERE &where AND Memtype=’DATA’;
QUIT;

ODS HTML CLOSE;

APPSRV_AUTHDS
Modifies the dataset associated with authorisation functions.

APPSRV_AUTHDS (dataset)

Alters the dataset that contains rules for authorisation functions such as APPSRV_CLS and
APPSRV_AUTHLIB.

Return type: Numeric

dataset

Type: Character

Rules are specified on a per-row basis. The following determine whether a rule operates on a whitelist
or blacklist, and what the target(s) of a rule (are).

Access control functions operate on collections of rules that are held as rows in a dataset as follows:

Rule
Specify either INCLUDE or EXCLUDE to provide a whitelist or blacklist. To be granted access, an
object must be included and not excluded.

Libname
Specify the name of the library.

Memname
Specify the name of the member of the library.

Reference for language elements
Version 4.1

1584

Memtype
Specify the type of the member in the library, it can be:

• DATA.
• CATALOG.
• VIEW.
• MDDB.

Objname
If Memtype is CATALOG then this refers to the name of a catalog entry.

Objtype
If Memtype is CATALOG then this refers to the type of a catalog entry.

All name and type variables can be assigned to the wildcard *, applying the rule to multiple objects. For
example, the following rule would include all datasets in the SASHELP library:

Rule Libname Memname Memtype Objname Objtype

INCLUDE SASHELP * DATA * *

A default list of access control rules is provided in the SASHELP.AUTHLIB dataset, which can be
viewed in the Workbench.

The APPSRV_AUTHDS DATA step function can be used to specify the name of a dataset containing a
new set of rules. If the dataset is correctly formatted and loaded, the previous rules will be discarded.

Rules are discarded at the end of a requested program. If the authorisation mechanism is required for
main programs in an application, the APPSRV_AUTHDS function could be used in a program specified
by the INIT option of the REQUEST statement of the APPSRV procedure. This function creates
Application Servers, ensuring that rules are automatically loaded for all requests.

Example
This example illustrates how to load authorisation dataset rules from the dataset SECURITY.AUTHDS. If
the rules cannot be loaded, then the program will exit:

DATA _NULL_;
 rc = APPSRV_AUTHDS('security.authds');
 IF rc ~= 1 THEN DO;
 ENDWPS;
 END;
RUN;

Reference for language elements
Version 4.1

1585

APPSRV_AUTHLIB
Tests access to individual items such as binaries, catalogs, datasets, and entities.

APPSRV_AUTHLIB

(

l ibname

,
memname

,

memtype

,

objname , objtype

)

Returns 1 or 0 to indicate if access is allowed or not, respectively.

Return type: Numeric

libname
Optional argument

Type: Character

memname
Optional argument

Type: Character

memtype
Optional argument

Type: Character

objname
Optional argument

Type: Character

objtype
Optional argument

Type: Character

Example
All options can be given the value * which acts as a wildcard and matches any value. The object name
and object type options only apply if the item type option is equal to CATALOG as they specify a
catalog entry.

The following DATA step sets the value of rc to 1 if access is granted to the PROTECTED library:

DATA _NULL_;
 rc = APPSRV_AUTHLIB("PROTECTED", "*", "*", "*", "*");
RUN;

Reference for language elements
Version 4.1

1586

The next example sets the value of rc to 1 if access is granted to any dataset in the PROTECTED
library:

DATA _NULL_;
 rc = APPSRV_AUTHLIB(‘PROTECTED’, "*", "DATA", "*", "*");
RUN;

In this example, the DATA step only executes if access is granted to the DATALIB.PRIVATE dataset:

%MACRO checkAccess;
 %IF %sysfunc(APPSRV_AUTHLIB(DATALIB, PRIVATE, DATA,*,*)) %THEN %DO;
 DATA _NULL_;
 SET DATALIB.PRIVATE;
 FILE _WEBOUT;
 PUT name;
RUN;
%END;
%MEND;
%checkAccess

In this example a program will only execute the CATALOGS procedure if access is granted to the
SECRET.SOURCE entry in the SHARED catalog of the DATALIB library.

%MACRO checkAccess;
 %IF %sysfunc(APPSRV_AUTHLIB(DATALIB, SHARED, CATALOG, SECRET, SOURCE)) %THEN %DO;
 PROC CATALOGS ...;
 ...
RUN;
%END;
%MEND;
%checkAccess

APPSRV_HEADER
Modifies a list of HTTP headers according to set conditions.

APPSRV_HEADER (name , value)

Alters the list of HTTP headers that are prepended to the Application Server's response if it detects that
the program itself did not generate any valid headers. Headers are specified as name-value pairs and
override existing values if previously set by the program. Names cannot contain the colon (:), because
this is the delimiter character in HTTP.

Return type: Character

name

Type: Character

value

Type: Character

Reference for language elements
Version 4.1

1587

Example
In this example, the program sets the content-type header for the response to image/gif, then
writes an image in the body of the HTTP message. The step using the GCHART procedure is not fully
specified.

DATA _NULL_;
 rc = APPSRV_HEADER('Content-type', 'image/gif');
RUN;
PROC GCHART ...

The following example shows how to allow users to download a CSV file containing the contents of the
WORK.OUTPUT dataset rather than displaying its contents in a browser:

DATA _NULL_;
 FILE _WEBOUT TERMSTR=CRLF;
 rc = APPSRV_HEADER('Content-type', 'text/csv');
 rc = APPSRV_HEADER('Content-disposition', 'attachment; filename=output.csv');
RUN;
 PROC EXPORT DATA=WORK.OUTPUT OUTFILE=_webout DBMS=CSV REPLACE;
RUN;

APPSRV_SESSION
The functions described in this section create or end a session for the current request, depending on
the arguments provided.

CREATE Command

Creates a session for the current request.

APPSRV_SESSION ("create" , session- t imeout)

Create

Create a new session for the current request using the Application Server's default timeout
setting. If the request is associated with an existing session, or if the program has already
created a session, then an error is returned.

An example function call:

DATA _NULL_;
 id = APPSRV_SESSION('create');
 PUT id;
RUN;

Return type: Numeric

Reference for language elements
Version 4.1

1588

session-timeout

Type: Numeric

Create a new session with a timeout of n seconds. The timeout argument must be greater than 0
and less than the session maxtimeout setting, or an error is returned.

An example function call:

DATA _NULL_;
 id = APPSRV_SESSION('create',45);
 PUT id;
RUN;

DELETE Command

Ends a session for the current request.

APPSRV_SESSION ("delete")

This marks the current session for deletion when the program finishes execution and then returns 0. If
there is no session for the current request then the value of program error is returned.

An example function call:

DATA _NULL_;
 id = APPSRV_SESSION('delete');
 PUT id;
RUN;

Return type: Numeric

Either 0 or value of program error.

APPSRV_SET
Alters the value of the numeric setting of an Application Server for a request being executed.

APPSRV_SET (name

, value

)

This function can be used, for example, to:

• Disable automatic header generation
• Increase the maximum time a program can execute.
• Put an Application Server into a background mode.

Reference for language elements
Version 4.1

1589

Return type: Numeric

name

Type: Character

value
Optional argument

Type: Numeric

This function uses one or two arguments, both of which are case insensitive.

One argument

The following settings take one argument:

disconnect
Closes the network connection to the Broker, ending the response for a request but allowing an
Application Server to continue processing the request itself.

background
Attempts to place the server into a background mode/state.

Two arguments

The following settings take two arguments:

session timeout
Sets the default session timeout if one is created during the processing of the request. This
setting does not affect sessions that have already been created.

automatic headers
Enables the automatic header system if the second argument is greater than 0. Otherwise, it
disables it.

requested timeout
Sets the total number of seconds that the current program will be allowed to execute for. The
maximum allowable value that can be set can be obtained through APPSRVGETN ('request
maxtimeout').

background

APPSRV_SET('background',n);

does the same as:

APPSRV_SET('request timeout',n);
APPSRV_SET('background');

program error
Sets the error code returned by APPSRV_SET if it is given invalid values.

Reference for language elements
Version 4.1

1590

If APPSRV_SET is successful, it returns 0. Otherwise, a program error is returned. By default, program
error is set to 1.

Example
In this example, the program demonstrates how to disable the automatic header system for the
remainder of program execution:

DATA _NULL_;
 rc = APPSRV_SET('automatic headers', 0);
RUN;

In the next example, the program disconnects the Application Server from the Broker, allowing the
Broker to process the response while the server continues to execute the requested program:

DATA _NULL_;
 rc = APPSRV_SET('disconnect');
RUN;

In the last example, a DATA step places an Application Server into background mode, unbinding it
from the TCP socket that it was using. If the server is not part of a pool service, or if the Load Manager
does not allow backgrounding, then the rc variable is set to 1 and is used to display an error message
instead of running the long task:

DATA _NULL_;
 rc = APPSRV_SET('background');
 IF rc ~= 0 THEN DO;
 PUT 'Error: Can’t continue processing!';
 PUT 'Unable to place application server into background mode';
 END;
 ELSE;
 * Some long task;
 ...
 END;
RUN;

APPSRV_UNSAFE
Protects applications from code injection attacks through macro variables.

APPSRV_UNSAFE (paramname)

For protection, the Application Server automatically removes certain characters from the input
parameters. These characters are specified in a default unsafe list or the UNSAFE option of the APPSRV
procedure.

Return type: Character

Reference for language elements
Version 4.1

1591

paramname

Type: Character

The original value of the input parameter (including any unsafe characters) can be retrieved using the
APPSRV_UNSAFE DATA step function and used as a DATA step variable. The function takes a single
argument that is the name of the parameter to retrieve and is case insensitive (unlike parameters in the
HTTP protocol). If no parameter matches the provided name, an error is returned.

Note:
To reduce the risk of code injection, the returned value should not be assigned to a macro variable
unless it is made safe through the macro quoting process.

Example
In this example, the program displays the original value of the rawparam parameter prior to the
removal of any unsafe characters:

DATA _NULL_;
 FILE _WEBOUT;
 rawparam = APPSRV_UNSAFE('rawparam');
 PUT 'Content-type: text/plain';
 PUT;
 PUT rawparam;
RUN;

Note:
If the rawparam parameter contains control characters, then code is injected into the DATA step.

APPSRVSET
The APPSRVSET function is an alias for the APPSRV_SET function. It alters the value of the numeric
setting of an Application Server for a request being executed.

APPSRVSET (name

, value

)

This function can be used, for example, to:

• Disable automatic header generation
• Increase the maximum time a program can execute.
• Put an Application Server into a background mode.

Return type: Numeric

Reference for language elements
Version 4.1

1592

name

Type: Character

value
Optional argument

Type: Numeric

This function uses one or two arguments, both of which are case insensitive.

One argument

The following settings take one argument:

disconnect
Closes the network connection to the Broker, ending the response for a request but allowing an
Application Server to continue processing the request itself.

background
Attempts to place the server into a background mode/state.

Two arguments

The following settings take two arguments:

session timeout
Sets the default session timeout if one is created during the processing of the request. This
setting does not affect sessions that have already been created.

automatic headers
Enables the automatic header system if the second argument is greater than 0. Otherwise, it
disables it.

requested timeout
Sets the total number of seconds that the current program is allowed to execute for. The
maximum allowable value that can be set can be obtained through APPSRVGETN ('request
maxtimeout').

background

APPSRVSET('background',n);

does the same as:

APPSRVSET('request timeout',n);
APPSRVSET('background');

program error
Sets the error code returned by APPSRVSET if it is given invalid values.

If APPSRVSET is successful, it returns 0. Otherwise, a program error is returned. By default, program
error is set to 1.

Reference for language elements
Version 4.1

1593

Example
In this example, the program demonstrates how to disable the automatic header system for the
remainder of program execution:

DATA _NULL_;
 rc = APPSRVSET('automatic headers', 0);
RUN;

In this example, the program disconnects the Application Server from the Broker, allowing the Broker to
process the response while the server continues to execute the requested program:

DATA _NULL_;
 rc = APPSRVSET('disconnect');
RUN;

In this example, a DATA step places an Application Server into background mode, unbinding it from the
TCP socket that it was using. If the server is not part of a pool service, or if the Load Manager does not
allow backgrounding, then the rc variable is set to 1 and is used to display an error message instead
of running the long task:

DATA _NULL_;
 rc = APPSRVSET('background');
 IF rc ~= 0 THEN DO;
 PUT 'Error: Can’t continue processing!';
 PUT 'Unable to place application server into background mode';
 END;
 ELSE;
 * Some long task;
 ...
 END;
RUN;

List functions and CALL routines
Manipulate variables in lists. Lists contain values identified either by their position in the list, or by
names.

CLEARLIST ... 1596
Clear the items from a list, and optionally clear or delete sublists from it.

COMPARELIST ...1597
Returns a value indicating whether the specified lists are identical.

COPYLIST ...1601
Copies one list into another list.

CURLIST ... 1607
Set the specified list as the current list.

DELITEM ... 1612
Deletes the item at the specified position in a list.

Reference for language elements
Version 4.1

1594

DELLIST .. 1613
Deletes a list.

DELNITEM .. 1617
Deletes the specified named item and its associated value from a list.

DESCRIBE .. 1621
Enables a list to be populated with dataset, data view and catalog entry attributes.

ENVLIST ..1625
Creates a list.

FILLIST ..1627
Creates a list using the items in a previously saved list.

GETITEMC .. 1629
Returns the character or string at the specified position in the list.

GETITEML ...1630
Returns the list identifier of the sublist at a specified position in a list.

GETITEMN .. 1631
Returns the number at the specified position in the list.

GETLATTR ..1632
Returns the attributes that are set for a list or for a list item.

GETLCNTA ... 1634
Returns the number of lists that remain open.

GETLCNTP ... 1635
Returns the total number of lists that resulted from create and delete operations while CALL
LISTPROF is active.

GETNITEMC ... 1636
Returns the character or string specified for a named list item.

GETNITEML .. 1641
Gets the sublist identifier held by the specified named list item.

GETNITEMN ... 1646
Returns the number specified for a named list item.

HASATTR ..1650
Returns a value indicating whether a list or list item has a specified attribute value.

INSERTC ...1654
Inserts a character or string at a specified position in the list.

INSERTL ... 1656
Insert a sublist into the specified list.

INSERTN ...1659
Inserts a number at a specified position in a list.

ITEMTYPE ...1662
Return the type of the item at a specified position in a list.

Reference for language elements
Version 4.1

1595

LISTLEN .. 1664
Returns the number of items in a list.

LVARLEVEL .. 1665
Creates a list using the values of a variable in a specified dataset.

MAKELIST ...1667
Creates a list in which items are specified by ordinal position.

MAKENLIST .. 1668
Creates a list in which items are specified by variable name.

NAMEDITEM ... 1669
Returns the position of a named item in a list.

NAMEITEM ..1672
Name or rename an item, or return the item name.

POPC .. 1675
Returns and removes a character or string item from a specified list.

POPL ... 1677
Returns and removes a sublist from a specified list.

POPN .. 1679
Returns and removes a numeric item from a specified list.

REVLIST ..1681
Reverses the order of the items in a list.

ROTLIST ... 1682
Rotates the order of the items in a numeric list by a specified number of characters.

SAVELIST ... 1683
Saves a list.

SEARCHC ... 1688
Returns the ordinal position of a string in a list that matches the specified character or string.

SEARCHL ..1692
Returns the position of a specified sublist in a list.

SEARCHN ... 1694
Returns the ordinal position of a specified number.

SETITEMC .. 1696
Sets the specified list item to the specified character string.

SETITEML ... 1699
Sets the specified list item to the specified sublist.

SETITEMN .. 1703
Sets the specified list item to the specified number.

SETLATTR .. 1706
Set the attributes for a list or for specified items in a list.

SETNITEMC ..1712
Sets the specified named list item to the specified character string.

Reference for language elements
Version 4.1

1596

SETNITEML .. 1719
Sets the specified list item to the specified sublist.

SETNITEMN ..1725
Sets the specified named list item to the specified number.

SORTLIST ... 1732
Sorts the specified list.

CALL LISTPROF ...1735
Enables the number of lists created in a DATA step to be calculated.

CALL PUTLIST ... 1737
Write the specified list to the log.

CLEARLIST
Clear the items from a list, and optionally clear or delete sublists from it.

CLEARLIST (l ist- id

, recursive

)

If the list contains sublists, these are not removed unless requested.

Return type: Numeric

list-id

Type: List

The identifier for the list.

recursive
Optional argument

Specifies how to handle sublists.

"N"

Sublists are not cleared or deleted. This is the default.

"Y"

Sublists are cleared. The contents of the sublist are deleted, but the identifier is not
deleted.

"D"

Sublists are cleared and the identifier for the sublist is deleted. Other functions will no
longer be able to access the sublist.

Reference for language elements
Version 4.1

1597

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The list is then cleared. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'v1', 'v2', 'v4');

 lr = SETNITEMC(lid1, 'plane', 'v1');
 lr = SETNITEMC(lid1, 'ship', 'v2');
 lr = SETNITEMC(lid1, 'horse', 'v4');

 cl = CLEARLIST(lid1);

 DO y = 1 TO listlen(lid1);
 gr = GETITEMC(lid1, y);
 PUT gr;
 END;

 ll = LISTLEN(lid1);
 PUT ll=;

RUN;

This produces the following output:

ll=0

The GETITEMC in the DO loop produces no output, because the length of the list is 0 (zero) and the loop
therefore never starts.

COMPARELIST
Returns a value indicating whether the specified lists are identical.

COMPARELIST (l ist1- id , l ist2- id

, opt ions

)

Two specified lists are compared. Without options, the lists must be exactly the same. For lists with
unnamed items, this means that the values must be the same, and occupy the same position in the list:
A B C is different to B A C. For named lists, named items must match, and have the same values:
li1=1 li2=3 li3=4 is the same as li1=1 li3=4 li2=3; however, it is different to li1=4 li2=3
li3=1. By default, case is ignored; for example, Horse, HORSE and horse are all identical.

Options enable you to modify the comparison, so that, for example, case is considered (Horse, HORSE
and horse would be the same), or item names or item values are ignored in the comparison.

Return type: Numeric

0 (zero) if the lists match; 1 otherwise.

Reference for language elements
Version 4.1

1598

list1-id

Type: List

The identifier of the first list to be compared.

list2-id

Type: List

The identifier of the second list to be compared.

options
Optional argument

One or more options, enclosed in quotation marks. If more than one option is specified, separate
options with spaces; for example, 'NAME MIXEDCASE NODUMP'.

The following options are available:

"NAME"

Item names are considered in the comparison.

"NONAME"

Item names are ignored in the comparison.

"NOHONORCASE"

If the HONORCASE attribute has been set for a list, the attribute is ignored in the
comparison.

"MIXEDCASE"

Case is taken into account in the comparison. For example, if you do not specify this
option, CAR and car are identical; if you do specify this option, they are different.

"ITEM"

Item values are considered in the comparison.

"NOITEM"

Item values are ignored in the comparison.

"NODUMP"

No information about the comparison is written to the log. This is the default.

"LONGDUMP"

All information about the comparison is written to the log.

"SHORTDUMP"

Information about the comparison of up to five items is written to the log.

Reference for language elements
Version 4.1

1599

The results of comparing lists can be unexpected if the lists to be compared have been created
in different ways (for example, using MAKELIST and MAKENLIST), or list attributes such as
'HONORCASE' have been set.

Basic example
In this example, two lists are created. Named items are entered into each list. These lists are then
compared. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1','var2','var3');

 lr1 = SETNITEMC(lid1, 'car', 'var1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'var2');
 lr1 = SETNITEMC(lid1, 'train', 'var3');

 lid2 = MAKENLIST('g', 'var1','var2','var3');

 lr2 = SETNITEMC(lid2, 'car', 'VAR1');
 lr2 = SETNITEMC(lid2, 'bicycle', 'VAR2');
 lr2 = SETNITEMC(lid2, 'train', 'VAR3');

 IF COMPARELIST(lid1,lid2) EQ 0 THEN PUT 'Lists are the same';
 ELSE PUT 'Lists are not the same';

RUN;

This produces the following output:

Lists are the same

The lists have the same item values, and the same item names, and because case is ignored, the lists
are therefore regarded as identical.

Reference for language elements
Version 4.1

1600

Example – accounting for case in values, and writing results to log
In this example, two lists are created. Named items are entered into each list. These lists are then
compared; the 'MIXEDCASE' option is set, which specifies that the case of item values should be
considered in the compare. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1','var2','var3');

 lr1 = SETNITEMC(lid1, 'car', 'var1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'var2');
 lr1 = SETNITEMC(lid1, 'train', 'var3');

 lid2 = MAKENLIST('g', 'VAR1','VAR2','VAR3');

 lr2 = SETNITEMC(lid2, 'CAR', 'var1');
 lr2 = SETNITEMC(lid2, 'bicycle', 'var2');
 lr2 = SETNITEMC(lid2, 'train', 'var3');

 IF COMPARELIST(lid1, lid2, 'MIXEDCASE SHORTDUMP') EQ 0 THEN PUT 'Lists are the
 same';
 ELSE PUT 'Lists are not the same';

RUN;

This produces the following output:

NOTE: List item 1: in list 1 NAME='VAR1', TYPE='C', VALUE='car', in list 2
 NAME='VAR1',
 TYPE='C', VALUE='CAR'
Lists are not the same

The values CAR and car differ only in case. If 'MIXEDCASE' had not been set, the lists would have
been regarded as identical. The log shows where the lists differ.

Reference for language elements
Version 4.1

1601

Example – ignoring variable names
In this example, two lists are created. Named items are entered into each list. These lists are then
compared; the 'NONAME' option is set, which specifies that item names are not compared. The result is
written to the log.

DATA _NULL_;

 lid1 = MAKENLIST();

 lr1 = SETNITEMC(lid1, 'car', 'var1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'var2');
 lr1 = SETNITEMC(lid1, 'train', 'var3');

 call putlist(lid1);

 lid2 = MAKENLIST();

 lr2 = SETNITEMC(lid2, 'CAR', 'var2');
 lr2 = SETNITEMC(lid2, 'bicycle', 'var5');
 lr2 = SETNITEMC(lid2, 'train', 'var3');

 call putlist(lid2);

 IF COMPARELIST(lid1, lid2, 'NONAME') EQ 0 THEN PUT 'Lists are the same';
 ELSE PUT 'Lists are not the same';

RUN;

This produces the following output:

Lists are the same

The item names have been ignored, and the case is ignored by default. The lists are, therefore, the
same.

COPYLIST
Copies one list into another list.

COPYLIST (l ist- id ,

opt ion- list , target- list- id

)

Items are copied from the first specified list (the source list) and appended to the second specified list
(the target list). Various options enable you to specify how the items in sublists will be copied.

Return type: List

list-id

Type: List

Reference for language elements
Version 4.1

1602

The list identifier of the list (the source list) you want to copy to another list. All items in this list
are appended to the target list, unless you set options option-list that specify otherwise.

option-list
Optional argument

Specifies how sublists are copied, and whether lists are merged.

"N"

The list identifier of any source list is copied into the target list (that is, a shallow copy is
performed). This is the default.

"NO"

The list identifier of any source list is copied into the target list (that is, a shallow copy is
performed). This is the default.

"NONRECURSIVELY"

The list identifier of any source list is copied into the target list (that is, a shallow copy is
performed). This is the default.

"M"

If an item name is the same in both lists, then the value of the item in the source list
overwrites the value of the item with the same name in the target list.

For example, suppose the source list has items named v1, v2, and v3, while the target list
has the variables v1, v2 and v4. The items v1 and v2 will be overwritten in the target list,
v3 will be not be overwritten and retain its current value, while v4 will be appended to the
list.

If the target list is not a list composed of named items, the source list is appended at the
end of the target list. If the source list is not a named list, the items are not appended to
the target list and an error message is returned for each unnamed item. If both lists contain
items specified by position (that is, neither list contains named list items), then items in the
source list are not appended to the target list and an error message is returned for each
unnamed item.

"MERGE"

If an item name is the same in both lists, then the value of the item in the source list
overwrites the value of the item with the same name in the target list.

For example, suppose the source list has items named v1, v2, and v3, while the target list
has the variables v1, v2 and v4. The items v1 and v2 will be overwritten in the source list,
v3 will be not be overwritten and retain its current value, while v4 will be appended to the
list.

Reference for language elements
Version 4.1

1603

If the target list is not a list composed of named items, the source list is appended at the
end of the target list. If the source list is not a named list, the items are not appended to
the target list and an error message is returned for each unnamed item. If both lists contain
items specified by position (that is, neither list contains named list items), then items in the
source list are not appended to the target list and an error message is returned for each
unnamed item.

"Y"

A new list and list identifier is created for any source list copied into the target list (that is, a
deep copy is performed).

"YES"

A new list and list identifier is created for any source list copied into the target list (that is, a
deep copy is performed).

"RECURSIVELY"

A new list and list identifier is created for any source list copied into the target list (that is, a
deep copy is performed).

target-list-id
Optional argument

Type: List

The identifier of the list (the target list) to which the items in list-id (the source list) are copied. If
target-list-id already contains items, then the items in list-id are appended to it, unless otherwise
directed by options set in option-list.

If this option is not specified, list-id is not copied to any list.

An indexed list can be copied to a named list, and vice versa, unless option-list is set to 'MERGE'.

Reference for language elements
Version 4.1

1604

Basic example
In this example, two lists are created using the MAKELIST (page 1667) and SETITEMC (page
1696) functions. COPYLIST is then used to append one list to the end of the other list. The items are
then extracted from the target list using GETITEMC (page 1629). The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'v1', 'v2', 'v3');

 lr1 = SETNITEMC(lid1, 'car', 'v1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'v2');
 lr1 = SETNITEMC(lid1, 'train', 'v3');

 lid2 = MAKENLIST('g', 'v1', 'v2', 'v3');

 lr2 = SETNITEMC(lid2, 'plane', 'v1');
 lr2 = SETNITEMC(lid2, 'ship', 'v2');
 lr2 = SETNITEMC(lid2, 'horse', 'v3');

 clr = COPYLIST(lid2,,lid1);

 DO y = 1 TO LISTLEN(lid1);
 gi = GETITEMC(lid1, y);
 PUT gi;
 END;

RUN;

This produces the following output:

car
bicycle
train
plane
ship
horse

Reference for language elements
Version 4.1

1605

Example – copy with merge
In this example, two lists are created using the MAKELIST (page 1667) and SETITEMC (page
1696) functions. COPYLIST is then used to append one list to the end of the other list. The items are
then extracted from the target list using GETITEMC (page 1629). The MERGE option is specified so
that the two lists are merged. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'v1', 'v2', 'v3');

 lr1 = SETNITEMC(lid1, 'car', 'v1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'v2');
 lr1 = SETNITEMC(lid1, 'train', 'v3');

 lid2 = MAKENLIST('g', 'v1', 'v2', 'v4');

 lr2 = SETNITEMC(lid2, 'plane', 'v1');
 lr2 = SETNITEMC(lid2, 'ship', 'v2');
 lr2 = SETNITEMC(lid2, 'horse', 'v4');

 clr = COPYLIST(lid2,'MERGE',lid1);

 DO y = 1 TO LISTLEN(lid1);
 gi = GETITEMC(lid1, y);
 PUT gi;
 END;

RUN;

This produces the following output:

plane
ship
train
horse

In this example, both lists contain items named v1 and v2. The values for v1 and v2 in the source
list (lid2) overwrite the values for v1 and v1 in the target list (lid1). Therefore, plane and ship
overwrite car and bicycle.

The source list does not contain a list item named v3, so that item in the target list is not overwritten.
The target list does not contain an item named v4, so that item from the source list is appended to the
target list.

Example – copy with RECURSIVELY specified
In this example, three lists are created. One of these lists is inserted into another list. COPYLIST is
then used to copy the list containing a sublist into another. The 'RECURSIVELY' option is set, which
will create a new list with its own identifier. The items are then extracted from the target list using
GETITEMC (page 1629) and GETITEML (page 1629). The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(3);

Reference for language elements
Version 4.1

1606

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'bicycle', 2);
 lr1 = SETITEMC(lid1, 'train', 3);

 lid2 = MAKELIST(3);

 lr2 = SETITEMC(lid2, 'seal', 1);
 lr2 = SETITEMC(lid2, 'whale', 2);
 lr2 = SETITEMC(lid2, 'bat', 3);

 lid3 = MAKELIST(3);

 lr3 = SETITEMC(lid3, 'carrot', 1);
 lr3 = SETITEMC(lid3, 'cabbage', 2);
 lr3 = SETITEMC(lid3, 'lettuce', 3);

 il = INSERTL(lid2,lid3,3);

 cl = COPYLIST(lid2,'RECURSIVELY',lid1);

 DO y = 1 TO LISTLEN(lid1);
 IF ITEMTYPE(lid1,y) EQ 'C' THEN
 DO;
 gi = GETITEMC(lid1, y);
 PUT gi;
 END;

 IF ITEMTYPE(lid1,y) eq 'L' THEN
 DO;
 gi = GETITEML(lid1, y);
 PUT gi;
 END;
 END;

 nl = GETLCNTA();

 PUT 'Number of lists created: ' rc;

RUN;

This produces the following output:

car
bicycle
train
seal
whale
4
bat
Number of lists created: 4

After the recursive copy, the identifier of the inserted list is 4, rather than the 3 that would have been
assigned to it when created. GETLCNTA has been used to count the number of lists created during
the session. This function has also returned 4, showing that when the list lid2 was copied to list lid1,
another copy of the sublist identified by lid3 was created. The total number of lists created is now,
therefore, four.

Reference for language elements
Version 4.1

1607

CURLIST
Set the specified list as the current list.

CURLIST (

, new- list- id

)

The list identifier is held in memory and can be made available to other functions. The list identifier can
then be used as a default identifier in some functions.

Note:
The only function that currently exploits CURLIST is LVARLEVEL.

Return type: List

0 (zero), or a list identifier.

new-list-id
Optional argument

Type: List

The identifier of the list you want to make the current list.

The value returned depends on whether you specify new-list-id:

• If you do specify new-list-id, the identifier for the previous current list is returned. If the list you are
making current is the first (that is, its identifier is 1), then 0 (zero) is returned.

• If you do not specify new-list-id, the identifier of the current list is returned.

You can use the value returned for the previous current list to swap between lists in other functions.
See the example in the section Example – specifying and not specifying new-list-id below for more
details.

Reference for language elements
Version 4.1

1608

Basic example
In this example, a new list is created that has the same size as the number of observations in the
specified dataset. CURLIST is used to make the identifier of the list the current identifier. LVARLEVEL
is then used to fill a list with the observations associated with a specified variable. No list identifier is
specified to LVARLEVEL, as it can access the current identifier. The result is written to the log.

LIBNAME lbooks 'c:\temp';
DATA _NULL_;

 var = 0;
 did = OPEN('lbooks.books');

 lid = ENVLIST('g');

 cl = CURLIST(lid);

 lvl = LVARLEVEL(did,'Author',var);

 DO i = 1 TO var;
 gi = GETITEMC(lid,i);
 PUT gi;
 END;

RUN;

This produces the following output:

Bruce, Steve
Ritzer, George
Cohen, I B
Carey, Nessa
Gribbin, John
Davies, Paul
Humphrey, Nicholas
Honderich, Ted
Grayling, A C
Buchanan, R A
Ellul, Jacques
Hindle, Paul
Marwick, Arthur
Hibbert, Christopher
Rostow, W W
Aldgate, Anthony, et al
Williams, Raymond
Hodgkiss, Phillip

Reference for language elements
Version 4.1

1609

Example – persistence of the current list
In this example, a new list is created that has the same size as the number of observations in the
specified dataset. CURLIST is used to make the identifier of the list the current identifier. LVARLEVEL is
then used twice. No list identifier is specified to LVARLEVEL, as it can access the current identifier each
time it is used. The result is written to the log.

LIBNAME lbooks 'c:\temp';
DATA _NULL_;

 var = 0;
 did = OPEN('lbooks.books');

 lid = ENVLIST('g');

 cl = CURLIST(lid);

 lvl = LVARLEVEL(did,'Author',var);

 PUT 'Authors:';

 DO i = 1 TO var;
 gia = GETITEMC(lid,i);
 PUT gia;
 END;

 PUT ' ';

 lvl = LVARLEVEL(did,'Title',var);

 PUT 'Titles:';

 DO i = 1 TO var;
 git = GETITEMC(lid,i);
 PUT git $78.;
 END;

RUN;

This produces the following output:

Authors:
Bruce, Steve
Ritzer, George
Cohen, I B
Carey, Nessa
Gribbin, John
Davies, Paul
Humphrey, Nicholas
Honderich, Ted
Grayling, A C
Buchanan, R A
Ellul, Jacques
Hindle, Paul
Marwick, Arthur
Hibbert, Christopher
Rostow, W W
Aldgate, Anthony, et al
Williams, Raymond

Reference for language elements
Version 4.1

1610

Hodgkiss, Phillip

Titles:
Sociology: A Very Short Introduction
Introduction to Sociology
Birth of the New Physics, The
The Epigenetics Revolution: How Modern Biology is Rewriting Our Understanding
In Search of the Edge of Time
About Time
History of the Mind, A
Oxford Companion to Philosophy
Truth, Meaning and Realism
Power of the Machine, The
Technological Society
Medieval Roads and Tracks
Sixties, The
British Society Since 1945
Cities and Civilizations
Stages of Economic Growth, The
Windows on the Sixties
Television: Technology and Cultural Form
Making of the Modern Mind, The

Reference for language elements
Version 4.1

1611

Example – specifying and not specifying new-list-id
In this example, two new lists are created. Two lists are set up with different identifiers, one to contain a
list of authors, the other to contain a list of book titles The result is written to the log.

LIBNAME lbooks 'c:\temp';
DATA _NULL_;

 var = 0;
 did = OPEN('lbooks.books');
 no = ATTRN(did, 'nlobs');

 lid1 = MAKELIST(no);

 cl = CURLIST(lid1);

 lvl = LVARLEVEL(did,'Author',var);

 gc1 = GETITEMC(lid1, 2);
 PUT gc1;

 lid2 = MAKELIST(no);

 prev = CURLIST(lid2);
 lvl = LVARLEVEL(did,'Title',var);

 gc2 = GETITEMC(lid2, 2);
 PUT gc2;

 gc3 = GETITEMC(prev, 3);
 PUT gc3;

 now = CURLIST();

 gc4 = GETITEMC(now, 3);
 PUT gc4;

RUN;

This produces the following output:

Ritzer, George
Introduction to Sociology
Cohen, I B
Birth of the New Physics, The

In this example, two lists are set up with different identifiers, one to contain a list of authors, the other to
contain a list of book titles. CURLIST is used three times:

• The first time, the current list is set as the list with the first list identifier.
• The second time, the current list is set as the list with second list identifier. The function returns the

value of the previous (in this case, the first) list identifier to the variable prev. This variable is used in
a subsequent function to get the data from the first list.

• The third time, the function is used without the new-list-id argument, and so returns the value of the
current list identifier to the variable now. This variable is then used in the subsequent function to get
data from the second list.

Reference for language elements
Version 4.1

1612

The output is also returned in reverse order, as the order of the items in the list created by LVARLEVEL
is the reverse of that in the dataset or input file.

DELITEM
Deletes the item at the specified position in a list.

DELITEM (l ist- id

, index

)

Return type: List

The list identifier.

list-id

Type: List

The identifier for the list.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list of the item.

The default is 1.

The length of the list decreases by one after an item has been deleted.

Reference for language elements
Version 4.1

1613

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The result is written to the log. The items are then extracted from the list using GETITEMC
(page 1629). This displays the original list. The second list item is then deleted, and the items are the
extracted from the list again.

DATA _NULL_;

 lid1 = MAKELIST(3);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'bicycle', 2);
 lr1 = SETITEMC(lid1, 'train', 3);

 PUT 'Original list:';

 DO y = 1 TO listlen(lid1);
 gi = GETITEMC(lid1, y);
 PUT gi;
 END;

 dr = DELITEM(lid1, 2);

 PUT ' ';
 PUT 'List after item deleted: ';

 DO y = 1 TO listlen(lid1);
 gi = GETITEMC(lid1, y);
 PUT gi;
 END;

RUN;

This produces the following output:

Original list:
car
bicycle
train

List after item deleted:
car
train

DELLIST
Deletes a list.

DELLIST (l ist- id

, recursive

)

Reference for language elements
Version 4.1

1614

Although the specified list and its contents is deleted, the list identifier continues to exist. If you attempt
to find the length of a deleted list using LISTLEN, -1 is returned.

Return type: Numeric

The value assigned to the specified item name. If the named item does not contain a character, a
missing value is returned and an error message is written to the log.

list-id

Type: List

The identifier for the list.

recursive
Optional argument

Specify whether to delete sublists.

"N"

Sublists are not deleted. This is the default.

"Y"

Sublists are deleted.

Basic example
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page 1696)
functions. The list is then cleared. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'v1', 'v2', 'v4');

 lr1 = SETNITEMC(lid1, 'plane', 'v1');
 lr1 = SETNITEMC(lid1, 'ship', 'v2');
 lr1 = SETNITEMC(lid1, 'horse', 'v4');

 dr = dellist(lid1);

 PUT lid1=;

RUN;

This produces the following output:

lid2=1

The contents of the list are deleted, but the identifier remains assigned after deletion.

Reference for language elements
Version 4.1

1615

Example – deleting list containing sublists
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page 1696)
functions. A sublist is then similarly created. The list is then cleared without specifying the recursive
argument. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'v1', 'v2', 'v3');

 lr1 = SETNITEMC(lid1, 'car', 'v1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'v2');
 lr1 = SETNITEMC(lid1, 'train', 'v3');

 lid2 = MAKENLIST('g', 'v1', 'v2', 'v4');

 lr2 = SETNITEMC(lid2, 'plane', 'v1');
 lr2 = SETNITEMC(lid2, 'ship', 'v2');
 lr2 = SETNITEMC(lid2, 'horse', 'v4');

 ir = insertl(lid1,lid2,3);

 CALL PUTLIST(lid1,,0);

 dr = dellist(lid1);

 PUT 'After deletion: ';

 CALL PUTLIST(lid2,,0);

RUN;

This produces the following output:

(V1='car'
 V2='bicycle'
 (V1='plane'
 V2='ship'
 V4='horse'
)[2]
 V3='train'
)[1]
After deletion:
NOTE: Argument 1 to function PUTLIST at line 49 column 8 is invalid
(V1='plane'
 V2='ship'
 V4='horse'
)[2]
N=1 _ERROR_=1 lid1=3 rc=0 lid2=4

The list identified by lid1 has been deleted, and the attempt to write it to the log using CALL PUTLIST
results in an error. The list identified by lid2 is written, however, as recursive was not set to Y.

Reference for language elements
Version 4.1

1616

In the following DATA step, recursive is set to Y.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'v1', 'v2', 'v3');

 rc = SETNITEMC(lid1, 'car', 'v1');
 rc = SETNITEMC(lid1, 'bicycle', 'v2');
 rc = SETNITEMC(lid1, 'train', 'v3');

 lid2 = MAKENLIST('g', 'v1', 'v2', 'v4');

 rc = SETNITEMC(lid2, 'plane', 'v1');
 rc = SETNITEMC(lid2, 'ship', 'v2');
 rc = SETNITEMC(lid2, 'horse', 'v4');

 rc = insertl(lid1,lid2,3);

 CALL PUTLIST(lid1,,0);

 rc = dellist(lid1,'Y');

 PUT 'After deletion: ';

 CALL PUTLIST(lid1,,0);
 CALL PUTLIST(lid2,,0);

RUN;

The following is output to the log:

(V1='car'
 V2='bicycle'
 (V1='plane'
 V2='ship'
 V4='horse'
)[6]
 V3='train'
)[5]
After deletion:
NOTE: Argument 1 to function PUTLIST at line 76 column 8 is invalid
NOTE: Argument 1 to function PUTLIST at line 77 column 8 is invalid
N=1 _ERROR_=1 lid1=5 rc=0 lid2=6

Messages are returned for each attempt to write the list to the log, as both lists have been deleted.

Reference for language elements
Version 4.1

1617

DELNITEM
Deletes the specified named item and its associated value from a list.

DELNITEM (l ist- id , name ,
occurrence

,

start- index

,

index , force- uppercase

)

If there is more than one occurrence of the same name, the value of the first is deleted, unless you
specify which occurrence to find.

Return type: List

The list identifier.

list-id

Type: List

The identifier for the list.

name

Type: Character

The name of the item to delete.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

The ordinal position in the list at which to start searching for the named item from which you want
the value. By default, the search starts at the first item. This argument is useful when the item
list contains non-unique item names, and you want to search for an occurrence after an index
position.

index
Optional argument

Type: Var

Reference for language elements
Version 4.1

1618

The name of a variable in which the position of the item specified is returned. If the value of this
argument is anything except a variable name, an error is returned.

For example, if the item deleted is at the tenth position, 10 is returned.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Basic example
In this example, a new list is created that contains four named items. The list item named var2 is then
deleted. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, '300', 'var4');

 dr = DELNITEM(lid1, 'var2');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1=1
 VAR3='horse'
 VAR4='300'
)[1]

The output shows that var2 and its value have been deleted from the list.

Reference for language elements
Version 4.1

1619

In this example, the case in which you specify the item names is ignored. You could, for example, have
specified:

 rc = SETNITEMN(lid1, 1, 'Var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, '300', 'VAR4');

The output would still be the same.

Example – non-unique item names
In this example, a new list is created that can hold six named items, where three of the items have non-
unique item names. The second occurrence of the item named var2 is then deleted. CALL PUTLIST
is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, '300', 'var4');
 lr1 = SETNITEMC(lid1, 'taxi', 'var2',2);
 lr1 = SETNITEMC(lid1, 'plane', 'var2',3);

 dr = DELNITEM(lid1, 'var2',2);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1=1
 VAR2='plane'
 VAR3='horse'
 VAR4='300'
 var2='plane'
)[1]

If the occurrence is not specified, as in the following statement, the first occurrence of the item name is
deleted:

s = DELNITEM(lid1, 'var2');

This produces the following output:

(VAR1=1
 VAR3='horse'
 VAR4='300'
 var2='taxi'
 var2='plane'
)[1]

Reference for language elements
Version 4.1

1620

Example – starting from an index position
In this example, a new list is created that can hold six named items, where three of the items have non-
unique item names. The second occurrence of the list item named var2, starting from the fifth position
in the list, is then deleted. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1', 'var2', 'var3', 'var4','var2', 'var2');

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, '300', 'var4');
 lr1 = SETNITEMC(lid1, 'taxi', 'var2',2);
 lr1 = SETNITEMC(lid1, 'plane', 'var2',3);

 s = DELNITEM(lid1, 'var2',2,5);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1=1
 VAR2='plane'
 VAR3='horse'
 VAR4='300'
 var2='taxi'
)[1]

The third occurrence of the item named var2 has been deleted because the function searched for the
second occurrence of the item name starting from the fifth index position.

Reference for language elements
Version 4.1

1621

Example – specifying case
In this example, a new list is created that holds four named items. The names are specified in upper
case. The value for each item is set using an equivalent lower case name in SETNITEMC. The value is
then obtained using GETNITEMC. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1', 'var2', 'var3', 'VAR4');

 ix = 0;
 sla = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMN(lid1, 1, 'var1',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'plane', 'var2',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'horse', 'var3',,,ix,'y');
 lr1 = SETNITEMC(lid1, '300', 'var4',,,ix,'y');

 dr1 = DELNITEM(lid1, 'var2',,,ix, 'y');
 dr2 = DELNITEM(lid1, 'var3');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(NOTE: Argument to function DELNITEM at line 87 column 7 is invalid
(VAR1=1
 VAR3='horse'
 VAR4='300'
)[5]
N=1 _ERROR_=1 lid1=5 ix=2 mm=0 rc=5 s=.

The first use of DELNITEMN deletes the specified item var2 as the case matches. The second use of
DELNITEMN does not delete the specified value, as the case of the name is not forced to upper case. A
message is written to the log, as no item name matches var3.

DESCRIBE
Enables a list to be populated with dataset, data view and catalog entry attributes.

DESCRIBE (source- name , l ist- id

, type

)

This function requires a list to be created using one of the list creation functions, MAKELIST (page
1667) or MAKENLIST (page 1668). For datasets and dataset views, the list can then be populated
with the dataset attributes returned by ATTRC (page 725) and ATTRN (page 727). For catalog
entries the list can then be populated with attributes returned for the keywords described below.

Return type: Numeric

Reference for language elements
Version 4.1

1622

0 (zero) if successful.

source-name

Type: Character

The name of the dataset, data view or catalog entry for which you want information about
attributes. The name must be specified using libname format, for example lbooks.books.

list-id

Type: List

The identifier of a list into which the attributes will be copied. The list must have item names that
match the attributes to be returned. For example, if you want to return information about whether
the dataset is indexed, the list must contain an item named MODE. See the section below for more
information, and the examples.

type
Optional argument

Type: Character

The type of dataset. This can be:

'DATA'
A dataset.

'CATALOG'
A catalog entry.

'VIEW'
A data view.

If you do not specify a value for this argument, the type of dataset is determined by the number of
filename elements that constitute source-name. For example, if you specify:

• books or booklib.books, the source is assumed to be a dataset or data view (in the first
case, work.books is assumed).

• booklib.books.history.catams, the source is assumed to be a catalog
entry. If you omit the last element of the name for a catalog entry (for example,
booklib.books.history), the default is program.

Lists must be named lists. For datasets and data views, a list item name must be an attribute
corresponding to one of the keywords listed under the attribute option of the ATTRC (page 725) and
ATTRN (page 727) functions. For example, LIB returns as a string the library in which the dataset
resides; ANOBS returns the value 1 or 0, depending on whether the number of observations is available.

ATTRC returns characters, and ATTRN returns a number, so the list item must be set with the
appropriate function (SETNITEMC (page 1712)or SETNITEMN (page 1725)). See the examples
below.

Reference for language elements
Version 4.1

1623

When you create a list item it can have any value, as the initial values will be replaced by the value of
the corresponding attribute.

For catalog entries, a list item name can be one of the following:

'DESC'

The description provided for the catalog entry.

'EDESC'

The extended description provided for the catalog entry. Extended descriptions are not currently
supported, so no value is returned.

'CRDATE'

The date at which the dataset entry was created.

'DATE'

The date at which the dataset entry was last modified.

'CRDATE' and 'DATE' can return the date as a string or as a number. If a string, the format is
dd/mmm/yy, where dd is the numeric day in the month (for example, 11), mmm is an abbreviation for
the English language name for the month (for example, SEP), and yy is the last two digits of the year
(for example, 17). If a number, it is the number of days since epoch.

Basic example
In this example, attributes are returned from a specified dataset to a list. The resulting list is then written
to the log using CALL PUTLIST (page 1737).

LIBNAME BOOK_DIR 'c:\temp\books';
DATA _NULL_;

 lid1 = MAKELIST();

 lr1 = SETNITEMC(lid1, '', 'LIB');
 lr1 = SETNITEMC(lid1, '', 'MODE');
 lr1 = SETNITEMN(lid1, ., 'LRECL');

 dsc = DESCRIBE('book_dir.books', lid1);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(LIB='BOOK_DIR'
 MODE='I'
 LRECL=196
)[1]

Reference for language elements
Version 4.1

1624

The values of the attributes, 'LIB', 'MODE and 'LRECL' are inserted into the list. Although the
argument 'DATA' has not been specified, the function recognises that a dataset has been specified
because the argument to source-name comprises a libname and a dataset name from the specified
library.

Example – getting attribute information for a data view
In this example, attributes are returned from a specified data view into a list. The resulting list is then
written to the log using CALL PUTLIST (page 1737).

LIBNAME BOOK_DIR 'c:\temp\books';
DATA _NULL_;

 lid1 = MAKELIST();

 lr1 = SETNITEMC(lid1, '', 'LIB');
 lr1 = SETNITEMC(lid1, '', 'MODE');
 lr1 = SETNITEMN(lid1, ., 'ANOBS');
 lr1 = SETNITEMN(lid1, ., 'INDEX');
 lr1 = SETNITEMN(lid1, ., 'LRECL');
 lr1 = SETNITEMN(lid1, ., 'ISSUBSET');

 dsc = DESCRIBE('book_dir.histbooks', lid1,'view');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(LIB='BOOK_DIR'
 MODE='I'
 ANOBS=1
 INDEX=1
 LRECL=196
 CRDTE=1816773917.3
)[1]

The values of the attributes 'LIB', 'MODE', 'ANOBS', 'INDEX', 'LRECL', and 'CRDTE' are
inserted into the list. In this case, the data is contained in a data view because type is specified as
'VIEW'.

Reference for language elements
Version 4.1

1625

Example – getting attribute information for a catalog entry
In this example, attributes are returned from a specified catalog entry into a list. The resulting list is then
written to the log using CALL PUTLIST (page 1737).

DATA _NULL_;

 lid1 = MAKELIST();

 lr1 = SETNITEMC(lid1, '', 'DESC');
 lr1 = SETNITEMC(lid1, '', 'EDESC');
 lr1 = SETNITEMC(lid1, , 'CRDATE');
 lr1 = SETNITEMN(lid1, ., 'DATE');

 dsc = DESCRIBE('book_dir.bookscat.history1.CATAMS', lid1);

 CALL PUTLIST(lid1,,0);

 gi = GETNITEMN(lid1, 'date');
 PUT gi = date.;

RUN;

This produces the following output:

(DESC='History subset'
 EDESC=' '
 CRDATE='09/11/2017'
 DATE=21073
)[1]
Converted date 11SEP17

The value for 'CRDATE' has been returned as a string, while the value for 'DATE' has been returned
as the number of days since epoch. In this example, the value for 'DATE' is obtained from the list and
written to the log using the DATE. format to show that the values of 'CRDATE' and 'DATE' are the
same. The filename is recognised as a catalog entry as it comprises four elements.

ENVLIST
Creates a list.

ENVLIST (

, type

)

Unlike MAKELIST (page 1667) or MAKENLIST (page 1668), you do not have to specify the
number of items in the list, or the item names in the list. This does mean, however, that you have to be
careful how you insert items into the list.

Return type: List

Reference for language elements
Version 4.1

1626

The identifier of the list. Once a list has been created using this function, the same identifier is created
each time you use this function. That is, if you use the function twice, the same identifier is returned, not
a different identifier each time as would happen with MAKELIST or MAKENLIST.

Note:
Different identifiers would be returned in different local and global scopes depending on how type is set.

type
Optional argument

"G"

Currently has no effect; provided for compatibility.

Because a list created with this function cannot by default grow automatically, you must consider how
you insert items into it. For example, if you attempt to use SETITEMC (page 1696) to create a list,
you must the set the autogrow argument to Y to enable items to be inserted. However, you could use
INSERTC (page 1654) instead, as this function automatically grows the list.

Example
In this example, a new list is created. A series of named items are entered into the list. The result is
written to the log using CALL PUTLIST (page 1737).

DATA _NULL_;

 lid1 = ENVLIST('g');

 lr1 = SETITEMC(lid1, 'bicycle', 1, 'y');
 lr1 = SETITEMC(lid1, 'plane', 2, 'y');
 lr1 = SETITEMC(lid1, 'horse', 3, 'y');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

('bicycle'
 'plane'
 'horse'
)[1]

Reference for language elements
Version 4.1

1627

FILLIST
Creates a list using the items in a previously saved list.

FILLIST (type , source , l ist- id ,

attr- list- id

, desc- var- name

)

The list is retrieved from a catalog entry or file created using SAVELIST (page 1683).

Return type: Numeric

type

Type: Character

Specifies the type of file into which the list was saved. The type can be:

'CATALOG'

The list is retrieved from a catalog entry. Lists can be stored in catalogs as LOG, OUTPUT,
SOURCE or SLIST entries. The SLIST catalog entry is provided specifically for storing lists.

'FILE'

The list is retrieved from a file.

'FILEREF'

The list is retrieved from a file identified by a fileref.

The file or catalog entry from which the list is retrieved is specified using source.

source

Type: Character

Specifies the filename, fileref or catalog entry name that contains the items you want to insert into
a list. The value should correspond to the type of file you specified in type. For example, if you
are writing the list into a filesystem file, you would need to specify 'FILE'

list-id

Type: List

The identifier for the list.

attr-list-id
Optional argument

Type: List

Reference for language elements
Version 4.1

1628

The identifier of a list that contains a list of attributes corresponding to items in list-id. An attribute
list defines the appearance of list items when displayed; it is saved with the corresponding list in
SAVELIST.

Attribute lists are only saved with catalog entry types LOG, OUTPUT and SOURCE.

desc-var-name
Optional argument

Type: Var

Variable into which the list description is returned. When a list is saved with SAVELIST, a
description can be applied. This argument enables you to obtain the description, if it exists.

For information on list attributes, see SAVELIST (page 1683).

Basic example
In this example, a list is created that contains items retrieved from a file that was previously created with
SAVELIST. The resulting list is then written to the log using CALL PUTLIST (page 1737).

FILENAME listf 'C:\temp\newlist';
DATA _NULL_;
 lid1 = MAKELIST(6, 'g');
 flr = FILLIST('FILEREF', 'listf', lid1);
 CALL PUTLIST(lid1,,0);
RUN;

This produces the following output:

('bicycle'
 'plane'
 'horse'
 'car'
 'boat'
 'train'
)[58]

Example – retrieving a list and attribute list from a catalog entry
In this example, a list is created that contains three items retrieved from a file that was previously
created with SAVELIST. The resulting list is then written to the log using CALL PUTLIST (page
1737).

LIBNAME temp 'C:\temp';
DATA _NULL_;
 lid1 = MAKELIST(3, 'g');
 lid2 = ENVLIST('g');
 flr = FILLIST('CATALOG', 'temp.listtest.newlist.source', lid1, lid2);
 CALL PUTLIST(lid1,,0);
RUN;

Reference for language elements
Version 4.1

1629

This produces the following output:

('bicycle'
 'plane'
 'horse'
)[1]

Example – retrieving a list and title
In this example, a list is created that contains three items retrieved from a file that was previously
created with by using SAVELIST. The title is also retrieved. The resulting list and title are then written to
the log using CALL PUTLIST (page 1737).

LIBNAME temp 'C:\temp';
DATA _NULL_;
 FORMAT title $50.;
 title='';
 lid1 = MAKELIST(3, 'G');
 flr = FILLIST('CATALOG', 'temp.listtest.newlist.slist', lid1,, title);
 CALL PUTLIST(lid1,,0);
 PUT title;
RUN;

This produces the following output:

('bicycle'
 'plane'
 'horse'
)[1]
List of transport modes

GETITEMC
Returns the character or string at the specified position in the list.

GETITEMC (l ist- id

, index

)

Return type: Character

The value assigned to the specified item. If the item does not contain a character, a missing value is
returned and an error message is written to the log.

list-id

Type: List

The identifier for the list.

index
Optional argument

Reference for language elements
Version 4.1

1630

Type: Numeric

An integer that specifies the ordinal position in the list of the character or string. The default is 1.

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The items are then extracted from the list using GETITEMC (page 1629). The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMC(lid1, "car", 1);
 rc = SETITEMC(lid1, "train", 2);
 rc = SETITEMC(lid1, "bicycle", 3);
 rc = SETITEMC(lid1, "plane", 4);

 DO y = 1 TO listlen(lid1);
 pc = GETITEMC(lid1, y);
 PUT "List item " y "is: " pc;
 END;

RUN;

This produces the following output:

List item 1 is: car
List item 2 is: train
List item 3 is: bicycle
List item 4 is: plane

GETITEML
Returns the list identifier of the sublist at a specified position in a list.

GETITEML (l ist- id

, index

)

Return type: List

The list identifier assigned to the specified item. If the item does not contain an identifier, a missing
value is returned and an error message written to the log.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1631

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list of the sublist. The default is 1. If the first
item is not a list identifier, then an error message is returned.

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. Another list is then created that is then inserted into the first list as a sublist. The list identifier
of the sublist is then found. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'lst1', 'lst2', 'lst3');

 lr2 = SETNITEMC(lid2, 'car' ,'lst1');
 lr2 = SETNITEMC(lid2, 'train','lst2');
 lr2 = SETNITEMC(lid2, 'bicycle','lst3');

 ir = INSERTL(lid1,lid2,2,'Subl');

 gi = GETITEML(lid1,2);

 PUT 'The identifier of the sublist is: ' ir;

RUN;

This produces the following output:

The identifier of the sublist is: 2

GETITEMN
Returns the number at the specified position in the list.

GETITEMN (l ist- id

, index

)

Return type: Numeric

Reference for language elements
Version 4.1

1632

The number assigned to the specified item. If the named item is assigned anything other than a
number, a missing value is returned and an error message is written to the log.

list-id

Type: List

The identifier for the list.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list of the number. The default is 1.

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMN (page 1703)
functions. The items are then extracted from the list using GETITEMN (page 1631). The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 250, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 600, 4);

 DO y = 1 TO listlen(lid1);
 gi = GETITEMN(lid1, y);
 PUT 'List item ' y 'is: ' gi;
 END;

RUN;

This produces the following output:

List item 1 is: 100
List item 2 is: 250
List item 3 is: 300
List item 4 is: 600

GETLATTR
Returns the attributes that are set for a list or for a list item.

GETLATTR (l ist- id

, index

)

Reference for language elements
Version 4.1

1633

Return type: Character

list-id

Type: List

The identifier for the list.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list of an item.

If you specify index, then the attributes are returned for an item; if you do not, then the attributes of the
list are returned.

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMN (page 1703)
functions. The attributes for the list, and for the second item in the list, are returned using GETLATTR.
The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 attr4list = GETLATTR(lid1);
 PUT 'Attributes for list: ' attr4list;

 attr4item = GETLATTR(lid1,2);
 PUT 'Attributes for second item: ' attr4item;

RUN;

This produces the following output:

Attributes for list:
DELETE UPDATE NOFIXEDTYPE NOFIXEDLENGTH ANYNAMES DUPNAMES NOCHARONLY NONUMONLY COPY
 NOHONORCASE
Attributes for second item: ACTIVE WRITE NOAUTO DELETE UPDATE NOFIXEDTYPE

Reference for language elements
Version 4.1

1634

GETLCNTA
Returns the number of lists that remain open.

GETLCNTA ()

Return type: Numeric

Example
In this example, a loop is used to create three lists and delete one of them, three times; therefore, nine
lists are created of which three are deleted. This function is then used to return the number of lists that
remain open. The result is written to the log.

DATA _NULL_;

 DO i = 1 TO 3;

 lid1 = MAKENLIST('l', 'v1', 'v2', 'v3');

 lr = SETNITEMC(lid1, 'car', 'v1');
 lr = SETNITEMC(lid1, 'bicycle', 'v2');
 lr = SETNITEMC(lid1, 'train', 'v3');

 lid2 = MAKENLIST('l', 'v1', 'v2', 'v3');

 PUT 'About to delete id: ' lid1;
 dl = DELLIST(lid1);

 lid3 = MAKENLIST('l', 'var1', 'var2', 'var3');

 lr = SETNITEMC(lid3, 'car', 'var1');
 lr = SETNITEMC(lid3, 'bicycle', 'var2');
 lr = SETNITEMC(lid3, 'train', 'var3');

 END;

 ra = GETLCNTA();
 PUT 'The number of lists that remain open is: ' ra;

RUN;

This produces the following output:

About to delete id: 1
About to delete id: 4
About to delete id: 7
The number of lists that remain open is: 6

Six lists remain open of the nine that were created; these have the identifiers 2, 3, 5, 6, 8 and 9.

Reference for language elements
Version 4.1

1635

GETLCNTP
Returns the total number of lists that resulted from create and delete operations while CALL LISTPROF
is active.

GETLCNTP ()

The number of lists that result from create and delete operations is calculated between a CALL
LISTPROF('ON') and a CALL LISTPROF('OFF'). The number is reset whenever a CALL
LISTPROF('ON') is used. CALL LISTPROF('ON') remains active across DATA steps.

See CALL LISTPROF (page 1735) for more information.

Return type: Numeric

If you use GETLCNTP without first using CALL LISTPROF, 0 is returned.

Example
In this example, two lists are created. One list is deleted, and then another opened. This is repeated
three times in a loop. The result is written to the log.

DATA _NULL_;

 CALL LISTPROF('on');
 DO i = 1 TO 3;
 lid1 = MAKENLIST('l', 'v1', 'v2', 'v3');
 lid2 = MAKENLIST('l', 'v1', 'v2', 'v3');
 lid3 = MAKENLIST('l', 'var1', 'var2', 'var3');
 END;
 rp = GETLCNTP();
 PUT 'Number of lists created: ' rp;

 rc1 = DELLIST(1);
 rc2 = DELLIST(2);
 rc3 = DELLIST(3);

 ra = GETLCNTA();
 PUT 'Number of lists existing: ' ra;

RUN;

DATA _NULL_;
 lid1 = MAKENLIST('l', 'v1', 'v2', 'v3');
 lid2 = MAKENLIST('l', 'v1', 'v2', 'v3');
 rp = GETLCNTP();
 PUT 'Number of lists created: ' rp;
 rc = dellist(lid2);
 rp = GETLCNTA();
 PUT 'Number of lists existing: ' rp;
 CALL LISTPROF('off');
RUN;

Reference for language elements
Version 4.1

1636

The first DATA step, produces the following:

Number of lists created: 9
Number of lists existing: 6

Because nine lists are created, and three are deleted, six remain.

When the second DATA step runs, the output is:

Number of lists created: 8
Number of lists existing: 7

The total number of lists that have been created is now eight. Two new ones have been added to
the six remaining after the previous DATA step. One of the lists was deleted, so the number of lists
remaining is seven.

GETNITEMC
Returns the character or string specified for a named list item.

GETNITEMC (l ist- id , name ,
occurrence

,

start- index

,

default , force- uppercase

)

If there is more than one list item with the same name, the value of the first is obtained unless you
specify which occurrence to find.

Return type: Character

The value assigned to the specified named item. If the named item does not contain a character, a
missing value is returned and an error message is written to the log.

list-id

Type: List

The identifier for the list.

name

Type: Character

The name of the item from which you want to obtain a value.

occurrence
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1637

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching for the named
item. The default is 1. This argument is useful when the list contains non-unique item names, and
you want to search for an occurrence after an index position.

default
Optional argument

Type: Character

A default value to be used if the named item is not found.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Reference for language elements
Version 4.1

1638

Basic example
In this example, MAKENLIST (page 1668) is used to create a list that contains four named items.
SETNITEMC (page 1712) is then used to set the values of the items. GETNITEMC is used to obtain
values from specified items. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');

 rx = GETNITEMC(lid1,'var4');
 PUT 'The value is: ' rx;

 rx = GETNITEMC(lid1,'var1');
 PUT 'The value is: ' rx;

RUN;

This produces the following output:

The value for var4 is: taxi
The value for var1 is: bicycle

Example – non-unique item names
In this example, MAKENLIST (page 1668) is used to create a new list that consists of six named
items, where three of the items have non-unique item names. GETNITEMC is used to obtain the value of
the specified occurrence of a named item. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');
 rc = SETNITEMC(lid1, 'ship', 'var4',2);
 rc = SETNITEMC(lid1, 'car', 'var4',3);

 rx = GETNITEMC(lid1,'var4',2);
 PUT 'The value is: ' rx;

RUN;

This produces the following output:

The value is: ship

Reference for language elements
Version 4.1

1639

Example – getting value of non-unique item name after starting point
In this example, MAKENLIST (page 1668) is used to create a new list that consists of six named
items, where three of the items have non-unique item names. GETNITEMC is used to obtain the value of
the second occurrence of an item after a specified starting point. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');
 rc = SETNITEMC(lid1, 'ship', 'var4',2);
 rc = SETNITEMC(lid1, 'car', 'var4',3);

 rx = GETNITEMC(lid1,'var4',2,5);
 PUT 'The value is: ' rx;

RUN;

This produces the following output:

The value is: car

The second occurrence after index position five is found.

Reference for language elements
Version 4.1

1640

Example – specifying case
In this example, MAKENLIST (page 1668) is used to create a new list that holds four named items.
The names are specified in upper case. The value for each item is then set using an equivalent
lower case name in SETNITEMC (page 1712), but with the case forced to upper. The value is then
obtained using GETNITEMC. The result is written to the log.

DATA _NULL_;

 ix = 0;

 lid1 = MAKENLIST('l', 'VAR1','VAR2','VAR3','VAR4');

 mm = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMC(lid1, 'bicycle','var1',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'plane', 'var2',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'horse', 'var3',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4',,,ix,'y');

 CALL PUTLIST(lid1,,0);

 rx = GETNITEMC(lid1,'var1',,,'roller skate');
 PUT 'Returns: ' rx;

 rx = GETNITEMC(lid1,'VAR4',,,'roller skate');
 PUT 'Returns: ' rx;

 rx = GETNITEMC(lid1,'var1',,,'roller skate','y');
 PUT 'Returns: ' rx;

RUN;

This produces the following output:

 (VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
)[1]
Returns: roller skate
Returns: taxi
Returns: bicycle

The first use of GETNITEMC returns the specified default value roller skate because the item
name var1 does not exist (VAR1 does). The third use of GETNITEMC returns the value specified in
SETNITEMC (page 1668) because the force-uppercase argument is set to Y.

Reference for language elements
Version 4.1

1641

GETNITEML
Gets the sublist identifier held by the specified named list item.

GETNITEML (l ist- id , name ,
occurrence

,

start- index

,

default , force- uppercase

)

Returns the list identifier of the sublist, rather than the items in the sublist.

Return type: List

The list identifier assigned to the specified named item. If the named item does not contain an identifier,
a missing value is returned and an error message is written to the log.

list-id

Type: List

The identifier for the list.

name

Type: Character

The name of the item that holds the sublist identifier.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching for the named
item that holds the sublist identifier. The default is 1. This argument is useful when the item
list contains non-unique item names, and you want to search for an occurrence after an index
position.

default
Optional argument

Type: List

Reference for language elements
Version 4.1

1642

A default list identifier to be returned if the named item does not exist.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Basic example
In this example, MAKENLIST (page 1668) is used to create a new list that contains four named
items. A second list is then created in the same way but contains three named items. The items in the
lists are set using SETNITEMC (page 1712) and SETNITEMN (page 1725). The second list is then
set as a sublist on the fourth item in the first list using SETNITEML (page 1719). GETNITEML is used
to obtain the identifier of the sublist. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 rc = SETNITEMN(lid2, 100, 'ov1');
 rc = SETNITEMN(lid2, 250, 'ov2');
 rc = SETNITEMN(lid2, 310, 'ov3');

 rc = SETNITEML(lid1, lid2, 'var4');

 CALL PUTLIST(lid1,,0);

 rx = GETNITEML(lid1,'var4');
 PUT 'The list identifier is: ' rx;

RUN;

Reference for language elements
Version 4.1

1643

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[2]
)[1]
The list identifier is: 2

The output shows that the second list was created with the identifier 2; this is the value returned by
GETNITEML.

Example – non-unique item names
In this example, MAKENLIST (page 1668) is used to create a new list that holds five named items,
where two of the items have non-unique item names. A second list is then created in the same way
that contains three named items. The items in the lists are set using SETNITEMC (page 1712)
andSETNITEMN (page 1725). The second list is then set as a sublist on the second occurrence of
var4 in the first list using SETNITEML (page 1719). GETNITEML is used to obtain the identifier of
the sublist. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4');

 rc = SETNITEMC(lid1, 'bicycle', 'var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');
 rc = SETNITEMC(lid1, 'train', 'var4');

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 rc = SETNITEMN(lid2, 100, 'ov1');
 rc = SETNITEMN(lid2, 250, 'ov2');
 rc = SETNITEMN(lid2, 310, 'ov3');

 rc = SETNITEML(lid1, lid2, 'var4',2);

 CALL PUTLIST(lid1,,0);

 rx = GETNITEML(lid1,'var4',2);
 PUT 'The list identifier is: ' rx;

RUN;

Reference for language elements
Version 4.1

1644

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='train'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[6]
)[5]The list identifier is: 6

The output shows that the second list was created with the identifier 6; this is the value returned by
GETNITEML.

Example – getting value of non-unique item name after starting point
In this example, MAKENLIST (page 1668) is used to create a new list that holds six named items,
where three of the items have non-unique item names. A second list is then created in the same way
that contains three named items. The items in the lists are set using SETNITEMC (page 1712)
andSETNITEMN (page 1725). SETNITEML (page 1719) is then used to set the second list as a
sublist on the second occurrence of var4 after a specified starting point. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4','var4');

 lr1 = SETNITEMC(lid1, 'bicycle', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');
 lr1 = SETNITEMC(lid1, 'train', 'var4',2);
 lr1 = SETNITEMC(lid1, 'bus', 'var4',3);

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 si = SETNITEML(lid1, lid2, 'var4',3);

 CALL PUTLIST(lid1,,0);

 rx = GETNITEML(lid1,'var4',2,5);
 PUT 'The list identifier is: ' rx;

RUN;

Reference for language elements
Version 4.1

1645

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 VAR4='train'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[4]
)[3]
The list identifier is: 4

The second occurrence after index position five is found. The output shows that the second list was
created with the identifier 6; this is the value returned by GETNITEML.

Example – specifying case
In this example, MAKENLIST (page 1668) is used to create a new list that holds four named items,
specified in uppercase. A second list is then created in the same way that contains three named items.
The items in the lists are set using SETNITEMC (page 1712) andSETNITEMN (page 1725). The
second list is then set as a sublist on the item VAR4 in the first list using SETNITEML (page 1719).

Because the 'HONORCASE' attribute has been set for the first list (using SETLATTR (page 1706)),
references to the items in that list must use the same case as that specified when the list was created.
Although the SETNITEML statement has var4 specified in lowercase, the option has been set to force
it to uppercase. The list will, therefore, be correctly assigned to VAR4.

Finally, GETNITEML is used in various formats to obtain the identifier of the sublist. The result is written
to the log.

DATA _NULL_;

 ix = 0;

 lid1 = MAKENLIST('l', 'VAR1','VAR2','VAR3','VAR4');

 lr1 = SETNITEMC(lid1, 'bicycle', 'VAR1');
 lr1 = SETNITEMC(lid1, 'plane', 'VAR2');
 lr1 = SETNITEMC(lid1, 'horse', 'VAR3');
 lr1 = SETNITEMC(lid1, 'taxi', 'VAR4');

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 mm = SETLATTR(lid1, 'HONORCASE');

 si = SETNITEML(lid1, lid2, 'var4',,,ix,'y');

 CALL PUTLIST(lid1,,0);

 gi = GETNITEML(lid1,'var1',,,0);
 PUT 'Returns: ' gi;

Reference for language elements
Version 4.1

1646

 gi = GETNITEML(lid1,'VAR2',,,0,'y');
 PUT 'Returns: ' gi;

 gi = GETNITEML(lid1,'var4',,,0,'y');
 PUT 'Returns: ' gi;

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[2]
)[1]
Returns: 0
NOTE: Argument to function GETNITEML at line 1218 column 8 is invalid
Returns: .
Returns: 2

The first use of GETNITEML returns 0 because the item name var1 does not exist (VAR1 does). The
second use of GETNITEML returns an error message and a missing value, as the identifier VAR2 exists
but no list is assigned to it. The third use of GETNITEML returns 2, the identifier of the sublist at the item
name specified by SETNITEML, because GETNITEML has the force-uppercase argument set to Y.

GETNITEMN
Returns the number specified for a named list item.

GETNITEMN (l ist- id , name ,
occurrence

,

start- index

,

default , force- uppercase

)

If there is more than one occurrence of the same named item, the value of the first is obtained, unless
you specify which occurrence to find.

Return type: Numeric

The number assigned to the specified named item. If the named item does not contain a number, a
missing value is returned and an error message is written to the log.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1647

name

Type: Character

The name of the item from which you want to obtain a value.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

The ordinal position in the list at which to start searching for the named item. By default, the
search starts at the first item. This argument is useful when the list contains non-unique item
names, and you want to search for an occurrence after an index position.

default
Optional argument

Type: Numeric

A default value to be used if the named item is not found.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Reference for language elements
Version 4.1

1648

Basic example
In this example, a new list is created that contains four named items. GETNITEMN is used to obtain
values from specified items. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 rx = GETNITEMC(lid1,'var4');
 PUT 'The value of var4 is: ' rx;

 rx = GETNITEMC(lid1,'var1');
 PUT 'The value of var1 is: ' rx;

RUN;

This produces the following output:

The value of var4 is: 102
The value of var1 is: 100

Example – non-unique item names
In this example, a new list is created that consists of six named items, where three of the items have
non-unique item names. GETNITEMN is used to obtain values from specified items. The result is written
to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4','var4');

 lr1 = SETNITEMN(lid1, 100, 'var1');
 lr1 = SETNITEMN(lid1, 250, 'var2');
 lr1 = SETNITEMN(lid1, 600, 'var3');
 lr1 = SETNITEMN(lid1, 800, 'var4');
 lr1 = SETNITEMN(lid1, 60, 'var4',2);
 lr1 = SETNITEMN(lid1, 20, 'var4',3);

 rx = GETNITEMN(lid1,'var4',2);
 PUT 'The value is: ' rx;

RUN;

This produces the following output:

The value is: 60

Reference for language elements
Version 4.1

1649

Example – getting value of non-unique item name after starting point
In this example, a new list is created that consists of six named items, where three of the items have
non-unique item names. GETNITEMN is used to obtain values from the second occurrence of an item
after a specified start point. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4','var4');

 lr1 = SETNITEMN(lid1, 100, 'var1');
 lr1 = SETNITEMN(lid1, 250, 'var2');
 lr1 = SETNITEMN(lid1, 600, 'var3');
 lr1 = SETNITEMN(lid1, 800, 'var4');
 lr1 = SETNITEMN(lid1, 60, 'var4',2);
 lr1 = SETNITEMN(lid1, 20, 'var4',3);

 rx = GETNITEMN(lid1,'var4',2,5);
 PUT 'The value is: ' rx;

RUN;

This produces the following output:

The value is: 20

The second occurrence after index position five is found.

Reference for language elements
Version 4.1

1650

Example – specifying case
In this example, MAKENLIST (page 1668) is used to create a new list that consists of four named
items. The names are specified in upper case. The value for each item is then set using an equivalent
lower case name in SETNITEMN (page 1725). The value is then obtained using GETNITEMN. The
result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4');

 mm = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMN(lid1, 100, 'var1',,,ix,'y');
 lr1 = SETNITEMN(lid1, 250, 'var2',,,ix,'y');
 lr1 = SETNITEMN(lid1, 310, 'var3',,,ix,'y');
 lr1 = SETNITEMN(lid1, 40, 'var4',,,ix,'y');

 CALL PUTLIST(lid1,,0);

 gi = GETNITEMN(lid1,'var1',,, 0);
 PUT 'Returns: ' gi;

 gi = GETNITEMN(lid1,'VAR4',,, 0, 'y');
 PUT 'Returns: ' gi;

 gi = GETNITEMN(lid1,'var1',,, 0, 'y');
 PUT 'Returns: ' gi;

RUN;

This produces the following output:

(VAR1=100
 VAR2=250
 VAR3=310
 VAR4=40
)[1]Returns: 0
Returns: 40
Returns: 100

The first use of GETNITEMN returns the specified default value 0 because the item name var1 does not
exist (VAR1 does). The third use of GETNITEMN returns the value specified in SETNITEMN because the
force-uppercase argument is set to Y.

HASATTR
Returns a value indicating whether a list or list item has a specified attribute value.

HASATTR (l ist- id , attribute

, index

)

Reference for language elements
Version 4.1

1651

Return type: Numeric

0 (zero) if the attribute is not assigned, 1 if it is.

list-id

Type: List

The identifier for the list.

attribute

An attribute that the list or list item might have. The G and L attributes are specified when a list is
created; for all other attributes, see SETLATTR (page 1706).

"G"

Specified when a list is created. Applies to lists only.

"L"

Specified when a list is created. Applies to lists only.

"ACTIVE"

Applies to list items only.

"ANYNAMES"

Applies to lists only.

"AUTO"

Applies to list items only.

"CHARONLY"

Applies to lists only.

"COPY"

Applies to lists only.

"DELETE"

Applies to lists and to list items.

"DUPNAMES"

Applies to lists only.

"FIXEDLENGTH"

Applies to lists only.

"FIXEDTYPE"

Applies to lists and to list items.

Reference for language elements
Version 4.1

1652

"HONORCASE"

Applies to lists only.

"NOHONORCASE"

Applies to lists only.

"INACTIVE"

Applies to list items only.

"NOAUTO"

Applies to list items only.

"NOCHARONLY"

Applies to lists only.

"NOCOPY"

Applies to lists only.

"NODELETE"

Applies to lists and to list items.

"NODUPNAMES"

Applies to lists only.

"NOFIXEDLENGTH"

Applies to lists only.

"NOFIXEDTYPE"

Applies to lists and to list items.

"NONUMONLY"

Applies to lists only.

"NOUPDATE"

Applies to lists and to list items.

"NOWRITE"

Applies to list items only.

"NUMONLY"

Applies to lists only.

Reference for language elements
Version 4.1

1653

"SASNAMES"

Applies to lists only.

"UPDATE"

Applies to lists and to list items.

"WRITE"

Applies to list items only.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list of an item.

If you do not specify index when attribute can apply both to a list and to a list item, the function returns
the status of the attribute for the list. If you specify index when attribute only applies to the list, a
message is returned in the log. If you do not specify index when attribute only applies to list items, a
message is returned in the log.

Example
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page 1696)
functions. Specified attributes are then checked to see if they have been set (the attributes are those
set by default in this example) . The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 hao = IFC(HASATTR(lid1,'fixedlength'),'The list has the attribute',
 'The list does not have the attribute');
 PUT hao 'fixedlength';

 hao = IFC(HASATTR(lid1,'nofixedlength'),'The list has the attribute',
 'The list does not have the attribute');
 PUT hao 'nofixedlength';

RUN;

This produces the following output:

The list does not have the attribute fixedlength
The list has the attribute nofixedlength

Reference for language elements
Version 4.1

1654

INSERTC
Inserts a character or string at a specified position in the list.

INSERTC (l ist- id , character- value ,

index , name
)

The character or string is inserted at the position specified, and all other list items are shifted to the
right. If no position is specified, the item is inserted at the first position in the list. The list automatically
grows to accommodate the new item.

Return type: Numeric

list-id

Type: List

The identifier for the list.

character-value

Type: Character

The character or string to insert.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which the character or string is inserted.
By default, this is 1.

name
Optional argument

Type: Character

If the list contains named items, a name for the item.

If you want to append the item to the end of the list, you can specify a value for index that is one greater
than the length of the list. For example, if the list is four items long, and you want to add an item at the
end of the list, you would specify the value 5 for index. If you specify a number greater than the length
of the list plus 1, however, an error message is returned.

Reference for language elements
Version 4.1

1655

Basic example
In this example, a new string item is inserted into a list at the third position. The items are then extracted
from the list using GETITEMC (page 1629). The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMC(lid1, "car", 1);
 rc = SETITEMC(lid1, "train", 2);
 rc = SETITEMC(lid1, "bicycle", 3);
 rc = SETITEMC(lid1, "plane", 4);

 rc = INSERTC(lid1, "ship", 3);

 ll = LISTLEN(lid1);
 PUT "The length of the list is: " ll;

 DO y = 1 TO listlen(lid1);
 pc = GETITEMC(lid1, y);
 PUT "List item " y "is: " pc;
 END;

RUN;

This produces the following output:

The length of the list is: 5
List item 1 is: car
List item 2 is: train
List item 3 is: ship
List item 4 is: bicycle
List item 5 is: plane

The new item has been placed at the third position in the list, and the length of the list has grown to five
items.

Reference for language elements
Version 4.1

1656

Example – inserting a named variable at the end of the list
In this example, a new named string item is inserted at the end of a list of named items. The items are
then extracted from the list using GETITEMC (page 1629). The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST("g", "var1", "var2", "var3", "var4");

 rc = SETNITEMC(lid1, "car", "var1");
 rc = SETNITEMC(lid1, "train", "var2");
 rc = SETNITEMC(lid1, "bicycle", "var3");
 rc = SETNITEMC(lid1, "plane", "var4");

 rc = INSERTC(lid1, "ship", 5, "new_var");

 ll = LISTLEN(lid1);
 PUT "The length of the list is: " ll;

 nv = GETNITEMC(lid1, "new_var");
 PUT "The new item is: " nv;

 DO y = 1 TO listlen(lid1);
 pc = GETITEMC(lid1, y);
 PUT "List item " y "is: " pc;
 END;

RUN;

This produces the following output:

The length of the list is: 5
The new item is: ship
List item 1 is: car
List item 2 is: train
List item 3 is: bicycle
List item 4 is: plane
List item 5 is: ship

The new item has been placed at the end of the list, and the length of the list has grown to five items.
GETNITEMN (page 1646) has been used to get the item from the list using the item name supplied in
INSERTN.

INSERTL
Insert a sublist into the specified list.

INSERTL (l ist- id , sublist- id ,

index , name
)

Reference for language elements
Version 4.1

1657

The sublist is inserted at the first position in the list, unless specified otherwise. When a sublist is
inserted into a list, all other list items are moved to the right by one position. For example, if you insert a
sublist at position two, the sublist occupies position two and the item that was at that position is moved
to position three.

The sublist itself is not inserted into the list; instead, a pointer to the corresponding list identifier is
inserted.

Return type: Numeric

The identifier of the list into which the sublist is inserted.

list-id

Type: List

The identifier for the list.

This is the list into which sublist identified by sublist-id will be inserted.

sublist-id

Type: List

The identifier of the list that is to be inserted into list-id.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which you want to insert the sublist. By
default this is 1.

name
Optional argument

Type: Character

A name for the sublist.

Reference for language elements
Version 4.1

1658

Basic example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. A second list is similarly created, and then inserted in the first list using this function. The list
and sublist are displayed in the log using CALL PUTLIST (page 1737).

DATA _NULL_;

 lid1 = MAKENLIST("g", "var1", "var2", "var3", "var4");

 rc = SETNITEMC(lid1, "ship", "var1");
 rc = SETNITEMC(lid1, "plane", "var2");
 rc = SETNITEMC(lid1, "horse", "var3");
 rc = SETNITEMC(lid1, "taxi", "var4");

 lid2 = MAKENLIST("g", "lst1", "lst2", "lst3");

 rc = SETNITEMC(lid2, "car" ,"lst1");
 rc = SETNITEMC(lid2, "train","lst2");
 rc = SETNITEMC(lid2, "bicycle","lst3");

 rc=INSERTL(lid1,lid2,2);

 PUT "The identifier: " rc;

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

The identifier: 1
(VAR1='ship' (LST1='car' LST2='train' LST3='bicycle')[2] VAR2='plane' VAR3='horse'
 VAR4='taxi'
)[1]

Reference for language elements
Version 4.1

1659

Example – getting a sublist after insertion
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page
1696) functions. A second list is similarly created, and then inserted in the first list using this function.
GETITEML (page 1630) is then used to get the sublist. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST("g", "var1", "var2", "var3", "var4");

 rc = SETNITEMC(lid1, "ship", "var1");
 rc = SETNITEMC(lid1, "plane", "var2");
 rc = SETNITEMC(lid1, "horse", "var3");
 rc = SETNITEMC(lid1, "taxi", "var4");

 lid2 = MAKENLIST("g", "lst1", "lst2", "lst3");

 rc = SETNITEMC(lid2, "car" ,"lst1");
 rc = SETNITEMC(lid2, "train","lst2");
 rc = SETNITEMC(lid2, "bicycle","lst3");

 rc=INSERTL(lid1,lid2,2);
 PUT "The identifier of the list: " rc;

 rc = GETITEML(lid1, 2);
 PUT "The identifier of the sublist: " rc;

RUN;

This produces the following output:

The identifier of the list: 1
The identifier of the sublist: 2

This shows that the sublist into a list as an identifier, and is also retrieved as an identifier.

INSERTN
Inserts a number at a specified position in a list.

INSERTN (l ist- id , numeric- value ,

index , name
)

The number is inserted at the position specified, and all other list items are shifted to the right. If no
position is specified, the item is inserted at the first position in the list. The list automatically grows to
accommodate the new item.

Return type: Numeric

Reference for language elements
Version 4.1

1660

list-id

Type: List

The identifier for the list.

numeric-value

Type: Numeric

The value to be inserted into the list.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which the number is inserted. By default
this is 1.

name
Optional argument

Type: Character

If the list contains named items, a name for the item.

If you want to append the item to the end of the list, you can specify a value for index that is one greater
than the length of the list. For example, if the list is four items long, and you want to add an item at the
end of the list, you would specify the value 5 for index. If you specify a number greater than the length
of the list plus 1, however, an error message is returned.

Reference for language elements
Version 4.1

1661

Basic example
In this example, a new numeric item is inserted into a list at the third position. The items are then
extracted from the list using GETITEMN (page 1631). The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST(4);

 rc = SETITEMN(lid1, 100, 1);
 rc = SETITEMN(lid1, 200, 2);
 rc = SETITEMN(lid1, 300, 3);
 rc = SETITEMN(lid1, 400, 4);

 rc = INSERTN(lid1, 450, 3);

 len = LISTLEN(lid1);

 PUT 'The length of the list is: ' len;

 DO y = 1 TO LISTLEN(lid1);
 pc = GETITEMN(lid1);
 PUT 'List item ' y 'is: ' pc;
 END;

RUN;

This produces the following output:

The length of the list is: 5
List item 1 is: 100
List item 2 is: 200
List item 3 is: 450
List item 4 is: 300
List item 5 is: 400

The new item has been placed at the third position in the list, and the length of the list has grown to five
items.

Reference for language elements
Version 4.1

1662

Example – inserting a named variable at the end of the list
In this example, a new named numeric item is inserted at the end of a list of named items. The items
are then extracted from the list using GETITEMN (page 1631). The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMN(lid1, 100, 'var1');
 lr1 = SETNITEMN(lid1, 200, 'var2');
 lr1 = SETNITEMN(lid1, 300, 'var3');
 lr1 = SETNITEMN(lid1, 400, 'var4');

 isn = INSERTN(lid1, 450, 5, 'new_var');

 len = LISTLEN(lid1);
 PUT 'The length of the list is: ' len;

 gi = GETNITEMN(lid1, 'new_var');
 PUT 'The new item is: ' rc;

 DO y = 1 TO LISTLEN(lid1);
 gin = GETNITEMN(lid1, y);
 PUT 'List item ' y 'is: ' gin;
 END;

RUN;

This produces the following output:

The length of the list is: 5
The new item is: 450
List item 1 is: 100
List item 2 is: 200
List item 3 is: 300
List item 4 is: 400
List item 5 is: 450

The new item has been placed at the end of the list, and the length of the list has grown to five items.
GETNITEMN (page 1646) has been used to get the item from the list using the item name supplied in
INSERTN.

ITEMTYPE
Return the type of the item at a specified position in a list.

ITEMTYPE (l ist- id

, index

)

Return type: Character

Reference for language elements
Version 4.1

1663

The type can be C (character), N (numeric) or L (list).

list-id

Type: List

The identifier for the list.

index
Optional argument

Type: Numeric

The ordinal position of the item in the list. By default, this is the first item.

Basic example
In this example, the type of the third item in the list is returned. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMC(lid1, 'car', 1);
 rc = SETITEMN(lid1, 200, 2);
 rc = SETITEMN(lid1, 300, 3);
 rc = SETITEMN(lid1, 400, 4);

 pc = ITEMTYPE(lid1);
 PUT 'The type of the item is: ' pc;

 pc = ITEMTYPE(lid1, 3);
 PUT 'The type of the item is: ' pc;

RUN;

This produces the following output:

The type of the item is: C
The type of the item is: N

In the first use of ITEMTYPE, no index position is specified, so the type of the value at the first list
position (the default) is returned.

Reference for language elements
Version 4.1

1664

Example – using type to choose function to use to get items
In this example, the type of each item is checked, and the appropriate function is then used to get that
item. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 400, 4);

 DO i = 1 TO 4;

 IF itemtype(lid1,i) = 'C' THEN gic=getitemc(lid1, i);
 IF itemtype(lid1,i) = 'C' THEN PUT gic;
 IF itemtype(lid1,i) = 'N' THEN gin=getitemn(lid1, i);
 IF itemtype(lid1,i) = 'N' THEN PUT gin;

 END;

RUN;

This produces the following output:

car
200
300
400

In the first use of ITEMTYPE, no index position is specified, so the type of the value at the first list
position (the default) is returned.

LISTLEN
Returns the number of items in a list.

LISTLEN (l ist- id)

Return type: Numeric

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1665

Example
In this example, the length of a list is returned. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 400, 4);

 l1 = LISTLEN(lid1);

 PUT 'The length of the list is: ' ll;

RUN;

This produces the following output:

The length of the list is: 4

LVARLEVEL
Creates a list using the values of a variable in a specified dataset.

LVARLEVEL (dataset- id , variable- name , n- level

, l ist- id

)

You can use this function to create a list from the values for a variable in a dataset; that is, the values in
one column.

If there are multiple instances of the same value for a variable, only one instance is placed in the list.

Return type: Numeric

dataset-id

Type: Numeric

The identifier of a dataset opened using the OPEN (page 752) function.

variable-name

Type: Character

The name of the variable in the dataset for which values will be converted into list items.

n-level

Type: Var

Reference for language elements
Version 4.1

1666

The name of a variable, into which the number of unique values of variable-name is returned.

list-id
Optional argument

Type: List

The identifier of a list that has been created with one of the list creation functions (MAKELIST
(page 1667), MAKENLIST (page 1668) or ENVLIST (page 1625)).

If this argument is not specified, a note is written to the log warning that this argument is invalid,
unless CURLIST (page 1607) has previously been used to store a list identifier in memory.

If list-id is omitted, the number of unique data items for the specified variable is returned in n-level.

The order of the items in the list is the reverse of that in the dataset or input file. For example, if the
specified variable comprised three items in the dataset:

car
train
bus

the resulting items in the list are:

bus
train
car

Basic example
In this example, a new list is created using the values for the AUTHOR variable in the specified dataset,
which contains information about books. The result is written to the log.

LIBNAME lbooks 'c:\temp\books';
DATA _NULL_;

 var = 0;
 did = OPEN('lbooks.books');

 arc = ATTRN(did, 'nlobsf');
 PUT 'The dataset contains ' rc 'observations ';
 PUT;

 lid = ENVLIST('g');

 lvl = LVARLEVEL(did,'Author',var,lid);

 PUT 'The list has ' var 'items:';
 PUT;

 DO i = 1 TO var;
 gi = GETITEMC(lid,i);
 PUT gi;
 END;

RUN;

Reference for language elements
Version 4.1

1667

This produces the following output:

The dataset contains 4 observations

The list has 3 items:

Marwick, Arthur
Hindle, Paul
Hibbert, Christopher

The dataset has two observations where the variable Author has the same name (Marwick,
Arthur). Only one of these is written to the list. The list is in reverse order to the order of the variables
in the dataset.

MAKELIST
Creates a list in which items are specified by ordinal position.

MAKELIST (

init ial- number- of- items , visibility

)

The list identifier is an integer. Each time you create a list using this function or the MAKENLIST
(page 1668) function, a new list identifier is created by incrementing the new identifier by one over
the most recently created identifier. For example, if the last list identifier created was 2, a new list will
have the identifier 3. These identifiers remain attached to the corresponding list until the WPS server is
restarted or the list is cleared.

Return type: List

The list identifier. This is an integer greater than 0 (zero).

initial-number-of-items
Optional argument

Type: Numeric

The number of items in the list.

visibility
Optional argument

Currently has no effect; provided for compatibility.

"G"

This function enables you to create lists in which an item can be located by its ordinal position in the
list. If you want to create a list in which an item can be located by a variable name, use MAKENLIST
(page 1667).

Reference for language elements
Version 4.1

1668

Example
In this example, a new list is created that can hold four items. The result is written to the log.

DATA _NULL_;

 lid = MAKELIST(4);
 PUT 'The list identifier: ' lid;

RUN;

This produces the following output:

The list identifier: 1

If you run the same DATA step again, it returns:

The list identifier: 2

MAKENLIST
Creates a list in which items are specified by variable name.

MAKENLIST (visibility ,

,

item- name- list)

The list is a placeholder for a one or more items identified by names. The function returns an identifier
that can be used by other list functions. You can enter information into the list, and subsequently get
information from the list, using other list functions. These functions use the list identifier specified by this
function.

The list identifier is an integer. Each time you create a list using this function or the MAKELIST (page
1667) function, a new list identifier is created by incrementing the new identifier by one over the most
recently created identifier. For example, if the last list identifier created was 2, a new list will have the
identifier 3. These identifiers remain attached to the corresponding list until the WPS server is restarted
or the list is cleared.

Return type: List

The list identifier. This is an integer greater than 0 (zero).

visibility

"G"

Currently has no effect; provided for compatibility.

item-name-list

Type: Character

Reference for language elements
Version 4.1

1669

One or more variable names for an item in the list, separated by commas; for example 'var1',
'var2', 'var3'.

This function enables you to create lists in which an item can be identified by a variable name. If you
want to create a list in which an item can be located by its ordinal position in the list, use MAKELIST
(page 1667).

Because the identifier for a list is unique, and because variables you specify are associated with an
identified list, different lists can contain the same variable names. These variables can then have
different values. The variables, and their values, will be unique because they are associated with a
specific list.

Example
In this example, a new list is created that can hold four items. The result is written to the log.

DATA _NULL_;

 lid = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4',);
 PUT 'The list identifier: ' lid;

RUN;

This produces the following output:

The list identifier: 1

If you run the same DATA step again, it returns:

The list identifier: 2

NAMEDITEM
Returns the position of a named item in a list.

NAMEDITEM (l ist- id , name ,
occurrence

,

start- index

,

force- uppercase , type

)

Return type: Numeric

The position of the item.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1670

name

Type: Character

The name of the item for which you want the position.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching for the named
item to set. This must be greater than 0 (zero). The default is 1. This argument is useful when
the item list contains non-unique item names, and you want to search for an occurrence after an
index position.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

type
Optional argument

Type: Var

A variable into which the type of value for the named item is returned. If the value is a number, N
is returned to the variable; if the value is a character or string, C is returned.

Reference for language elements
Version 4.1

1671

Basic example
In this example, a new list is created that contains four named items. The name of the fourth item is
then found. The result is written to the log.

DATA _NULL_;

 z='var4';

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMN(lid1, 1, 'var4');

 pos = NAMEDITEM(lid1, z);

 PUT 'The variable ' z 'is at position: ' pos;

RUN;

This produces the following output:

The variable var4 is at position: 4

Example – returning information for specified occurrence of named
item
In this example, a new list is created that contains six named items, where three of them have the same
name. The position of the second occurrence after the third index position is returned. The type of the
value associated with the occurrence is also returned. The result is written to the log.

DATA _NULL_;

 ty='';

 lid1 = MAKENLIST('l', 'mass_t','class', 'indiv_t', 'class', 'sub_t', 'class');

 rc = SETNITEMC(lid1, 'coach', 'mass_t');
 rc = SETNITEMN(lid1, 1, 'class');
 rc = SETNITEMC(lid1, 'horse', 'indiv_t');
 rc = SETNITEMN(lid1, 1, 'class',2);
 rc = SETNITEMC(lid1, 'train', 'sub_t');
 rc = SETNITEMN(lid1, 2, 'class',3);

 pos = NAMEDITEM(lid1, 'class',2,2,,ty);

 PUT 'The variable is at position ' pos 'and is of type ' ty;

RUN;

This produces the following output:

The variable is at position 4 and is of type N

Reference for language elements
Version 4.1

1672

Example – specifying case
In this example, a new list is created that contains four named items. The position of the occurrence
with and without the specified case is returned. The result is written to the log.

DATA _NULL_;

 ip=0;

 lid1 = MAKENLIST('l', 'VAR1','VAR2', 'var3', 'var4');

 mm = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMC(lid1, 'bicycle','var1',,,ip,'y');
 lr1 = SETNITEMC(lid1, 'plane', 'var2',,,ip,'y');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMN(lid1, 1, 'var4');

 pos = NAMEDITEM(lid1, 'var2');
 PUT 'The list item is at position ' pos;

 pos = NAMEDITEM(lid1, 'var2',,,'y');
 PUT 'The list item is at position ' pos;

RUN;

This produces the following output:

The list item is at position 0
The list item is at position 2

The first use of NAMEDITEM returns 0, as there is no item with the name var2. The second use of
NAMEDITEM returns 2, as there is an item with the name VAR2 at this position, and the force-uppercase
argument has been to set to Y to force the case of the specified item name to upper case.

NAMEITEM
Name or rename an item, or return the item name.

NAMEITEM (l ist- id ,

index , new- name
)

For lists that contain named list items, this function can be used to rename an item, or to return the
name of an item at a specified position in the list. For lists that contain indexed items, this function can
be used to name an item.

Return type: Character

Either the current name of the item at the specified position, or, if you are changing the name, the name
before it is changed. The name returned is in upper case characters.

Reference for language elements
Version 4.1

1673

list-id

Type: List

The identifier for the list.

index
Optional argument

Type: Numeric

The position in the list of the item. The default is 1.

new-name
Optional argument

Type: Character

The new name for the item specified by index.

To return the name of the item without changing it, omit new-name.

Example – return name of specified item
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page 1696)
functions. The name of the second item in the list is returned. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3');

 rc = SETNITEMC(lid1, 'car', 'var1');
 rc = SETNITEMC(lid1, 'bicycle', 'var2');
 rc = SETNITEMC(lid1, 'train', 'var3');

 vn = NAMEITEM(lid1, 2);

 PUT 'The item name is: ' vn;

RUN;

This produces the following output:

The item name is: VAR2

Note:
Whether the item name is returned in upper or lower case depends on the functions that previously
used the name.

Reference for language elements
Version 4.1

1674

Example – change name of specified item
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page 1696)
functions. The name of the second item in the list is changed. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3');

 rc = SETNITEMC(lid1, 'car', 'var1');
 rc = SETNITEMC(lid1, 'bicycle', 'var2');
 rc = SETNITEMC(lid1, 'train', 'var3');

 cv = NAMEITEM(lid1, 2, 'tw_trans');

 PUT 'The item name changed is: ' cv;

 gin = NAMEITEM(lid1, 2);
 giv = GETNITEMC(lid1, gin);
 PUT 'The item name is now ' gin 'and its value is: ' giv;

 RUN;

This produces the following output:

The item name changed is: VAR2
The item name is now tw_trans and its value is: bicycle

Note:
Whether the item name is returned in upper or lower case depends on the functions that previously
used the name.

In this example, the name of item var2 is changed to tw_trans. The function returns the value before
it is changed. The new name is then used in a GETNITEMC function to return the value for that item.
This value is same as that to which var2 was first set.

Reference for language elements
Version 4.1

1675

Example – specify names for indexed items
In this example, a list is created using the MAKENLIST (page 1668) and SETITEMC (page 1696)
functions. The list items are then named using NAMEITEM. The result is written to the log.

 DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3');

 lr1 = SETNITEMC(lid1, 'car', 'var1');
 lr1 = SETNITEMC(lid1, 'bicycle', 'var2');
 lr1 = SETNITEMC(lid1, 'train', 'var3');

 cv = NAMEITEM(lid1, 2, 'tw_trans');

 PUT 'The item name is: ' cv;

 gi = GETNITEMC(lid1, 'tw_trans');
 PUT 'The value of tw_trans is: ' gi;

 RUN;

This produces the following output:

The item name is: VAR2
The value of tw_trans is: bicycle

Note:
Whether the item name is returned in upper or lower case depends on the functions that previously
used the name.

In this example, the name of item var2 is changed to tw_trans. The function returns the value before
it is changed. The new name is then used in a GETNITEMC function to return the value for that item.
This value is same as that to which var2 was first set.

POPC
Returns and removes a character or string item from a specified list.

POPC (l ist- id

, index

)

The function returns the value of a specified item in a list, and removes that item from the list. This is
known as popping, and such an item has been popped from the list. The function can return the next
string item, or a specified string item from a list, depending on the options you specify.

Return type: Character

list-id

Type: List

Reference for language elements
Version 4.1

1676

The identifier for the list.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list from which to pop the item. The default is
1. If you specify a value greater than the number of items in the list, an error is returned.

If you try to pop an item that is not a character or string, an error message is returned.

Note:
Because popped items are removed from the list, you should be careful when using a loop to set the
index for the item to be popped.

Basic example
In this example, all items are extracted from a list using the POPC (page 1675) function. The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'train', 2);
 lr1 = SETITEMC(lid1, 'bicycle', 3);
 lr1 = SETITEMC(lid1, 'plane', 4);

 DO y = 1 TO 4;
 pc = POPC(lid1);
 PUT 'Item ' y 'in the list was: ' pc;
 END;

 ll = LISTLEN(lid1);
 PUT 'The list length is now: ' ll;

RUN;

This produces the following output:

List item 1 is: car
List item 2 is: train
List item 3 is: bicycle
List item 4 is: plane
The list length is now: 0

The list length is 0 (zero) as all items have been popped from the list.

Reference for language elements
Version 4.1

1677

Example – specifying an ordinal position
In this example, an item at a specified position in the list is extracted using the POPC (page 1675)
function. The result is written to the log.

DATA _NULL_;

 pos = 3;

 lid1 = MAKELIST(4);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'train', 2);
 lr1 = SETITEMC(lid1, 'bicycle', 3);
 lr1 = SETITEMC(lid1, 'plane', 4);

 pc = POPC(lid1, pos);

 PUT 'The list item popped from position ' pos 'is: ' pc;

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

The list item popped from position 3 is: bicycle
('car' 'train' 'plane')[1]

The list created by CALL PUTLIST shows that the item with the value bicycle has been popped, and
is no longer in the list.

POPL
Returns and removes a sublist from a specified list.

POPL (l ist- id

, index

)

The function returns the identifier of a sublist at a specified position in a list, and removes that list
identifier from the list. This is known as popping, and such an item has been popped from the list.
Sublist identifiers are items in the list, and the identifier to be returned is specified by its position in the
list.

Return type: List

The list identifier of the sublist.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1678

This is the identifier for the list from which you want to return the sublist identifier.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list from which to pop the item. The default is
1. If you specify a value greater than the number of items in the list, an error is returned.

If you try to pop an item that is not a list, an error message is returned.

Note:
Because popped items are removed from the list, you should be careful when using a loop to set the
index for the item to be popped.

Example
In this example, a new list is created from a saved list. The contents of the new list are displayed with
CALL PUTLIST. The sublist at the third position is then popped. The list identifier for the sublist is
written to the log, and CALL PUTLIST is again used to display the list.

libname temp 'c:\temp';
DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 fl = FILLIST('CATALOG', 'temp.listtest.newlist.slist', lid1);

 PUT 'The filled list contains: ';

 CALL PUTLIST(lid1,,0);

 pl = POPL(lid1, 3);

 PUT;
 PUT 'The identifier popped is: ' pl;
 PUT;
 PUT 'The list after popping contains: ';

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1679

This produces the following output:

The filled list contains:
(VAR1='ship'
 VAR2='plane'
 (LST1='car'
 LST2='train'
 LST3='bicycle'
)[2]
 VAR3='horse'
 VAR4='taxi'
)[1]

The identifier popped is: 2

The list after popping contains:
(VAR1='ship'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
)[1]

The second PUTLIST routine shows that the sublist has been removed from the list. The list identifier
returned for the sublist is 2. If index had not been specified (therefore defaulting to 1), or any other
value but 3 had been specified, no list would have been popped, and an error message would have
been written to the log.

POPN
Returns and removes a numeric item from a specified list.

POPN (l ist- id

, index

)

The function returns the value of a specified item in a list, and removes that item from the list. This
is known as popping, and such an item has been popped from the list. The function returns the next
numeric item or a specified numeric item from a list, depending on the options you specify.

Return type: Numeric

list-id

Type: List

The identifier for the list.

index
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1680

An integer that specifies the ordinal position in the list from which to pop the item. The default is
1.If you specify a value greater than the number of items in the list, an error is returned.

If you try to pop an item that is not a number, an error message is returned.

Note:
Because popped items are removed from the list, you should be careful when using a loop to set the
index for the item to be popped.

Basic example
In this example, all items are extracted from a list using the POPN (page 1675) function. The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMN(lid1, 100, 1);
 rc = SETITEMN(lid1, 200, 2);
 rc = SETITEMN(lid1, 300, 3);
 rc = SETITEMN(lid1, 1001, 4);

 DO y = 1 TO 4;
 pc = POPN(lid1);
 PUT 'List item ' y 'is: ' pc;
 END;

 rc = LISTLEN(lid1);
 PUT 'The list length is now: ' rc;

RUN;

This produces the following output:

List item 1 is: 100
List item 2 is: 200
List item 3 is: 300
List item 4 is: 1001
The list length is now: 0

The list length is now 0, as all items have been popped from the list.

Reference for language elements
Version 4.1

1681

Example – specifying an ordinal position
In this example, an item at a specified position in the list is extracted using the POPN (page 1675)
function. The result is written to the log.

DATA _NULL_;

 pos = 3;

 lid1 = MAKELIST(4);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 1001, 4);

 pn = POPN(lid1, pos);

 PUT 'The list item at position ' pos 'is: ' pn;

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

The list item at position 3 is: 300
(100 200 1001)[1]

CALL PUTLIST is used to show that the item with the value 300 has been removed from the list after it
has been popped.

REVLIST
Reverses the order of the items in a list.

REVLIST (l ist- id)

Return type: List

The list identifier.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1682

Example
In this example, the items in a list are reversed. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'train', 2);
 lr1 = SETITEMC(lid1, 'bicycle', 3);
 lr1 = SETITEMC(lid1, 'plane', 4);

 rl = REVLIST(lid1);

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

('plane' 'bicycle' 'train' 'car')[1]

ROTLIST
Rotates the order of the items in a numeric list by a specified number of characters.

ROTLIST (l ist- id

, number- of- rotat ions

)

Only lists consisting of numeric items can be rotated.

Return type: List

The list identifier.

list-id

Type: List

The identifier for the list.

number-of-rotations
Optional argument

Type: Numeric

The number of rotations. If not specified, the list is rotated by one position.

A rotation takes the number of characters specified by number-of-rotations from the beginning (left-
hand) of the list and adds them to the end (right-side) of the list. See the example below.

Reference for language elements
Version 4.1

1683

Example
In this example, the items in a list are rotated by two positions. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 400, 4);

 rl = ROTLIST(lid1,2);

 call putlist(lid1);

RUN;

This produces the following output:

(300 400 100 200)[1]

The function has taken the first two entries in the list and moved them to the end of the list.

SAVELIST
Saves a list.

SAVELIST (type , target , l ist- id ,

attr- list- id

, descript ion

)

The list can be saved as a catalog entry, or as a file.

Return type: Numeric

type

Type: Character

Specifies the type of file into which the list will be saved. This can be a catalog entry, or a
filesystem file.

The type can be of one:

'CATALOG'

The list is written to a catalog entry. Lists can be written to LOG, OUTPUT, SOURCE or
SLIST catalog entries. SLIST is a catalog entry provided specifically for lists.

Reference for language elements
Version 4.1

1684

A list that contains sublists can only be saved as an SLIST entry.

'FILE'
The list is written to a file.

'FILEREF'
The list is written to a file identified by a fileref.

The file or catalog entry into which the list is to be written is specified using target.

target

Type: Character

Specifies the filename, fileref or catalog entry name into which you want to write the list. The
value should correspond to the type of file you specified in type. For example, if the target file is a
filesystem file, type should be set to 'FILE'.

list-id

Type: List

The identifier for the list.

attr-list-id
Optional argument

Type: List

The identifier of a list that contains attributes that can be applied to the items in the list specified
by list-id. For example, you could make an item in a list bold, underlined and blue when it is
displayed through certain interfaces or media.

This option has no effect if it is specified for a catalog entry type of SLIST.

This option must be specified if the catalog entry type is LOG, OUTPUT or SOURCE.

For information on the attributes that can be set in this list, see below.

description
Optional argument

Type: Character

A description for the list.

The list specified at attr-list-id contains codes that define the output format of list items. The code has
the format:

'type'||'attributes'x

where:

• type specifies whether the attributes applies to items that define data, headings or titles in the list

Reference for language elements
Version 4.1

1685

• attributes specifies attributes for the list items, such as text colour, text weight, underlining, and so
on

• x defines the entry as a hexadecimal number

For example, if your list had the data horse which you wanted to display in blue text with the first
character in red, blinking and underlined, you would specify the code 'D'||'2A10101010'x.

The list specified by attr-list-id must contain the same number of items as are in the list specified by
list-id.

The following attributes are available:

Colour Code Attribute Code
Blue 10 None 00
Red 20 Bold 01
Pink 30 Underline 02
Green 40 Blink 04
Cyan 50 Reverse 08
Yellow 60
White 70
Orange 80
Black 90
Magenta A0
Gray B0
Brown C0

To create a code for a list item, one or more attribute codes are added to a colour code. For example,
to specify that a list item should be displayed in blue and underlined, you would specify for that item
the value 12, that is 10 (blue) plus 02 (underline). To specify that an item is displayed in brown, bold,
blinking text specify C5. Numbers are in hexadecimal format, so green (40), blink (04) and reverse (08)
would be specified as 4C.

If the list item is longer than one character, and you want the entire string to have one or more
attributes, you must set the attributes for each character.

You must also specify whether the list item to which you are applying attributes is a heading, title or
data. To do this, you apply a type code before the attribute specification. This code can be:

H Heading
T Title
D Data

Reference for language elements
Version 4.1

1686

Basic example
In this example, a list is created that contains three items. This list is then saved to a folder on the
device using a pathname.

DATA _NULL_;

 lid1 = envlist('g');

 lr1 = SETITEMC(lid1, 'bicycle', 1, 'y');
 lr1 = SETITEMC(lid1, 'plane', 2, 'y');
 lr1 = SETITEMC(lid1, 'horse', 3, 'y');

 rx = savelist('FILE', 'c:\temp\newlist', lid1);

RUN;

This creates the file newlist in the folder c:\temp. The file contains the items specified by the
SETITEMC functions. For example, if the file is opened in Notepad:

Example – saving the list to a fileref
In this example, a list is created that contains three items. This list is then saved to a file specified using
a fileref.

filename listf 'C:\temp\newlist';
DATA _NULL_;
 lid1 = MAKELIST(3, 'g');

 lr1 = SETITEMC(lid1, 'bicycle', 1, 'y');
 lr1 = SETITEMC(lid1, 'plane', 2, 'y');
 lr1 = SETITEMC(lid1, 'horse', 3, 'y');

 rx = savelist('FILEREF', 'listf', lid1);

RUN;

This creates the file newlist in the folder c:\temp. The file contains the items specified by the
SETITEMC functions. For example, if the file is opened in Notepad:

Reference for language elements
Version 4.1

1687

Example – saving the list to a catalog entry and creating an attribute
list
In this example, a list is created that contains three items. This list is then saved to a catalog entry.

libname temp 'C:\temp';
DATA _NULL_;

 lid1 = MAKELIST(3, 'g');

 lr1 = SETITEMC(lid1, 'bicycle', 1, 'y');
 lr1 = SETITEMC(lid1, 'plane', 2, 'y');
 lr1 = SETITEMC(lid1, 'horse', 3, 'y');

 lid2 = envlist('g');

 lr2 = SETITEMC(lid2, 'D'||'10101010101010'x, 1, 'y');
 lr2 = SETITEMC(lid2, 'D'||'2110101010'x , 2, 'y');
 lr2 = SETITEMC(lid2, 'D'||'5C10101010'x , 3, 'y');

 rx = savelist('CATALOG', 'temp.listtest.newlist.source', lid1, lid2);

RUN;

This creates the catalog entry of the type source in the catalog listtest. The file contains the items
specified by the SETITEMC functions, with the formatting specified by the list items in the second list.

Reference for language elements
Version 4.1

1688

Example – appending the list to a fileref
In this example, a list is created that contains three items. The list is then saved to a specified file that
already exists.

filename listf 'C:\temp\newlist';
DATA _NULL_;

 lid1 = MAKELIST(3, 'g');

 lr1 = SETITEMC(lid1, 'car', 1, 'y');
 lr1 = SETITEMC(lid1, 'boat', 2, 'y');
 lr1 = SETITEMC(lid1, 'train', 3, 'y');

 sl = savelist('FILEREF<APPEND>', 'listf', lid1);

RUN;

This appends the list items specified by the SETITEMC functions to the file newlist in the folder c:
\temp. For example, if the file is opened in Notepad:

SEARCHC
Returns the ordinal position of a string in a list that matches the specified character or string.

SEARCHC (l ist- id , character- value ,
occurrence

,

start- index

,

ignore- case , prefix

)

The search and target strings must match completely, unless you specify a search only for a prefix. You
can set a start position in the list from which to search. If the list contains more than one occurrence of
the string, you can specify an occurrence from which to search.

Return type: Numeric

The ordinal position of the item in the list, if found; otherwise 0 (zero).

Reference for language elements
Version 4.1

1689

list-id

Type: List

The identifier for the list.

character-value

Type: Character

The character or string to find in the list.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching. The default is
1.

ignore-case
Optional argument

Specifies whether case should be ignored in the search.

"N"

Case is not ignored.

"Y"

Case is ignored. This is the default.

prefix
Optional argument

Specifies whether character-value is a prefix or the entire character or string to be found.

"N"

character-value defines the character or string to be found. This is the default.

"Y"

character-value defines a prefix to be found.

Reference for language elements
Version 4.1

1690

By default, this function searches for strings that exactly match character-value. For
example, if your list contains the values train_carriage and train_locomotive, and
you search for train, neither value will be found. If you set this option to Y and specify
train_ in character-value, then both values will match.

Basic example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. SEARCHC is then used to find the position of the string train. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMC(lid1, 'car', 1);
 rc = SETITEMC(lid1, 'bicycle', 2);
 rc = SETITEMC(lid1, 'train', 3);
 rc = SETITEMC(lid1, 'plane', 4);

 ni = SEARCHC(lid1,'train');
 PUT 'The item is at position ' ni;

RUN;

This produces the following output:

The item is at position 3

Example – searching for an occurrence from a specified point
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. SEARCHC is then used to find the position of the second occurrence of the string train,
starting from position three and ignoring case. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(6);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'train', 2);
 lr1 = SETITEMC(lid1, 'bicycle', 3);
 lr1 = SETITEMC(lid1, 'train', 4);
 lr1 = SETITEMC(lid1, 'plane', 5);
 lr1 = SETITEMC(lid1, 'train', 6);

 ni = SEARCHC(lid1,'train',2, 3);
 PUT 'The item is at position ' ni;

RUN;

This produces the following output:

The item is at position 6

Reference for language elements
Version 4.1

1691

The second occurrence of train in this search is the sixth item in the list. The occurrence of the string at
the second position in the list is ignored, as the search started at the third index position.

Example – searching for an occurrence in a specified case
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. SEARCHC is then used to find the position of the occurrence of the string TRAIN. The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(6);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'train', 2);
 lr1 = SETITEMC(lid1, 'bicycle', 3);
 lr1 = SETITEMC(lid1, 'train', 4);
 lr1 = SETITEMC(lid1, 'plane', 5);
 lr1 = SETITEMC(lid1, 'TRAIN', 6);

 ni = SEARCHC(lid1,'TRAIN',,,'N');
 PUT 'The item is at position ' ni;

RUN;

This produces the following output:

The item is at position 6

The case of the string is ignored; therefore, TRAIN is the same as train, and the second occurrence
in this search is the sixth item in the list. The occurrence of the string at the second position in the list is
ignored, as the search started at index position three.

Example – searching for a prefix
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. SEARCHC is then used to find the position of each occurrence of an item that starts with the
substring train. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMC(lid1, 'train_locomotive', 1);
 lr1 = SETITEMC(lid1, 'train_carriage', 2);
 lr1 = SETITEMC(lid1, 'car', 3);
 lr1 = SETITEMC(lid1, 'plane', 4);

 DO i = 1 TO listlen(lid1);
 ni = 0;
 ni = SEARCHC(lid1,'train_',,i,,'y');
 IF ni > 0 THEN PUT 'An item is at position ' ni;
 END;

RUN;

Reference for language elements
Version 4.1

1692

This produces the following output:

An item is at position 1
An item is at position 2

SEARCHL
Returns the position of a specified sublist in a list.

SEARCHL (l ist- id , sublist- id ,
occurrence , start- index

)

By default, this function searches for the first occurrence of the specified sublist, starting from the first
position in the list. You can, however, search for a specified occurrence, or start at a specified position.

Return type: Numeric

list-id

Type: List

The identifier for the list.

sublist-id

Type: List

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the list to find, if it exists. This must be greater than
0 (zero). This must be greater than 0 (zero). For example, to find the second occurrence of the
list, specify 2. The default is 1. The search starts at the first item. If you want the search to start
at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching. The default is
1.

Reference for language elements
Version 4.1

1693

Basic example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. A second list is similarly created, and then inserted in the first list using INSERTL (page
1656). The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 rc = SETNITEMC(lid1, 'ship', 'var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'lst1', 'lst2', 'lst3');

 rc = SETNITEMC(lid2, 'car' ,'lst1');
 rc = SETNITEMC(lid2, 'train','lst2');
 rc = SETNITEMC(lid2, 'bicycle','lst3');

 rc=INSERTL(lid1,lid2,2);

 rc = SEARCHL(lid1, lid2);

 PUT 'The sublist is at position: ' rc;

RUN;

This produces the following output:

The sublist is at position: 2

Example – finding an occurrence of a sublist, and finding after a
position
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. A second list is similarly created, and then inserted in the first list using INSERTL (page
1656). The list is inserted twice, first at the second position in the list, and then again at the fourth
position. The sublist in then found by starting from a specified position, and then by looking for a
specified occurrence. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 v = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'lst1', 'lst2', 'lst3');

 lr2 = SETNITEMC(lid2, 'car' ,'lst1');
 lr2 = SETNITEMC(lid2, 'train','lst2');
 lr2 = SETNITEMC(lid2, 'bicycle','lst3');

Reference for language elements
Version 4.1

1694

 il1 = INSERTL(lid1,lid2,2);
 il2 = INSERTL(lid1,lid2,4);

 slr = SEARCHL(lid1, lid2,2);
 PUT 'The sublist is at position: ' slr;

 slr2 = SEARCHL(lid1, lid2,,3);
 PUT 'The sublist is at position: ' slr2;

RUN;

This produces the following output:

The sublist is at position: 4
The sublist is at position: 4

In this example, 4 is returned for both search methods. The second occurrence of the list is at position
four; and the first occurrence of the list after index position two is also at position four.

SEARCHN
Returns the ordinal position of a specified number.

SEARCHN (l ist- id , numeric- value ,
occurrence

, start- index

)

The search and target numbers must match completely. You can set a start position in the list from
which to search. If the list contains more than one occurrence of the number, you can specify an
occurrence from which to search.

Return type: Numeric

The ordinal position of the item in the list, if found; otherwise 0 (zero).

list-id

Type: List

The identifier for the list.

numeric-value

Type: Numeric

occurrence
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1695

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching. The default is
1.

Basic example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMN (page 1703)
functions. SEARCHN is then used to find the position of the string 200. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(6);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 400, 4);
 lr1 = SETITEMN(lid1, 500, 5);
 lr1 = SETITEMN(lid1, 600, 6);

 ni = SEARCHN(lid1,400);
 PUT 'The item is at position ' ni;

RUN;

This produces the following output:

The item is at position 4

Reference for language elements
Version 4.1

1696

Example – searching for an occurrence from a specified point
In this example, a list is created using the MAKELIST (page 1667) and SETITEMN (page 1703)
functions. SEARCHN is then used to find the position of the third occurrence of the string 400, starting
from and including the second position in the list. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(6);

 lr1 = SETITEMN(lid1, 400, 1);
 lr1 = SETITEMN(lid1, 400, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 400, 4);
 lr1 = SETITEMN(lid1, 500, 5);
 lr1 = SETITEMN(lid1, 400, 6);

 ni = SEARCHN(lid1,400,2,3);
 PUT 'The item is at position ' ni;

RUN;

This produces the following output:

The item is at position 6

There are four occurrences of the specified number in this list; the third occurrence, starting from the
second position in the list, is at position six.

SETITEMC
Sets the specified list item to the specified character string.

SETITEMC (l ist- id , character- value ,

index , auto- grow

)

The character or string specified overwrites the item at the specified position. If no position is specified,
the character or string overwrites the item at the first position in the list.

If you want to insert a character or string without overwriting any items, see INSERTC (page 1654).

Return type: Numeric

Returns the list identifier.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1697

character-value

Type: Character

The value to which to set this list item. This must be a character or string.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to place character-value.

If you do not specify a value for this argument, the first item in the list is set to character-value.

If you specify a value for this argument that is greater than the number of items specified when
the list was created, an error message is returned, unless auto-grow is set to Y.

auto-grow
Optional argument

Specifies that the number of items in the list can increase beyond that specified when the list was
created.

"N"

The list cannot grow beyond the number of items specified when it was created. This is the
default.

"Y"

The list can grow beyond the number of items specified when it was created.

You can set index to any number larger than the length of list-id, as long as Y is also specified for
auto-grow. If index is greater than the length of list-id + 1, then the list items between the original
last index item and the new last index item contain contain text missing values. For an example, see
Example using auto-grow below.

Reference for language elements
Version 4.1

1698

Basic example
In this example, a new list is created that can hold four items. The items are then extracted from the list
using GETITEMC (page 1629). The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMC(lid1, 'a', 1);
 rc = SETITEMC(lid1, 'b', 2);
 rc = SETITEMC(lid1, 'c', 3);
 rc = SETITEMC(lid1, 'd', 4);

 DO y = 1 TO 4;
 pc = GETITEMC(lid1, y);
 PUT 'List item ' y 'is: ' pc;
 END;

RUN;

This produces the following output:

List item 1 is: a
List item 2 is: b
List item 3 is: c
List item 4 is: d

Example using auto-grow
In this example, a new list is created that can hold four items, but is extended to six items by using the
auto-grow argument with SETITEMC (page 1696). The items are then extracted from the list using
GETITEMC (page 1629). The LISTLEN (page 1664) function is also used to get the length of the
new list. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMC(lid1, 'a', 1);
 lr1 = SETITEMC(lid1, 'b', 2);
 lr1 = SETITEMC(lid1, 'c', 3);
 lr1 = SETITEMC(lid1, 'd', 4);

 rc = SETITEMC(lid1, 'g', 7, 'Y');

 DO y = 1 TO LISTLEN(lid1);
 pc = GETITEMC(lid1, y);
 PUT 'List item ' y 'is: ' pc;
 END;

RUN;

Reference for language elements
Version 4.1

1699

This produces the following output:

List item 1 is: a
List item 2 is: b
List item 3 is: c
List item 4 is: d
List item 5 is:
List item 6 is:
List item 7 is: g

The list has been extended to consist of seven items, with items five and six set as missing.

SETITEML
Sets the specified list item to the specified sublist.

SETITEML (l ist- id , sublist- id ,

index , auto- grow

)

The sublist specified overwrites the item at the specified position. If no position is specified, the sublist
overwrites the item at the first position in the list. It is not the sublist itself that is placed in the list, but a
pointer to it, identified in other functions by the list identifier.

If you want to insert a list without overwriting any items, see INSERTL (page 1656).

Return type: Numeric

The identifier of the list into which the sublist is written.

list-id

Type: List

The identifier for the list.

sublist-id

Type: List

The identifier of the sublist that overwrites the item.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to place sublist-id.

If you do not specify a value for this argument, the first item in the list is set to sublist-id

If index is greater than the number of items in the list an error message is returned, unless you
specify auto-grow.

Reference for language elements
Version 4.1

1700

auto-grow
Optional argument

Specifies that the number of items in the list can increase beyond that specified when the list was
created.

"N"

The list cannot grow beyond the number of items specified when it was created. This is the
default.

"Y"

The list can grow beyond the number of items specified when it was created.

lid1 = MAKELIST(9);

The list can therefore contain nine items. If auto-grow is set to Y and index is set to 6:

rc = SETITEML(lid1, lid2, 6, 'y');

then the list replaces whatever is currently at the specified index position. However, if
auto-grow is set to Y and index is set to 12:

rc = SETITEMC(lid1, lid2, 12, 'y');

then the list grows to contain twelve items. The list occupies the twelfth position in the list,
and positions ten and eleven are set to missing values.

You can set index to any number larger than the length of list-id, as long as Y is also specified for
auto-grow. If index is greater than the length of list-id + 1, then the list items between the original last
index item and the new last index item contain empty lists with list identifiers set to 0 (zero). For an
example, see Example – inserting sublist after last position.

Basic example
In this example, a new list is created that can hold four items. A second list is similarly created. This
function is then used to set the first item in the list to the sublist. Because index is not specified, the
sublist overwrites the first item in the list. The first list is written to the log using CALL PUTLIST
(page 1737), and the other results generated by the example are also written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'lst1', 'lst2', 'lst3');

 lr2 = SETNITEMC(lid2, 'car' ,'lst1');
 lr2 = SETNITEMC(lid2, 'train','lst2');
 lr2 = SETNITEMC(lid2, 'bicycle','lst3');

Reference for language elements
Version 4.1

1701

 sir = SETITEML(lid1,lid2);
 PUT 'The identifier of the list: ' sir;

 gir = GETITEML(lid1,1);
 PUT 'The identifier of the sublist: ' gir;

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

The identifier of the list: 1
The identifier of the sublist: 2
(VAR1=(LST1='car' LST2='train' LST3='bicycle')[2] VAR2='plane' VAR3='horse'
 VAR4='taxi')[1]

In the list written by CALL PUTLIST you can see that the sublist has replaced the first item in the list.

Example – putting sublist at a specified position
In this example, a new list is created that can hold four items. A second list is similarly created. The
specified sublist is then inserted after the last item in the list. The first list is written to the log using CALL
PUTLIST (page 1737), and the other results generated by the example are also written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'vv1', 'vv2', 'vv3');

 lr2 = SETNITEMC(lid2, 'car' ,'vv1');
 lr2 = SETNITEMC(lid2, 'train','vv2');
 lr2 = SETNITEMC(lid2, 'bicycle','vv3');

 sir = SETITEML(lid1,lid2,3);

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

(VAR1='ship'
 VAR2='plane'
 VAR3=(VV1='car'
 VV2='train'
 VV3='bicycle'
)[2]
 VAR4='taxi'
)[1]

Reference for language elements
Version 4.1

1702

In the list written by CALL PUTLIST you can see that the sublist has replaced the third item in the list.

Example – inserting sublist after last position
In this example, a new list is created that can hold four items. A second list is similarly created. The
specified sublist then overwrites the item at the specified position. The first list is written to the log using
CALL PUTLIST (page 1737), and the other results generated by the example are also written to the
log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'lst1', 'lst2', 'lst3');

 lr2 = SETNITEMC(lid2, 'car' ,'lst1');
 lr2 = SETNITEMC(lid2, 'train','lst2');
 lr2 = SETNITEMC(lid2, 'bicycle','lst3');

 sir = SETITEML(lid1,lid2,5,'y');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='ship'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 (LST1='car'
 LST2='train'
 LST3='bicycle'
)[2]
)[1]

In the list written by CALL PUTLIST you can see that the sublist has become the fifth item in the list.

If, however, you set the insertion point to index position seven:

rc = SETITEML(lid1,lid2,7,'y');

Reference for language elements
Version 4.1

1703

then the following output would be produced:

(VAR1='ship'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 <invalid list id>[0]
 <invalid list id>[0]
 (LST1='car'
 LST2='train'
 LST3='bicycle'
)[2]
)[1]

The sublist has become the seventh item in the list, and two intervening invalid sublists have been
created, with the identifier 0. No error message is generated by WPS.

You can get the identifier for the invalid list. For example if you specified GETITEML as follows:

 rc = GETITEML(lid1,6);
 PUT 'The identifier for the sublist: ' rc;

and inserted it after the CALL PUTLIST in the example above, the following output would be produced:

(VAR1='ship'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 <invalid list id>[0]
 <invalid list id>[0]
 (LST1='car'
 LST2='train'
 LST3='bicycle'
)[3]
)[2]
The identifier for the sublist: 0

SETITEMN
Sets the specified list item to the specified number.

SETITEMN (l ist- id , numeric- value ,

index , auto- grow

)

The number specified overwrites the item at the specified position. If no position is specified, the
number overwrites the item at the first position in the list.

If you want to insert a number without overwriting any items, see INSERTN (page 1659).

Return type: Numeric

Reference for language elements
Version 4.1

1704

Returns the list identifier.

list-id

Type: List

The identifier for the list.

numeric-value

Type: Numeric

The value to which to set this list item. This must be a number.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to place numeric-value.

If you do not specify a value for this argument, the first item in the list is set to numeric-value.

If you specify a value for this argument that is greater than the number of items specified when
the list was created, an error message is returned, unless auto-grow is set to Y.

auto-grow
Optional argument

Specifies that the number of items in the list can increase beyond that specified when the list was
created.

"N"

The list cannot grow beyond the number of items specified when it was created. This is the
default.

"Y"

The list can grow beyond the number of items specified when it was created.

You can set index to any number larger than the length of list-id, as long as Y is also specified for
auto-grow. If index is greater than the length of list-id + 1, then the list items between the original last
index item and the new last index item contain contain numeric missing values. For an example, see
Example using auto-grow below.

Reference for language elements
Version 4.1

1705

Basic example
In this example, a new list is created that can hold four items. The items are then extracted from the list
using GETITEMN (page 1631). The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 1001, 4);

 DO y = 1 TO 4;
 pc = GETITEMN(lid1, y);
 PUT 'List item ' y 'is: ' pc;
 END;

RUN;

This produces the following output:

List item 1 is: 100
List item 2 is: 200
List item 3 is: 300
List item 4 is: 1001

Example – using auto-grow
In this example, a new list is created that can hold four items, but is extended to six items by using the
auto-grow argument with SETITEMN (page 1703). The items are then extracted from the list using
GETITEMN (page 1631). The LISTLEN (page 1664) function is also used to get the length of the
new list. The result is written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 200, 2);
 lr1 = SETITEMN(lid1, 300, 3);
 lr1 = SETITEMN(lid1, 1001, 4);

 sir = SETITEMN(lid1, 50, 7, 'Y');

 DO y = 1 TO LISTLEN(lid1);
 git = GETITEMN(lid1, y);
 PUT 'List item ' y 'is: ' gir;
 END;

RUN;

Reference for language elements
Version 4.1

1706

This produces the following output:

List item 1 is: 100
List item 2 is: 200
List item 3 is: 300
List item 4 is: 1001
List item 5 is: .
List item 6 is: .
List item 7 is: 50

The list has been extended to consist of seven items, with items five and six missing.

SETLATTR
Set the attributes for a list or for specified items in a list.

SETLATTR (l ist- id , attribute- list

, index

)

Some attributes can only be set for lists, not for list items.

Return type: Numeric

list-id

Type: List

The identifier for the list.

attribute-list

A list of one or more attributes to apply to the specified list or to a specified item in that list.
Attributes are separated by spaces. The list must be enclosed by quotation marks.

"ACTIVE"

Currently unsupported. Applies to list items only.

"ANYNAMES"

A list item name can have any format. This is the default. For example, the name can
be longer than eight characters, can start with a numeric, can contain non-alphanumeric
characters, and so on. To restrict item names to SAS format only, see SASNAMES.

Applies to lists only.

"AUTO"

Currently unsupported. Applies to list items only.

Reference for language elements
Version 4.1

1707

"CHARONLY"

The list can only be assigned character values. If you assign a numeric value, an error
occurs and a message is written to the log. See also NOCHARONLY.

Applies to lists only.

"COPY"

Sublists are included in lists as list items, rather than as list identifiers. This is the default.

Applies to lists only.

"DELETE"

Items can be deleted. This is the default. See also NODELETE.

Applies to lists and to list items.

"DUPNAMES"

Duplicate item names are allowed in lists. This is the default. If you want to ensure
duplicate item names cannot be set for a list, see NODUPNAMES.

Applies to lists only.

"FIXEDLENGTH"

The number of items in a list is fixed when it is created. Items cannot be added to or
deleted from the list. If you want to add or delete items, see NOFIXEDLENGTH, which is the
default setting.

Applies to lists only.

"FIXEDTYPE"

Specifies that the type (character, numeric or list) of the items in a list is set when using
a list function, and items of other types cannot be written to list items. For example, if you
specify a numeric value for a list item that was originally specified as a character:

rc = SETITEMN(lid1, 100, 1);

then, by default WPS, automatically converts it to a character value, and a note is written
to the log indicating that this has occurred. If you have previously set this attribute for the
list or list item, the value will instead be set to a missing value, and an error message and
note will be written to the log.

You reset this attribute using see NOFIXEDTYPE (this is the default).

Applies to lists and to list items.

"HONORCASE"

The case of list item names is honoured. For example, VAR1 is different to var1 and to
Var1. By default case is not honoured (see NOHONORCASE).

Reference for language elements
Version 4.1

1708

Applies to lists only.

"NOHONORCASE"

The case of item names is not honoured. For example, the names VAR1, var1 and Var1
are considered the same. The is the default. See also HONORCASE.

Applies to lists only.

"INACTIVE"

Currently unsupported.

Applies to lists items only.

"NOAUTO"

Currently unsupported. Applies to list items only.

"NOCHARONLY"

Lists can contain any type of value. This is the default. To specify that lists can only contain
character values, specify CHARONLY

Applies to lists only.

"NOCOPY"

Sublists are output as list identifiers. This is the default. To enable functions to output
sublists as entries in the containing list, specify COPY

Applies to lists only.

"NODELETE"

List items cannot be deleted. See also DELETE.

Applies to lists and to list items.

"NODUPNAMES"

Duplicate list item names are not allowed. For example:

DATA _NULL_;

 lid1 = MAKENLIST('l', 'VAR4','VAR2', 'VAR3', 'VAR4');

 rc = SETLATTR(lid1, 'nodupnames');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'plane', 'var3');
 rc = SETNITEMC(lid1, 'horse', 'var4');
 rc = SETNITEMC(lid1, 'taxi', 'var4',2);

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1709

causes a message to be written to the log warning that the item with the duplicate name
cannot be set. The list only contains the first four items.

Applies to lists only.

If the list is defined with duplicate item names, then attempting to set this attribute causes
an error message. For example, if the list in the above example had been specified as:

lid1 = MAKENLIST('l', 'VAR1','VAR2', 'VAR3', 'VAR4', 'VAR4');

then running the DATA step would cause a message to be written to the log informing you
that the attribute could not be set. The list is then created as if DUPNAMES is specified. See
also DUPNAMES.

"NOFIXEDLENGTH"

The length of the list is not fixed. Items can be added to or deleted from the list. This
attribute applies to lists. This is the default. See also FIXEDLENGTH.

Applies to lists only.

"NOFIXEDTYPE"

Specifies that the type (character, numeric or list) is not fixed, and functions that write to
the items do not have to be of the same type. For example, if you specify a numeric value
to a character list item:

rc = SETITEMC(lid1, 100, 1);

then, by default WPS, automatically converts it to a character value. A note would be
written to the log indicating that the numeric value has been converted to a character
value.

This is the default value. If you want to ensure list items can only have particular types,
specify FIXEDTYPE.

"NONUMONLY"

Specified for lists only. Disables NUMONLY, if it has been set. This is the default.

Applies to lists only.

"NOUPDATE"

The values of items cannot be changed or updated. The positioning of this option affects
the results. For example, in this code fragment:

lid1 = MAKENLIST('l', '1var', 'var2', 'var3', 'var4');

 rc = SETLATTR(lid1, 'noupdate');

 rc = SETNITEMN(lid1, 1,'1var');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMN(lid1, 200, 'var3');
 rc = SETNITEMN(lid1, 300, 'VAR4');

Reference for language elements
Version 4.1

1710

no values are set, and a message is returned to the log, because the attribute prevents
updates to the list. In this code fragment:

lid1 = MAKENLIST('l', '1var', 'var2', 'var3', 'var4');

 rc = SETNITEMN(lid1, 1,'1var');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMN(lid1, 200, 'var3');
 rc = SETNITEMN(lid1, 300, 'VAR4');

 rc = SETLATTR(lid1, 'noupdate');

 rc = SETNITEMN(lid1, 2 ,'lvar');

The list items are set to the values specified. However, the final SETNITEMN cannot
change the value of the specified item, as the attribute was set before it. An error message
is returned, and the value of the item is not updated. See also UPDATE.

Applies to lists and to list items.

"NOWRITE"

The list item cannot be saved to a file or catalog using SAVELIST (page 1683). To
enable a list item to be saved, specify WRITE (this is the default).

Applies to list items only. If you do not specify an index position, this attribute is ignored.

"NUMONLY"

Items in the list can only be numeric. If you specify a character value to a list item, an error
message is returned.

To switch off this attribute, specify NONUMONLY (the default).

Applies to lists only.

"SASNAMES"

A list item name must be in SAS naming format. That is, the name must contain eight
characters or fewer, can only contain alphanumeric characters, and cannot start with
a numeric. For example, if this attribute is set the list items names 1var, var^ and
varvar123 would be invalid.

If you specify a name that does not conform to SAS naming format, then SETLATTR
cannot subsequently be set and an error message is returned.

index cannot be specified for this attribute; if it is, the attribute is not set, and defaults to
ANYNAMES.

Applies to lists only.

"UPDATE"

Default for lists and list items. List items can be updated. See also NOUPDATE.

Applies to lists and to list items.

Reference for language elements
Version 4.1

1711

"WRITE"

Enables a list item to be saved in a file or catalog using SAVELIST (page 1683). This is
the default. To switch off this attribute, specify NOWRITE.

Applies to list items only. If you do not specify an index position, this attribute is ignored.

index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list of an item.

The following attributes are set by default for a list:

DELETE UPDATE NOFIXEDTYPE NOFIXEDLENGTH ANYNAMES
DUPNAMES NOCHARONLY NONUMONLY COPY NOHONORCASE

The following attributes are set by default for a list item:

ACTIVE WRITE NOAUTO DELETE UPDATE NOFIXEDTYPE

Example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. Attributes are then set for the specified list, and for an item in the list. These attributes are
returned using GETLATTR. The result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'ship', 'var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 attr4list = GETLATTR(lid1);
 PUT 'All default attributes for list: ' attr4list;

 pq = SETLATTR(lid1,'FIXEDLENGTH CHARONLY');

 attr4list = GETLATTR(lid1);
 PUT 'Modified attributes for list: ' attr4list;

 attr4item = GETLATTR(lid1,2);
 PUT 'Default attributes for second item: ' attr4item;

 pq = SETLATTR(lid1,'NOWRITE AUTO',2);

 attr4item = GETLATTR(lid1,2);
 PUT 'Modified attributes for second item: ' attr4item;

RUN;

Reference for language elements
Version 4.1

1712

This produces the following output:

All default attributes for list:
DELETE UPDATE NOFIXEDTYPE NOFIXEDLENGTH ANYNAMES DUPNAMES NOCHARONLY NONUMONLY COPY
 NOHONORCASE
Modified attributes for list:
DELETE UPDATE NOFIXEDTYPE FIXEDLENGTH ANYNAMES DUPNAMES CHARONLY NONUMONLY COPY
 NOHONORCASE
Default attributes for second item: ACTIVE WRITE NOAUTO DELETE UPDATE NOFIXEDTYPE
Modified attributes for second item: ACTIVE NOWRITE AUTO DELETE UPDATE NOFIXEDTYPE

SETNITEMC
Sets the specified named list item to the specified character string.

SETNITEMC (l ist- id , character- value , name ,
occurrence

,

start- index

,

index , force- uppercase

)

The character or string specified overwrites the specified named item.

If you want to insert a character or string without overwriting any items, see INSERTC (page 1654),
which can be used to insert a character or string at a specified position in a list.

Return type: Numeric

The list identifier.

list-id

Type: List

The identifier for the list.

character-value

Type: Character

The value to which to set this list item. This must be a character or string.

name

Type: Character

The name of the list item for which you want to set a value.

occurrence
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1713

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching for the named
item to set. This must be greater than 0 (zero). The default is 1. This argument is useful when
the item list contains non-unique item names, and you want to search for an occurrence after an
index position.

index
Optional argument

Type: Var

The name of a variable in which the position of the item specified is returned. If the value of this
argument is anything except a variable name, an error is returned.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Reference for language elements
Version 4.1

1714

Basic example
In this example, a new list is created that contains four named items. CALL PUTLIST is used to write
the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
)[1]

The output shows that the values have been assigned to the specified items. The item names are
displayed in upper case in the output.

In this example, the case in which you specify the item names is ignored. You could, for example, have
specified:

 rc = SETNITEMC(lid1, 'bicycle','VAR1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'Var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');

The output would still be the same.

Example – including unspecified item names in the list
In this example, a new list is created that can hold four named items, but is extended to five items using
SETNITEMC (page 1712). CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');
 rc = SETNITEMC(lid1, 'ship', 'var5');

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1715

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 var5='ship'
)[1]

The output shows that values have been assigned to the specified items, and a new item, named var5,
has been added to the list. On display, the case of the new item name matches the case with which it
was specified.

Example – non-unique item names
In this example, a new list is created that can hold five named items, where two of the items have non-
unique item names. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4');

 rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');
 rc = SETNITEMC(lid1, 'ship', 'var4',2);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 VAR4='ship'
)[1]

The output shows that values have been assigned to the specified items, and that the items with
the same name have unique values because the occurrence for the item has been specified. If the
occurrence is not specified:

rc = SETNITEMC(lid1, 'bicycle','var1');
 rc = SETNITEMC(lid1, 'plane', 'var2');
 rc = SETNITEMC(lid1, 'horse', 'var3');
 rc = SETNITEMC(lid1, 'taxi', 'var4');
 rc = SETNITEMC(lid1, 'ship', 'var4');

Reference for language elements
Version 4.1

1716

the following output is produced:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='ship'
 VAR4=.
)[1]

The first occurrence of the item with the specified name is overwritten, and the second occurrence of
the item has a missing value.

In this example, three items with non-unique names are specified:

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4','var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');
 lr1 = SETNITEMC(lid1, 'ship', 'var4');
 lr1 = SETNITEMC(lid1, 'car', 'var4',2);
 lr1 = SETNITEMC(lid1, 'roller skates', 'var4',3);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='ship'
 VAR4='car'
 VAR4='roller skates'
)[1]

The first occurrence of the item with the specified name is overwritten, the second and third
occurrences of the item have the occurrence specified, and are added to the list in the appropriate
positions..

Reference for language elements
Version 4.1

1717

Example – starting from an index position
In this example, a new list is created that can hold six named items, where three of the items have non-
unique item names. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4', 'var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');
 lr1 = SETNITEMC(lid1, 'car', 'var4',2);
 lr1 = SETNITEMC(lid1, 'ship', 'var4',2,5);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 VAR4='car'
 VAR4='ship'
)[1]

The output shows that values have been assigned to the specified items. The third occurrence of the
item named var4 has the correct value assigned because the function searched for the item name
starting from the fifth index position. The second occurrence from that starting position has the value
ship.

Reference for language elements
Version 4.1

1718

Example – specifying case
In this example, MAKENLIST (page 1668) is used to create a new list that holds four named items.
The names are specified in upper case. The value for each item is then set using an equivalent
lower case name in SETNITEMC (page 1712), but with the case forced to upper. The value is then
obtained using GETNITEMC. The result is written to the log.

DATA _NULL_;

 ix = 0;

 lid1 = MAKENLIST('l', 'VAR1','VAR2','VAR3','VAR4');

 mm = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMC(lid1, 'bicycle','var1',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'plane', 'var2',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'horse', 'var3',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4',,,ix,'y');

 CALL PUTLIST(lid1,,0);

 rx = GETNITEMC(lid1,'var1',,,'roller skate');
 PUT 'Returns: ' rx;

 rx = GETNITEMC(lid1,'VAR4',,,'roller skate');
 PUT 'Returns: ' rx;

 rx = GETNITEMC(lid1,'var1',,,'roller skate','y');
 PUT 'Returns: ' rx;

RUN;

This produces the following output:

 (VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
)[1]
Returns: roller skate
Returns: taxi
Returns: bicycle

The first use of GETNITEMC returns the specified default value roller skate because the item
name var1 does not exist (VAR1 does). The third use of GETNITEMC returns the value specified in
SETNITEMC (page 1668) because the force-uppercase argument is set to Y.

Reference for language elements
Version 4.1

1719

SETNITEML
Sets the specified list item to the specified sublist.

SETNITEML (l ist- id , sublist- id , name ,
occurrence

,

start- index

,

index , force- uppercase

)

The sublist specified overwrites the named item. It is not the sublist itself that is placed in the list, but a
pointer to it, identified in other functions by the list identifier.

Return type: Numeric

The identifier of the list into which the sublist is inserted.

list-id

Type: List

sublist-id

Type: List

The identifier of the sublist that overwrites the item.

name

Type: Character

The name of the list item to be set as the sublist.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching for the named
item to set. This must be greater than 0 (zero). The default is 1. This argument is useful when
the item list contains non-unique item names, and you want to search for an occurrence after an
index position.

Reference for language elements
Version 4.1

1720

index
Optional argument

Type: Var

The name of a variable in which the position of the item specified is returned. If the value of this
argument is anything except a variable name, an error is returned.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Basic example
In this example, a new list is created that contains four named items. A second list is then created,
containing three items. The second list is inserted into the first list. CALL PUTLIST is used to write the
list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 sir = SETNITEML(lid1, lid2, 'var2');

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1721

This produces the following output:

(VAR1='bicycle'
 VAR2=(OV1=100
 OV2=250
 OV3=310
)[2]
 VAR3='horse'
 VAR4='taxi'
)[1]

The output shows that the sublist has been assigned to the specified item name. The value horse,
originally specified for the named item var2 in the first list, has now been overwritten with a pointer to
the second list.

In this example, the case in which you specify the item name is ignored. You could, for example, have
specified:

 rc = SETNITEML(lid1, lid2, 'Var2');

The output would still be the same.

Example – including unspecified item names in the list
In this example, a new list is created that contains four named items. A second list is then created,
containing three items. The second list is inserted into the first list, but at an item name that does not
exist. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 sir = SETNITEML(lid1, lid2, 'var6');

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1722

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 var6=(OV1=100
 OV2=250
 OV3=310
)[2]
)[1]

The output shows that the sublist has been assigned to the specified item name, but as the name did
not already exist it has been created as a new name in the list. On display, the case of the new item
name matches the case with which it was specified.

Example – non-unique item names
In this example, a new list is created that can hold five named items, where two of the items have non-
unique item names. A second list is then created, containing three items. The second list is inserted
into the first list, but at a specified occurrence of the non-unique item name. CALL PUTLIST is used to
write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');
 lr1 = SETNITEMC(lid1, 'ship', 'var4',2);

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 sir = SETNITEML(lid1, lid2, 'var4', 2);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 var4=(OV1=100
 OV2=250
 OV3=310
)[2]
)[1]

Reference for language elements
Version 4.1

1723

The output shows that the sublist has been assigned to the specified occurrence of the item name.
The value ship, originally specified for the named occurrence of the item var4 in the first list, has now
been overwritten with a pointer to the second list.

If you had not specified the occurrence to set, the first occurrence would be selected. For example:

 rc = SETNITEML(lid1, lid2, 'var4');

produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[2]
 VAR4='ship'
)[1]

The first occurrence of the item with the specified name is overwritten.

Example – starting from an index position
In this example, a new list is created that can hold six named items, where three of the items have non-
unique item names. A second list is then created, containing three items. The second list is inserted
into the first list, but at a specified occurrence of the non-unique item name. CALL PUTLIST is used to
write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4','var4', 'var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');
 lr1 = SETNITEMC(lid1, 'car', 'var4',2);
 lr1 = SETNITEMC(lid1, 'ship', 'var4',2,5);

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 sir = SETNITEML(lid1, lid2, 'var4',2,5);

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1724

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 VAR4='car'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[46]
)[1]

The output shows that the list has been assigned to the specified item. The third occurrence of the
item named var4 has the list correctly assigned to it because the function searched for the item name
starting from the fifth index position. The second occurrence from that starting position had the value
ship, which has now been overwritten by the pointer to the sublist.

Example – specifying case
In this example, a new list is created that holds four named items. The names are specified in upper
case. The value for each item is then set using an equivalent lower case name in SETNITEMC, but
forced to upper case. The sublist is written to a specified named item, with the force-uppercase set to Y.
This ensures that the item name in this function matches the case of the item name in the specified list.
CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'VAR1','VAR2','VAR3','VAR4');

 mm = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMC(lid1, 'bicycle','var1',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'plane', 'var2',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'horse', 'var3',,,ix,'y');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4',,,ix,'y');

 lid2 = MAKENLIST('l', 'ov1','ov2', 'ov3');

 lr2 = SETNITEMN(lid2, 100, 'ov1');
 lr2 = SETNITEMN(lid2, 250, 'ov2');
 lr2 = SETNITEMN(lid2, 310, 'ov3');

 sir = SETNITEML(lid1, lid2, 'var4',,,ix,'y');

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1725

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4=(OV1=100
 OV2=250
 OV3=310
)[2]
)[1]

The sublist has been correctly placed because the item name specified matches the case of the item
name in the destination list. If you had not set force-uppercase to Y:

rc = SETNITEML(lid1, lid2, 'var4');

VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
 var4=(OV1=100
 OV2=250
 OV3=310
)[2]
)[1]

then the sublist would be assigned to a new variable, var4 rather than VAR4 as case is being honoured
as specified by setting the HONORCASE attribute of the list.

SETNITEMN
Sets the specified named list item to the specified number.

SETNITEMN (l ist- id , numeric- value , name ,
occurrence

,

start- index

,

index , force- uppercase

)

The number specified overwrites the current value of the specified named item.

If you want to insert a number without overwriting any items, see INSERTN (page 1654), which can
be used to insert a number at a specified position in a list.

Return type: Numeric

The list identifier.

list-id

Type: List

The identifier for the list.

Reference for language elements
Version 4.1

1726

numeric-value

Type: Numeric

The value to which to set this list item. This must be a number.

name

Type: Character

The name of the list item for which you want to set a value.

occurrence
Optional argument

Type: Numeric

An integer that specifies the occurrence of the item to find, if it exists. This must be greater than
0 (zero). For example, to find the second occurrence of the item, specify 2. The default is 1. The
search starts at the first item. If you want the search to start at another item, specify start-index.

start-index
Optional argument

Type: Numeric

An integer that specifies the ordinal position in the list at which to start searching for the named
item to set. This must be greater than 0 (zero). The default is 1. This argument is useful when
the item list contains non-unique item names, and you want to search for an occurrence after an
index position.

index
Optional argument

Type: Var

The name of a variable in which the position of the item specified is returned. If the value of this
argument is anything except a variable name, an error is returned.

force-uppercase
Optional argument

Defines whether an item name specified using lower case characters is treated as consisting
entirely of upper case characters or not, or whether case is ignored. This option is only effective
if the attribute 'HONORCASE' has been set for the list. Attributes are set using the SETLATTR
(page 1706) function.

"N"

The item name is handled in its original case. This is the default.

"Y"

The item name is treated as if it consists of upper case characters.

Reference for language elements
Version 4.1

1727

Basic example
In this example, a new list is created that contains four named items. CALL PUTLIST is used to write
the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 lr1 = SETNITEMN(lid1, 1,'var1');
 lr1 = SETNITEMN(lid1, 2, 'var2');
 lr1 = SETNITEMN(lid1, 3, 'var3');
 lr1 = SETNITEMN(lid1, 4, 'var4');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1='bicycle'
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
)[1]

The output shows that the values have been assigned to the specified values. The item names are
displayed in upper case in the output.

In this example, the case in which you specify the item names is ignored. You could, for example, have
specified:

 lr1 = SETNITEMC(lid1, 'bicycle','VAR1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'Var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');

The output would still be the same.

Example – including unspecified item names in the list
In this example, a new list is created that can hold four named items, but is extended to five items using
SETNITEMN (page 1712). CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2','var3','var4');

 lr1 = SETNITEMC(lid1, 'bicycle','var1');
 lr1 = SETNITEMC(lid1, 'plane', 'var2');
 lr1 = SETNITEMC(lid1, 'horse', 'var3');
 lr1 = SETNITEMC(lid1, 'taxi', 'var4');
 lr1 = SETNITEMC(lid1, 'ship', 'var5');

 CALL PUTLIST(lid1,,0);

RUN;

Reference for language elements
Version 4.1

1728

This produces the following output:

(VAR1=1
 VAR2=2
 VAR3=3
 VAR4=4
 var5=7
)[1]

The output shows that values have been assigned to the specified items, and a new item, named var5,
has been added to the list. On display, the case of the new item name matches the case with which it
was specified.

Example – non-unique item names
In this example, a new list is created that can hold five named items, where two of the items have non-
unique item names. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4','var4');

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMN(lid1, 2, 'var2');
 lr1 = SETNITEMN(lid1, 3, 'var3');
 lr1 = SETNITEMN(lid1, 4, 'var4');
 lr1 = SETNITEMN(lid1, 100, 'var4',2);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1=1
 VAR2=2
 VAR3=3
 VAR4=4
 VAR4=100
)[1]

The output shows that values have been assigned to the specified items, and that the items with the
same name have unique values because the occurrence for the item was specified. If the occurrence is
not specified:

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMN(lid1, 2, 'var2');
 lr1 = SETNITEMN(lid1, 3, 'var3');
 lr1 = SETNITEMN(lid1, 4, 'var4');
 lr1 = SETNITEMN(lid1, 100, 'var4');

Reference for language elements
Version 4.1

1729

This produces the following output:

(VAR1=1
 VAR2=2
 VAR3=3
 VAR4=100
 VAR4=.
)[1]

The first occurrence of the item with the specified name is overwritten, and the second occurrence of
the item has a missing value.

In this example, three items with non-unique names are specified:

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4', 'var4', 'var4');

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMN(lid1, 2, 'var2');
 lr1 = SETNITEMN(lid1, 3, 'var3');
 lr1 = SETNITEMN(lid1, 4, 'var4');
 lr1 = SETNITEMN(lid1, 100, 'var4',2);
 lr1 = SETNITEMN(lid1, 50, 'var4');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1=1
 VAR2=2
 VAR3=3
 VAR4=50
 VAR4=100
 VAR4=.
)[1]

The first occurrence of the non-unique item name is overwritten, the second occurrence of the item
name is set correctly because occurrence has been specified, and the third occurrence is set to missing
value.

Reference for language elements
Version 4.1

1730

Example – starting from an index position
In this example, a new list is created that can hold six named items, where three of the items have non-
unique item names. CALL PUTLIST is used to write the list to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4', 'var4', 'var4');

 lr1 = SETNITEMN(lid1, 1, 'var1');
 lr1 = SETNITEMN(lid1, 2, 'var2');
 lr1 = SETNITEMN(lid1, 3, 'var3');
 lr1 = SETNITEMN(lid1, 4, 'var4');
 lr1 = SETNITEMN(lid1, 100, 'var4',2);
 lr1 = SETNITEMN(lid1, 50, 'var4',2,5);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(VAR1=1
 VAR2=2
 VAR3=3
 VAR4=4
 VAR4=100
 VAR4=50
)[1]

The output shows that values have been assigned to the specified items. The third occurrence of the
item named var4 has the correct value assigned because the function searched for the item name
starting from the fifth index position. The second occurrence from that starting position has the value
50.

Reference for language elements
Version 4.1

1731

Example – specifying case
In this example, MAKENLIST (page 1668) is used to create a new list that consists of four named
items. The names are specified in upper case. The value for each item is then set using an equivalent
lower case name in SETNITEMN (page 1725). The value is then obtained using GETNITEMN. The
result is written to the log.

DATA _NULL_;

 lid1 = MAKENLIST('l', 'var1','var2', 'var3', 'var4');

 mm = SETLATTR(lid1, 'HONORCASE');

 lr1 = SETNITEMN(lid1, 100, 'var1',,,ix,'y');
 lr1 = SETNITEMN(lid1, 250, 'var2',,,ix,'y');
 lr1 = SETNITEMN(lid1, 310, 'var3',,,ix,'y');
 lr1 = SETNITEMN(lid1, 40, 'var4',,,ix,'y');

 CALL PUTLIST(lid1,,0);

 gi = GETNITEMN(lid1,'var1',,, 0);
 PUT 'Returns: ' gi;

 gi = GETNITEMN(lid1,'VAR4',,, 0, 'y');
 PUT 'Returns: ' gi;

 gi = GETNITEMN(lid1,'var1',,, 0, 'y');
 PUT 'Returns: ' gi;

RUN;

This produces the following output:

(VAR1=100
 VAR2=250
 VAR3=310
 VAR4=40
)[1]Returns: 0
Returns: 40
Returns: 100

The first use of GETNITEMN returns the specified default value 0 because the item name var1 does not
exist (VAR1 does). The third use of GETNITEMN returns the value specified in SETNITEMN because the
force-uppercase argument is set to Y.

Reference for language elements
Version 4.1

1732

SORTLIST
Sorts the specified list.

SORTLIST (l ist- id ,

opt ion- list

,

start- index

, number- of- items

)

Return type: Numeric

list-id

Type: List

The identifier for the list.

option-list
Optional argument
Specifies how the sort should proceed; for example, ascending or descending, taking into
account case or not, and so on. Options should be separated by space, and the entire list should
be quoted, not each option; for example, 'DESCENDING OBEYCASE'. The following options are
available:

"ASCENDING"

Sort the list in ascending order. This is the default.

"DESCENDING"

Sort the list in descending order.

"IGNORECASE"

Ignore the case of character items. This is the default.

"OBEYCASE"

Sort obeying rules of case.

"VALUE"

For named list items, sort according to the value of named items.

"NAME"

For named list items, sort according to the names of the items.

"NODUP"
Duplicates are ignored, and dropped from the list.

Reference for language elements
Version 4.1

1733

start-index
Optional argument

Type: Numeric

The ordinal position at which to start the sort. If not specified, sorting starts at the first position. If
number-of-items is not specified, sorting occurs from the starting point to the end of the list.

number-of-items
Optional argument

Type: Numeric

The number of items to be sorted from the starting position, which is either start-index, or the first
item if start-index is not specified.

Basic example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMN (page 1703)
functions. The items are then extracted from the list using GETITEMN (page 1631). The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(4);

 rc = SETITEMN(lid1, 100, 1);
 rc = SETITEMN(lid1, 600, 2);
 rc = SETITEMN(lid1, 450, 3);
 rc = SETITEMN(lid1, 200, 4);

 rc = SORTLIST(lid1);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(100
 200
 450
 600
)[1]

Reference for language elements
Version 4.1

1734

Example – sort with options
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The items are then extracted from the list using GETITEMC (page 1629). The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(6);

 lr1 = SETITEMC(lid1, 'car', 1);
 lr1 = SETITEMC(lid1, 'bicycle', 2);
 lr1 = SETITEMC(lid1, 'train', 3);
 lr1 = SETITEMC(lid1, 'Bicycle', 4);
 lr1 = SETITEMC(lid1, 'Bicycle', 5);
 lr1 = SETITEMC(lid1, 'Plane', 6);

 slr = SORTLIST(lid1, 'DESCENDING OBEYCASE NODUP');

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

('train'
 'car'
 'bicycle'
 'Plane'
 'Bicycle'
)[1]

In this example, the list has been sorted into descending order. Case is taken into account, and as
upper case characters are lower in the collating order than lower case characters, strings containing
upper case characters appear at the end of the list. Duplicates are not allowed, so one of the instances
of the string Bicycle has been removed from the list and the resulting list contains five items rather
than six.

Example – sort with start and end points
In this example, a list is created using the MAKELIST (page 1667) and SETITEMN (page 1703)
functions. The items to be sorted start at the specified item, and include the specified number of
items. Because no options have been specified, option-list is null but its delimiter (,) is included in
the function. The items are then extracted from the list using GETITEMN (page 1631). The result is
written to the log.

DATA _NULL_;

 lid1 = MAKELIST(16);

 lr1 = SETITEMN(lid1, 100, 1);
 lr1 = SETITEMN(lid1, 600, 2);
 lr1 = SETITEMN(lid1, 450, 3);
 lr1 = SETITEMN(lid1, 200, 4);
 lr1 = SETITEMN(lid1, 250, 5);

Reference for language elements
Version 4.1

1735

 lr1 = SETITEMN(lid1, 700, 6);
 lr1 = SETITEMN(lid1, 150, 7);
 lr1 = SETITEMN(lid1, 220, 8);
 lr1 = SETITEMN(lid1, 100, 9);
 lr1 = SETITEMN(lid1, 600, 10);
 lr1 = SETITEMN(lid1, 450, 11);
 lr1 = SETITEMN(lid1, 210, 12);
 lr1 = SETITEMN(lid1, 250, 13);
 lr1 = SETITEMN(lid1, 760, 14);
 lr1 = SETITEMN(lid1, 160, 15);
 lr1 = SETITEMN(lid1, 230, 16);

 slr = SORTLIST(lid1,,4,10);

 CALL PUTLIST(lid1,,0);

RUN;

This produces the following output:

(100
 600
 450
 100
 150
 200
 210
 220
 250
 250
 450
 600
 700
 760
 160
 230
)[1]

In this example, the list has been sorted into ascending order starting from the fourth character and
continuing for a further ten characters.

CALL LISTPROF
Enables the number of lists created in a DATA step to be calculated.

CALL LISTPROF (profiler) ;

This routine should be called before GETLCNTP (page 1635), which returns the number of lists
created during the DATA step.

profiler

Reference for language elements
Version 4.1

1736

"ON"

Switches the list profiler on.

"OFF"

Switches the list profiler off. This is the default.

The number of lists created between CALL LISTPROF('ON') and CALL LISTPROF('OFF') is
calculated. The count is restarted when CALL LISTPROF('ON') is next used.

Basic example
In this example, two lists are created. One list is deleted, and then another created. This is done three
times. The result is written to the log.

DATA _NULL_;

 CALL LISTPROF('ON');

 DO i = 1 TO 3;
 lid1 = MAKENLIST('l', 'v1', 'v2', 'v3');
 lid2 = MAKENLIST('l', 'v1', 'v2', 'v3');

 rc = DELLIST(lid2);

 lid3 = MAKENLIST('l', 'var1', 'var2', 'var3');

 END;

 rp = GETLCNTP();
 PUT 'Number of lists created: ' rp;

RUN;

This produces the following output:

Number of lists created: 6

The DATA step creates nine lists, but also deletes three.

Example – showing counts as a result of using ON and OFF
In this example, various lists are created. The result is written to the log.

DATA _NULL_;

 CALL LISTPROF('ON');

 lid1 = MAKENLIST('l', 'v1', 'v2', 'v3');
 lid2 = MAKENLIST('l', 'v2', 'v3', 'v4');

 rp = GETLCNTP();

 PUT 'Number of lists created: ' rp;

 CALL LISTPROF('OFF');

Reference for language elements
Version 4.1

1737

 lid3 = MAKENLIST('l', 'v5', 'v6', 'v7');
 lid4 = MAKENLIST('l', 'v8', 'v9', 'v10');

 rp = GETLCNTP();

 PUT 'Number of lists created: ' rp;

 CALL LISTPROF('OFF');

 lid5 = MAKENLIST('l', 'v1', 'v2', 'v3');
 lid6 = MAKENLIST('l', 'v2', 'v3', 'v4');

 rp = GETLCNTP();

 PUT 'Number of lists created: ' rp;

 lid7 = MAKENLIST('l', 'n1', 'n2', 'n3');
 lid8 = MAKENLIST('l', 'n4', 'n5', 'n6');

 rp = GETLCNTP();

 PUT 'Number of lists created: ' rp;

 CALL LISTPROF('OFF');

RUN;

This produces the following output:

Number of lists created: 2
Number of lists created: 2
Number of lists created: 2
Number of lists created: 4

Eight lists are created in the DATA step. CALL LISTPROF('ON') starts the count of lists. Two
lists are created, then GETLCNTP is used to return the number of lists created; 2 is returned. CALL
LISTPROF('OFF') is then used to switch off counting. Two more lists are created, and then
GETLCNTP is used to return the number of lists created. Again, 2 is returned, because counting was
switched off. CALL LISTPROF('ON') is then used again to restart counting. Two more lists are
created, and then GETLCNTP is used to return the number of lists created; 2 is returned. Two more
lists are then created, and then GETLCNTP is used to return the number of lists created; 4 is returned,
as four lists were created (and none deleted) between the CALL LISTPROF('ON') and CALL
LISTPROF('ON').

CALL PUTLIST
Write the specified list to the log.

CALL PUTLIST (l ist- id ,

t it le , spacing

) ;

Reference for language elements
Version 4.1

1738

list-id

Type: List

The identifier for the list.

title
Optional argument

Type: Character

The title for the list.

spacing
Optional argument

Type: Numeric

Lay out the list vertically, and set the indent. The indent is applied to each item in the list. The
value for this argument can be any positive integer, including 0 (zero). By default, the list is laid
out horizontally.

The list written to the log has one of the following formats:

('item' [, 'item', …]) [n]

where item is a list item, and n is the list identifier. If the list contains named items, it will have this
format:

(name='item' [, name=item, …]) [n]

where name is the name of an item inserted with the SETNITEMC, SETITEMN or SETITEML functions
into a list created with MAKENLIST.

If you specify a value for title, the list has the following format:

title=(list} [n]

where title is the title of the list, and list is the list in one of the preceding formats.

The same rules apply if the list is laid out vertically, except that the values are indented, and any
sublists are indented. The title, if specified, and the opening parenthesis fix the left margin of the vertical
layout; the number of any indent characters, as specified by spacing, are counted from that margin. For
example:

CALL PUTLIST(lid1,'List',2);

creates the output:

List=('car'
 'bicycle'
 'train'
)[37]

Reference for language elements
Version 4.1

1739

In this example, the first list item is positioned two characters from the opening parenthesis. All
subsequent list items are positioned in line with the first item. Items in sublists will be positioned in the
same way. Sublists do not have a title, but a name can be specified for the sublist when it is inserted
into a list, and this name has the same layout in the log as a title has.

If you insert a sublist into a list, the list has one of the formats above, and is positioned in the output at
the index position it has in the list. If the output is displayed vertically, the sublist is indented.

Basic example
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The list is then written to the log.

DATA _NULL_;

 lid1 = MAKELIST(3);

 lr1= SETITEMC(lid1, 'car', 1);
 lr1= SETITEMC(lid1, 'bicycle', 2);
 lr1= SETITEMC(lid1, 'train', 3);

 CALL PUTLIST(lid1);

RUN;

This produces the following output:

('car' 'bicycle' 'train')[1]

Example – list with title
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The list is then written to the log with the title specified.

DATA _NULL_;

 lid1 = MAKELIST(3);

 lr1= SETITEMC(lid1, 'car', 1);
 lr1= SETITEMC(lid1, 'bicycle', 2);
 lr1= SETITEMC(lid1, 'train', 3);

 CALL PUTLIST(lid1, 'Transport');

RUN;

This produces the following output:

Transport=('car' 'bicycle' 'train')[2]

Reference for language elements
Version 4.1

1740

Example – list with title and vertical layout
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. The list is then written to the log with a specified title, and laid out vertically.

DATA _NULL_;

 lid1 = MAKELIST(3);

 lr1= SETITEMC(lid1, 'car', 1);
 lr1= SETITEMC(lid1, 'bicycle', 2);
 lr1= SETITEMC(lid1, 'train', 3);

 CALL PUTLIST(lid1, 'Transport',0);

RUN;

This produces the following output:

Transport=('car'
 'bicycle'
 'train'
)[1]

Here, 0 (zero) has been specified to spacing, so the list is displayed vertically, but no indentation is
applied.

Example – list with title, vertical layout, indentation, item names and
sublist
In this example, a list is created using the MAKELIST (page 1667) and SETITEMC (page 1696)
functions. Another list is similarly created, and this list is then inserted into the first list as a sublist. The
first list is then written to the log with the title specified, and with an indented vertical layout.

DATA _NULL_;

 lid1 = MAKENLIST('g', 'var1', 'var2', 'var3', 'var4');

 lr1= SETNITEMC(lid1, 'ship', 'var1');
 lr1= SETNITEMC(lid1, 'plane', 'var2');
 lr1= SETNITEMC(lid1, 'horse', 'var3');
 lr1= SETNITEMC(lid1, 'taxi', 'var4');

 lid2 = MAKENLIST('g', 'lst1', 'lst2', 'lst3');

 lr2= SETNITEMC(lid2, 'car' ,'lst1');
 lr2= SETNITEMC(lid2, 'train','lst2');
 lr2= SETNITEMC(lid2, 'bicycle','lst3');

 ir = INSERTL(lid1,lid2,2,'Subl');

 CALL PUTLIST(lid1, 'Transport',5);

RUN;

Reference for language elements
Version 4.1

1741

This produces the following output:

Transport=(VAR1='ship'
 Subl=(LST1='car'
 LST2='train'
 LST3='bicycle'
)[2]
 VAR2='plane'
 VAR3='horse'
 VAR4='taxi'
)[1]

In this example, the value 5 has been specified for spacing, so the list is displayed vertically and a five
character indent is applied. The sublist is positioned at the index position specified by the INSERTL
(page 1656) function, with the name also specified in that function. The sublist is indented within the
list, using the same indentation.

ISPF CALL routines
Use the ISPF service to perform tasks.

The Interactive System Productivity Facility (ISPF) is a service available on z/OS on IBM mainframes.
The service provides IBM 3270 terminals with an interface through which users can perform tasks on
the mainframe.

For details on ISPF, see your IBM documentation.

CALL ISPEXEC ...1741
Execute ISPF services. Parameters are specified in a buffer.

CALL ISPLINK .. 1742
Execute ISPF services by specifying parameters in the routine.

CALL ISPEXEC
Execute ISPF services. Parameters are specified in a buffer.

CALL ISPEXEC (buflen- or- buffer

, buffer

) ;

This function enables you to execute service requests by specifying parameters in a buffer, which you
then specify in the routine.

If you need to pass the values of variables between the calling program and ISPF, you must use CALL
ISPLINK (page 1742).

Reference for language elements
Version 4.1

1742

buflen-or-buffer

Type: Character or numeric value

If buffer is not specified, this argument specifies the buffer containing the name of the services
and parameters. The length of the buffer is calculated by the routine.

If buffer is specified, this must be the length of the buffer.

buffer
Optional argument

Type: Character

A buffer containing the name of the services and parameters. The length of the buffer is specified
by buflen-or-buffer. For information on the parameters that can be specified, see your IBM ISPF
documentation

This function implements the call format of the ISPF ISPEXEC interface. For detailed information on
ISPEXEC, CALL ISPEXEC and ISPF, see your IBM ISPF documentation. Also see that documentation
for detailed examples of using the routine.

Example
In this example, the DISPLAY interface is started with the specified panel name.

DATA _NULL_;
 buflen = 16;
 buffer = 'DISPLAY PANELID1';
 CALL ISPEXEC(buflen, buffer);
RUN;

This example will do nothing outside the context of a corresponding ISPF environment, and is only
provided to show the form of the routine.

The routine in this example could also have been specified as:

CALL ISPEXEC(buffer);

The length of the buffer would then calculated by the function.

CALL ISPLINK
Execute ISPF services by specifying parameters in the routine.

CALL ISPLINK (service- name

,

,

argument

) ;

This function enables you to execute service requests by specifying parameters in the call. If you need
to pass the values of variables between the calling program and ISPF, you must use this routine.

Reference for language elements
Version 4.1

1743

service-name

Type: Character

The name of an ISPF service.

argument
Optional argument

Type: Character or numeric value

An argument or parameter required by the service.

Arguments are positional. Optional arguments on the right-hand side of the argument list can be omitted
if not required. If you want to omit an argument within the list, specify it as a blank enclosed in quotes
(' ').

This function implements the call format of the ISPF ISPLINK interface. For detailed information on
ISPLINK, CALL ISPLINK and ISPF, see your IBM ISPF documentation. Also see that documentation
for detailed examples of using the routine.

Example
In this example, the DISPLAY interface is started with the specified panel.

DATA _NULL_;
 LENGTH NAME $40 TITLE $20;
 CALL ISPLINK('VDEFINE', 'NAME TITLE');
 CALL ISPLINK('DISPLAY','PanelID1');
RUN;

This example will do nothing outside the context of a corresponding ISPF environment, and is only
provided to show the form of the routine.

Macro functions and CALL routines
Manipulate macro variables and execute macros in the DATA step.

RESOLVE ..1744
Returns the result of a macro expression, which can then be used in the DATA step.

SYMEXIST .. 1745
Returns a value indicating whether a specified macro variable exists.

SYMGET ... 1746
Returns the value of a macro variable as character data.

SYMGETN ...1747
Returns the value of a macro variable as numeric data.

SYMGLOBL ...1748
Returns a value that indicates whether a macro variable is global.

Reference for language elements
Version 4.1

1744

SYMLOCAL ... 1749
Returns a value that indicates whether a macro variable is local.

CALL EXECUTE ... 1750
Enables code, such as DATA steps, procedures and macros, to be run from a DATA step.

CALL SYMDEL ... 1752
Deletes a global variable name and its value.

CALL SYMPUT ... 1753
Assigns a character value to a global macro variable that can subsequently be used in a macro.

CALL SYMPUTN ...1754
Assigns a numeric value to a global macro variable that can be subsequently used in a macro.

CALL SYMPUTX ...1755
Assigns a value to a global or local macro variable that can be subsequently used in a macro.

RESOLVE
Returns the result of a macro expression, which can then be used in the DATA step.

RESOLVE (tex t)

Return type: Character

text

Type: Character

A macro expression.

Basic example
In this example, a macro variable is resolved and the value provided to the DATA step. The result is
written to the log.

%MACRO an;
 Marwick, Arthur
%MEND an;

LIBNAME books "c:\temp\books";
DATA _NULL_;
 retain chk 0;
 SET books.books;

 IF author EQ resolve('%an') AND chk NE 1 THEN do;
 chk = 1;
 name = quote(resolve('%an'));
 PUT "Author " name " exists";
 end;
run;

Reference for language elements
Version 4.1

1745

This produces the following output:

Author "Marwick, Arthur" exists

Example – executing macro in DATA step
In this example, a macro variable is resolved in the DATA step, and statements specified as a macro are
executed. The result is written to the example dataset.

%MACRO an;
 Hist
%MEND an;

LIBNAME books "c:\temp\books";
DATA example;
 SET books.books;

 IF LENGTH(type) >= 4 THEN
 DO;
 IF RESOLVE('%SUBSTR('|| TYPE ||', 1, 4)') = RESOLVE('%an')
 THEN OUTPUT;
 END;
RUN;

The dataset example contains all observations in which the variable Type begins with the text Hist
(such as History, Hist of Science, Hist/Culture and so on).

Note:
This example would return the same results if the SUBSTR function was used in the DATA step, rather
than as a statement in the macro in the RESOLVE statement; for example:

 IF SUBSTR(TYPE, 1, 4) = RESOLVE('%an')

SYMEXIST
Returns a value indicating whether a specified macro variable exists.

SYMEXIST (symbol- name)

Before creating a macro variable, you might want to check whether the variable name already exists in
the global or local symbol tables. This function enables you to do that.

Return type: Numeric

0 The named variable does not exist
1 The named variable exists

symbol-name

Type: Character

Reference for language elements
Version 4.1

1746

The name of the macro variable.

Example
In this example, the function is used to check whether a named variable exists. The result is written to
the log.

%LET an = 0;

DATA _NULL_;
 se = SYMEXIST("an");
 se = IFC(se, "The variable exists", "The variable doesn't exist");
 PUT se;
RUN;

This produces the following output:

The variable exists

The variable is first set using a %LET statement; the subsequent DATA step checks whether the named
variable exists.

SYMGET
Returns the value of a macro variable as character data.

SYMGET (symbol- name)

Return type: Character

symbol-name

Type: Character

The name of the macro variable containing the value to be obtained.

If the macro variable contains a numeric, this will be returned as character data.

Example
In this example, the function is used to get a character value from a macro variable. The result is written
to the log.

%LET an = House;
DATA _NULL_;

 gmv = SYMGET("an");
 PUT "The value of the symbol is: " gmv;

RUN;

Reference for language elements
Version 4.1

1747

This produces the following output:

The value of the symbol is: House

The variable is first set using a %LET statement; the subsequent DATA step gets the value and writes it
in the log.

SYMGETN
Returns the value of a macro variable as numeric data.

SYMGETN (macro- variable)

A value specified to a macro variable is assigned to the variable as text. This function ensures that a
variable containing a number is returned as numeric data, rather than as character data. If the variable
specified to this function does not contain numeric data, an error is returned.

Return type: Numeric

macro-variable

Type: Character

The name of the macro variable containing the value to be obtained.

Example
In this example, the function is used to get a numeric value from a macro variable. The result is written
to the log.

%LET an = 100;
DATA _NULL_;

 gmv = SYMGETN("an");
 PUT "The value of the symbol is: " gmv;

RUN;

This produces the following output:

The value of the symbol is: 100

The variable is first set using a %LET statement; the subsequent DATA step gets the value and writes it
in the log.

Reference for language elements
Version 4.1

1748

SYMGLOBL
Returns a value that indicates whether a macro variable is global.

SYMGLOBL (symbol- name)

Return type: Numeric

0 The named variable is not a global variable.
1 The named variable is a global variable.

symbol-name

Type: Character

The name of the macro variable.

Example
In this example, the function is used to check whether the specified macro variables are local. The
result is written to the log.

%LET yy = somedata;
%MACRO test;
 DATA _NULL_;
 %LET xx = moredata;

 ly = IFC(SYMGLOBL("xx"), "The variable xx is global", "The variable xx is not
 global");
 PUT ly;

 ly = IFC(SYMGLOBL("yy"), "The variable yy is global", "The variable yy is not
 global");
 PUT ly;

 RUN;

%MEND test;

%test;

This produces the following output:

The variable xx is not global
The variable yy is global

The variable yy is set using a %LET statement outside of the macro, and is therefore global. The
variable xx is set using a %LET statement inside the macro, and is therefore local.

Reference for language elements
Version 4.1

1749

SYMLOCAL
Returns a value that indicates whether a macro variable is local.

SYMLOCAL (symbol- name)

Return type: Numeric

0 The named variable is not a global variable.
1 The named variable is a global variable.

symbol-name

Type: Character

The name of the macro variable.

Example
In this example, the function is used to check whether the specified macro variables are local. The
result is written to the log.

%LET yy = somedata;
%MACRO test;
 DATA _NULL_;
 %LET xx = moredata;

 ly = IFC(SYMLOCAL("xx"), "The variable xx is local", "The variable xx is not
 local");
 PUT ly;

 ly = IFC(SYMLOCAL("yy"), "The variable yy is local", "The variable yy is not
 local");
 PUT ly;

 RUN;

%MEND test;

%test;

This produces the following output:

The variable xx is local
The variable yy is not local

The variable yy is set using a %LET statement outside of the macro, and is therefore global. The
variable xx is set using a %LET statement inside the macro, and is therefore local.

Reference for language elements
Version 4.1

1750

CALL EXECUTE
Enables code, such as DATA steps, procedures and macros, to be run from a DATA step.

CALL EXECUTE (tex t) ;

The code is provided as an argument. The code is run immediately after the DATA step that contains
the CALL routine has finished. If the DATA step contains more than one CALL EXECUTE, the code
contained in the routines is executed in the order in which the routines are specified. If a CALL
EXECUTE itself contains a CALL EXECUTE, the code in the contained routine executes after the
containing CALL EXECUTE has finished.

text

Type: Character

The text that comprises the code to be run.

The code can contain variables set in the containing DATA step, and functions that operate on
variables. Variables and statements are identified and delimited by || (double vertical bars or pipes) in
text. For example:

CALL EXECUTE("proc print data="||filename||";")

contains the variable filename. In this example:

CALL EXECUTE("proc print data="||trim(filename)||";")

the TRIM function is used to remove any leading or trailing spaces from the content of the variable
filename.

Basic example
In this example, the CALL routine is used to run a DATA step. The result is written to the log.

DATA _NULL_;

 CALL EXECUTE("DATA _NULL_; PUT 'DATA step run from DATA step'; RUN;");

 PUT 'The called DATA step will run after this step';

 RUN;

This produces the following output:

The called DATA step will run after this step

DATA step run from DATA step

Intervening output in the log has been removed. The called DATA step has been run after the containing
DATA step.

Reference for language elements
Version 4.1

1751

Example – running a procedure
In this example, the routine is used to run a procedure. The result is written to the ODS output.

LIBNAME books 'c:\temp\books';
DATA _NULL_;
 filename = "books.books";
 CALL EXECUTE("PROC PRINT DATA="||filename||";");
RUN;

In this example, PROC PRINT is used to write the contents of the dataset books to the ODS output.
The dataset name has been assigned to a variable which is then used in CALL EXECUTE to specify the
dataset.

Example – including a macro
In this example, the routine is used run a macro. The result is written to the ODS output.

%MACRO an;
 PROC PRINT DATA=books.books;
 TITLE "A Book List";
%MEND an;

LIBNAME BOOKS "c:\temp\books";
DATA _NULL_;
 filename = "books.books";
 CALL EXECUTE('%an');

In this example, the macro contains the PRINT procedure, which writes the contents of the specified
dataset, if it exists, to the ODS output.

Example – including a macro and statements
In this example, the routine is used to run a procedure. A macro is also created and included in the
routine. The result is written to the ODS output.

%MACRO title;
 A Book List
%MEND title;

LIBNAME BOOKS 'c:\temp\books';
DATA _NULL_;

 filename = "books.books ";
 CALL EXECUTE("PROC PRINT DATA="||TRIM(filename)||";TITLE %title;");

RUN;

In this example, PROC PRINT is used to write the contents of the dataset books to the ODS output.
The dataset name has been assigned to a variable which is then used in CALL EXECUTE to specify the
dataset. The macro specifies the title to be used in the procedure. The TRIM statement is used in the
routine to remove any spaces from the filename.

Reference for language elements
Version 4.1

1752

Example – hierarchy of invocations
In this example, the routine is used five times, including an instance where the routine calls another
CALL EXECUTE routine. The result is written to the log.

DATA _NULL_;

 CALL EXECUTE("DATA _NULL_; PUT 'Included DATA step 1'; RUN;");

 PUT 'The called DATA steps will run after this containing step';

 CALL EXECUTE("DATA _NULL_; PUT 'Included DATA step 2'; RUN;");

 CALL EXECUTE("DATA _NULL_;
 CALL EXECUTE('DATA _NULL_; PUT " ||quote("Included DATA step 4")||; RUN'; PUT
 'Included DATA step 3';RUN;');
 RUN;");

 CALL EXECUTE("DATA _NULL_; PUT 'Included DATA step 5'; RUN;");

RUN;

This produces the following output:

The called DATA steps will run after this containing step

Included DATA step 1

Included DATA step 2

Included DATA step 3

Included DATA step 4

Included DATA step 5

Intervening output in the log has been removed. The called DATA step has been run after the containing
DATA step.

In this example, a CALL EXECUTE routine has been called by another CALL EXECUTE routine. The
text to be written to the log in the called routine has been created using a function entered within the
routine using escape characters. This was required as the pairing of quote marks necessary to include
a quoted string was too complex.

CALL SYMDEL
Deletes a global variable name and its value.

CALL SYMDEL (macro- variable

, type

) ;

Reference for language elements
Version 4.1

1753

macro-variable

Type: Character

The name of the macro variable.

type
Optional argument

"NOWARN"

If the specified variable does not exist, or is not a global variable, no warning is written to
the log.

Example
In this example, the function is used to delete two global variables. The result is written to the log.

%LET zz = 180;
DATA _NULL_;
 CALL SYMDEL("xx");
 CALL SYMDEL("zz");
RUN;

This produces the following output:

WARNING: Macro variable xx does not exist, or is not a global macro variable

The global variable zz exists, so it is deleted and no warning is generated. The global variable xx is a
local variable, so a warning is written to the log.

CALL SYMPUT
Assigns a character value to a global macro variable that can subsequently be used in a macro.

CALL SYMPUT (variable- name , value) ;

This function enables you to assign a value to a variable in the DATA step.

variable-name

Type: Character

The name of the macro variable to which a value is assigned.

value

Type: Character

The value to assign to the macro variable.

Reference for language elements
Version 4.1

1754

Example
In this example, the function is used to assign data to a macro variable. The variable vv is then used in
a macro. The result is written to the log.

data _null_;

 call symput("vv", "Elephant");
run;
%macro test;
 %put The value of the variable is &vv;
%mend test;

%test;

This produces the following output:

The value of the variable is Elephant

CALL SYMPUTN
Assigns a numeric value to a global macro variable that can be subsequently used in a macro.

CALL SYMPUTN (variable- name , value) ;

This function enables you to assign a value to a variable in the DATA step.

variable-name

Type: Character

The name of the macro variable to which a value is assigned.

value

Type: Numeric

The value to assign to the macro variable.

This must be a numeric value. If you specify a quoted string an error occurs and a message is
written to the log.

Reference for language elements
Version 4.1

1755

Example
In this example, the function is used to assign data to a macro variable. The variable vv is then used in
a macro. The result is written to the log.

DATA _NULL_;

 CALL SYMPUTN("vv", 100);
RUN;

%MACRO test;
 %PUT The value of the variable is &vv;
%MEND test;

%TEST;

This produces the following output:

The value of the variable is 100

CALL SYMPUTX
Assigns a value to a global or local macro variable that can be subsequently used in a macro.

CALL SYMPUTX (variable- name , value

, type

) ;

This function enables you to assign a value to a variable in the DATA step.

This function also removes any leading and trailing spaces from the specified value.

variable-name

Type: Character

The name of the macro variable to which a value is assigned.

value

Type: Character or numeric value

The value to assign to the macro variable.

This can be a numeric value or a quoted string.

type
Optional argument
Specifies whether the variable is treated as a global or local variable, or as a variable specified
using %LET.

Reference for language elements
Version 4.1

1756

"G"

The variable is created as a global.

"F"

The variable is created as local.

"L"

The variable is created as global or local, according to the current scope, if no variable with
that name already exists.

Example
In this example, the function is used to assign data to macro variables in a DATA step, and to specify
what scope the variables have. The variables are then used in a macro. The result is written to the log.

%macro test2;
 data _null_;

 call symputx("vc", "cheese", "l");
 call symputx("vb", "bread", "g");
 call symputx("vy", "yellowhammer", "F");

 yo = symglobl("vc");
 msg = ifc(yo,"a global", "a local");
 put "vc is " msg;

 yo = symglobl("vb");
 msg = ifc(yo,"a global", "a local");
 put "vb is " msg;

 yo = symglobl("vy");
 msg = ifc(yo, "a global", "a local");
 put "vy is " msg;

run;
%mend test2;

%test2;

%macro test;

 %put The value of the variable is &vc;
 %put The value of the variable is &vb;
 %put The value of the variable is &vy;

%mend test;

%test;

Reference for language elements
Version 4.1

1757

This produces the following output:

vc is a local
vb is a global
vy is a local

The value of the variable is cheese
The value of the variable is bread
The value of the variable is yellowhammer

Mathematical functions and CALL routines
Perform mathematical operations on the data.

Constant functions .. 1758
Define mathematical constants and numerical limits.

Arithmetic functions ...1769
Perform arithmetic operations on the data.

Power and exponent functions ... 1777
Perform exponential operations on the data.

Logarithmic functions .. 1783
Perform logarithmic operations on the data.

Trigonometric functions ...1788
Perform trigonometric operations on the data.

Factorials and special functions ... 1809
Perform factorial operations on the data and calculate special functions: Beta, Gamma, Bessel,
Airy, Error and related functions.

Value counts ... 1832
Return counts for lists of values.

Minimum and maximum values .. 1834
Operate on the minimum and maximum in a list of values.

Percentile-based calculations ... 1840
Calculate percentile-based values.

Sums and sums of squares ..1855
Calculate sums and sums of squares of a list of numeric values.

Mean calculations ... 1862
Calculate mean values.

Variance, skewness and kurtosis calculations ... 1869
Calculate functions based on the moments about the mean: variance, skewness, kurtosis and
related.

Reference for language elements
Version 4.1

1758

Constant functions
Define mathematical constants and numerical limits.

Mathematical constants .. 1758
Return mathematical constants.

Numerical limits ...1760
Return platform-dependent numerical limits.

Mathematical constants

Return mathematical constants.

CONSTANT – E ..1758
Returns the mathematical constant e≈2.718281828459.

CONSTANT – EULER .. 1759
Returns the Euler constant γ≈0.577215664902.

CONSTANT – PI ...1759
Returns the mathematical constant π≈3.141592653690.

CONSTANT – E

Returns the mathematical constant e≈2.718281828459.

CONSTANT ("E")

This function does not take any variable arguments.

Return type: Numeric

Example
In this example, the mathematical constant e is returned. The result is written to the log.

DATA _NULL_;
 e = CONSTANT("E");
 PUT e=;
RUN;

This produces the following output:

e=2.718281828459

Reference for language elements
Version 4.1

1759

CONSTANT – EULER

Returns the Euler constant γ≈0.577215664902.

CONSTANT ("EULER")

This function does not take any variable arguments.

Return type: Numeric

Example
In this example, the Euler constant γ is returned. The result is written to the log.

DATA _NULL_;
 gamma = CONSTANT("EULER");
 PUT gamma=;
RUN;

This produces the following output:

gamma=0.577215664902

CONSTANT – PI

Returns the mathematical constant π≈3.141592653690.

CONSTANT ("PI")

This function does not take any variable arguments.

Return type: Numeric

Example
In this example, the mathematical constant π is returned. The result is written to the log.

DATA _NULL_;
 pi = CONSTANT("PI");
 PUT pi=;
RUN;

This produces the following output:

pi=3.141592653690

Reference for language elements
Version 4.1

1760

Numerical limits

Return platform-dependent numerical limits.

CONSTANT – BIG ..1760
Returns the largest number available on the current computer platform.

CONSTANT – LOGBIG .. 1761
Returns a logarithm of the largest number available on the current computer platform.

CONSTANT – SQRTBIG ..1762
Returns the square root of the largest number available on the current computer platform.

CONSTANT – MACEPS ...1763
Returns the smallest floating increment value available on the current computer platform.

CONSTANT – LOGMACEPS ... 1764
Returns a logarithm of the smallest floating increment value available on the current computer
platform.

CONSTANT – SQRTMACEPS ... 1765
Returns the square root of the smallest floating increment value available on the current
computer platform.

CONSTANT – SMALL .. 1765
Returns the smallest positive number available on the current computer platform.

CONSTANT – LOGSMALL ...1766
Returns a logarithm of the smallest positive number available on the current computer platform.

CONSTANT – SQRTSMALL .. 1767
Returns the square root of the smallest positive number available on the current computer
platform.

CONSTANT – EXACTINT .. 1768
Returns a platform-specific integer value for a given number of bytes.

CONSTANT – BIG

Returns the largest number available on the current computer platform.

CONSTANT ("BIG")

This function does not take any variable arguments.

Return type: Numeric

Reference for language elements
Version 4.1

1761

Example
In this example, the largest number available on the current computer platform is returned. The result
is written to the log.

DATA _NULL_;
 a = CONSTANT("BIG");
 PUT a=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a=1.797693e308

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

CONSTANT – LOGBIG

Returns a logarithm of the largest number available on the current computer platform.

CONSTANT ("LOGBIG"

, base

)

Determines the largest number available on the current computer platform (see also CONSTANT –
BIG (page 1760)), and returns its logarithm with the specified base. If the base is omitted, the natural
logarithm is returned.

Return type: Numeric

The return value is greater than one.

base
Optional argument

Type: Numeric

The base of the logarithm.

Restriction: base > 1

Default: e

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1762

Examples
In these examples, a logarithm of the largest number available on the current computer platform is
returned. The results are written to the log.

DATA _NULL_;
 g1 = CONSTANT("LOGBIG",1.0000003);
 PUT g1=;
 g2 = CONSTANT("LOGBIG");
 PUT g2=;
 g3 = CONSTANT("LOGBIG",CONSTANT("BIG"));
 PUT g3=;
 m1 = CONSTANT("LOGBIG",-1);
 PUT m1=;
 m2 = CONSTANT("LOGBIG", 1);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=2365942731.6
g2=709.78271289
g3=1
m1=.
m2=.

The return value in g3 is rounded to the asymptotic limit.

The last two examples return a missing value because the argument is out of range.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

CONSTANT – SQRTBIG

Returns the square root of the largest number available on the current computer platform.

CONSTANT ("SQRTBIG")

This function does not take any variable arguments.

See also CONSTANT – BIG (page 1760).

Return type: Numeric

Reference for language elements
Version 4.1

1763

Example
In this example, the square root of the largest number available on the current computer platform is
returned. The result is written to the log.

DATA _NULL_;
 a = CONSTANT("SQRTBIG");
 PUT a=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a=1.340781e154

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

CONSTANT – MACEPS

Returns the smallest floating increment value available on the current computer platform.

CONSTANT ("MACEPS")

This function does not take any variable arguments.

The smallest floating increment value is the difference between 1.0 and the next floating point number
representable on the current computer platform. This increment is also known as the machine epsilon.

Return type: Numeric

Example
In this example, the smallest floating increment value available on the current computer platform is
returned. The result is written to the log.

DATA _NULL_;
 a = CONSTANT("MACEPS");
 PUT a=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a=2.220446e-16

Note:
Other platforms might have different machine epsilon values as determined by their architecture,
resulting in different outcomes in the examples.

Reference for language elements
Version 4.1

1764

CONSTANT – LOGMACEPS

Returns a logarithm of the smallest floating increment value available on the current computer platform.

CONSTANT ("LOGMACEPS"

, base

)

Determines the smallest floating increment value available on the current computer platform and returns
its logarithm with the specified base. If the base is omitted, the natural logarithm is returned.

The smallest floating increment value is the difference between 1.0 and the next floating point number
representable on the current computer platform. This increment is also known as the machine epsilon.

See also CONSTANT – MACEPS (page 1763).

Return type: Numeric

The return value is negative.

base
Optional argument

Type: Numeric

The base of the logarithm.

Restriction: base > 1

Default: e

If the argument is out of range, a missing value is returned.

Examples
In these examples, a logarithm of the smallest floating increment value available on the current
computer platform is returned. The results are written to the log.

DATA _NULL_;
 g1 = CONSTANT("LOGMACEPS",1.0000003);
 PUT g1=;
 g2 = CONSTANT("LOGMACEPS");
 PUT g2=;
 m1 = CONSTANT("LOGMACEPS",-1);
 PUT m1=;
 m2 = CONSTANT("LOGMACEPS", 1);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=-120145529.3
g2=-36.04365339
m1=.
m2=.

The last two examples return a missing value because the argument is out of range.

Reference for language elements
Version 4.1

1765

Note:
Other platforms might have different machine epsilon values as determined by their architecture,
resulting in different outcomes in the examples.

CONSTANT – SQRTMACEPS

Returns the square root of the smallest floating increment value available on the current computer
platform.

CONSTANT ("SQRTMACEPS")

This function does not take any variable arguments.

Determines the smallest floating increment value available on the current computer platform and returns
its square root. The smallest floating increment value is the difference between 1.0 and the next floating
point number representable on the current computer platform. This increment is also known as the
machine epsilon.

See also CONSTANT – MACEPS (page 1763).

Return type: Numeric

Example
In this example, the square root of the smallest floating increment value available on the current
computer platform is returned. The result is written to the log.

DATA _NULL_;
 a = CONSTANT("SQRTMACEPS");
 PUT a=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a=1.4901161e-8

Note:
Other platforms might have different machine epsilon values as determined by their architecture,
resulting in different outcomes in the examples.

CONSTANT – SMALL

Returns the smallest positive number available on the current computer platform.

CONSTANT ("SMALL")

Reference for language elements
Version 4.1

1766

This function does not take any variable arguments.

Return type: Numeric

Example
In this example, the smallest positive number available on the current computer platform is returned.
The result is written to the log.

DATA _NULL_;
 a = CONSTANT("SMALL");
 PUT a=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a=2.22507e-308

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

CONSTANT – LOGSMALL

Returns a logarithm of the smallest positive number available on the current computer platform.

CONSTANT ("LOGSMALL"

, base

)

Determines the smallest positive number available on the current computer platform (see also
CONSTANT – SMALL (page 1765)), and returns its logarithm with the specified base. If the base is
omitted, the natural logarithm is returned.

Return type: Numeric

The return value is negative.

base
Optional argument

Type: Numeric

The base of the logarithm.

Restriction: base > 1

Default: e

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1767

Examples
In these examples, a logarithm of the smallest positive number available on the current computer
platform is returned. The results are written to the log.

DATA _NULL_;
 g1 = CONSTANT("LOGSMALL",1.0000003);
 PUT g1=;
 g2 = CONSTANT("LOGSMALL");
 PUT g2=;
 m1 = CONSTANT("LOGSMALL",-1);
 PUT m1=;
 m2 = CONSTANT("LOGSMALL", 1);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=-2361321750
g2=-708.3964185
m1=.
m2=.

The last two examples return a missing value because the argument is out of range.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

CONSTANT – SQRTSMALL

Returns the square root of the smallest positive number available on the current computer platform.

CONSTANT ("SQRTSMALL")

This function does not take any variable arguments.

See also CONSTANT – SMALL (page 1765).

Return type: Numeric

Example
In this example, the square root of the smallest positive number available on the current computer
platform is returned. The result is written to the log.

DATA _NULL_;
 a = CONSTANT("SQRTSMALL");
 PUT a=;
RUN;

Reference for language elements
Version 4.1

1768

On a Windows 64-bit computer, this produces the following output:

a=1.49167e-154

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

CONSTANT – EXACTINT

Returns a platform-specific integer value for a given number of bytes.

CONSTANT ("EXACTINT"

, num- bytes

)

The value of num-bytes is rounded down to the nearest integer which must fall between 2 and 8. The
resulting integer is then used for computation.

Return type: Numeric

num-bytes
Optional argument

Type: Numeric

The length of the integer in bytes.

Restriction: 2 ≤ num-bytes ≤ 8

Default: 8

If the argument is out of range, a missing value is returned.

Examples
In these examples, a platform-specific integer value for a given number of bytes is returned. The
results are written to the log.

DATA _NULL_;
 s1 = CONSTANT("EXACTINT",4);
 PUT s1=;
 s2 = CONSTANT("EXACTINT",0);
 PUT s2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

s1=2097152
s2=.

The last example returns a missing value because the argument is out of range.

Reference for language elements
Version 4.1

1769

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

Arithmetic functions
Perform arithmetic operations on the data.

ABS ... 1769
Returns the absolute value of a numeric argument.

SIGN ..1770
Returns the sign function of a numeric argument.

MODZ .. 1771
Returns the modulo of two numeric arguments.

MOD .. 1772
Returns the modulo of two numeric arguments corrected for rounding errors.

DIVIDE ...1773
Returns the ratio of two numeric arguments.

GCD ...1775
Returns the greatest common divisor for a list of numeric values.

LCM ... 1776
Returns the least common multiple of a list of numeric values.

ABS

Returns the absolute value of a numeric argument.

ABS (x)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the absolute value.

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1770

Example
In this example, the absolute value of the argument is returned. The result is written to the log.

DATA _NULL_;
 a1 = ABS(-2);
 PUT a1=;
RUN;

This produces the following output:

a1=2

SIGN

Returns the sign function of a numeric argument.

SIGN (x)

Returns one of the following:

• If the argument is zero, zero is returned.
• If the argument is positive, 1 is returned.
• If the argument is negative, -1 is returned.

Return type: Numeric

x

Type: Numeric

The point at which to calculate the sign function.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the sign function of the argument is returned. The results are written to the log.

DATA _NULL_;
 s1 = SIGN(0);
 PUT s1=;
 s2 = SIGN(-2);
 PUT s2=;
RUN;

This produces the following output:

s1=0
s2=-1

Reference for language elements
Version 4.1

1771

MODZ

Returns the modulo of two numeric arguments.

MODZ (dividend , divisor)

Returns the remainder after division of the first argument (the dividend) by the second (the divisor). The
sign of the result is the same as the sign of the dividend.

Return type: Numeric

dividend

Type: Numeric

The dividend of the fraction.

If the argument contains a missing value, a missing value is returned.

divisor

Type: Numeric

The divisor of the fraction.

Restriction: divisor ≠ 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the modulo of the arguments is returned. The results are written to the log.

DATA _NULL_;
 m1 = MODZ(4 , 2.2);
 PUT m1=;
 m2 = MODZ(-4 , 2.2);
 PUT m2=;
 m3 = MODZ(4 ,-2.2);
 PUT m3=;
RUN;

This produces the following output:

m1=1.8
m2=-1.8
m3=1.8

The result takes on the sign of the dividend regardless of the sign of the divisor.

Reference for language elements
Version 4.1

1772

MOD

Returns the modulo of two numeric arguments corrected for rounding errors.

MOD (dividend , divisor)

Returns the remainder after division of the first argument (the dividend) by the second (the divisor). The
sign of the result is the same as the sign of the dividend.

This basic computation is the same as in MODZ function (see MODZ (page 1771)), but the result is
checked for rounding errors and corrected as follows:

• If the result is nearing zero or the divisor by less than 10-12, zero is returned.

• If the fractional part of the result is nearing 1 by less than 10-12, the result is rounded up to the
nearest integer value.

• If the fractional part of the result is nearing 0 by less than 10-12, the result is rounded down to the
nearest integer value.

Return type: Numeric

dividend

Type: Numeric

The dividend of the fraction.

If the argument contains a missing value, a missing value is returned.

divisor

Type: Numeric

The divisor of the fraction.

Restriction: divisor ≠ 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the uncorrected and corrected modulo of the arguments is returned. The results
are written to the log.

DATA _NULL_;
 mz = MODZ(4.00000000000001,2);
 PUT mz=;
 m = MOD (4.00000000000001,2);
 PUT m=;
RUN;

Reference for language elements
Version 4.1

1773

This produces the following output:

mz=9.769963e-15
m=0

Function MODZ returns an uncorrected modulo result that is very close to zero. Function MOD corrects it
and returns zero instead.

DIVIDE

Returns the ratio of two numeric arguments.

DIVIDE (dividend , divisor)

Returns the result of division of the first argument (the dividend) by the second (the divisor).

Return type: Numeric

dividend

Type: Numeric

The dividend of the fraction.

divisor

Type: Numeric

The divisor of the fraction.

Restriction: divisor ≠ 0

If the divisor is zero, a missing value is returned.

This function implements platform-dependent overflow and underflow tests before attempting
computation:

• If the dividend underflows or the divisor overflows, zero is returned.
• If the divisor underflows, positive or negative infinity is returned where the sign is determined

according to the standard rules of arithmetic.

Missing values and division by zero are processed as shown in the table below. The following missing
value notations are recognised by the DIVIDE function:

._ : blank

.I : positive infinity

.M : negative infinity

All other missing value notations are treated as a default missing value.

Reference for language elements
Version 4.1

1774

Dividend Divisor Result

._ any ._

non-missing non-zero .I or .M 0

.I or .M .I or .M .

.I negative .M

.I non-negative .I

.M negative .I

.M non-negative .M

0 0 .

0 non-zero 0

positive 0 .I

negative 0 .M

other missing any dividend

any other missing divisor

Examples
In these examples, the ratio of the arguments is returned. The results are written to the log.

DATA _NULL_;
 d1 = DIVIDE(4,1.25);
 PUT d1=;
 d2 = DIVIDE(-4, 0);
 PUT d2=;
 d3 = DIVIDE(.I, 2);
 PUT d3=;
 d4 = DIVIDE(2,.I);
 PUT d4=;
 d5 = DIVIDE(.I,.M);
 PUT d5=;
 d6 = DIVIDE(.I,._);
 PUT d6=;
 d7 = DIVIDE(.M,.Z);
 PUT d7=;
 d8 = DIVIDE(.A, 2);
 PUT d8=;
RUN;

This produces the following output:

d1=3.2
d2=.M
d3=.I
d4=0
d5=.
d6=._
d7=.Z
d8=.A

Reference for language elements
Version 4.1

1775

GCD

Returns the greatest common divisor for a list of numeric values.

GCD (v1 ,

,

value)

Requires at least two arguments.

Return type: Numeric

The return value is a positive integer or zero.

If an overflow occurs as a result of the operation, a missing value is returned.

v1

Type: Numeric

The first value in the list.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

value

Type: Numeric

Further value to be evaluated.

Restriction: must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the greatest common divisor of the arguments is returned. The results are written
to the log.

DATA _NULL_;
 g1 = GCD(3.3,2,5);
 PUT g1=;
 g2 = GCD(-4,-8,-24);
 PUT g2=;
 g3 = GCD(18,0,2);
 PUT g3=;
 g4 = GCD(18,2);
 PUT g4=;
RUN;

This produces the following output:

g1=.
g2=4
g3=2
g4=2

Reference for language elements
Version 4.1

1776

The first example returns a missing value because it has a non-integer argument.

The second example demonstrates that the GCD is always positive, even when all arguments are
negative.

The third and fourth examples show that if one of the arguments is zero, it does not contribute to the
calculation.

LCM

Returns the least common multiple of a list of numeric values.

LCM (v1 ,

,

value)

Requires at least two arguments.

The least common multiple of a list of numeric values is the smallest positive integer that is divisible by
each of the values in the argument list.

Return type: Numeric

The return value is positive.

If an overflow occurs as a result of the operation, a missing value is returned.

v1

Type: Numeric

The first value in the list.

Restriction: must be a non-zero integer

If the argument is out of range, a missing value is returned.

value

Type: Numeric

Further value to be evaluated.

Restriction: must be a non-zero integer

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1777

Examples
In these examples, the least common multiple of the arguments is returned. The results are written to
the log.

DATA _NULL_;
 g1 = LCM(3.3,2,5);
 PUT g1=;
 g2 = LCM(-4,-8,-24);
 PUT g2=;
RUN;

This produces the following output:

g1=.
g2=24

The first example returns a missing value because it has a non-integer argument.

The second example shows that the LCM is always positive, even when all arguments are negative.

Power and exponent functions
Perform exponential operations on the data.

SQRT ...1777

Returns the square root of a numeric argument.

EXP ... 1778

Returns the exponential of a numeric argument.

POW .. 1779

Returns the power function of two numeric arguments.

CALL LOGISTIC ... 1782

Returns the standard logistic function for each numeric variable in a list.

SQRT

Returns the square root of a numeric argument.

SQRT (x)

Reference for language elements
Version 4.1

1778

Calculates the square root of the argument:

sqrt(x) = 1

2

30 1 2 4
x

x

Return type: Numeric

The return value is positive or zero.

x

Type: Numeric

The point at which to calculate the square root.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the square root of the argument is returned. The results are written to the log.

DATA _NULL_;
 s1 = SQRT(0);
 PUT s1=;
 s2 = SQRT(4);
 PUT s2=;
RUN;

This produces the following output:

s1=0
s2=2

EXP

Returns the exponential of a numeric argument.

EXP (x)

Reference for language elements
Version 4.1

1779

Raises the mathematical constant e≈2.718281828459 to
the power of the argument:

1

2

3

4

- 2 - 1 0 1

x

ex

Return type: Numeric

The return value is positive.

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the exponential.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the exponential of the argument is returned. The results are written to the log.

DATA _NULL_;
 p1 = EXP(0);
 PUT p1=;
 p2 = EXP(4);
 PUT p2=;
RUN;

This produces the following output:

p1=1
p2=54.598150033

POW

Returns the power function of two numeric arguments.

POW (base , exponent)

Raises the first argument (the base) to the power of the second (the exponent):

pow (x, y) =

where x is the base and y is the exponent.

Reference for language elements
Version 4.1

1780

1

- 2 - 1 0 1 2 x

y = 0.4

23
2.5

- 2y = - 1
- 1.5

y = 0

y = 1xy

Straight lines:
y= 0 and y= 1

Parabola:
y> 1

Hyperbola:
y< 0

Radical:
0< y< 1

Hyperbola:
y< 0 odd

Hyperbola:
y< 0 even

Parabola:
y> 1 odd

Parabola:
y> 1 even

- 1

The profile of this function depends on the value of the exponent.

• For y=0 and y=1, the function is a straight line:

pow(x, 0) = 1

pow(x, 1) = x

• For 0<y<1, the function is defined for x≥0 only and has the shape of a radical or a root curve.

• For y<0 the curve is a hyperbola. The hyperbola is defined for all x>0 and is always positive on this
domain. In addition, for integer y it is also defined for x<0 and is positive for even values of y and
negative for odd values of y.

• For y>1 the curve is a parabola. The parabola is defined for all x≥0 and is always positive on this
domain. In addition, similarly to the hyperbola, for integer y it is also defined for x<0 and is positive
for even values of y and negative for odd values of y.

Return type: Numeric

A missing value is returned if:

• The base is negative and the exponent is not an integer.
• The base is zero and the exponent is negative.
• Any argument contains a missing value.
• An overflow occurs as a result of the operation.

On some platforms a missing value is returned if both the base and the exponent are zero.

Reference for language elements
Version 4.1

1781

base

Type: Numeric

The base of the power function.

Restrictions:

• base > 0 if exponent is not an integer
• base ≠ 0 if exponent < 0

If the argument is out of range, a missing value is returned.

exponent

Type: Numeric

The exponent of the power function.

If the argument contains a missing value, a missing value is returned.

Examples
The following examples illustrate hyperbolic and parabolic profiles of this function. The results are
written to the log.

DATA _NULL_;
 a1 = POW(4,2);
 PUT a1=;

 h1 = POW(2.9,-1);
 PUT h1=;
 h2 = POW(2.9,-1.5);
 PUT h2=;
 h3 = POW(2.9,-2);
 PUT h3=;
 h4 = POW(-2.9,-1);
 PUT h4=;
 h5 = POW(-2.9,-1.5);
 PUT h5=;
 h6 = POW(-2.9,-2);
 PUT h6=;

 p1 = POW(2.9, 2);
 PUT p1=;
 p2 = POW(2.9, 2.5);
 PUT p2=;
 p3 = POW(2.9, 3);
 PUT p3=;
 p4 = POW(-2.9, 2);
 PUT p4=;
 p5 = POW(-2.9, 2.5);
 PUT p5=;
 p6 = POW(-2.9, 3);
 PUT p6=;
RUN;

Reference for language elements
Version 4.1

1782

This produces the following output:

a1=16

h1=0.3448275862
h2=0.2024897309
h3=0.1189060642
h4=-0.344827586
h5=.
h6=0.1189060642

p1=8.41
p2=14.321713934
p3=24.389
p4=8.41
p5=.
p6=-24.389

The fifth example in both series returns a missing value because the function is not defined for negative
bases and fractional exponents.

CALL LOGISTIC

Returns the standard logistic function for each numeric variable in a list.

CALL LOGISTIC (

,

x) ;

Calculates the standard logistic function for
each variable in the argument list replacing the
input values in the variables with the result of
the calculation.

0.5

1

- 6 - 4 - 2 0 2 4 6

x

The return values are between 0 and 1, not including the bounds.

If any argument contains a missing value, all values are set to missing.

x

Type: Numeric

Reference for language elements
Version 4.1

1783

Examples
In this example, the standard logistic function for each variable in the argument list is returned. The
result is written to the log.

DATA _NULL_;
 s1=0; s2=1.1; s3="4"; s4=-6.6;
 CALL LOGISTIC (s1,s2,s3,s4);

 PUT s1=; PUT s2=; PUT s3=; PUT s4=;

 m1=0; m2=1.1; m3="four"; m4=-6.6;
 CALL LOGISTIC (m1,m2,m3,m4);

 PUT m1=; PUT m2=; PUT m3=; PUT m4=;
RUN;

This produces the following output:

s1=0.5
s2=0.7502601056
s3=0.98201379
s4=0.00135852

m1=.
m2=.
m3=.
m4=.

The argument value "4" has been converted into a number, but the argument value "four" is
considered missing. Therefore all values are set to missing in the second example series.

Logarithmic functions
Perform logarithmic operations on the data.

LOG ... 1784

Returns the natural logarithm of a numeric argument.

LOG2 ... 1785

Returns the base 2 logarithm of a numeric argument.

LOG10 ... 1786

Returns the base 10 logarithm of a numeric argument.

LOG1PX .. 1787

Returns the natural logarithm of a numeric argument augmented by one.

Reference for language elements
Version 4.1

1784

LOG

Returns the natural logarithm of a numeric argument.

LOG (x)

Calculates the natural logarithm of the argument:

0

1

- 1

1 2 3 4

x

log(x)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm.

Restriction: x > 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the argument is returned. The results are written to the log.

DATA _NULL_;
 g1 = LOG(0.003);
 PUT g1=;
 g2 = LOG(1);
 PUT g2=;
 g3 = LOG(2.3);
 PUT g3=;
 g4 = LOG(1e-307);
 PUT g4=;
 m1 = LOG(0);
 PUT m1=;
 m2 = LOG(-2.2);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=-5.80914299
g2=0
g3=0.8329091229
g4=-706.8936235
m1=.
m2=.

The last two examples return a missing value because the argument is out of range.

Reference for language elements
Version 4.1

1785

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

LOG2

Returns the base 2 logarithm of a numeric argument.

LOG2 (x)

Calculates the base 2 logarithm of the argument:

0

1

- 1

1 2 3 4

x

log2(x)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm.

Restriction: x > 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the base 2 logarithm of the argument is returned. The results are written to the log.

DATA _NULL_;
 g1 = LOG2(0.003);
 PUT g1=;
 g2 = LOG2(1);
 PUT g2=;
 g3 = LOG2(2.3);
 PUT g3=;
 g4 = LOG2(1e-307);
 PUT g4=;
 m1 = LOG2(0);
 PUT m1=;
 m2 = LOG2(-2.2);
 PUT m2=;
RUN;

Reference for language elements
Version 4.1

1786

On a Windows 64-bit computer, this produces the following output:

g1=-8.380821784
g2=0
g3=1.2016338612
g4=-1019.831925
m1=.
m2=.

The last two examples return a missing value because the argument is out of range.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

LOG10

Returns the base 10 logarithm of a numeric argument.

LOG10 (x)

Calculates the base 10 logarithm of the argument:

0

0.5

- 0.5

1 2 3 4

x

log10(x)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the natural logarithm.

Restriction: x > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1787

Examples
In these examples, the base 10 logarithm of the argument is returned. The results are written to the
log.

DATA _NULL_;
 g1 = LOG10(0.003);
 PUT g1=;
 g2 = LOG10(1);
 PUT g2=;
 g3 = LOG10(2.3);
 PUT g3=;
 g4 = LOG10(1e-307);
 PUT g4=;
 m1 = LOG10(0);
 PUT m1=;
 m2 = LOG10(-2.2);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=-2.522878745
g2=0
g3=0.361727836
g4=-307
m1=.
m2=.

The last two examples return a missing value because the argument is out of range.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

LOG1PX

Returns the natural logarithm of a numeric argument augmented by one.

LOG1PX (x)

Calculates the natural logarithm of a numeric argument
augmented by one:

0

1

- 1

1 2 3

- 1 x

log(x+ 1)

Return type: Numeric

Reference for language elements
Version 4.1

1788

x

Type: Numeric

The point at which to calculate the calculation.

Restriction: x > -1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of a numeric argument augmented by one is returned. The
results are written to the log.

DATA _NULL_;
 g1 = LOG1PX(0.003);
 PUT g1=;
 g2 = LOG1PX(0);
 PUT g2=;
 g3 = LOG1PX(-0.3);
 PUT g3=;
 m1 = LOG1PX(-1);
 PUT m1=;
 m2 = LOG1PX(-2.2);
 PUT m2=;
RUN;

This produces the following output:

g1=0.002995509
g2=0
g3=-0.356674944
m1=.
m2=.

The last two examples return a missing value because the argument is out of range.

Trigonometric functions
Perform trigonometric operations on the data.

Many of the functions in this section have special values or poles at multiples or fractions of π, where
π≈3.141592653690, both positive and negative. However, as π is an irrational number, it cannot be
represented exactly in a computer application. Therefore intervals with fractions of π as bounds are
always open, while poles or asymptotes are never reached.

Primary trigonometric functions .. 1789
Perform primary trigonometric operations on the data.

Inverse trigonometric functions ... 1793
Perform inverse trigonometric operations on the data.

Reference for language elements
Version 4.1

1789

Hyperbolic functions ..1800
Perform hyperbolic operations on the data.

Inverse hyperbolic functions ... 1805
Perform inverse hyperbolic operations on the data.

Primary trigonometric functions

Perform primary trigonometric operations on the data.

SIN ...1789

Returns the sine of a numeric argument.

COS ...1790

Returns the cosine of a numeric argument.

TAN ... 1792

Returns the tangent of a numeric argument.

SIN

Returns the sine of a numeric argument.

SIN (x)

Calculates the sine of the argument:

- 1

1

- 4

- 3

- 2 - 1 0 1 2 3 4

x

sin(x)

-

Return type: Numeric

The return value is between -1 and 1, inclusive.

x

Type: Numeric

The point at which to calculate the sine.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1790

Basic examples
In these examples, the sine of the argument is returned. The results are written to the log.

DATA _NULL_;
 s1 = SIN(-0.5);
 PUT s1=;
 s2 = SIN(1.1);
 PUT s2=;
 s3 = SIN(0);
 PUT s3=;
RUN;

This produces the following output:

s1=-0.479425539
s2=0.8912073601
s3=0

Examples — using values close to function extremums
In these examples, the sine is applied to the input values close to the function extremums: π and π/2.
The results are written to the log.

DATA _NULL_;
 p1 = SIN(3.1415926535897);
 PUT p1=;
 p2 = SIN(1.5707963267949);
 PUT p2=;
 p3 = SIN(1.5707963267948);
 PUT p3=;
RUN;

This produces the following output:

p1=9.33812e-14
p2=1
p3=1

The first example uses a value close to π as input and returns a value close to 0. However, the second
and third examples use similar approxiations of π/2, but return exactly 1 in each case. This behaviour is
platform-specific and may depend on the degree of approximation of the input.

COS

Returns the cosine of a numeric argument.

COS (x)

Reference for language elements
Version 4.1

1791

Calculates the cosine of the argument:

- 1

1

- 4 - 3

- 2

- 1 0 1

2

3 4

x

cos(x)

22-

Return type: Numeric

The return value is between -1 and 1, inclusive.

x

Type: Numeric

The point at which to calculate the cosine.

If the argument contains a missing value, a missing value is returned.

Basic examples
In these examples, the cosine of the argument is returned. The results are written to the log.

DATA _NULL_;
 s1 = COS(-0.5);
 PUT s1=;
 s2 = COS(1.1);
 PUT s2=;
 s3 = COS(0);
 PUT s3=;
RUN;

This produces the following output:

s1=0.8775825619
s2=0.4535961214
s3=1

Examples — using values close to function extremums
In these examples, the cosine is applied to the input values close to the function extremums: π and π/2.
The results are written to the log.

DATA _NULL_;
 p1 = COS(3.1415926535897);
 PUT p1=;
 p2 = COS(1.5707963267949);
 PUT p2=;
 p3 = COS(1.5707963267948);
 PUT p3=;
RUN;

This produces the following output:

p1=-1
p2=-3.49148e-15
p3=9.665064e-14

Reference for language elements
Version 4.1

1792

The first example uses a value close to π as input and returns exactly -1. However, the second and third
examples use similar approxiations of π/2, but return approximations of 0, with the correct sign. This
behaviour is platform-specific and may depend on the degree of approximation of the input.

TAN

Returns the tangent of a numeric argument.

TAN (x)

Calculates the tangent of the argument:

- 1

1

- 4 - 3 - 2 - 1 0 1 2

3

4 x

tan(x)

2

3

- 2

- 3

22- 2
3

2
3- -

Return type: Numeric

x

Type: Numeric

The point at which to calculate the tangent.

If the argument contains a missing value, a missing value is returned.

The mathematical tangent function has poles at multiples of π/2, where π≈3.141592653690, both
positive and negative. However, as π is an irrational number, it cannot be represented exactly in a
computer application. Therefore, function TAN never hits a pole and remains defined for all numeric
values.

Reference for language elements
Version 4.1

1793

Basic examples
In this example, the tangent of the argument is returned. The result is written to the log.

DATA _NULL_;
 s1 = TAN(-0.5);
 PUT s1=;
 s2 = TAN(1.1);
 PUT s2=;
 s3 = TAN(0);
 PUT s3=;
RUN;

This produces the following output:

s1=-0.54630249
s2=1.9647596572
s3=0

Examples — using values close to function extremums
In these examples, the tangent is applied to the input values close to the function extremums: π and
π/2. The results are written to the log.

DATA _NULL_;
 p1 = TAN(3.1415926535897);
 PUT p1=;
 p2 = TAN(1.5707963267949);
 PUT p2=;
 p3 = TAN(1.5707963267948);
 PUT p3=;
RUN;

This produces the following output:

p1=-9.33812e-14
p2=-2.8641138e14
p3=1.034654e13

The first example uses a value close to π as input and returns a value close to 0. The second and
third examples use similar approxiations of π/2, and return very large values with the correct sign
approximating positive and negative infinity.

Inverse trigonometric functions

Perform inverse trigonometric operations on the data.

ARSIN ..1794

Returns the principal value of inverse sine of a numeric argument.

ARCOS ..1795

Reference for language elements
Version 4.1

1794

Returns the principal value of inverse cosine of a numeric argument.

ATAN ... 1796

Returns the principal value of arc tangent of a numeric argument.

ATAN2 ... 1797

Returns the signed angle between the positive x-axis and a vector represented by two numeric
arguments.

ARSIN

Returns the principal value of inverse sine of a numeric argument.

ARSIN (x)

Calculates the principal value of inverse sine of the
argument in radians, where the inverse sine is defined as
a trigonometrical inverse of sine:

 is defined such that

0.50 1

- 1 - 0.5

arcsin(x)

x

2

4

4-

2-

Return type: Numeric

The return value is between -π/2 and π/2.

x

Type: Numeric

The point at which to calculate the principal value of inverse sine.

Restriction: -1 ≤ x ≤ 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1795

Examples
In these examples, the principal value of inverse sine of the argument is returned. The results are
written to the log.

DATA _NULL_;
 s1 = ARSIN(-1);
 PUT s1=;
 s2 = ARSIN(0);
 PUT s2=;
 s3 = ARSIN(1);
 PUT s3=;
 s4 = ARSIN(1.5);
 PUT s4=;
RUN;

This produces the following output:

s1=-1.570796327
s2=0
s3=1.570796327
s4=.

The last example returns a missing value because the argument is out of range.

ARCOS

Returns the principal value of inverse cosine of a numeric argument.

ARCOS (x)

Calculates the principal value of inverse cosine of the
argument in radians, where the inverse cosine is defined
as a trigonometrical inverse of cosine:

 is defined such that

0.50 1- 1 - 0.5

arccos(x)

x

2

4

4
3

Return type: Numeric

The return value is between 0 and π, inclusive.

x

Type: Numeric

Reference for language elements
Version 4.1

1796

The point at which to calculate the principal value of inverse sine.

Restriction: -1 ≤ x ≤ 1

If the argument is out of range, a missing value is returned.

Examples
In these examples, the principal value of inverse cosine of the argument is returned. The results are
written to the log.

DATA _NULL_;
 s1 = ARCOS(-1);
 PUT s1=;
 s2 = ARCOS(0);
 PUT s2=;
 s3 = ARCOS(1);
 PUT s3=;
 s4 = ARCOS(1.5);
 PUT s4=;
RUN;

This produces the following output:

s1=3.1415926536
s2=1.5707963268
s3=0
s4=.

The last example returns a missing value because the argument is out of range.

ATAN

Returns the principal value of arc tangent of a numeric argument.

ATAN (x)

Calculates the principal value of arc tangent
of the argument in radians, where the arc
tangent is defined as a trigonometrical inverse
of tangent:

 is defined such that
10 2

- 2 - 1

arctan(x)

x

2

2-

3

- 3

Return type: Numeric

The return value is between -π/2 and π/2.

x

Type: Numeric

Reference for language elements
Version 4.1

1797

The point at which to calculate the principal value of arc tangent.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the principal value of arc tangent of the argument is returned. The results are
written to the log.

DATA _NULL_;
 s1 = ATAN(0);
 PUT s1=;
 s2 = ATAN(1e308);
 PUT s2=;
 s3 = ATAN(-1e308);
 PUT s3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

s1=0
s2=1.5707963268
s3=-1.5707963268

For very large values, positive and negative, as shown in examples 2 and 3, function ATAN returns an
approximation of π/2 with the appropriate sign.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

ATAN2

Returns the signed angle between the positive x-axis and a vector represented by two numeric
arguments.

ATAN2 (y , x)

Calculates the signed angle between the
positive x-axis and a vector (x,y) in the range
between -π and π. The sign of the angle
returned represents the quadrant of the end
point of the vector.

9

6

4
3

- 0.9

2 3

- 1- 2- 3

1

2

- 1

0

x

y

A

B

C
D

Quadrant IQuadrant II

Quadrant III Quadrant IV

Reference for language elements
Version 4.1

1798

For return values between -π/2 and π/2, this
calculation is equivalent to the arc tangent of
the ratio of the arguments, see ATAN (page
1796):

A = (3.35, 1.22)
C = (-2.953, -0.96)

B = (-2, 2)
D = (2.77, -1.6)

Attention:
The order of the function arguments is the inverse of the order of coordinates of the vector they
represent. The argument order is y, x.

Return type: Numeric

The return value is between -π and π.

If both arguments are zero, zero is returned.

y

Type: Numeric

The Y coordinate value.

If the argument contains a missing value, a missing value is returned.

x

Type: Numeric

The X coordinate value.

If the argument contains a missing value, a missing value is returned.

Function ATAN2 has the following advantages compared to the classic arc tangent function ATAN:

• ATAN2 correctly returns π/2 or -π/2 for points on the y-axis where ATAN is undefined.

• ATAN2 differentiates between diametrically opposite quadrants, which is not possible for ATAN.
Thus, ATAN2 returns distinctly signed values for each quadrant where ATAN cannot distinguish
between points in quadrants I and III, and quadrants II and IV.

Reference for language elements
Version 4.1

1799

Basic examples
In these examples, the signed angle between the positive x-axis and a vector of the arguments is
returned. The results are written to the log.

DATA _NULL_;
 a = ATAN2(1.22, 3.35);
 PUT a=;
 b = ATAN2(2, -2);
 PUT b=;
 c = ATAN2(-0.96,-2.953);
 PUT c=;
 d = ATAN2(-1.6, 2.77);
 PUT d=;
RUN;

This produces the following output:

a=0.3492502751
b=2.3561944902
c=-2.827276528
d=-0.523799047

These results can be approximated as follows: a ≈ π/9, b ≈ 3/4π, c ≈ -0.9π, d ≈ -π/6.

Examples – points where the function changes its sign
The following examples demonstrate calculations for points on the coordinate axes, as well as points
near the x-axis where the return value changes its sign. The results are written to the log.

DATA _NULL_;
 s1 = ATAN2(0, 0);
 PUT s1=;
 s2 = ATAN2(1, 0);
 PUT s2=;
 s3 = ATAN2(-1, 0);
 PUT s3=;
 s4 = ATAN2(0, 1);
 PUT s4=;
 s5 = ATAN2(0,-1);
 PUT s5=;
 s6 = ATAN2(1e-307, 1);
 PUT s6=;
 s7 = ATAN2(-1e-307, 1);
 PUT s7=;
 s8 = ATAN2(1e-307,-1);
 PUT s8=;
 s9 = ATAN2(-1e-307,-1);
 PUT s9=;
RUN;

Reference for language elements
Version 4.1

1800

On a Windows 64-bit computer, this produces the following output:

s1=0
s2=1.5707963268
s3=-1.5707963268
s4=0
s5=3.1415926536
s6=1e-307
s7=-1e-307
s8=3.1415926536
s9=-3.1415926536

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

Hyperbolic functions

Perform hyperbolic operations on the data.

SINH .. 1800

Returns the hyperbolic sine of a numeric argument.

COSH .. 1802

Returns the hyperbolic cosine of a numeric argument.

TANH ...1803

Returns the hyperbolic tangent of a numeric argument.

CALL TANH .. 1804

Calculates the hyperbolic tangent for each numeric variable in a list.

SINH

Returns the hyperbolic sine of a numeric argument.

SINH (x)

Reference for language elements
Version 4.1

1801

Calculates the hyperbolic sine of the
argument:

0 1 2- 1- 2

x

sinh(x)

1

2

3

- 1

- 2

- 3

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the hyperbolic sine.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the hyperbolic sine of the argument is returned. The results are written to the log.

DATA _NULL_;
 s1 = SINH(-1.7);
 PUT s1=;
 s2 = SINH(0);
 PUT s2=;
 s3 = SINH(100);
 PUT s3=;
 s4 = SINH(800);
 PUT s4=;
RUN;

On a Windows 64-bit computer, this produces the following output:

s1=-2.645631934
s2=0
s3=1.3440586e43
s4=.

The last example returns a missing value because of an overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

Reference for language elements
Version 4.1

1802

COSH

Returns the hyperbolic cosine of a numeric argument.

COSH (x)

Calculates the hyperbolic cosine of the
argument:

0 1 2- 1- 2

x

cosh(x)

1

2

3

4

Return type: Numeric

The return value is greater than or equal to one.

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the hyperbolic cosine.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the hyperbolic cosine of the argument is returned. The results are written to the
log.

DATA _NULL_;
 s1 = COSH(-1.7);
 PUT s1=;
 s2 = COSH(0);
 PUT s2=;
 s3 = COSH(100);
 PUT s3=;
 s4 = COSH(800);
 PUT s4=;
RUN;

On a Windows 64-bit computer, this produces the following output:

s1=2.8283154579
s2=1
s3=1.3440586e43
s4=.

The last example returns a missing value because of an overflow.

Reference for language elements
Version 4.1

1803

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

TANH

Returns the hyperbolic tangent of a numeric argument.

TANH (x)

Calculates the hyperbolic tangent of the argument:

 0 1 2- 1- 2
x

tanh(x)
1

3

- 1

- 3

Return type: Numeric

The return value is between -1 and 1, not including the bounds.

x

Type: Numeric

The point at which to calculate the hyperbolic tangent.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the hyperbolic tangent of the argument is returned. The results are written to the
log.

DATA _NULL_;
 s1 = TANH(-1.7);
 PUT s1=;
 s2 = TANH(0);
 PUT s2=;
 s3 = TANH(15);
 PUT s3=;
RUN;

This produces the following output:

s1=-0.935409071
s2=0
s3=1

The return value in the last example is rounded to the asymptotic limit.

Reference for language elements
Version 4.1

1804

CALL TANH

Calculates the hyperbolic tangent for each numeric variable in a list.

CALL TANH (

,

x) ;

Calculates the hyperbolic tangent for each variable in the argument list replacing the input values in
the variables with the result of the calculation.

See TANH (page 1803) for details on the hyperbolic tangent.

The return values are between -1 and 1, not including the bounds.

If any argument contains a missing value, all values are set to missing.

x

Type: Numeric

The point at which to calculate the hyperbolic tangent.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the hyperbolic tangent for each of the arguments is returned. The results are
written to the log.

DATA _NULL_;
 s1=0.6; s2=1; s3="4";
 CALL TANH (s1,s2,s3);

 PUT s1=;

 PUT s2=;

 PUT s3=;

 m1=0.6; m2=1; m3="four";
 CALL TANH (m1,m2,m3);

 PUT m1=;

 PUT m2=;

 PUT m3=;
RUN;

Reference for language elements
Version 4.1

1805

This produces the following output:

s1=0.537049567
s2=0.761594156
s3=0.9993292997

m1=.
m2=.
m3=.

The argument value "4" has been converted into a number, but the argument value "four" is
considered missing. Therefore all values are set to missing in the second example series.

Inverse hyperbolic functions

Perform inverse hyperbolic operations on the data.

ARSINH ... 1805

Returns the inverse hyperbolic sine of a numeric argument.

ARCOSH ... 1806

Returns the inverse hyperbolic cosine of a numeric argument.

ARTANH ..1808

Returns the inverse hyperbolic tangent of a numeric argument.

ARSINH

Returns the inverse hyperbolic sine of a numeric argument.

ARSINH (x)

Calculates the inverse hyperbolic sine of the argument:

0 1 2- 1- 2

- 1

1

x

arcsinh(x)

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

Reference for language elements
Version 4.1

1806

x

Type: Numeric

The point at which to calculate the inverse hyperbolic sine.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the inverse hyperbolic sine of the argument is returned. The results are written to
the log.

DATA _NULL_;
 s1 = ARSINH(-1.7);
 PUT s1=;
 s2 = ARSINH(0);
 PUT s2=;
 s3 = ARSINH(100);
 PUT s3=;
 s4 = ARSINH(1e200);
 PUT s4=;
RUN;

On a Windows 64-bit computer, this produces the following output:

s1=-1.300820427
s2=0
s3=5.2983423656
s4=.

The last example returns a missing value because of an overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

ARCOSH

Returns the inverse hyperbolic cosine of a numeric argument.

ARCOSH (x)

Calculates the inverse hyperbolic cosine of the argument:

0 1 2 3

1

2

x

arccosh(x)

Reference for language elements
Version 4.1

1807

Return type: Numeric

The return value is positive or zero.

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the inverse hyperbolic cosine.

Restriction: x ≥ 1

If the argument contains a missing value, a missing value is returned.

Basic examples
In these examples, the inverse hyperbolic cosine of the argument is returned. The results are written
to the log.

DATA _NULL_;
 s1 = ARCOSH(1);
 PUT s1=;
 s2 = ARCOSH(1.1);
 PUT s2=;
RUN;

This produces the following output:

s1=0
s2=0.4435682544

Examples — returning missing values
The following examples illustrate some of the conditions that cause the function to return a missing
value. The results are written to the log.

DATA _NULL_;
 c1 = ARCOSH(-1.7);
 PUT c1=;
 c2 = ARCOSH(0);
 PUT c2=;
 c3 = ARCOSH(1e200);
 PUT c3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

c1=.
c2=.
c3=.

The above examples return a missing value because the argument is out of range, or because of an
overflow.

Reference for language elements
Version 4.1

1808

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

ARTANH

Returns the inverse hyperbolic tangent of a numeric argument.

ARTANH (x)

Calculates the inverse hyperbolic tangent of the
argument:

0 1- 1

- 1

- 2

1

2

x

arctanh(x)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the inverse hyperbolic tangent.

Restriction: -1 < x < 1

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1809

Examples
In these examples, the inverse hyperbolic tangent of the argument is returned. The results are written
to the log.

DATA _NULL_;
 s1 = ARTANH(-0.3);
 PUT s1=;
 s2 = ARTANH(0);
 PUT s2=;
 s3 = ARTANH(0.9999999999);
 PUT s3=;
 s4 = ARTANH(1);
 PUT s4=;
 s5 = ARTANH(-5.1);
 PUT s5=;
RUN;

This produces the following output:

s1=-0.309519604
s2=0
s3=11.859499014
s4=.
s5=.

The last two examples return a missing value because the argument is out of range.

Factorials and special functions
Perform factorial operations on the data and calculate special functions: Beta, Gamma, Bessel, Airy,
Error and related functions.

The factorial function and two types of Euler integral have the following relationships to each other:

For integer values: For all values:

FACT ... 1811

Returns the factorial of a numeric argument.

LFACT ... 1812

Returns the natural logarithm of the factorial of a numeric argument.

GAMMA ... 1813

=

Reference for language elements
Version 4.1

1810

Returns the Gamma function of a numeric argument, or the Euler integral of the second kind.

LGAMMA ... 1815

Returns the natural logarithm of the Gamma function of a numeric argument.

DIGAMMA ... 1816

Returns the Digamma function of a numeric argument.

TRIGAMMA ... 1818

Returns the Trigamma function of a numeric argument.

BETA ... 1819

Returns the Beta function of two numeric arguments, or the Euler integral of the first kind.

LOGBETA ..1821

Returns the natural logarithm of the Beta function of two numeric arguments.

JBESSEL ...1823

Returns the Bessel function of the first kind for two numeric arguments.

IBESSEL ..1825

=

Returns the modified Bessel function of the first kind for two numeric arguments, scaled or
unscaled.

AIRY .. 1827

Returns the Airy function of the first kind for a numeric argument.

DAIRY ..1829

Returns the first derivative of the Airy function of the first kind for a numeric argument.

ERF ... 1830

Returns the error function of a numeric argument.

Reference for language elements
Version 4.1

1811

ERFC ...1831

Returns the complementary error function of a numeric argument.

FACT

Returns the factorial of a numeric argument.

FACT (x)

Returns the factorial of the argument, or the product of all integer numbers from 1 up to and including
the value of the argument:

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

Note:
The upper limit for the argument is platform-dependent.

x

Type: Numeric

The point at which to calculate the factorial.

Restriction: x ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Examples
In these examples, the factorial of the argument is returned. The results are written to the log.

DATA _NULL_;
 f1 = FACT(0);
 PUT f1=;
 f2 = FACT(-2);
 PUT f2=;
 f3 = FACT(200);
 PUT f3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

f1=1
f2=.
f3=.

The argument in the second example is negative, whereas the third example causes an overflow during
multiplication.

Reference for language elements
Version 4.1

1812

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

LFACT

Returns the natural logarithm of the factorial of a numeric argument.

LFACT (x)

Calculates the natural logarithm of the factorial, see FACT (page 1811):

Function LFACT allows much larger numbers as input than function FACT due to the use of the
logarithm.

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

Note:
The upper limit for the argument is platform-dependent.

x

Type: Numeric

The point at which to calculate the factorial.

Restriction: x ≥ 0 must be integer

If the argument is out of range, a missing value is returned.

Basic examples
In these examples, the natural logarithm of the factorial of the argument is returned. The results are
written to the log.

DATA _NULL_;
 f1 = LFACT(0);
 PUT f1=;
 f2 = LFACT(1);
 PUT f2=;
RUN;

This produces the following output:

f1=0
f2=0

Reference for language elements
Version 4.1

1813

Examples — returning missing values
The following examples illustrate some of the conditions that cause the function to return a missing
value. The results are written to the log.

DATA _NULL_;
 m1 = LFACT(-2);
 PUT m1=;
 m2 = LFACT(2.3);
 PUT m2=;
 m3 = LFACT(2.2e9);
 PUT m3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

m1=.
m2=.
m3=.

The above examples return a missing value because the argument is out of range, or because of an
overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

GAMMA

Returns the Gamma function of a numeric argument, or the Euler integral of the second kind.

GAMMA (x)

Reference for language elements
Version 4.1

1814

The Gamma function is defined via a
convergent improper integral:

 =

For integers, this equals the factorial (see
FACT (page 1811)) of the argument
reduced by one:

- 4

- 2

0

2

- 2 21 3- 3 - 1

1

3

- 3

- 1

(x)

x

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the Gamma function.

Restriction: cannot be within 10-12 of a negative integer or zero

If the argument is out of range, a missing value is returned.

Basic examples
In these examples, the Gamma function of the argument is returned. The results are written to the log.

DATA _NULL_;
 g1 = GAMMA(4.2);
 PUT g1=;
 g2 = GAMMA(0.003);
 PUT g2=;
 g3 = GAMMA(-0.3);
 PUT g3=;
 g4 = GAMMA(-1.5);
 PUT g4=;
 g5 = GAMMA(-2.7);
 PUT g5=;
RUN;

Reference for language elements
Version 4.1

1815

This produces the following output:

g1=7.7566895358
g2=332.7590767
g3=-4.326851109
g4=2.3632718012
g5=-0.931082785

Examples — returning missing values
The following examples illustrate some of the conditions that cause the function to return a missing
value. The results are written to the log.

DATA _NULL_;
 m1 = GAMMA(0);
 PUT m1=;
 m2 = GAMMA(1e-13);
 PUT m2=;
 m3 = GAMMA(-2);
 PUT m3=;
 m4 = GAMMA(1e306);
 PUT m4=;
RUN;

On a Windows 64-bit computer, this produces the following output:

m1=.
m2=.
m3=.
m4=.

The above examples return a missing value because the argument is nearing a function pole, or
because of an overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

LGAMMA

Returns the natural logarithm of the Gamma function of a numeric argument.

LGAMMA (x)

Calculates the natural logarithm of the Gamma function,
see GAMMA (page 1813):

1

2

0 1 2 3 4
x

(x)log

Reference for language elements
Version 4.1

1816

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the natural logarithm of the Gamma function.

Restriction: x > 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the Gamma function of the argument is returned. The
results are written to the log.

DATA _NULL_;
 g1 = LGAMMA(0.003);
 PUT g1=;
 g2 = LGAMMA(1);
 PUT g2=;
 g3 = LGAMMA(1.3);
 PUT g3=;
 g4 = LGAMMA(3.1);
 PUT g4=;

 m1 = LGAMMA(0);
 PUT m1=;
 m2 = LGAMMA(-2.2);
 PUT m2=;
RUN;

This produces the following output:

g1=5.8074187347
g2=0
g3=-0.10817481
g4=0.7873750833

m1=.
m2=.

The last two examples return a missing value because the argument is out of range, or because of an
overflow.

DIGAMMA

Returns the Digamma function of a numeric argument.

DIGAMMA (x)

Reference for language elements
Version 4.1

1817

The Digamma function is the logarithmic derivative of
the Gamma function, see GAMMA (page 1813):

x)(

0 2

1
x

- 5

5

- 1- 2

Return type: Numeric

x

Type: Numeric

The point at which to calculate the Gamma function.

Restriction: cannot be within 10-12 of a negative integer or zero

If the argument is out of range, a missing value is returned.

Basic examples
In these examples, the Digamma function of the argument is returned. The results are written to the
log.

DATA _NULL_;
 g1 = DIGAMMA(1);
 PUT g1=;
 g2 = DIGAMMA(1.461632145);
 PUT g2=;
 g3 = DIGAMMA(0.003);
 PUT g3=;
 g4 = DIGAMMA(-0.3);
 PUT g4=;
 g5 = DIGAMMA(-1.5);
 PUT g5=;
 g6 = DIGAMMA(-2.7);
 PUT g6=;
RUN;

This produces the following output:

g1=-0.577215665
g2=3.061493e-11
g3=-333.905625
g4=2.1133097796
g5=0.7031566406
g6=-1.115347129

The second example takes the positive root of the Digamma function as an argument, rounded to nine
decimals. The result is nearly zero, as expected.

Reference for language elements
Version 4.1

1818

Examples — returning missing values
The following examples illustrate some of the conditions that cause the function to return a missing
value. The results are written to the log.

DATA _NULL_;
 m1 = DIGAMMA(0);
 PUT m1=;
 m2 = DIGAMMA(1e-13);
 PUT m2=;
 m3 = DIGAMMA(-2);
 PUT m3=;
RUN;

This produces the following output:

m1=.
m2=.
m3=.

The above examples return a missing value because the argument is nearing a function pole.

TRIGAMMA

Returns the Trigamma function of a numeric argument.

TRIGAMMA (x)

The Trigamma function is the second logarithmic
derivative of the Gamma function, see GAMMA
(page 1813):

0 21 x

5

10

- 2 - 1

x)(1

Return type: Numeric

x

Type: Numeric

The point at which to calculate the Gamma function.

Restriction: cannot be within 10-12 of a negative integer or zero

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1819

Examples
In these examples, the Trigamma function of the argument is returned. The results are written to the
log.

DATA _NULL_;
 g1 = TRIGAMMA(1.3);
 PUT g1=;
 g2 = TRIGAMMA(0.003);
 PUT g2=;
 g3 = TRIGAMMA(-0.3);
 PUT g3=;
 g4 = TRIGAMMA(-1.5);
 PUT g4=;
 g5 = TRIGAMMA(-2.7);
 PUT g5=;
 g6 = TRIGAMMA(1e200);
 PUT g6=;
 m1 = TRIGAMMA(0);
 PUT m1=;
 m2 = TRIGAMMA(1e-13);
 PUT m2=;
 m3 = TRIGAMMA(-2);
 PUT m3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=1.134253435
g2=111112.74886
g3=13.945160268
g4=9.3792466451
g5=14.769375846
g6=0
m1=.
m2=.
m3=.

In the last example TRIGAMMA returns zero when a large value in the argument causes an underflow.
The last three examples return a missing value because the argument is nearing a function pole.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

BETA

Returns the Beta function of two numeric arguments, or the Euler integral of the first kind.

BETA (x , y)

Reference for language elements
Version 4.1

1820

The Beta function is defined via a
convergent improper integral:

The Beta function is related to the
Gamma function, see GAMMA (page
1813):

For integers, the Beta function can be
expressed with factorials (see FACT
(page 1811)):

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The X coordinate value.

Restriction: x > 0

If the argument is out of range, a missing value is returned.

y

Type: Numeric

The Y coordinate value.

Restriction: y > 0

If the argument is out of range, a missing value is returned.

Reference for language elements
Version 4.1

1821

Examples
In these examples, the Beta function of the arguments is returned. The results are written to the log.

DATA _NULL_;
 g1 = BETA(0.3,0.5);
 PUT g1=;
 g2 = BETA(6.8,2.2);
 PUT g2=;
 g3 = BETA(701.54,710.3);
 PUT g3=;
 m1 = BETA(0,0);
 PUT m1=;
 m2 = BETA(-2.2,1);
 PUT m2=;
 m3 = BETA(1e306,1);
 PUT m3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=4.554443088
g2=0.0135704815
g3=0
m1=.
m2=.
m3=.

The last three examples return a missing value because the argument is out of range, or because of an
overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

LOGBETA

Returns the natural logarithm of the Beta function of two numeric arguments.

LOGBETA (x , y)

Calculates the natural logarithm of the Beta function, see BETA (page 1819):

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The X coordinate value.

Reference for language elements
Version 4.1

1822

Restriction: x > 0

If the argument is out of range, a missing value is returned.

y

Type: Numeric

The Y coordinate value.

Restriction: y > 0

If the argument is out of range, a missing value is returned.

Examples
In these examples, the natural logarithm of the Beta function of the arguments is returned. The results
are written to the log.

DATA _NULL_;
 g1 = LOGBETA(0.3,0.5);
 PUT g1=;
 g2 = LOGBETA(6.8,2.2);
 PUT g2=;
 g3 = LOGBETA(701.54,710.3);
 PUT g3=;
 m1 = LOGBETA(0,0);
 PUT m1=;
 m2 = LOGBETA(-2.2,1);
 PUT m2=;
 m3 = LOGBETA(1e306,1);
 PUT m3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

g1=1.5161032593
g2=-4.299858325
g3=-980.5997813
m1=.
m2=.
m3=.

The last three examples return a missing value because the argument is out of range, or because of an
overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

Reference for language elements
Version 4.1

1823

JBESSEL

Returns the Bessel function of the first kind for two numeric arguments.

JBESSEL (alpha , x)

Calculates the Bessel function of the first kind:

for all integer m, using the factorial m! (see FACT (page 1811)) and the Gamma function Γ(t)
(see GAMMA (page 1813)).

The above equation defines a family of functions parametrised by the value of α known as the order of
the function. The functions represent a group of solutions of Bessel's differential equation:

The plot below illustrates Jα (x) functions of orders 0, 1 and 2.

1.0

0.8

0.6

0.4

0.2

0.0

- 0.2

- 0.4

5 10 15 20

J (x)
0

J (x)
1

J (x)
2

x

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

alpha

Type: Numeric

The order of the function.

Restriction: alpha ≥ 0

Reference for language elements
Version 4.1

1824

If the argument is out of range, a missing value is returned.

x

Type: Numeric

The point at which to calculate the Bessel function of the first kind.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

Basic examples
In these examples, the Bessel function of the first kind of the arguments is returned. The results are
written to the log.

DATA _NULL_;
 g1 = JBESSEL(0.3,0.5);
 PUT g1=;
 g2 = JBESSEL(6.8,2.2);
 PUT g2=;
 g3 = JBESSEL(0,0);
 PUT g3=;
RUN;

This produces the following output:

g1=0.7002604885
g2=0.0004841404
g3=1

Examples — returning missing values
The following examples illustrate some of the conditions that cause the function to return a missing
value. The results are written to the log.

DATA _NULL_;
 m1 = JBESSEL(2.2,-1);
 PUT m1=;
 m2 = JBESSEL(-2.2,1);
 PUT m2=;
 m3 = JBESSEL(200,2.3);
 PUT m3=;
RUN;

On a Windows 64-bit computer, this produces the following output:

m1=.
m2=.
m3=.

The above examples return a missing value because the argument is out of range, or because of an
overflow.

Reference for language elements
Version 4.1

1825

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

IBESSEL

Returns the modified Bessel function of the first kind for two numeric arguments, scaled or unscaled.

IBESSEL (alpha , x , scale)

Calculates the modified Bessel function of the
first kind:

 =

for all integer m, using the factorial m! (see
FACT (page 1811)) and the Gamma
function Γ(t) (see GAMMA (page 1813)).

3

2

1

0
1 2 3 4

I (x)
0 I (x)

1 I (x)
2 I (x)

3

x

Iα (x) functions of orders 0, 1, 2 and 3

The above equation defines a family of functions parametrised by the value of α known as the order of
the function. The functions represent a group of solutions of Bessel's differential equation:

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

alpha

Type: Numeric

The order of the function.

Restriction: alpha ≥ 0

If the argument is out of range, a missing value is returned.

x

Type: Numeric

Reference for language elements
Version 4.1

1826

The point at which to calculate the modified Bessel function of the first kind.

Restriction: x ≥ 0

If the argument is out of range, a missing value is returned.

scale

Type: Numeric

The scale of the function.

Restriction: 0 ≤ scale ≤ 1

If the argument is out of range, a missing value is returned.

Basic examples
In these examples, the modified Bessel function of the first kind of the arguments is returned. The
results are written to the log.

DATA _NULL_;
 g1 = IBESSEL(0.3,0.5,0);
 PUT g1=;
 g2 = IBESSEL(0.3,0.5,1);
 PUT g2=;
 g3 = IBESSEL(6.3,22.2,0);
 PUT g3=;
 g4 = IBESSEL(6.3,22.2,1);
 PUT g4=;
 g5 = IBESSEL(0,0,0);
 PUT g5=;
 g6 = IBESSEL(0,0,1);
 PUT g6=;
RUN;

This produces the following output:

g1=0.7709517346
g2=0.4676058642
g3=150339241.87
g4=0.0343348265
g5=1
g6=1

Reference for language elements
Version 4.1

1827

Examples — returning missing values
The following examples illustrate some of the conditions that cause the function to return a missing
value. The results are written to the log.

DATA _NULL_;
 m1 = IBESSEL(2.2,-1,0);
 PUT m1=;
 m2 = IBESSEL(-2.2,1,0);
 PUT m2=;
 m3 = IBESSEL(-2.2,1,2);
 PUT m3=;
 m4 = IBESSEL(100,1e200,0);
 PUT m4=;
RUN;

On a Windows 64-bit computer, this produces the following output:

m1=.
m2=.
m3=.
m4=.

The above examples return a missing value because the argument is out of range, or because of an
overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

AIRY

Returns the Airy function of the first kind for a numeric argument.

AIRY (x)

The Airy function is defined via a convergent improper integral:

Ai(x)
0.50

0.25

- 0.25

- 15 - 10 - 5 0 5

x

Reference for language elements
Version 4.1

1828

The Ai(x) function is a solution to the Airy differential equation:

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the Airy function of the first kind.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the Airy function of the first kind of the argument is returned. The results are written
to the log.

DATA _NULL_;
 a1 = AIRY(1.3);
 PUT a1=;
 a2 = AIRY(0);
 PUT a2=;
 a3 = AIRY(104);
 PUT a3=;
 a4 = AIRY(105);
 PUT a4=;
 a5 = AIRY(-1e205);
 PUT a5=;
 m1 = AIRY(-1e206);
 PUT m1=;
 m2 = AIRY(1e206);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a1=0.0934746658
a2=0.3550280539
a3=0.74488e-308
a4=0
a5=-2.45245e-52
m1=.
m2=.

The last two examples return a missing value because of an overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

Reference for language elements
Version 4.1

1829

DAIRY

Returns the first derivative of the Airy function of the first kind for a numeric argument.

DAIRY (x)

Calculates the first derivative of the Airy
function of the first kind, see AIRY
(page 1827):

0

0.5

1

0

- 0.5

- 1

Ai'(x)

x

- 15 5- 10 - 5

Return type: Numeric

If an overflow occurs as a result of the operation, a missing value is returned.

x

Type: Numeric

The point at which to calculate the first derivative of the Airy function of the first kind.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1830

Examples
In these examples, the first derivative of the Airy function of the first kind of the argument is returned.
The results are written to the log.

DATA _NULL_;
 a1 = DAIRY(1.3);
 PUT a1=;
 a2 = DAIRY(0);
 PUT a2=;
 a3 = DAIRY(104);
 PUT a3=;
 a4 = DAIRY(105);
 PUT a4=;
 a5 = DAIRY(-1e205);
 PUT a5=;
 m1 = DAIRY(-1e206);
 PUT m1=;
 m2 = DAIRY(1e206);
 PUT m2=;
RUN;

On a Windows 64-bit computer, this produces the following output:

a1=-0.120333866
a2=-0.258819404
a3=-7.5981e-308
a4=0
a5=-6.365001e50
m1=.
m2=.

The last two examples return a missing value because of an overflow.

Note:
Other platforms might have different boundary values as determined by their architecture, resulting in
different outcomes in the examples.

ERF

Returns the error function of a numeric argument.

ERF (x)

Calculates the error function of the argument:

- 1

- 1 0 1

x

- 2 2

1
erf(x)

Reference for language elements
Version 4.1

1831

Return type: Numeric

x

Type: Numeric

The point at which to calculate the error function.

If the argument contains a missing value, a missing value is returned.

Examples
In these examples, the error function of the argument is returned. The results are written to the log.

DATA _NULL_;
 g1 = ERF(-3.3);
 PUT g1=;
 g2 = ERF(0.003);
 PUT g2=;
RUN;

This produces the following output:

g1=-0.999996942
g2=0.0033851273

ERFC

Returns the complementary error function of a numeric argument.

ERFC (x)

Calculates the complementary error function
based on the error function, see ERF (page
1830).

2

- 1 0 1

x

- 2 2

1

erfc(x)

Return type: Numeric

x

Type: Numeric

The point at which to calculate the complementary error function.

If the argument contains a missing value, a missing value is returned.

Reference for language elements
Version 4.1

1832

Examples
In these examples, the complementary error function of the argument is returned. The results are
written to the log.

DATA _NULL_;
 g1 = ERFC(-3.3);
 PUT g1=;
 g2 = ERFC(0.003);
 PUT g2=;
RUN;

This produces the following output:

g1=1.9999969423
g2=0.9966148727

Value counts
Return counts for lists of values.

Examples in this section use a list of values containing a mix of numeric, character and missing values:

1, -2, 3, ., "a", "4", ""

CMISS ... 1832
Returns the number of missing values in a list of character or numeric values.

NMISS ... 1833
Returns the number of missing values in a list of numeric values.

N .. 1834
Returns the number of non-missing values in a list of numeric values.

CMISS

Returns the number of missing values in a list of character or numeric values.

CMISS (

,

value)

Defined for character and numeric values.

Return type: Numeric

value

Type: Character or numeric value

The value to be evaluated.

Reference for language elements
Version 4.1

1833

Example
In this example, the number of missing values in the argument list is returned. The result is written to
the log.

DATA _NULL_;
 c = CMISS(1,-2,3,.,"a","4","");
 PUT c=;
RUN;

This produces the following output:

c=2

The output is 2, as only the fourth (.) and last ("") values are considered missing.

NMISS

Returns the number of missing values in a list of numeric values.

NMISS (

,

value)

Defined for numeric values only.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

Example
In this example, the number of missing values in the argument list is returned. The result is written to
the log.

DATA _NULL_;
 n = NMISS(1,-2,3,.,"a","4","");
 PUT n=;
RUN;

This produces the following output:

n=3

The sixth value ("4") has been converted into a number, but the fourth (.), the fifth ("a") and last ("")
values are considered missing.

Reference for language elements
Version 4.1

1834

N

Returns the number of non-missing values in a list of numeric values.

N (

,

value)

Defined for numeric values only.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

Example
In this example, the number of non-missing values in the argument list is returned. The result is
written to the log.

DATA _NULL_;
 n = N(1,-2,3,.,"a","4","");
 PUT n=;
RUN;

This produces the following output:

n=4

The sixth value ("4") has been converted into a number, but the fourth (.), the fifth ("a") and last ("")
values are considered missing.

Minimum and maximum values
Operate on the minimum and maximum in a list of values.

Examples in this section use a list of values containing a mix of numeric, character and missing values:

1, -2, 3, ., "a", "4", ""

MIN .. 1835
Returns the minimum value in a list of numeric values.

MAX ...1836
Returns the maximum value in a list of numeric values.

RANGE ..1836
Returns the difference between the maximum and minimum value in a list of numeric values.

Reference for language elements
Version 4.1

1835

SMALLEST ..1837
Returns the n-th smallest value in a list of numeric values.

LARGEST ..1838
Returns the n-th largest value in a list of numeric values.

ORDINAL ...1839
Returns the n-th smallest value in a list of numeric or missing values.

MIN

Returns the minimum value in a list of numeric values.

MIN (v1 ,

,

value)

Requires at least two arguments. Calculates the minimum value of non-missing values

Return type: Numeric

If all specified values are missing values, a missing value is returned.

v1

Type: Numeric

The first value in the list.

value

Type: Numeric

Further value to be evaluated.

Example
In this example, the minimum value in the argument list is returned. The result is written to the log.

DATA _NULL_;
 m = MIN(1,-2,3,.,"a","4","");
 PUT m=;
RUN;

This produces the following output:

m=-2

The sixth value ("4") has been converted into a number, but the fourth (.), the fifth ("a") and last ("")
values are considered missing.

Reference for language elements
Version 4.1

1836

MAX

Returns the maximum value in a list of numeric values.

MAX (v1 ,

,

value)

Requires at least two arguments. Calculates the maximum value of non-missing values.

Return type: Numeric

If all specified values are missing values, a missing value is returned.

v1

Type: Numeric

The first value in the list.

value

Type: Numeric

Further value to be evaluated.

Example
In this example, the maximum value in the argument list is returned. The result is written to the log.

DATA _NULL_;
 m = MAX(1,-2,3,.,"a","4","");
 PUT m=;
RUN;

This produces the following output:

m=4

The output is 4, as the sixth value ("4") has been converted into a number, but the fourth (.), the fifth
("a") and last ("") values are considered missing.

RANGE

Returns the difference between the maximum and minimum value in a list of numeric values.

RANGE (

,

value)

Calculates the difference between the maximum and minimum value of non-missing values.

Return type: Numeric

Reference for language elements
Version 4.1

1837

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the difference between the maximum and minimum value in the argument list is
returned. The result is written to the log.

DATA _NULL_;
 r = RANGE(1,-2,3,.,"a","4","");
 PUT r=;
RUN;

This produces the following output:

r=6

The calculation is as follows: 4 - (-2) = 6.

SMALLEST

Returns the n-th smallest value in a list of numeric values.

SMALLEST (n ,

,

value)

Calculates the n-th smallest value of non-missing values.

Return type: Numeric

n

Type: Numeric

The ordinal position in the rank from smallest to largest values.

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Reference for language elements
Version 4.1

1838

Example
In this example, the n-th smallest value in the argument list is returned. The result is written to the log.

DATA _NULL_;
 s = SMALLEST(2, 1,-2,3,.,"a","4","");
 PUT s=;
RUN;

This produces the following output:

s=1

The second smallest value is 1, as the sixth value ("4") has been converted into a number, but the
fourth (.), the fifth ("a") and last ("") values are considered missing.

LARGEST

Returns the n-th largest value in a list of numeric values.

LARGEST (n ,

,

value)

Calculates the n-th largest value of non-missing values

Return type: Numeric

n

Type: Numeric

The ordinal position in the rank from smallest to largest values.

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the n-th largest value in the argument list is returned. The result is written to the log.

DATA _NULL_;
 s = LARGEST(2, 1,-2,3,.,"a","4","");
 PUT s=;
RUN;

Reference for language elements
Version 4.1

1839

This produces the following output:

s=3

The second largest value is 3, as the sixth value ("4") has been converted into a number, but the
fourth (.), the fifth ("a") and last ("") values are considered missing.

ORDINAL

Returns the n-th smallest value in a list of numeric or missing values.

ORDINAL (n ,

,

value)

Defined for numeric and missing values. Character values that cannot be converted into numbers, are
considered missing.

Returns the n-th smallest value in the list. Missing values are considered smaller than any non-missing
values.

Return type: Numeric

n

Type: Numeric

The ordinal position in the rank from smallest to largest values.

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the n-th smallest value in the argument list is returned. The results are written to
the log.

DATA _NULL_;
 o1 = ORDINAL(1, 1,-2,3,.,"a","4","");
 PUT o1=;
 o2 = ORDINAL(2, 1,-2,3,.,"a","4","");
 PUT o2=;
 o3 = ORDINAL(3, 1,-2,3,.,"a","4","");
 PUT o3=;
 o4 = ORDINAL(4, 1,-2,3,.,"a","4","");
 PUT o4=;
RUN;

Reference for language elements
Version 4.1

1840

This produces the following output:

o1=.
o2=.
o3=.
o4=-2

The first value in the argument list is the function parameter n. The remainder forms the list of values to
process.

The sixth value ("4") has been converted into a number, but the fourth (.), the fifth ("a") and last ("")
values are considered missing. The function returns a missing value (.) as the first, second and third
smallest value in the list (o1, o2 and o3, respectively). The fourth smallest value returned (o4) is -2, the
smallest non-missing value in this example.

Percentile-based calculations
Calculate percentile-based values.

Examples in this section use two similar lists of values. The first list contains values close to each other,
while the second list contains the same values plus a significantly larger outlier:

1.1, 1.2, 1.3, 1.4, 1.5, 1, -2, 3, ., "a", "4", ""

1.1, 1.2, 1.3, 1.4, 1.5, 1, -2, 3, ., "a", "4", "", 1e15

PCTL methods .. 1840
Calculate percentile-based values with different methods.

MEDIAN ...1853

Returns the median of a list of numeric values.

MAD ...1853

Returns the median absolute deviation from the median of a list of numeric values.

IQR .. 1854

Returns the inter-quartile range of a list of numeric values.

PCTL methods

Calculate percentile-based values with different methods.

There are five methods for percentile calculation implemented by the correspondingly numbered
functions PCTL1 through PCTL5.

Reference for language elements
Version 4.1

1841

Percentile is calculated as follows:

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q depending on the method:

method 4 q = p(n+1) / 100

methods 1, 2, 3 and 5 q = p⋅n / 100

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

methods 1 and 4 (1-h)xi + hxi+1

method 2

method 3

method 5

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section.

DATA EXAMPLE;
 DO i = 0 TO 100 BY 25;
 p1 = PCTL1(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 p2 = PCTL2(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 p3 = PCTL3(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 p4 = PCTL4(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 p5 = PCTL5(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 OUTPUT;
 END;

 DO i = 0 TO 100 BY 25;
 p1 = PCTL1(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 p2 = PCTL2(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 p3 = PCTL3(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 p4 = PCTL4(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 p5 = PCTL5(i, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 OUTPUT;
 END;

Reference for language elements
Version 4.1

1842

RUN;

The contents of the EXAMPLE dataset are as follows:

value list 1 value list 2
percentile PCTL1 PCTL2 PCTL3 PCTL4 PCTL5 PCTL1 PCTL2 PCTL3 PCTL4 PCTL5

0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
25 1.025 1 1.1 1.05 1.1 1.05 1 1.1 1.075 1.1
50 1.25 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.35 1.35
75 1.475 1.5 1.5 2.25 1.5 2.25 3 3 3.25 3

100 4 4 4 4 4 1015 1015 1015 1015 1015

PCTL ... 1842
Returns a percentile a list of numeric values according to the default method. This function is an
alias of PCTL5.

PCTL1 ... 1844
Returns a percentile of a list of numeric values according to method 1.

PCTL2 ... 1846
Returns a percentile of a list of numeric values according to method 2.

PCTL3 ... 1848
Returns a percentile of a list of numeric values according to method 3.

PCTL4 ... 1849
Returns a percentile of a list of numeric values according to method 4.

PCTL5 ... 1851
Returns a percentile a list of numeric values according to method 5. This function is an alias of
PCTL.

PCTL

Returns a percentile a list of numeric values according to the default method. This function is an alias
of PCTL5.

PCTL (p ,

,

value)

Calculates their specified percentile p of non-missing values calculated with the default method –
method 5.

Percentile is calculated as follows:

Reference for language elements
Version 4.1

1843

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q:

q = p⋅n / 100

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

Return type: Numeric

p

Type: Numeric

The percentile to find.

Restriction: 0 ≥ p ≥ 100

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section. The results are written to the log.

DATA _NULL_;
 p0 = PCTL(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p0=;
 p25 = PCTL(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p25=;
 p50 = PCTL(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p50=;
 p75 = PCTL(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p75=;
 p100 = PCTL(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p100=;

 q0 = PCTL(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q0=;

Reference for language elements
Version 4.1

1844

 q25 = PCTL(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q25=;
 q50 = PCTL(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q50=;
 q75 = PCTL(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q75=;
 q100 = PCTL(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q100=;
RUN;

This produces the following output:

p0=-2
p25=1.1
p50=1.3
p75=1.5
p100=4

q0=-2
q25=1.1
q50=1.35
q75=3
q100=1e15

PCTL1

Returns a percentile of a list of numeric values according to method 1.

PCTL1 (p ,

,

value)

Calculates their specified percentile p of non-missing values calculated with method 1.

Percentile is calculated as follows:

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q:

q = p⋅n / 100

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

(1-h)xi + hxi+1

Return type: Numeric

Reference for language elements
Version 4.1

1845

p

Type: Numeric

The percentile to find.

Restriction: 0 ≥ p ≥ 100

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section. The results are written to the log.

DATA _NULL_;
 p0 = PCTL1(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p0=;
 p25 = PCTL1(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p25=;
 p50 = PCTL1(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p50=;
 p75 = PCTL1(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p75=;
 p100 = PCTL1(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p100=;

 q0 = PCTL1(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q0=;
 q25 = PCTL1(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q25=;
 q50 = PCTL1(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q50=;
 q75 = PCTL1(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q75=;
 q100 = PCTL1(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q100=;
RUN;

Reference for language elements
Version 4.1

1846

This produces the following output:

p0=-2
p25=1.025
p50=1.25
p75=1.475
p100=4

q0=-2
q25=1.05
q50=1.3
q75=2.25
q100=1e15

PCTL2

Returns a percentile of a list of numeric values according to method 2.

PCTL2 (p ,

,

value)

Calculates their specified percentile p of non-missing values calculated with method 2.

Percentile is calculated as follows:

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q:

q = p⋅n / 100

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

Return type: Numeric

p

Type: Numeric

The percentile to find.

Reference for language elements
Version 4.1

1847

Restriction: 0 ≥ p ≥ 100

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section. The results are written to the log.

DATA _NULL_;
 p0 = PCTL2(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p0=;
 p25 = PCTL2(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p25=;
 p50 = PCTL2(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p50=;
 p75 = PCTL2(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p75=;
 p100 = PCTL2(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p100=;

 q0 = PCTL2(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q0=;
 q25 = PCTL2(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q25=;
 q50 = PCTL2(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q50=;
 q75 = PCTL2(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q75=;
 q100 = PCTL2(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q100=;
RUN;

This produces the following output:

p0=-2
p25=1
p50=1.2
p75=1.5
p100=4

q0=-2
q25=1
q50=1.3
q75=3
q100=1e15

Reference for language elements
Version 4.1

1848

PCTL3

Returns a percentile of a list of numeric values according to method 3.

PCTL3 (p ,

,

value)

Calculates their specified percentile p of non-missing values calculated with method 3.

Percentile is calculated as follows:

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q:

q = p⋅n / 100

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

Return type: Numeric

p

Type: Numeric

The percentile to find.

Restriction: 0 ≥ p ≥ 100

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section. The results are written to the log.

DATA _NULL_;

Reference for language elements
Version 4.1

1849

 p0 = PCTL3(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p0=;
 p25 = PCTL3(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p25=;
 p50 = PCTL3(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p50=;
 p75 = PCTL3(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p75=;
 p100 = PCTL3(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p100=;

 q0 = PCTL3(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q0=;
 q25 = PCTL3(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q25=;
 q50 = PCTL3(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q50=;
 q75 = PCTL3(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q75=;
 q100 = PCTL3(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q100=;
RUN;

This produces the following output:

p0=-2
p25=1.1
p50=1.3
p75=1.5
p100=4

q0=-2
q25=1.1
q50=1.3
q75=3
q100=1e15

PCTL4

Returns a percentile of a list of numeric values according to method 4.

PCTL4 (p ,

,

value)

Calculates their specified percentile p of non-missing values calculated with method 4.

Percentile is calculated as follows:

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q:

q = p(n+1) / 100

Reference for language elements
Version 4.1

1850

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

(1-h)xi + hxi+1

Return type: Numeric

p

Type: Numeric

The percentile to find.

Restriction: 0 ≥ p ≥ 100

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section. The results are written to the log.

DATA _NULL_;
 p0 = PCTL4(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p0=;
 p25 = PCTL4(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p25=;
 p50 = PCTL4(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p50=;
 p75 = PCTL4(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p75=;
 p100 = PCTL4(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p100=;

 q0 = PCTL4(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q0=;
 q25 = PCTL4(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q25=;
 q50 = PCTL4(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q50=;
 q75 = PCTL4(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q75=;
 q100 = PCTL4(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q100=;

Reference for language elements
Version 4.1

1851

RUN;

This produces the following output:

p0=-2
p25=1.05
p50=1.3
p75=2.25
p100=4

q0=-2
q25=1.075
q50=1.35
q75=3.25
q100=1e15

PCTL5

Returns a percentile a list of numeric values according to method 5. This function is an alias of PCTL.

PCTL5 (p ,

,

value)

Calculates their specified percentile p of non-missing values calculated with method 5.

Percentile is calculated as follows:

1. Non-missing values are sorted into ascending order allowing the identification of two adjacent values
xi and xi+1 between which falls the specified percentile. The index i is calculated using a helper
variable q:

q = p⋅n / 100

2. Using q, index i and a helper value h needed in the next step, are calculated based on the floor of q,
that is, the value of q rounded down to the nearest whole number:

3. The percentile is calculated based on ith and (i+1)st values from the sorted list:

Return type: Numeric

p

Type: Numeric

The percentile to find.

Reference for language elements
Version 4.1

1852

Restriction: 0 ≥ p ≥ 100

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In the following example, the 0-, 25-, 50-, 75- and 100-percentile are calculated for the two value lists
used in this section. The results are written to the log.

DATA _NULL_;
 p0 = PCTL5(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p0=;
 p25 = PCTL5(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p25=;
 p50 = PCTL5(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p50=;
 p75 = PCTL5(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p75=;
 p100 = PCTL5(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT p100=;

 q0 = PCTL5(0, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q0=;
 q25 = PCTL5(25, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q25=;
 q50 = PCTL5(50, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q50=;
 q75 = PCTL5(75, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q75=;
 q100 = PCTL5(100, 1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q100=;
RUN;

This produces the following output:

p0=-2
p25=1.1
p50=1.3
p75=1.5
p100=4

q0=-2
q25=1.1
q50=1.35
q75=3
q100=1e15

Reference for language elements
Version 4.1

1853

MEDIAN

Returns the median of a list of numeric values.

MEDIAN (

,

value)

Calculates the median of non-missing values calculated as a 50-percentile using function PCTL5, see
PCTL5 (page 1851):

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the median of the arguments is returned. The results are written to the log.

DATA _NULL_;
 m1 = MEDIAN(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT m1=;
 m2 = MEDIAN(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT m2=;
RUN;

This produces the following output:

m1=1.3
m2=1.35

The outlier in the second value list has only a small impact on the median.

MAD

Returns the median absolute deviation from the median of a list of numeric values.

MAD (

,

value)

Reference for language elements
Version 4.1

1854

Calculates the median absolute deviation from the median of non-missing values (see MEDIAN
(page 1853)):

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the median absolute deviation from the median of the arguments is returned. The
results are written to the log.

DATA _NULL_;
 d1 = MAD(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT d1=;
 d2 = MAD(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT d2=;
RUN;

This produces the following output:

d1=0.2
d2=0.3

This function uses median calculations shown in variables m1 and m2:

IQR

Returns the inter-quartile range of a list of numeric values.

IQR (

,

value)

Reference for language elements
Version 4.1

1855

Calculates the inter-quartile range of non-missing values calculated using function PCTL5 (see
PCTL5 (page 1851)) as the difference between the 75-percentile and the 25-percentile of the value
list:

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the inter-quartile range of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 q1 = IQR(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT q1=;
 q2 = IQR(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT q2=;
RUN;

This produces the following output:

q1=0.4
q2=1.9

The calculation is as follows:

Sums and sums of squares
Calculate sums and sums of squares of a list of numeric values.

Examples in this section use a list of values containing a mix of numeric, character and missing values:

1, -2, 3, ., "a", "4", ""

SUM ...1856

Reference for language elements
Version 4.1

1856

Returns the sum of values of a list of numeric values.

SUMABS ... 1857

Returns the sum of absolute values of a list of numeric values.

USS ... 1858

Returns the uncorrected sum of squares of a list of numeric values.

CSS ... 1859

Returns the corrected sum of squares of a list of numeric values.

EUCLID ... 1859

Returns the Euclidean norm of a list of numeric values.

RMS ...1860

Returns the root mean square of a list of numeric values.

LPNORM ... 1861

Returns the Lp norm of a list of numeric values.

SUM

Returns the sum of values of a list of numeric values.

SUM (

,

value)

Calculates the sum of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

Reference for language elements
Version 4.1

1857

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the sum of the arguments is returned. The result is written to the log.

DATA _NULL_;
 s = SUM(1,-2,3,.,"a","4","");
 PUT s=;
RUN;

This produces the following output:

s=6

The calculation is as follows: 1-2+3+4 = 6.

SUMABS

Returns the sum of absolute values of a list of numeric values.

SUMABS (

,

value)

Calculates the sum of absolute values of non-missing values:

where n is the number of non-missing values in the list. The sum of absolute values is also known as
the Manhattan norm.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Reference for language elements
Version 4.1

1858

Example
In this example, the sum of absolute values of the arguments is returned. The result is written to the
log.

DATA _NULL_;
 s = SUMABS(1,-2,3,.,"a","4","");
 PUT s=;
RUN;

This produces the following output:

s=10

The calculation is as follows: |1| + |-2| + |3| + |4| = 10.

USS

Returns the uncorrected sum of squares of a list of numeric values.

USS (

,

value)

Calculates the uncorrected sum of squares of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the uncorrected sum of squares of the arguments is returned. The result is written to
the log.

DATA _NULL_;
 u = USS(1,-2,3,.,"a","4","");
 PUT u=;
RUN;

This produces the following output:

u=30

Reference for language elements
Version 4.1

1859

The calculation is as follows: 12+(-2)2+32+42 = 30.

CSS

Returns the corrected sum of squares of a list of numeric values.

CSS (

,

value)

Calculates the corrected sum of squares of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the corrected sum of squares of the arguments is returned. The result is written to the
log.

DATA _NULL_;
 c = CSS(1,-2,3,.,"a","4","");
 PUT c=;
RUN;

This produces the following output:

c=21

The calculation is as follows: 12+(-2)2+32+42 - 1/4(1-2+3+4)2 = 21.

EUCLID

Returns the Euclidean norm of a list of numeric values.

EUCLID (

,

value)

Reference for language elements
Version 4.1

1860

Calculates the Euclidean norm of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the Euclidean norm of the arguments is returned. The result is written to the log.

DATA _NULL_;
 d = EUCLID(1,-2,3,.,"a","4","");
 PUT d=;
RUN;

This produces the following output:

d=5.4772255751

The calculation is as follows: .

RMS

Returns the root mean square of a list of numeric values.

RMS (

,

value)

Calculates the root mean square of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

Reference for language elements
Version 4.1

1861

If all specified values are missing values, a missing value is returned.

Example
In this example, the root mean square of the arguments is returned. The result is written to the log.

DATA _NULL_;
 r = RMS(1,-2,3,.,"a","4","");
 PUT r=;
RUN;

This produces the following output:

r=2.7386127875

The calculation is as follows: .

LPNORM

Returns the Lp norm of a list of numeric values.

LPNORM (p ,

,

value)

Calculates the Lp norm of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

p

Type: Numeric

The order of the L-norm.

Restriction: p≥1

If the argument is out of range, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Reference for language elements
Version 4.1

1862

The first two Lp norms, L1 or the Manhattan norm, and L2 or the Euclidean norm, are also
implemented with functions SUMABS and EUCLID, see sections SUMABS (page 1857) and
EUCLID (page 1859), respectively.

Examples
In these examples, the Lp norm of the arguments is returned. The results are written to the log.

DATA _NULL_;
 s = SUMABS(1,-2,3,.,"a","4","");
 PUT s=;
 e = EUCLID(1,-2,3,.,"a","4","");
 PUT e=;
 l1 = LPNORM(1, 1,-2,3,.,"a","4","");
 PUT l1=;
 l2 = LPNORM(2, 1,-2,3,.,"a","4","");
 PUT l2=;
 l3 = LPNORM(3, 1,-2,3,.,"a","4","");
 PUT l3=;
 l4 = LPNORM(4, 1,-2,3,.,"a","4","");
 PUT l4=;
RUN;

This produces the following output:

s=10
e=5.4772255751
l1=10
l2=5.4772255751
l3=4.6415888336
l4=4.3376131365

The calculation is as follows:

Mean calculations
Calculate mean values.

Examples in this section use two similar lists of values. The first list contains values close to each other,
while the second list contains the same values plus a significantly larger outlier. In addition, the third
value list contains a zero value:

1.1, 1.2, 1.3, 1.4, 1.5, 1, 2, 3, ., "a", "4", ""

1.1, 1.2, 1.3, 1.4, 1.5, 1, 2, 3, ., "a", "4", "", 1e15

Reference for language elements
Version 4.1

1863

1.1, 1.2, 1.3, 1.4, 1.5, 1, 2, 3, ., "a", "4", "", 0

Note:
These value lists contain only non-negative numbers because some of the functions are not defined for
negative numbers.

MEAN .. 1863

Returns the arithmetic mean of a list of numeric values.

GEOMEANZ .. 1864

Returns the geometric mean of a list of numeric values.

GEOMEAN .. 1865

Returns the geometric mean of a list of numeric values if their spread is not too great. Returns
zero otherwise.

HARMEANZ .. 1867

Returns the harmonic mean of a list of numeric values.

HARMEAN ...1868

Returns the harmonic mean of a list of numeric values if their spread is not too great. Returns
zero otherwise.

MEAN

Returns the arithmetic mean of a list of numeric values.

MEAN (

,

value)

Calculates the arithmetic mean of non-missing values:

where n is the number of non-missing values in the list.

Return type: Numeric

Reference for language elements
Version 4.1

1864

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the arithmetic mean of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 m1 = MEAN(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","");
 PUT m1=;
 m2 = MEAN(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","",1e15);
 PUT m2=;
RUN;

This produces the following output:

m1=1.8333333333
m2=10e14

The calculation is as follows:

The outlier value in the second example results in a much greater mean.

GEOMEANZ

Returns the geometric mean of a list of numeric values.

GEOMEANZ (

,

value)

Calculates the geometric mean of non-missing values:

where n is the number of non-missing values in the list.

Note:
If one of the values is zero, the result is also always zero.

Return type: Numeric

Reference for language elements
Version 4.1

1865

value

Type: Numeric

The value to be evaluated.

Restriction: value ≥ 0

If the argument is out of range, a missing value is returned.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the geometric mean of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 m1 = GEOMEANZ(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","");
 PUT m1=;
 m2 = GEOMEANZ(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","",1e15);
 PUT m2=;
RUN;

This produces the following output:

m1=1.6414075414
m2=49.396341221

The calculation is as follows:

GEOMEAN

Returns the geometric mean of a list of numeric values if their spread is not too great. Returns zero
otherwise.

GEOMEAN (

,

value)

Calculates the geometric mean of non-missing values:

where n is the number of non-missing values in the list.

Note:
If one of the values is zero, the result is also always zero.

Reference for language elements
Version 4.1

1866

Function GEOMEAN uses the same formula as function GEOMEANZ (see GEOMEANZ (page 1864)),
but if the difference between the minimum and maximum values (the spread) exceeds 1013, zero is
returned instead of the actual mean.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

Restriction: value ≥ 0

If the argument is out of range, a missing value is returned.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the geometric mean of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 m1 = GEOMEAN(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","");
 PUT m1=;
 m2 = GEOMEAN(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","",1e15);
 PUT m2=;
RUN;

This produces the following output:

m1=1.6414075414
m2=0

The calculation is as follows:

The output for m1 is the same as that returned by the GEOMEANZ function. However, the output for m2

is zero because the spread of the second value list is too great.

Reference for language elements
Version 4.1

1867

HARMEANZ

Returns the harmonic mean of a list of numeric values.

HARMEANZ (

,

value)

Calculates the harmonic mean of non-missing values:

where n is the number of non-missing values in the list.

If any of the values is zero, computation is not attempted and zero is returned.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

Restriction: value ≥ 0

If the argument is out of range, a missing value is returned.

If all specified values are missing values, a missing value is returned.

Examples
In these examples, the harmonic mean of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 m1 = HARMEANZ(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","");
 PUT m1=;
 m2 = HARMEANZ(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","",1e15);
 PUT m2=;
 m3 = HARMEANZ(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","",0);
 PUT m3=;
RUN;

This produces the following output:

m1=1.5060390343
m2=1.6733767048
m3=0

Reference for language elements
Version 4.1

1868

The calculation is as follows:

The third example contains a zero value in the list. Attempting to compute harmonic mean would result
in division by zero, therefore computation is not attempted and zero is returned.

HARMEAN

Returns the harmonic mean of a list of numeric values if their spread is not too great. Returns zero
otherwise.

HARMEAN (

,

value)

Calculates the harmonic mean of non-missing values:

where n is the number of non-missing values in the list.

If any of the values is zero, computation is not attempted and zero is returned.

Function HARMEAN uses the same formula as function HARMEANZ (see HARMEANZ (page 1867)),
but if the difference between the minimum and maximum values (the spread) exceeds 1013, zero is
returned instead of the actual mean.

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

Restriction: value ≥ 0

If the argument is out of range, a missing value is returned.

If all specified values are missing values, a missing value is returned.

Reference for language elements
Version 4.1

1869

Examples
In these examples, the harmonic mean of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 m1 = HARMEAN(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","");
 PUT m1=;
 m2 = HARMEAN(1.1,1.2,1.3,1.4,1.5,1,2,3,.,"a","4","",1e15);
 PUT m2=;
RUN;

This produces the following output:

m1=1.5060390343
m2=0

The calculation is as follows:

The output for m1 is the same as that returned by the HARMEANZ function. However, the output for m2

is zero because the spread of the second value list is too great.

Variance, skewness and kurtosis calculations
Calculate functions based on the moments about the mean: variance, skewness, kurtosis and related.

Moment Derived statistics Related values
Second moment about the mean Variance

Coefficient of variance, standard
deviation and standard error

Third moment about the mean Skewness

Fourth moment about the mean Kurtosis

The centre of the moments is the arithmetic mean (see MEAN (page 1863)):

Reference for language elements
Version 4.1

1870

The formulas in this section define statistics that estimate the corresponding population parameters. A
population parameter is a characteristic based on the entire population of values, whereas a statistic
is an estimate of a population parameter based on a sample of values randomly drawn from the
population. In general, unless the complete population is known and available for computation, it is
not possible to calculate a population parameter directly, so statistics are used instead. The same
population parameter can have several statistics associated with it, as it can be estimated in several
ways.

Population parameters and some statistics often have widely known identifiers, such as the ones used
in this section. Such identifiers may not be adopted universally, and may sometimes be used to denote
other entities. Please confirm your notation if unsure.

For more information on population parameters, statistics, moments about the mean as well as
identifiers as used in this section, see for example D.J. Sheskin, Handbook of Parametric and
Nonparametric Statistical Procedures, Second Edition, Boca Raton, Florida: Chapman & Hall/CRC
(2000).

Examples in this section use two similar lists of values. The first list contains values close to each other,
while the second list contains the same values plus a significantly larger outlier:

1.1, 1.2, 1.3, 1.4, 1.5, 1, -2, 3, ., "a", "4", ""

1.1, 1.2, 1.3, 1.4, 1.5, 1, -2, 3, ., "a", "4", "", 1e15

VAR ... 1871

Returns the variance of a list of numeric values.

CV ..1872

Returns the coefficient of variation of a list of numeric values.

STD ... 1873

Returns the standard deviation of a list of numeric values.

STDERR ..1874

Returns the standard error of the mean of a list of numeric values.

SKEWNESS .. 1875

Returns the skewness of a list of numeric values.

KURTOSIS .. 1878

Reference for language elements
Version 4.1

1871

Returns the kurtosis of a list of numeric values.

VAR

Returns the variance of a list of numeric values.

VAR (v1 ,

,

value)

Requires at least two arguments. Calculates the variance of non-missing values, or the second
moment about the mean. The returned statistic is the unbiased estimate of the population variance σ2.
See Variance, skewness and kurtosis calculations (page 1869) for more information on moments
about the mean, population parameters and statistics.

where n is the number of non-missing values in the list.

Return type: Numeric

If only one value is specified or if all specified values are missing values, a missing value is returned.

v1

Type: Numeric

The first value in the list.

value

Type: Numeric

Further value to be evaluated.

Examples
In these examples, the variance of the arguments is returned. The results are written to the log.

DATA _NULL_;
 s1 = VAR(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT s1=;
 s2 = VAR(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT s2=;
RUN;

This produces the following output:

s1=2.6486111111
s2=1e29

Reference for language elements
Version 4.1

1872

The calculation is as follows:

The outlier in the second sample dramatically increases the variance.

CV

Returns the coefficient of variation of a list of numeric values.

CV (v1 ,

,

value)

Requires at least two arguments. Calculates the coefficient of variation cv of non-missing values

expressed in percent, using their the variance (see VAR (page 1871)) and their the arithmetic
mean (see MEAN (page 1863)):

where n is the number of non-missing values in the list.

Return type: Numeric

If only one value is specified or if all specified values are missing values, a missing value is returned.

v1

Type: Numeric

The first value in the list.

value

Type: Numeric

Further value to be evaluated.

Reference for language elements
Version 4.1

1873

Examples
In these examples, the coefficient of variation of the arguments is returned. The results are written to
the log.

DATA _NULL_;
 c1 = CV(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT c1=;
 c2 = CV(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT c2=;
RUN;

This produces the following output:

c1=117.17678951
c2=316.22776602

The calculation is as follows:

STD

Returns the standard deviation of a list of numeric values.

STD (v1 ,

,

value)

Requires at least two arguments. Calculates the standard deviation of non-missing values using
their the variance , see VAR (page 1871). The returned statistic is the unbiased estimate of the
population standard deviation σ. See Variance, skewness and kurtosis calculations (page 1869) for
more information on moments about the mean, population parameters and statistics.

where n is the number of non-missing values in the list.

Return type: Numeric

If only one value is specified or if all specified values are missing values, a missing value is returned.

v1

Type: Numeric

The first value in the list.

value

Type: Numeric

Reference for language elements
Version 4.1

1874

Further value to be evaluated.

Examples
In these examples, the standard deviation of the arguments is returned. The results are written to the
log.

DATA _NULL_;
 s1 = STD(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT s1=;
 s2 = STD(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT s2=;
RUN;

This produces the following output:

s1=1.6274554099
s2=3.1622777e14

The calculation is as follows:

STDERR

Returns the standard error of the mean of a list of numeric values.

STDERR (v1 ,

,

value)

Requires at least two arguments. Calculates the standard error of the mean SE of non-missing values
using their the standard deviation , see STD (page 1873):

where n is the number of non-missing values in the list.

Return type: Numeric

If only one value is specified or if all specified values are missing values, a missing value is returned.

v1

Type: Numeric

The first value in the list.

value

Type: Numeric

Reference for language elements
Version 4.1

1875

Further value to be evaluated.

Examples
In these examples, the standard error of the mean of the arguments is returned. The results are
written to the log.

DATA _NULL_;
 se1 = STDERR(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","");
 PUT se1=;
 se2 = STDERR(1.1,1.2,1.3,1.4,1.5,1,-2,3,.,"a","4","",1e15);
 PUT se2=;
RUN;

This produces the following output:

se1=0.5424851366
se2=1e14

The calculation is as follows:

SKEWNESS

Returns the skewness of a list of numeric values.

SKEWNESS (v1 , v2 ,

,

value)

Requires at least three arguments. Calculates the skewness g1 of non-missing values as a ratio of

the third moment about the mean m3 and cubed standard deviation , see STD (page 1873).
The returned statistic is the unitless estimate of the population parameter γ1. See Variance, skewness
and kurtosis calculations (page 1869) for more information on moments about the mean, population
parameters and statistics.

where n is the number of non-missing values in the list.

Return type: Numeric

If fewer than three values are available or if all specified values are missing values, a missing value is
returned.

Reference for language elements
Version 4.1

1876

v1

Type: Numeric

The first value in the list.

v2

Type: Numeric

The second value in the list.

value

Type: Numeric

Further value to be evaluated.

Skewness is a measure of symmetry of a distribution as illustrated below:

Symmetrical distribution g1 = 0

Negatively skewed distribution g1 < 0

Positively skewed distribution g1 > 0

Reference for language elements
Version 4.1

1877

Examples
In these examples, the skewness of the arguments is returned. The results are written to the log.

DATA _NULL_;
 g1_1 = SKEWNESS(1.1,1.2,1.3,1.4, 1.5, 1 ,-2 , 3 ,.,"a","4","");
 PUT g1_1=;
 g1_2 = SKEWNESS(1.1,1.2,1.3,1.4, 1.5, 1 ,-2 , 3 ,.,"a","4","", 1e15);
 PUT g1_2=;
 g1_3 = SKEWNESS(1.1,1.2,1.3,1.4, 1.5, 1 ,-2 , 3 ,.,"a","4","",-1e15);
 PUT g1_3=;
 g1_4 = SKEWNESS(1.1,1.2,1.3,1.4,-1.1,-1.2,-1.3,-1.4,.,"a","0","");
 PUT g1_4=;
RUN;

This produces the following output:

g1_1=-0.634755445
g1_2=3.1622776602
g1_3=-3.1622776602
g1_4=-9.88457e-17

The calculation is as follows:

Similarly to the above, g13 = -3.1622776602 and g14 = -9.88457 ⋅ 10-17 ≈ 0.

The positive outlier in the second sample significantly increases the degree of skewness and changes
its sign, as the sample is now skewed to the right. Equally large negative outlier in the third sample
yields equally large skewness, changing its direction to the left.

The fourth sample is symmetrical about the mean, and its skewness is close to zero.

Note:
Even for a perfectly symmetrical sample, the return value may not be exactly zero.

Reference for language elements
Version 4.1

1878

KURTOSIS

Returns the kurtosis of a list of numeric values.

KURTOSIS (v1 , v2 , v3 ,

,

value)

Requires at least four arguments. Calculates the kurtosis g2 of non-missing values as a ratio of the

fourth moment about the mean m4 and squared variance . The returned statistic is the unitless
estimate of the population parameter γ2. See Variance, skewness and kurtosis calculations (page
1869) for more information on moments about the mean, population parameters and statistics.

where n is the number of non-missing values in the list.

Return type: Numeric

If fewer than four values are available or if all specified values are missing values, a missing value is
returned.

v1

Type: Numeric

The first value in the list.

v2

Type: Numeric

The second value in the list.

v3

Type: Numeric

The third value in the list.

value

Type: Numeric

Further value to be evaluated.

Kurtosis characterises the degree of curvature or tail weight compared to a normal distribution as
illustrated below:

Reference for language elements
Version 4.1

1879

Mesokurtic distribution g2 = 0

Normal distributions are mesokurtic, this is the
reference distribution for kurtosis.

Leptokurtic distribution g2 > 0

The values are clustered closer around the mean than
in a normal distribution resulting in a higher peak and
heavier tails.

Platykurtic distribution g2 < 0

The values are spread further from the mean than in a
normal distribution resulting in a lower peak and lighter
tails.

Examples
In these examples, the kurtosis of the arguments is returned. The results are written to the log.

DATA _NULL_;
 g2_1 = KURTOSIS(1.1,1.2,1.3,1.4, 1.5, 1 ,-2 , 3 ,.,"a","4","");
 PUT g2_1=;
 g2_2 = KURTOSIS(1.1,1.2,1.3,1.4, 1.5, 1 ,-2 , 3 ,.,"a","4","",1e15);
 PUT g2_2=;
 g2_3 = KURTOSIS(1.1,1.2,1.3,1.4, 1.1, 1.1, 1 , 1 ,.,"a","1","");
 PUT g2_3=;
 g2_4 = KURTOSIS(1.1,1.2,1.3,1.4,-1.1,-1.2,-1.3,-1.4,.,"a","0","");
 PUT g2_4=;
RUN;

This produces the following output:

g2_1=2.4980234276
g2_2=10
g2_3=-0.017857143
g2_4=-2.360997732

The calculation is as follows:

Reference for language elements
Version 4.1

1880

Analogous to the above, g23 = -0.017857143 ≈ 0 and g24 = -2.360997732.

The first sample represents a distribution with heavier tails than a normal distribution, and the outlier in
the second sample dramatically increases it.

The third sample has kurtosis close to zero making its tail weight similar to that of a normal distribution.

The fourth sample has negative kurtosis indicating that it has lighter tails than a normal distribution.

Memory manipulation functions
Manipulate memory.

You can find the addresses of memory locations for variables, and peek into and poke those locations.
The functions are interrelated. For example, you can use ADDRLONG to get the memory address of a
variable, and then use PEEKLONG to view the contents of that address, or POKELONG to write data to
that address.

Note:
As these functions involve addressing memory locations, you should be careful when using them.

The group of functions with names ending in LONG can be used in both 64-bit and 32-bit environments.
The functions whose names do not end in LONG are provided for compatibility with programs already
written for 32-bit environments.

ADDRLONG .. 1881
Returns the address of a variable (64-bit only).

Reference for language elements
Version 4.1

1881

ADDRLONGX ..1882
Returns the address of a variable (64-bit only).

PEEKCLONG .. 1883
Returns the contents of a memory address (64-bit only), where the contents must be a string of
one or more character

PEEKLONG ...1884
Returns the contents of a number of bytes from a memory address (64-bit only), where the
contents must be a number.

PTRLONGADD ..1885
Returns the pointer address in a character variable.

CALL POKELONG .. 1886
Writes a specified sequence of bytes to a variable (64-bit only), at a specified memory location.

Memory manipulation functions (32-bit compatibility .. 1888
Manipulate memory on 32-bit systems.

ADDRLONG
Returns the address of a variable (64-bit only).

ADDRLONG (variable)

Return type: Character

The address location. To display the return formatting is required.

variable

Type: Var

The variable.

Example
In this example, the address of a variable in memory is returned. The result is written to the log.

DATA _NULL_;

 FORMAT addr $HEX16.;
 varval="https://www.worldprogramming.com/";
 addr=ADDRLONG(VARVAL);

 PUT varval=;
 PUT addr=;

RUN;

Reference for language elements
Version 4.1

1882

This produces the following output:

varval=https://www.worldprogramming.com/
addr=E06A6D3659020000

ADDRLONGX
Returns the address of a variable (64-bit only).

ADDRLONGX (variable- name)

Return type: Character

The address location. To display the return formatting is required.

variable-name

Type: Character

The name of the variable.

When a function-name is append by 'X', variable names should be entered enclosed by quotes.
However, it is also possible to assign the variable-name, for example, in the data steps below abc =
"varval". Variable abc (without the quotes) can therefore be entered instead.

Example
In this example, the address of variables in memory are returned. The result is written to the log.

DATA _NULL_;

 FORMAT addr addr1 addr2 $HEX16.;
 varval="https://www.worldprogramming.com/";
 addr=ADDRLONGX("varval");

 abc = "varval";
 addr1=ADDRLONGX(abc);
 addr2=ADDRLONGX("abc");

 PUT varval=;
 PUT abc=;

 PUT addr=;
 PUT addr1=;
 PUT addr2=;

RUN;

Reference for language elements
Version 4.1

1883

This produces the following output:

varval=https://www.worldprogramming.com/
abc=varval
addr=FC66080120202020
addr1=FC66080120202020
addr2=3567080120202020

In this example, when the abc variable is enclosed in quotes, it is interpreted as a different string
variable and not as an assigned variable name, hence a new address is outputted in addr2.

PEEKCLONG
Returns the contents of a memory address (64-bit only), where the contents must be a string of one or
more character

PEEKCLONG (address

, length

)

Return type: Character

address

Type: Character

The address of the string in memory.

length
Optional argument

Type: Numeric

Starting from the first character, the number of characters that you want returned. If no value is
applied, the full string is returned as a default.

This function expects to process characters, any numerical entry will not processed. If you want to
process numbers then use the PEEKLONG function.

Reference for language elements
Version 4.1

1884

Example
In this example, the contents of the address are truncated at character 43 when the address is
returned. The result is written to the log.

DATA _NULL_;
 FORMAT
 addr $HEX16.
 myvar value $70.;
 myvar = "There was a very young man from California, who had to visit Oklahoma.";
 addr = ADDRLONG(myvar);
 value = PEEKCLONG(addr, 43);
 PUT myvar=;
 PUT addr=;
 PUT value=;
RUN;

This produces the following output:

myvar=There was a very young man from California, who had to visit Oklahoma.
addr=006BE26B72010000
value=There was a very young man from California,

PEEKLONG
Returns the contents of a number of bytes from a memory address (64-bit only), where the contents
must be a number.

PEEKLONG (address

, length

)

Return type: Numeric

The memory address contents. To display the return formatting is required.

address

Type: Character

The address of the number in memory.

length
Optional argument

Type: Numeric

The number of bytes to be returned.

Valid values for length are 1, 2, 3, 4, and 8.

The default value of length is 4.

Lengths of 1, 2, and 4 return 8, 16, and 32-bit integers respectively.

Reference for language elements
Version 4.1

1885

A length of 3 returns a 32-bit integer formed from the first three bytes of the source address.

A length of 8 returns a double.

This function expects to process a number, any other entry will generate an error. If you want to
process characters then use the PEEKCLONG function.

Example
In this example, the contents of two memory addresses are obtained. The result is written to the log.

DATA _NULL_;
 FORMAT addr $HEX16.;
 FORMAT number 8.;

 var = 36;

 ARRAY NUMS(8) (1 2 3 4 5 6 7 8);

 addr = ADDRLONG(var);
 number = PEEKLONG(addr, 8);

 PUT addr= number=;

 addr = ADDRLONG(nums8);
 number = PEEKLONG(addr, 8);

 PUT addr= number=;

RUN;

This produces the following output:

addr=F88BA10020202020 number=36
addr=E046A10020202020 number=8

PTRLONGADD
Returns the pointer address in a character variable.

PTRLONGADD (address , amount)

Return type: Character

The pointer address. To display the return formatting is required.

address

Type: Character

The memory location.

Reference for language elements
Version 4.1

1886

amount

Type: Numeric

The number of bytes to add to an address.

Example
In this example, the pointer address, memory address and the contents of the memory address in the
variable x are returned.The result is written to the log.

Note:
The memory address is not a fixed value, and will change depending on the processing tasks of the
computer.

DATA _NULL_;

 x='12345678910 - very long';
 ptr_add=ADDRLONG(x);

 y=PTRLONGADD(ptr_add,0);

 mem_add=PEEKLONG(y);
 con_mem=PEEKCLONG(y);

 PUT y HEX16. " = " "Pointer address in HEX";
 PUT " ";
 PUT mem_add "= " "Memory address";
 PUT " ";
 PUT con_mem "= " "Contents of the memory address in the variable x";
 PUT " ";

RUN;

This produces the following output:

386B6B367F010000 = Pointer address in HEX

875660417 = Memory address

12345678 = Contents of the memory address in the variable x

CALL POKELONG
Writes a specified sequence of bytes to a variable (64-bit only), at a specified memory location.

CALL POKELONG (source , pointer

, length

) ;

Reference for language elements
Version 4.1

1887

source

Type: Character

The sequence of bytes.

pointer

Type: Character

The memory location to write to.

length
Optional argument

Type: Numeric

The length of the source (in bytes) to write. The default is the full length of the string.

Example 1 – using the default length
In this example, the source string is copied to the contents of the destination string variable. The result
is written to the log.

DATA _NULL_;

 scr = "https://www.worldprogramming.com/ ";

 dest = "********************************* --- Test ---";

 ptr=ADDRLONG(dest);
 CALL POKELONG(scr, ptr);
 PUT "Result: " dest;

 PUT " ";
RUN;

This produces the following output:

Result: https://www.worldprogramming.com/ --- Test ---

Reference for language elements
Version 4.1

1888

Example 2 – using a specified length
In this example, 17 characters of the source string are copied to the destination string variable. The
result is written to the log.

DATA _NULL_;

 scr = "https://www.worldprogramming.com/ ";

 dest = "********************************* --- Test ---";

 ptr=ADDRLONG(dest);
 CALL POKELONG(scr, ptr, 17);
 PUT "Result: " dest;

 PUT " ";
RUN;

This produces the following output:

Result: https://www.world**************** --- Test ---

 Memory manipulation functions (32-bit compatibility
Manipulate memory on 32-bit systems.

These functions are provided for compatibility with existing programs.

ADDR

Returns the address of a variable (32-bit only).

ADDR (variable)

Return type: Numeric

The address location. To display the return formatting is required.

variable

Type: Var

The variable.

Reference for language elements
Version 4.1

1889

Example
In this example, the address of a variable in memory is returned. The result is written to the log.

DATA _NULL_;

 FORMAT addr $HEX16.;
 varval="https://www.worldprogramming.com/";
 addr=ADDR(varval);

 PUT varval=;
 PUT addr=;

RUN;

This produces the following output:

varval=https://www.worldprogramming.com/
addr=2039383536373234

ADDRX

Returns the address of a variable (32-bit only).

ADDRX (variable- name)

Return type: Numeric

The address location. To display the return formatting is required.

variable-name

Type: Character

The name of the variable.

When a function-name is append by 'X', variable names should be entered enclosed by quotes.
However, it is also possible to assign the variable-name, for example, in the data steps below abc =
"varval". Variable abc (without the quotes) can therefore be entered instead.

Reference for language elements
Version 4.1

1890

Example
In this example, the address of variables in memory are returned. The result is written to the log.

DATA _NULL_;

 FORMAT addr addr1 addr2 $HEX16.;
 VARVAL="https://www.worldprogramming.com/";
 addr=ADDRX("varval");

 abc = "varval";
 addr1=ADDRX(abc);
 addr2=ADDRX("abc");

 PUT varval=;
 PUT abc=;

 PUT addr=;
 PUT addr1=;
 PUT addr2=;

RUN;

This produces the following output:

varval=https://www.worldprogramming.com/
abc=varval
addr=3636393338363434
addr1=3636393338363434
addr2=3636393338363737

In this example, when the abc variable is enclosed in quotes, it is interpreted as a different string
variable and not as an assigned variable name, hence a new address is outputted in addr2.

PEEK

Returns the contents of a number of bytes from a memory address (32-bit only), where the contents
must be a number.

PEEK (address

, length

)

Return type: Numeric

The memory address contents. To display the return formatting is required.

address

Type: Numeric

The address of the number in memory.

Reference for language elements
Version 4.1

1891

length
Optional argument

Type: Numeric

The number of bytes to be returned.

Valid values for length are 1, 2, 3, 4, and 8.

The default value of length is 4.

Lengths of 1, 2, and 4 return 8, 16, and 32-bit integers respectively.

A length of 3 returns a 32-bit integer formed from the first three bytes of the source address.

A length of 8 returns a double.

This function expects to process a number, any other entry will generate an error. If you want to
process characters then use the PEEKC function.

Example
In this example, the contents of two memory addresses are obtained. The result is written to the log.

DATA _NULL_;
 FORMAT addr $HEX16.;
 FORMAT number 8.;

 ARRAY NUMS(8) (1 2 3 4 5 6 7 8);

 var = 54;

 addr = ADDR(var);
 number = PEEK(addr, 8);

 PUT addr= number=;

 addr = ADDR(nums6);
 number = PEEK(addr, 8);

 PUT addr= number=;

RUN;

This produces the following output:

addr=3832393338383536 number=54
addr=2039373137343536 number=6

Reference for language elements
Version 4.1

1892

PEEKC

Returns the contents of a memory address (32-bit only), where the contents must be a string of one or
more characters.

PEEKC (address

, length

)

Return type: Character

The contents of the memory address. To display the return formatting is required.

address

Type: Numeric

The address of the string in memory.

length
Optional argument

Type: Numeric

Starting from the first character, the number of characters that you want returned. If no value is
applied, the full string is returned as a default.

This function expects to process characters, any numerical entry will not processed. If you want to
process numbers then use the PEEK function.

Example
In this example, the contents of the address are truncated at character 43 when the address is
returned. The result is written to the log.

DATA _NULL_;
 FORMAT
 addr $HEX16.
 myvar value $70.;
 myvar = "There was a very young man from California, who had to visit Oklahoma.";
 addr = ADDR(myvar);
 value = PEEKC(addr, 43);
 PUT myvar=;
 PUT addr=;
 PUT value=;
RUN;

This produces the following output:

myvar=There was a very young man from California, who had to visit Oklahoma.
addr=3132323136303336
value=There was a very young man from California,

Reference for language elements
Version 4.1

1893

CALL POKE

Writes a specified sequence of bytes to a variable (32-bit only), at a specified memory location.

CALL POKE (source , pointer

, length

) ;

source

Type: Character

The sequence of bytes.

pointer

Type: Numeric

The memory location to write to.

length
Optional argument

Type: Numeric

The length of the source (in bytes) to write. The default is the full length of the string.

Example 1 – using the default length
In this example, the source string is copied to the contents of the destination string variable. The result
is written to the log.

DATA _NULL_;

 scr = "https://www.worldprogramming.com/ ";

 dest = "********************************* --- Test ---";

 ptr=ADDR(dest);
 CALL POKE(scr, ptr);
 PUT "Result: " dest;

 PUT " ";
RUN;

This produces the following output:

Result: https://www.worldprogramming.com/ --- Test ---

Reference for language elements
Version 4.1

1894

Example 2 – using a specified length
In this example, 12 characters of the source string are copied to the destination string variable. The
result is written to the log.

DATA _NULL_;

 scr = "https://www.worldprogramming.com/ ";

 dest = "********************************* --- Test ---";

 ptr=ADDR(DEST);
 CALL POKE(scr, ptr, 12);
 PUT "Result: " dest;

 PUT " ";
RUN;

This produces the following output:

Result: https://www.********************* --- Test ---

Miscellaneous functions
Miscellaneous functions.

LOOKSLIKENUMBER ...1894
Returns a value to indicate whether a string might be a representation of a number.

JSONPP .. 1895
Returns formatted JSON code.

SLEEP ... 1897
Sets a time interval in which the system processing of instructions is suspended.

CALL SLEEP ...1898
Sets a time interval during which the system processing of instructions is suspended.

CALL SOUND ... 1899
Creates a sound of a specified frequency and duration (Windows only).

LOOKSLIKENUMBER
Returns a value to indicate whether a string might be a representation of a number.

LOOKSLIKENUMBER (argument)

Return type: Numeric

Reference for language elements
Version 4.1

1895

1 if positive, or 0 if not positive.

argument

Type: Character

The variable.

Example
In this example, variables of different values are used with the function. The result is written to the log.

DATA _NULL_;

 letters = "ABCDEF";
 sp = "1.175494351E-38";
 dp = "1.7976931348623158";
 paddle = "208.77E10";

 var = LOOKSLIKENUMBER (letters);
 IF var = '1' THEN PUT "The value of the letters variable looks like a number: "
 var;
 ELSE PUT "The value of the letters variable is not a number: " var;

 var = LOOKSLIKENUMBER (sp);
 IF var = '1' THEN PUT "The value of the sp variable looks like a number: " var;
 ELSE PUT "The value of the sp variable is not a number: " var;

 var = LOOKSLIKENUMBER (dp);
 IF var = '1' THEN PUT "The value of the dp variable looks like a number: " var;
 ELSE PUT "The value of the dp variable is not a number: " var;

 var = LOOKSLIKENUMBER (paddle);
 IF var = '1' THEN PUT "The value of the paddle variable looks like a number: "
 var;
 ELSE PUT "The value of the paddle variable is not a number: " var;

RUN;

This produces the following output:

The value of the letters variable is not a number: 0
The value of the sp variable looks like a number: 1
The value of the dp variable looks like a number: 1
The value of the paddle variable looks like a number: 1

JSONPP
Returns formatted JSON code.

JSONPP (input- f ile , output- f ile)

An input file of unformatted or badly-formatted JSON code can be formatted.

Reference for language elements
Version 4.1

1896

Return type: Numeric

0 Successful
20004 The file does not exist, or does not contain valid JSON

input-file

Type: Character

The pathname and filename of the file to be formatted.

output-file

Type: Character

The pathname and filename of the formatted file.

The input file must contain valid JSON, otherwise an error is returned.

Note:

• Some applications, such as Notepad, cannot correctly display the line breaks of the formatted
output; the line breaks can be displayed correctly in other applications, such as Notepad++.

• If the length of a line in an input file is set is set to a value that is shorter than the length of the lines
in the input file (for example, by using the LRECL system option or the LRECL option on a FILENAME
statement), the input file appears to contain invalid JSON and an error is returned.

Note:

Note:

Example
In this example, formatted output is created from an unformatted input file. The result is written to the
log.

DATA _NULL_;

 rc = JSONPP("c:\temp\jsin","c:\temp\jsout");
 PUT rc;

RUN;

This formats the badly-formatted JSON code in the input file:

{"menu" : {"id" : "file", "popup" : {"menuitem" : [{
 "onclick" : "CreateNewDoc()","value" :"New"},
 {
 "onclick" : "OpenDoc()","value" : "Open"},
 {"onclick" : "CloseDoc()","value" : "Close"}]},
 "value" : "File"}}

Reference for language elements
Version 4.1

1897

and produces an output file containing the formatted JSON:

{
 "menu" : {
 "id" : "file",
 "popup" : {
 "menuitem" : [
 {
 "onclick" : "CreateNewDoc()",
 "value" : "New"
 },
 {
 "onclick" : "OpenDoc()",
 "value" : "Open"
 },
 {
 "onclick" : "CloseDoc()",
 "value" : "Close"
 }
]
 },
 "value" : "File"
 }
}

SLEEP
Sets a time interval in which the system processing of instructions is suspended.

SLEEP (n

, unit

)

Return type: Numeric

The suspended time in seconds.

n

Type: Numeric

If unit is specified, the number of units; otherwise the number of seconds in Windows, or the
number of milliseconds in other operating systems, for example, Linux.

unit
Optional argument

Type: Numeric

The number of units, where a unit is one second.

Reference for language elements
Version 4.1

1898

Example
In this example, the system processing is suspended for 15 seconds.

DATA _NULL;

 number = 5;
 unit = 3;

 VAR = SLEEP (number, unit);
RUN;

CALL SLEEP
Sets a time interval during which the system processing of instructions is suspended.

CALL SLEEP (n

, unit

) ;

n

Type: Numeric

If unit is specified, the number of units; otherwise the number of milliseconds.

unit
Optional argument

Type: Numeric

The number of units, where a unit is one second.

Example 1
In this example, the system processing is suspended for five seconds.

DATA _NULL;
 CALL SLEEP (5, 1);
RUN;

Example 2
In this example, the system processing is suspended for 15 seconds.

DATA _NULL;

 number = 5;
 unit = 3;

 CALL SLEEP (number, unit);
RUN;

Reference for language elements
Version 4.1

1899

CALL SOUND
Creates a sound of a specified frequency and duration (Windows only).

CALL SOUND (frequency , durat ion) ;

frequency

Type: Numeric

The frequency of sound. This is specified in Hz in the range from 20 to 20000.

duration

Type: Numeric

The duration of sound. This is specified in seconds.

Example – common hearing range
In this example, the function uses a loop to output frequency ranges from 20Hz to 20,000Hz. This
range is the common hearing range. The function then calls a very low frequency followed by a very
high frequency. The use of headphones is advised.

DATA _NULL;

 frequency = 20;
 duration = 1000;

 DO i = 20 to 25;

 CALL SOUND (frequency, duration);

 frequency = frequency + 3330;

 END;

 CALL SOUND (60, 1000);
 CALL SOUND (1800, 1000);
RUN;

National language support functions
Acquire and set information relating to locales.

ENCODCOMPAT .. 1900
Returns a value indicating whether an encoding name is compatible with the WPS session, or
whether two encoding names are compatible with each other.

Reference for language elements
Version 4.1

1900

ENCODISVALID ..1902
Returns a value indicating whether an encoding name is valid and supported.

GETLOCENV .. 1903
Returns the abbreviation that specifies the type of character set of the current session locale.

GETPXLANGUAGE .. 1904
Returns a two-character code identifying the language setting for the locale.

GETPXLOCALE .. 1905
Either returns the locale code of the current server, or the locale code of a specified locale.

GETPXREGION .. 1906
Returns a two-character region code for a locale.

NLDATE .. 1907
Returns a date in a locale specific format.

NLDATM ..1909
Returns a datetime in a locale specific format.

NLTIME ... 1912
Returns a time or datetime in a locale specific format for hour, minute, second, and AM/PM.

ENCODCOMPAT
Returns a value indicating whether an encoding name is compatible with the WPS session, or whether
two encoding names are compatible with each other.

ENCODCOMPAT (encoding- name1

, encoding- name2

)

Return type: Numeric

If you are checking compatibility with the current session, the return value can be:

Value Description
1 The encoding is known and compatible.
0 The encoding is known but incompatible (transcoding will occur between the two encodings).

If you are checking compatibility between encodings, the return value can be:

Value Description
2 The encodings are the same, apart from a newline character.
1 The encodings are known and compatible.
0 The encodings are known but incompatible (transcoding will occur between the two encodings).
-1 The first encoding is not a valid encoding name.
-2 The second encoding is not a valid encoding name.

Reference for language elements
Version 4.1

1901

encoding-name1

Type: Character

The name of the first encoding to be checked for compatibility with a server, or to be compared
with encoding-name2.

encoding-name2
Optional argument

Type: Character

The name of the second encoding name to be compared with encoding-name1 .

Example – an encoding check
In this example, an encoding for a character set is checked to see if it is compatible with the WPS
session. The result is written to the log.

DATA _NULL_;

 test = ENCODCOMPAT('wlatin1');
 PUT test;

RUN;

This produces the following output:

0

Example – checking if two encodings are compatible
In this example, two encodings are checked for compatibility. The result is written to the log.

DATA _NULL_;

 test = ENCODCOMPAT('thai', 'iso-8859-11');
 PUT "The result of the comparison between the encodings thai and iso-8859-11 is: "
 test;
 PUT " ";

 test = ENCODCOMPAT('shift-jis', 'utf-8');
 PUT "The result of the comparison between the encodings shift-jis and utf-8 is: "
 test;

RUN;

This produces the following output:

The result of the comparison between the encodings thai and iso-8859-11 is: 1

The result of the comparison between the encodings shift-jis and utf-8 is: 0

Reference for language elements
Version 4.1

1902

ENCODISVALID
Returns a value indicating whether an encoding name is valid and supported.

ENCODISVALID (encoding- name)

Return type: Numeric

The return value is one of the following:

Value Description
3 The encoding name is an alias.
2 The long encoding name is valid.
1 The short encoding name is valid.
0 The encoding name is not valid.

encoding-name

Type: Character

The name of the encoding to be checked.

Example
In this example, four encoding names are checked to see if they are valid and supported. The encoding
names can be long, short, or an alias, The result is written to the log.

DATA _NULL_;

 test = ENCODISVALID ('ibm-1026');

 PUT "The result of checking encoding name ibm-1026 is: " test;

 test = ENCODISVALID ('utf-32be');

 PUT "The result of checking encoding name utf-32be is: " test;

 test = ENCODISVALID ('E037');

 PUT "The result of checking encoding name utf-32be is: " test;

 test = ENCODISVALID ('UTF-9');

 PUT "The result of checking encoding name UFF-9 is: " test;

RUN;

Reference for language elements
Version 4.1

1903

This produces the following output:

The result of checking encoding name ibm-1026 is: 3
The result of checking encoding name utf-32be is: 2
The result of checking encoding name utf-32be is: 1
The result of checking encoding name UFF-9 is: 0

GETLOCENV
Returns the abbreviation that specifies the type of character set of the current session locale.

GETLOCENV ()

The character encoding sets used in computing are single byte, double byte, and multibyte.

Return type: Character

The abbreviation. It can be:

Abbreviation Description
SBCS Single Byte Character Set.
DBCS Double Byte Character Set.
MBCS Multibyte Character Set.

Example
In this example, the abbreviation for the current session encoding character set are returned. The
result is written to the log.

DATA _NULL_;

 test = GETLOCENV ();
 PUT test;

RUN;

This produces the following output:

MBCS

The statements x = GETOPTION("locale"); and PUT x; can be added to the DATA step to
provide the locale code for language and country.

Reference for language elements
Version 4.1

1904

GETPXLANGUAGE
Returns a two-character code identifying the language setting for the locale.

GETPXLANGUAGE ()

Return type: Character

Example – a locale language setting code check
In this example, the locale language setting code in the local area is returned. The result is written to
the log.

DATA _NULL_;

 test = GETPXLANGUAGE ();
 PUT test;

RUN;

This produces the following output:

en

The statements x = GETOPTION("locale"); and PUT x; can be added to the DATA step to
provide the locale code for language and country.

Example – how to find the language code for a locale
In this example, the locale language code for Belarus is returned. For only this example, the
locale value for Belarus has to be set in the system. Locale values are listed in this document.
See LOCALE Values (page 37) for more information. The setting for Belarus is given as
Byelorussian_Belarus. This is then added to the OPTIONS LOCALE statement. The result is
written to the log.

DATA _NULL_;

 OPTIONS LOCALE=Byelorussian_Belarus;

 test = GETPXLANGUAGE ();
 PUT test;

RUN;

This produces the following output:

be

Reference for language elements
Version 4.1

1905

Note:
The OPTIONS LOCALE statement changes the System Options LOCALE setting to Belarus. Unless
the system is returned to the original locale setting (in this case, running the DATA step again with the
following change OPTIONS LOCALE=en_GB, or restarting the server), the Local Server will retain this
setting. However, when the WPS Workbench is closed down and restarted, it will revert to the default
setting, as specified by the Startup and System Options LOCALE setting.

GETPXLOCALE
Either returns the locale code of the current server, or the locale code of a specified locale.

GETPXLOCALE (

, locale- name

)

Return type: Character

locale-name
Optional argument

Type: Character

The name of the locale.

Example – a locale code for language and country
In this example, the locale code for the language and country setting is returned. The result is written to
the log.

DATA _NULL_;

 test = GETPXLOCALE ();
 PUT test;

RUN;

This produces the following output:

en_GB

Reference for language elements
Version 4.1

1906

Example – how to find the locale code of a specified locale
In this example, the locale code for Switzerland is returned. Locale values are listed in this document.
See LOCALE Values (page 37) for more information. There are several language settings for
Switzerland (French_Switzerland, German_Switzerland, and Italian_Switzerland). The
French speaking language setting is selected, and added to the function before running the DATA step.
The result is written to the log.

DATA _NULL_;

 test = GETPXLOCALE ('French_Switzerland');
 PUT test;

RUN;

This produces the following output:

fr_CH

GETPXREGION
Returns a two-character region code for a locale.

GETPXREGION ()

Return type: Character

The locale region code.

Example – a locale region
In this example, the locale region code for the server is returned. The result is written to the log.

DATA _NULL_;

 test = GETPXREGION ();
 PUT test;

RUN;

This produces the following output:

GB

The statements x = GETOPTION("locale"); and PUT x; can be added to the DATA step to
provide the locale code for language and country.

Reference for language elements
Version 4.1

1907

Example – how to find a locale region code
In this example, the locale region code for the Costa Rica is returned. For only this example, the
locale value for Costa Rica has to be set in the system. Locale values are listed in this document.
See LOCALE Values (page 37) for more information. The setting for Costa Rica is given as
Spanish_CostaRica. This is then added to the OPTIONS LOCALE statement. The result is written
to the log.

DATA _NULL_;

 OPTIONS LOCALE=Spanish_CostaRica;

 test = GETPXREGION ();
 PUT test;

RUN;

This produces the following output:

CR

Note:
The OPTIONS LOCALE statement changes the System Options LOCALE setting to
Spanish_CostaRica. Unless the system is returned to the original locale setting (in this case,
running the DATA step again with the following change OPTIONS LOCALE=en_GB, or restarting the
server), the Local Server will retain this setting. However, when the WPS Workbench is closed down
and restarted, it will revert to the default setting, as specified by the Startup and System Options
LOCALE setting.

NLDATE
Returns a date in a locale specific format.

NLDATE (dt_arg , format_string)

This function has the ability to display the months of the year in another language, provided that the
locale setting is first changed to reflect it.

Return type: Character

The requested value.

dt_arg

Type: Numeric

The number of days from the epoch date (January:01:1960:00).

Reference for language elements
Version 4.1

1908

format_string

Type: Character

The variable.

For example: '%b' for a short three character month name.

The format_string is a string, which can contain variables that define date elements. It can
consist of a single variable as shown above, or a combination of variables separated by
a character or groups of characters. In the following examples, a colon (":") is first used
to separate the variables, then in the second example a group of characters are used as
separators:

'%B:%W:%Y' for example: November:49:2017

'%#dth of %b' in year %Y' for example: 6th of Dec in year 2017

The complete format_string variables for this function consist of the following:

Variable Description
%# Remove leading zeros, for example, '%#d' = 5 instead of 05.
%% Literal '%', for example '20%%' = 20%.
%a Short weekday. A three character weekday abbreviation.
%A Long weekday.
%b Short month. A three character month abbreviation.
%B Long month.
%C Long month with blank padding.
%d Day of month.
%e Day of month with blank padding.
%F Long weekday with blank padding.
%j Julian day. A current day time interval between 1 and 365.25 Earth days in a year, or 1

and 366 Earth days in a Leap Year.
%m Month number.
%o Month number with blank padding.
%u Day number, Monday=1.
%U Week number, from week 1 of year = first Sunday.
%V Week number, from week 1 of year = first Monday and Thursday.
%w Day number, Sunday = 0.
%W Week number, from week 1 of year = first Monday.
%y 2-digit year.
%Y 4-digit year.

Reference for language elements
Version 4.1

1909

The padding feature takes the largest possible number of spaces, whether in days (that is, 31=2
and Wednesday=9), or months (that is, 12=2, and September=9) and then right adjusts the
appropriate output to fit in the equivalent number of spaces.

Example 1
In this example, the DATE function is used with the NLDATE function to format and write the present
month, day, year, and week number. The result is written to the log.

DATA _NULL_;

 dt = DATE();

 test = NLDATE(dt, '%B:%d:%Y:%U');

 PUT test;

RUN;

This produces the following output:

December:06:2017:49

Example 2
In this example, the DATE function is used with the NLDATE function to format and write the present
day, month, and year. The # variable is used to remove a leading zero. The result is written to the log.

DATA _NULL_;

 dt = DATE();

 test = NLDATE(dt, '%#dth of %b in year %Y');

 PUT test;

RUN;

This produces the following output:

6th of Dec in year 2017

NLDATM
Returns a datetime in a locale specific format.

NLDATM (dtm_arg , format_string)

This function has the ability to display the months of the year in another language, provided that the
locale setting is first changed to reflect it.

Reference for language elements
Version 4.1

1910

Return type: Character

The requested value.

dtm_arg

Type: Numeric

The number of milliseconds from the epoch date (January:01:1960:00).

format_string

Type: Character

The variable.

For example: '%b' for a short three character month name.

The format_string is a string, which can contain variables that define date elements. It can
consist of a single variable as shown above, or a combination of variables separated by a
character or groups of characters. In the following examples, a colon (":") is first used to
separate the variables, then in the second example a group of characters and colons are used:

'%B:%d:%H:%M:%P' for example: December:06:13:55:pm

'%#dth of %b in year %Y at time %I:%M:%p' for example: 6th of Dec in year 2017 at
time 02:05:pm

The complete format_string variables for this function consist of the following:

Variable Description
%# Remove leading zeros, for example, '%#d' = 6 instead of 06.
%% Literal '%', for example '20%%' = 20%.
%a Short weekday. A three character weekday abbreviation.
%A Long weekday.
%b Short month. A three character month abbreviation.
%B Long month.
%C Long month with blank padding.
%d Day of month.
%e Day of month with blank padding.
%F Long weekday with blank padding.
%j Julian day. A current day time interval between 1 and 365.25 Earth days in a year, or 1

and 366 Earth days in a Leap Year.
%m Month number.
%o Month number with blank padding.
%u Day number, Monday=1.
%U Week number, from week 1 of year = first Sunday.
%V Week number, from week 1 of year = first Monday and Thursday.

Reference for language elements
Version 4.1

1911

Variable Description
%w Day number, Sunday = 0.
%W Week number, from week 1 of year = first Monday.
%y 2-digit year.
%Y 4-digit year.
%H Hours - 24-hour clock.
%I Hours - 12-hour clock.
%P or %p AM/PM.
%S Seconds.

The padding feature takes the largest possible number of spaces, whether in days (that is, 31=2
and Wednesday=9), or months (that is, 12=2, and September=9) and then right adjusts the
appropriate output to fit in the equivalent number of spaces.

Example 1
In this example, the DATETIME function is used with the NLDATM function, to format and write the
present month, day, year, week number, time and whether it is a.m. or p.m. The result is written to the
log.

DATA _NULL_;

 dt = DATETIME();

 test = NLDATM(dt, '%B:%d:%Y:%U:%I:%M:%S:%P');

 PUT test;

RUN;

This produces the following output:

December:06:2017:46:01:55:26:pm

Example 2
In this example, the DATETIME function is used with the NLDATM function, to format and write the
present day, month, year, time and whether it is a.m. or p.m. The # variable is used to remove a
leading zero. The result is written to the log.

DATA _NULL_;

 dt = DATETIME();

 test = NLDATM(dt, '%#dth of %b in year %Y at time %I:%M:%p');

 PUT test;

RUN;

Reference for language elements
Version 4.1

1912

This produces the following output:

6th of Dec in year 2017 at time 02:25:pm

NLTIME
Returns a time or datetime in a locale specific format for hour, minute, second, and AM/PM.

NLTIME (dt ime_arg , format_string)

Return type: Character

The requested time.

dtime_arg

Type: Numeric

The number of milliseconds from midnight (00:00:00).

format_string

Type: Character

The variable.

For example: '%I' for a current 12-hour clock value.

The format_string is a string, which can contain variables that define time elements. It can
consist of a single variable as shown above, or a combination of variables separated by a
character or groups of characters. In the following examples, a colon (":") is first used to
separate the variables, then in the second example a group of characters and colons are used:

'%H:%M:%S:%P' for example: 12:04:10:pm

'Hours: %H Minutes: % Seconds: %S (AM/PM) %P' for example: Hours 15 Minutes: 27
Seconds: 52 (AM/PM) pm

The complete format_string variables for this function consist of the following:

Variable Description
%# Remove leading zeros, for example, '%#I' = 9 instead of 09.
%% Literal '%', for example '20%%' = 20%.
%H Hours - 24-hour clock.
%I Hours - 12-hour clock.
%M Minutes.
%P or %p AM/PM.
%S Seconds.

Reference for language elements
Version 4.1

1913

Example 1
In this example, the TIME function is used with the NLTIME function to format and write the time at
which the time function was invoked. Colons are used as separators. The result is written to the log.

DATA _NULL_;

 dt = TIME();

 test = NLTIME(dt, '%I:%M:%S:%p');

 PUT test;

RUN;

This produces the following output:

12:40:28:pm

Example 2
In this example, the DATETIME function is used with the NLTIME function to format and write the time
at which the datetime function was invoked. Characters are used as separators. The result is written to
the log.

DATA _NULL_;

 dt = DATETIME();

 test = NLTIME(dt, 'Hours: %H Minutes: %M Seconds: %S (AM/PM) %P');

 PUT test;

RUN;

This produces the following output:

Hours: 15 Minutes: 34 Seconds: 12 (AM/PM) pm

Regular expression functions and CALL routines
Find and manipulate strings using regular expressions.

You can find and replace characters and strings using the flexibility of pattern-matching provided by
regular expressions. The regular expression functionality provided in these functions and call routines is
based on the Perl regular expression syntax.

In many of the functions and CALL routines the regular expression can be specified in two ways:

• Explicitly within the function or CALL; for example, prxmatch('/(Limited)|(LTD)|(Ltd)+/',
lr)

Reference for language elements
Version 4.1

1914

• As a compiled regular expression selected by an identifier. Regular expressions can be compiled
using the PRXPARSE function, which generates an identifier that can be used in other functions and
CALL routines. For example,

rxid=prxparse('/([Oo]range)|([Aa]pple)|([Bb]anana)|([Gg]rapefruit)/');

would compile the regular expression and return an identifier to rxid. The identifier for that regular
expression could then be used in another function or CALL routine. For example:

rxm = PRXMATCH(rxid,'Banana, Ghana, 3.6, Grapefruit');

If the regular expressions are explicitly specified, the source code is easier to read as you can see the
structure of regular expressions wherever they occur. However, if regular expressions are specified in
this way they will be processed and compiled every time they are encountered. If a regular expression
is commonly used, or used to manipulate multiple observations, explicit specification might lead to
unacceptable processing costs as it is compiled many time.

If you use PRXPARSE to compile a regular expression, other functions and CALL routines can refer to
that compiled expression through an identifier. If that regular expression is required, again reference
can be made to the identifier, saving time required for compilation.

PRXCHANGE ..1915
Returns the string that results from finding and replacing substrings in a specified source string.

PRXMATCH .. 1916
Returns the position of the first character that matches a pattern defined using a regular
expression.

PRXPAREN ...1917
Returns which substring in a specified list occurs in a specified string.

PRXPARSE ... 1919
Compiles a regular expression for use with other functions or CALL routines that require regular
expressions.

PRXPOSN ... 1920
Return the contents of a Perl-style capture buffer.

CALL PRXCHANGE ... 1922
Returns the string that results from finding and replacing substrings in a specified source string,
using a regular expression.

CALL PRXDEBUG .. 1924
Switch on debugging for regular expressions.

CALL PRXFREE ... 1926
Free a regular expression identifier.

CALL PRXNEXT ... 1927
Returns the start and end position of the next substring in a specified source string that matches
a specified regular expression.

CALL PRXPOSN ...1929
Returns the position and length of a Perl-style capture buffer.

Reference for language elements
Version 4.1

1915

CALL PRXSUBSTR .. 1931
Returns the position of the first occurrence of a substring in a source string, using a regular
expression to specify the string to be found.

PRXCHANGE
Returns the string that results from finding and replacing substrings in a specified source string.

PRXCHANGE (regex- or- id , t imes , source)

Substrings are found and replaced using a regular expression. For example, if your data contains
details of companies, the 'Limited' in their name might be represented in various ways, such as
'Limited', 'LTD', or 'Ltd.', that you might prefer to represent simply as 'Ltd'.

Return type: Character

regex-or-id

Type: Character or numeric value

A regular expression, or an identifier generated by the PRXPARSE (page 1919) function (which
generates an identifier for a compiled regular expression).

times

Type: Numeric

The number of matching patterns in the string to be replaced. Use -1 to replace all matching
patterns. If you specify 0, no matching patterns are replaced.

source

Type: Character

The string to be modified.

Reference for language elements
Version 4.1

1916

Example
In this example, observations are searched for the word Bike. The result is written to the log.

DATA _NULL_;
 INFILE DATALINES END=LASTOBS;

 INPUT a $50.;
 NAME = right(a);

 IF _N_ = 1 THEN DO;
 rxid = PRXPARSE('s/Bike/Bicycle/');
 RETAIN rxid;
 END;

 xc = PRXCHANGE(rxid,-1, name);
 result = LEFT(xc);
 PUT result;

 IF LASTOBS THEN CALL PRXFREE(id);

DATALINES;
 Magnificent Bike Company Limited
 London Bike LTD.
 Old Penny Farthing Ltd
 Racing Bikes of Reading and London Lmtd.
 ;

This produces the following output:

Magnificent Bicycle Company (Bicycles) Limited
Magnificent Bicycle Company (Misc.) Limited
London Bicycle Limited.
Old Penny Farthing Ltd
Racing Bicycles of Reading and London Lmtd.

PRXMATCH
Returns the position of the first character that matches a pattern defined using a regular expression.

PRXMATCH (regex- or- id , source)

Return type: Numeric

If no matching pattern is found, 0 (zero) is returned.

regex-or-id

Type: Character or numeric value

A regular expression, or an identifier generated by the PRXPARSE (page 1919) function
(which generates an identifier for a compiled regular expression).

Reference for language elements
Version 4.1

1917

source

Type: Character

The source string.

Example
In this example, observations are searched for strings similar to Limited, such as LTD and Ltd,
and returns the first position in the observation at which it was found. The result is written to the log.

DATA _NULL_;
 INFILE DATALINES;
 INPUT a $45.;
 IF _N_ = 1 THEN DO;
 PUT "The positions of the matching strings are:";
 END;
 lr = TRIM(a);
 xm = PRXMATCH('/(Limited)|(LTD)|(Ltd)+/', lr);
 PUT xm;
DATALINES;
Magnificent Bikes Company
Magnificent Bikes (Subs) Limited
London Bike LTD.
Old Penny Farthing Inc.
Racing Bikes of Reading and London Limited.
;

This produces the following output:

The positions of the matching strings are:
0
26
13
0
36

PRXPAREN
Returns which substring in a specified list occurs in a specified string.

PRXPAREN (regex- id)

Searches the source string supplied to the last PRXMATCH for one of a list of parenthesised search
strings in a regular expression, and returns the position of the first matching parenthesised element .
For example, you might want to find which of the strings Sugar, Banana, Ghana, and India occurs in
a source string; this function enables you to do that. It returns the ordinal position of the first string in the
list that matches text in the source. In this example, if the regular expression listed the search patterns
in the order shown above, and the string to be searched was Tea, Ghana, 3.6, the function would
return 2, as the first string to be found is Ghana which is at position two in the list.

Reference for language elements
Version 4.1

1918

Return type: Numeric

regex-id

Type: Numeric

A regular expression identifier generated by the PRXPARSE (page 1919) function (which
generates an identifier for a compiled regular expression).

This function must be used with the PRXPARSE function, which generates the identifier for a compiled
regular expression, and with the PRXMATCH function.

Note:
The regular expression search for parenthesised strings must be separated by the OR (|) symbol for
the function to return the correct result; otherwise 0 is returned. Using the example above, the regular
expression would need to be specified as /(Sugar)|(Banana)|(Ghana)|(India)/.

Basic example
In this example, PRXPARSE is used to generate an identifier for a parsed regular expression, and this is
passed to the PRXPAREN function. The result is written to the log.

DATA _NULL_;
 rxid = PRXPARSE('/([Oo]range)|([Aa]pple)|([Bb]anana)|([Gg]rapefruit)/');
 result = PRXPAREN(rxid);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: .

The output contains the missing value (.) as PRXPAREN had no result from a previous PRXMATCH.

Example – using PXRMATCH
In this example, PRXPARSE is used to generate an identifier for a parsed regular expression, and this is
passed to both the PRXMATCH and PRXPAREN functions. The result is written to the log.

DATA _NULL_;
 rxid = PRXPARSE('/([Oo]range)|([Aa]pple)|([Bb]anana)|([Gg]rapefruit)/');
 rxm = PRXMATCH(rxid,'Banana, Ghana, 3.6, Grapefruit');
 result = PRXPAREN(rxid);
 PUT "The result of the PRXMATCH is: " rxm;
 PUT "The result of the PRXPAREN is: " result;
RUN;

This produces the following output:

The result of the PRXMATCH is: 1
The result of the PRXPAREN is: 3

Reference for language elements
Version 4.1

1919

In the PRXMATCH function, the string Banana matches Banana in the source at the first position,
so rxm is set to 1. The function has also read the source string into memory, enabling PRXPAREN
to operate on it using the regular expression. PRXPAREN returns 3, as Banana in the source string
matches the third search string (counting from the left) in the regular expression. Only the first
occurrence of a search string is found, so the match with Grapefruit in the source string is ignored.

PRXPARSE
Compiles a regular expression for use with other functions or CALL routines that require regular
expressions.

PRXPARSE (regex)

Returns an identifier that provides the location of the compiled expression that can then be supplied
in place of a regular expression. The returned identifier can be used as many times as required until
cleared using CALL PRXFREE.

Each invocation of this function returns a different identifier that is unique to the regular expression
compiled by the function; typically, this identifier is a number that increases by one for each invocation.

For some of the regular-expression functions, such as PRXPAREN, an identifier must be supplied, rather
than a regular expression.

Return type: Numeric

regex

Type: Character

The regular expression to be interpeted.

Basic example
In this example, the regular expressions are interpreted and identifiers created for them, which can be
used in other functions. The result is written to the log.

DATA _NULL_;
 rxid1 = PRXPARSE('/(Banana)|(Orange)|(Apple)|(Grapefruit)/');
 rxid2 = PRXPARSE('/(Wheat)|(Barley)|(Maize)|(Sorghum)/');
 PUT "The regular expression identifier is: " rxid1;
 PUT "The regular expression identifier is: " rxid2;
RUN;

This produces the following output:

The regular expression identifier is: 1
The regular expression identifier is: 2

Reference for language elements
Version 4.1

1920

Example – creating identifier for use by another function
In this example, an identifier is created for a regular expression, which is then passed to the
PRXCHANGE function. The result is written to the log.

DATA _NULL_
 INFILE DATALINES END=LASTOBS;
 INPUT a $50.;
 name = RIGHT(a);
 IF _N_ = 1 THEN DO;
 rxid = PRXPARSE('s/Bike/Bicycle/');
 RETAIN rxid;
 END;
 xc = PRXCHANGE(rxid,-1, name);
 result = LEFT(xc);
 PUT result;
 IF LASTOBS THEN CALL PRXFREE(id);
DATALINES;
Magnificent Bike Company Limited
London Bike LTD.
Old Penny Farthing Ltd
Racing Bikes of Reading and London Lmtd.
;

The regular expression searches a source string for the string Bike and then exchanges them for
the text Bicycle. The expression is interpreted by PRXPARSE, and an identifier for it is created. The
identifier is then used in the PRXCHANGE function; the regular expression is evaluated as if it had been
entered into the function.

This produces the following output:

Magnificent Bicycle Company Limited
London Bicycle LTD.
Old Penny Farthing Ltd
Racing Bicycles of Reading and London Lmtd.

PRXPOSN
Return the contents of a Perl-style capture buffer.

PRXPOSN (regex- id , capture- buffer , source)

Returns the contents of a specified Perl-style capture buffer; the substrings to be found and the capture
buffers are defined using a regular expression. Before you call PRXPOSN to obtain the text contents of
the capture buffers:

• Compile the regular expression using the PRXPARSE (page 1919) function, which returns an
identifier that can be used by this function.

• Call PRXMATCH, using the regular expression identifier supplied by PRXPARSE, to obtain the text
contents of the capture buffers, and establish their locations and lengths.

Reference for language elements
Version 4.1

1921

The string source does not have to be the same as the string previously provided to PRXMATCH. The
string in PRXMATCH could be used to find the locations of keywords in a sample string, and PRXPOSN
could then be used to extract text from the same position in different strings.

Return type: Character

regex-id

Type: Numeric

A regular expression identifier.

capture-buffer

Type: Numeric

The index number of a capture-buffer. Capture buffers are numbered from 1 to however many
have been defined in the regular expression. Capture buffer 0 (zero) contains all strings in all
capture buffers.

source

Type: Character

The source string to be examined by the regular expression.

Basic example
In this example, the regular expression is interpreted and an identifier created for it using PRXPARSE.
The identifier is used in the PRXPOSN function. The result is written to the log.

DATA _NULL_;
 a = "Magnificent Bike Company (Misc) Limited";
 id = PRXPARSE('/((Bike) (Company)) (\(Misc\))/');
 match = PRXMATCH(id,a);
 result0 = PRXPOSN(id,0,a);
 result1 = PRXPOSN(id,1,a);
 result2 = PRXPOSN(id,2,a);
 result3 = PRXPOSN(id,3,a);
 result4 = PRXPOSN(id,4,a);
 PUT result0;
 PUT result1;
 PUT result2;
 PUT result3;
 PUT result4;
RUB;

This produces the following output:

Bike Company (Misc)
Bike Company
Bike
Company
(Misc)

Reference for language elements
Version 4.1

1922

The PRXPOSN function uses the positions of the substrings generated by PRXMATCH to identify the
substrings. In the example, PUT is used to write the strings found in each capture buffer, including
capture buffer 0, which contains all the strings. The order in which the strings are assigned to capture
buffers depends on the bracketing.

Example – different strings in PRXMATCH and PRXPOSN
In this example, the regular expression is interpreted and an identifier created for it using PRXPARSE.
The identifier is used in the PRXMATCH function match identify the position and length of the strings in
the capture buffers. The positions are then used in PRXPOSN to return strings at those positions with
those lengths. The result is written to the log.

DATA _NULL_;
 a = "Magnificent Bike Company (Misc) Limited";
 id = PRXPARSE('/((Bike) (Company)) (\(Misc\))/');
 match = PRXMATCH(id,a);
 result0 = PRXPOSN(id,0,a);
 result1 = PRXPOSN(id,1,a);
 result2 = PRXPOSN(id,0,'Magnificent Cars Company (Misc) Limited');
 result3 = PRXPOSN(id,0,'Magnificent Tiger Company (Misc) Limited');
 result4 = PRXPOSN(id,2,'Magnificent Tiger Company (Misc) Limited');
 PUT result0;
 PUT result1;
 PUT result2;
 PUT result3;
 PUT result4;
RUN;

This produces the following output:

Bike Company (Misc)
Bike Company
Cars Company (Misc)
Tiger Company (Misc
Tige

The PRXPOSN function uses the positions of the substrings generated by PRXMATCH to identify the
substrings. In the example, PUT is used to write the strings found in capture buffers 0 and 1 for the
string supplied to PRXMATCH. The locations found by the regular expression in the PRXMATCH are then
applied to different strings in subsequent lines. Because the word Tiger is longer than Bike, the
information returned is truncated to match the length of the capture buffer.

CALL PRXCHANGE
Returns the string that results from finding and replacing substrings in a specified source string, using a
regular expression.

CALL PRXCHANGE

(regex- id , t imes , old- string ,

new- string

,

result- length

,

result- t runcated , number- of- changes

)

;

Reference for language elements
Version 4.1

1923

The modified string is returned to a variable specified as an argument to the routine. For example, if
your data contains details of companies, the 'Limited' in their name might be represented in various
ways, such as 'Limited', 'LTD', or 'Ltd.', that you might prefer to represent simply as 'Ltd'.

This routine also optionally returns the length of the modified string, the number of changes made, and
indicates whether the modified string has been truncated as a result of the modifications.

This call routine is similar to the PRXCHANGE (page 1915) function.

regex-id

Type: Numeric

A regular expression identifier generated by the PRXPARSE (page 1919) function (which
generates an identifier for a compiled regular expression).

times

Type: Numeric

The number of matching patterns in the string to be replaced. Use -1 to replace all matching
patterns. If you specify 0, no matching patterns are replaced.

old-string

Type: Character

The source string to be modified.

new-string
Optional argument

Type: Character

The variable into which the resulting string is returned.

result-length
Optional argument

Type: Numeric

A value returned by this routine. The length of the modified string.

result-truncated
Optional argument

Type: Numeric

A value returned by this routine, indicating whether or not new-string was truncated to fit the
length specified for it. This value is 1 if new-string has been truncated, 0 otherwise.

number-of-changes
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1924

A value returned by this routine. The number of changes made to old-string to create new-string.

Example
In this example, observations are searched for the word Bike, which are replaced with Bicycle in all
cases. The result is written to the log.

DATA _NULL_;
 INFILE DATALINES END=LASTOBS;
 INPUT a $50.;
 LENGTH ns $40;
 IF _N_ = 1 THEN DO;
 rxid = PRXPARSE('s/Bike/Bicycle/');
 RETAIN rxid;
 END;
 CALL PRXCHANGE(1, -1, a, ns, rl, rt, noc);
 PUT ns " " rl " " rt " " noc;
 IF LASTOBS THEN CALL PRXFREE(id);
DATALINES;
Magnificent Bike Company (Bikes) Limited
Magnificent Bike Company (Misc.) Limited
London Bike Limited.
Old Penny Farthing Ltd
Racing Bikes of Reading and London Lmtd.
;

This produces the following output:

Magnificent Bicycle Company (Bicycles) L 40 1 2
Magnificent Bicycle Company (Misc.) Limi 40 1 1
London Bicycle Limited. 23 0 1
Old Penny Farthing Ltd 22 0 0
Racing Bicycles of Reading and London Lm 40 1 1

In this example, -1 has been specified for the times argument, which means all matching patterns will
be replaced. In the first result, therefore, Bike has been replaced with Bicycle twice (as shown by the
2 returned in nt. In the first two results and the last result, replacing Bike with Bicycle has resulted
in a string longer than the length specification for that string. The value 1 has therefore been returned in
rt. In the third and fourth results, the string after substitution is shorter than the length specification; 0
is therefore returned in rt.

CALL PRXDEBUG
Switch on debugging for regular expressions.

CALL PRXDEBUG (on- off) ;

Switches on and off debugging for regular expressions. If switched on, messages are written to the log
about the operation of regular expression functions.

Reference for language elements
Version 4.1

1925

on-off

Type: Numeric

An integer that switches on or off regular expression debugging. 0 switches debugging off; any
other value switches it on.

Example
In this example, the regular expressions are compiled and identifiers created for each of them, which
can then be used in other functions. The result is written to the log.

DATA _NULL_;
 INFILE DATALINES END=LASTOBS;
 INPUT a $50.;
 LENGTH ns $50;
 CALL PRXDEBUG(1);
 IF _N_ = 1 THEN DO;
 rxid = PRXPARSE('s/Bike/Bicycle/');
 RETAIN rxid;
 END;
 rxid = PRXPARSE('s/Bike/Car/');
 CALL PRXCHANGE(1, -1, a, ns, rl, rt, noc);
 PUT ns " " rl " " rt " " noc;
 IF LASTOBS THEN CALL PRXFREE(id);
DATALINES;
Magnificent Bike Company (Bikes) Limited
Magnificent Bike Company (Misc.) Limited
London Bike LTD.
Old Penny Farthing Ltd
Racing Bikes of Reading and London Lmtd.
;

CALL PRXDEBUG is set to 1, so debugging is switched on. Debugging messages are returned to the log
for each record; in this example, each series of messages is followed by the results written to the log by
the PUT statement.

This produces the following messages and output for the first input record for this example:

PRXDEBUG: CALL PRXDEBUG:
PRXDEBUG: Regular expression debug setting set to ON

PRXDEBUG: PRXPARSE:
PRXDEBUG: Parsing Regular expression s/Bike/Car/
PRXDEBUG: Compiling regular expression pattern Bike
PRXDEBUG: Replacement text is: Car
PRXDEBUG: Delimiter is: /
PRXDEBUG: Compilation successful
PRXDEBUG: Regular expression successfully parsed

PRXDEBUG: CALL PRXCHANGE:
PRXDEBUG: Retrieving Parsed Regular Expression from ID: 1
PRXDEBUG: Retrieved Parsed Regular Expression
PRXDEBUG: Replacing in 'Magnificent Bike Company (Bikes) Limited' every time it
 occurs
PRXDEBUG: Result is 'Magnificent Car Company (Cars) Limited '
Magnificent Car Company (Cars) Limited 38 0 2

Reference for language elements
Version 4.1

1926

CALL PRXFREE
Free a regular expression identifier.

CALL PRXFREE (regex- id) ;

Frees a specified regular expression identifier of its current regular expression. This effectively clears
the regular expression from memory; any further call to that identifier by a regular expression function
or call routine will result in an error until the identifier is reassigned by a later invocation of PRXPARSE.

regex-id

Type: Numeric

A regular expression identifier.

Basic example
In this example, the regular expression is compiled and an identifier created using PRXPARSE. The
identifier is used in the CALL PRXCHANGE function. The CALL PRXFREE option is then used to free the
regular expression identifier.

DATA _NULL_;
 INFILE DATALINES END=LASTOBS;
 INPUT a $50.;
 LENGTH ns $50;
 IF _N_ = 1 THEN DO;
 RETAIN ID;
 id = PRXPARSE('s/Bike/Car/');
 END;
 CALL PRXCHANGE(id, -1, a, ns, rl, rt, noc);
 PUT ns " " rl " " rt " " noc;
 IF LASTOBS THEN CALL PRXFREE(id);
DATALINES;
Magnificent Bike Company (Bikes) Limited
Magnificent Bike Company (Misc.) Limited
London Bike LTD.
Old Penny Farthing Ltd
Racing Bikes of Reading and London Lmtd.
;

Reference for language elements
Version 4.1

1927

Example – error returned because identifier prematurely freed
In this example, the regular expression is compiled and an identifier created when the first observation
in the dataset is read. The CALL PRXFREE option is then used to free the regular expression identifier
before the CALL PRXCHANGE function is called for the next observation; the CALL PRXCHANGE does
not, therefore, have a valid value for its identifier.

DATA _NULL_;
 INFILE DATALINES END=LASTOBS;
 INPUT a $50.;
 LENGTH ns $50;
 IF _N_ = 1 THEN DO;
 RETAIN ID;
 id = PRXPARSE('s/Bike/Car/');
 END;
 CALL PRXCHANGE(id, -1, a, ns, rl, rt, noc);
 PUT ns " " rl " " rt " " noc;
 CALL PRXFREE(id);
DATALINES;
Magnificent Bike Company (Bikes) Limited
Magnificent Bike Company (Misc.) Limited
London Bike LTD.
Old Penny Farthing Ltd
Racing Bikes of Reading and London Lmtd.
;

Because CALL PRXCHANGE has no valid identifier, an error message similar to the following is
generated for each line of data subsequent to the first.

ERROR: Argument 1 to the function PRXCHANGE must be a value returned by PRXPARSE for
 a valid
 pattern
NOTE: Argument 1 to function PRXCHANGE at line 173 column 7 is invalid

CALL PRXNEXT
Returns the start and end position of the next substring in a specified source string that matches a
specified regular expression.

CALL PRXNEXT (regex- id , start- posit ion , stop- posit ion , source , posit ion , length) ;

You must define the position in the source string at which to start and stop searching. The regular
expression must first be compiled using the PRXPARSE function, which returns an identifier that can be
used in this function.

The start and end position are returned to variables you specify as arguments to this routine.

regex-id

Type: Numeric

A regular expression identifier.

Reference for language elements
Version 4.1

1928

start-position

Type: Numeric

The position in the source string at which to start searching for the substring.

stop-position

Type: Numeric

The position in the source string at which to stop searching for the substring.

source

Type: Character

The string to be examined for a pattern.

position

Type: Numeric

The position in source at which the substring is found.

length

Type: Numeric

The length of the substring found.

Basic example
In this example, the regular expression is compiled and an identifier created for it using PRXPARSE. The
identifier is used in the CALL PRXNEXT function. The result is written to the log.

DATA _NULL_;
 id = PRXPARSE('/Bike/');
 a = 'Magnificent Bike Company (Bikes) Limited';
 CALL PRXNEXT(id, 1, length(a), a, pos, len);
 PUT "String found at: " pos;
 PUT "String length is: " len;
RUN;

This produces the following output:

String found at: 13
String length is: 4

The function starts searching the source string at the first character position, and stops at last character.
These results are the position and length of the first occurrence of the substring Bike.

Reference for language elements
Version 4.1

1929

Example – specifying start and end point
In this example, the regular expression is compiled and an identifier for it created using PRXPARSE. The
identifier is used in the CALL PRXCHANGE function. The result is written to the log.

DATA _NULL_;
 id = PRXPARSE('/Bike/');
 a = 'Magnificent Bike Company (Bikes) Limited';
 CALL PRXNEXT(id, 20, 35, a, rl, rt);
 PUT "String found at: " rl;
 PUT "String found at: " rt;
RUN;

This produces the following output:

String found at: 27
String length is: 4

The function starts searching the source string at character position 20, and stops at position 35. The
next occurrence of the substring Bike is now found at position 27.

Note:
If the end position for the search also terminates the string to be found, the string will not be found.
In the example above, if the search had started at character 20 and ended at character 29, the range
would contain only the string pany (Bik, which contains no match for Bike.

CALL PRXPOSN
Returns the position and length of a Perl-style capture buffer.

CALL PRXPOSN

(regex- id , capture- buffer , posit ion

, length

) ;

This call routine is similar to the PRXPOSN (page 1920) function, except this routine returns the
position and length of the capture buffers, rather than the contents of those buffers.

The substrings to be found and the capture buffers are defined using a regular expression. Before you
use CALL PRXPOSN to obtain the text contents of the capture buffers:

• The regular expression must first be compiled using the PRXPARSE (page 1919) function, which
returns an identifier that can be used by this function.

• Call PRXMATCH, using the regular expression identifier supplied by PRPARSE, to obtain the text
contents of the capture buffers, and establish their locations and lengths.

regex-id

Type: Numeric

Reference for language elements
Version 4.1

1930

A regular expression identifier.

capture-buffer

Type: Numeric

The index number of a capture-buffer. Capture buffers are numbered from 1 to n, where n is the
number of buffers defined in the regular expression. Capture buffer 0 (zero) contains all strings
in all capture buffers (that is, the entire search string).

position

Type: Numeric

A value returned by this routine. The position at which the string in capture-buffer was found in
the source.

length
Optional argument

Type: Numeric

A value returned by this routine. The length of the string in capture-buffer.

Example
In this example, the regular expression is compiled and an identifier created for it using PRXPARSE. The
identifier is used in the CALL PRXPOSN function. The result is written to the log.

DATA _NULL_;
 id = PRXPARSE('/(Bike) (Company) (Misc)/');
 a = "Magnificent Bike Company (Misc) Limited";
 match = PRXMATCH(id,a);
 put "PRXMATCH matches first at: " match;
 put "-------------------------";
 CALL PRXPOSN (id,0, start, length);
 put "The strings captured in all buffers start at: " start;
 put "The strings captured in all buffers are: " length "characters long";
 put "-------------------------";
 CALL PRXPOSN (id, 1, start, length);
 put "String in capture buffer 1 found at : " start;
 put "Length of string in capture buffer 1 : " length;
 put "-------------------------";
 CALL PRXPOSN (id, 2, start, length);
 put "String in capture buffer 2 found at : " start;
 put "Length of string in capture buffer 2 : " length;
 put "-------------------------";
 CALL PRXPOSN (id, 3, start, length);
 put "String in capture buffer 3 found at : " start;
 put "Length of string in capture buffer 3 : " length;
RUN;

Reference for language elements
Version 4.1

1931

This produces the following output:

PRXMATCH matches first at: 13

The strings captured in all buffers start at: 13
The strings captured in all buffers are: 19 characters long

String in capture buffer 1 found at : 13
Length of string in capture buffer 1 : 4

String in capture buffer 2 found at : 18
Length of string in capture buffer 2 : 7

String in capture buffer 3 found at : 26
Length of string in capture buffer 3 : 6

The PRXMATCH function has been used to ensure the capture buffer location and extents have been
identified for the regular expression identifier.

The capture buffer 0 contains the strings starting at position 13 (the same as found by PRXMATCH, and
in the first capture buffer in CALL PRXPOSN). The string length returned for capture buffer 0 is nineteen
characters, as it is the length of all strings captured to buffers 1 to 3 (the entire search pattern); in this
case Bike Company (Misc).

The lengths and positions of each string found in each capture buffer are then written to the log.

CALL PRXSUBSTR
Returns the position of the first occurrence of a substring in a source string, using a regular expression
to specify the string to be found.

CALL PRXSUBSTR (regex- id , source , posit ion

, length

) ;

The regular expression must first be interpreted using thePRXPARSE function, which returns an identifier
that can be used in this function.

regex-id

Type: Numeric

A regular expression identifier.

source

Type: Character

The string to be examined for a pattern.

position

Type: Numeric

Reference for language elements
Version 4.1

1932

The position in source at which the substring is found.

length
Optional argument

Type: Numeric

The length of the substring found.

Example
In this example, the regular expression is interpreted and an identifier created for it using PRXPARSE.
The identifier is used in the CALL PRXSUBSTR function. The result is written to the log.

DATA _NULL_;
 a = "Magnificent Bike Company (Bikes) Limited";
 id = PRXPARSE('/Bike/');
 CALL PRXSUBSTR (id,a, pos, len);
 PUT "String found at : " pos;
 PUT "Length of string: " len;
RUN;

This produces the following output:

String found at : 13
Length of string: 4

Sequence manipulation functions
Operate on sequences (lists) of items in variables.

CHOOSEC .. 1933
Returns the string found at a specified position in a list of comma-separated strings.

CHOOSEN .. 1934
Returns the number found at a specified location in a list of numbers.

COALESCEC .. 1935
Returns the first string that contains characters other than all spaces or null.

COALESCE ... 1936
Returns the first non-missing value in a list of numeric values.

WHICHC ..1936
Returns the position of the first string in a list of strings that matches a specified string.

WHICHN ..1937
Returns the position of a specified argument in a list of numeric or missing values.

CALL SORTC ..1938
Sorts a list of strings.

CALL SORTN ..1939
Returns the values in a list of numeric variables sorted in ascending order.

Reference for language elements
Version 4.1

1933

CHOOSEC
Returns the string found at a specified position in a list of comma-separated strings.

CHOOSEC (value ,

,

item)

Return type: Character

value

Type: Numeric

The ordinal position of the string in the list of strings. This should be an integer. For example, if
there are five strings, the leftmost is number 1, and the rightmost number 5; to select the third
string in the list, specify 3 for this argument. If the number is negative, counting progresses from
right to left.

item

Type: Character

A string, or a variable containing a string.

A missing value is returned if value is greater than the number of items in the list.

Example – returning string found at specified position
In this example, the function is used to find the second string in the list of strings provided to the
function. The result is written to the log.

DATA _NULL_;
 string1="Company";
 result = CHOOSEC(2,"Magnificent","Bike", string1,"London");
 PUT "The string found is: " result;
RUN;

This produces the following output:

The string found is: Bike

Example – returning string contained in variable
In this example, the function is used to find the third string in the list of strings provided to the function.
In this example, the third string is contained in a variable. The result is written to the log.

DATA _NULL_;
 string1="Company";
 result = CHOOSEC(3,"Magnificient","Bike", string1,"London");
 PUT "The string found is: " result;
RUN;

Reference for language elements
Version 4.1

1934

This produces the following output:

The string found is: Company

The function returns the third string in the list, which in this example is Company, the string contained in
the variable string1.

CHOOSEN
Returns the number found at a specified location in a list of numbers.

CHOOSEN (value ,

,

item)

Return type: Numeric

value

Type: Numeric

The ordinal position of the number in the list of numbers. This should be an integer. For example,
if there are five numbers, the leftmost is number 1, and the rightmost is number 5; to select
the third number in the list, specify 3 for this argument. If the number is negative, counting
progresses from right to left.

item

Type: Numeric

A number.

A missing value is returned if value is greater than the number of items in the list.

Example – returning number found at specified position
In this example, the function is used to find the second number in the list of numbers provided to the
function. The result is written to the log.

DATA _NULL_;
 var1=10;
 result = CHOOSEN(2, 1, 100, var1, 7, 12, 9);
 PUT "The number found is: " result;
RUN;

This produces the following output:

The number found is: 100

Reference for language elements
Version 4.1

1935

Example – returning number contained in variable
In this example, the function is used to find the fourth number in the list of numbers provided to the
function. The result is written to the log.

DATA _NULL_;
 var1=10;
 result = CHOOSEN(4, 1, 100, var1, 7, 12, 9);
 PUT "The number found is: " result;
RUN;

This produces the following output:

The number found is: 100

The function has returned the number at the fourth position in the list, which is contained in the variable
var1.

COALESCEC
Returns the first string that contains characters other than all spaces or null.

COALESCEC (

,

string)

Return type: Character

string

Type: Character

A string to be examined.

Example
In this example, the function searches the strings provided to it for the first that does not contain only
spaces or is null. The result is written to the log.

DATA _NULL_;
 empty=" ";
 result = COALESCEC('', ' ', empty, ' World Programming');
 PUT "The resulting string is: " result;
RUN;

This produces the following output:

The resulting string is: World Programming

The first string provided to the function is null, the second string is all spaces, and the variable empty
also contains all spaces; the function therefore returns World Programming.

Reference for language elements
Version 4.1

1936

COALESCE
Returns the first non-missing value in a list of numeric values.

COALESCE (

,

value)

Return type: Numeric

value

Type: Numeric

The value to be evaluated.

If all specified values are missing values, a missing value is returned.

Example
In this example, the first non-missing value is returned. The result is written to the log.

DATA _NULL_;
 a = COALESCE("four",.,"4",1,-2,3,.,"");
 PUT a=;
RUN;

This produces the following output:

a=4

The argument value "4" has been converted into a number, but the argument value "four" is
considered missing.

WHICHC
Returns the position of the first string in a list of strings that matches a specified string.

WHICHC (string ,

,

comp- string)

Identifies the first string in a list of strings that matches the string you specify, and returns as a number
the ordinal position of the matched string in the list of strings. The strings for which to search are
specified as one or more comma-separated strings. For example, if the list of strings has four items,
and the third string matches, then 3 is returned. If no matching string is found, 0 is returned.

Return type: Numeric

Reference for language elements
Version 4.1

1937

string

Type: Character

The string you want to find in a list of other strings.

comp-string

Type: Character

A string to be matched with string.

Example
In this example, the function is used to find the string Bike in a list of strings. The result is written to the
log.

DATA _NULL_;
 result1 = WHICHC('Bike','Bice', 'Boke', 'Bike');
 PUT "The string is number " result1 "in the list";
RUN;

This produces the following output:

The string is number 3 in the list

WHICHN
Returns the position of a specified argument in a list of numeric or missing values.

WHICHN (argument ,

,

value)

Searches for the value of argument in the list of values that follow it, including missing values. If a value
equal to argument is encountered, its index in the value list is returned, otherwise 0 is returned.

Return type: Numeric

argument

Type: Numeric

The value to look for in the list that follows.

If the argument contains a missing value, a missing value is returned.

value

Type: Numeric

The value to be evaluated.

Reference for language elements
Version 4.1

1938

Note:
Here positions of all values are counted, including missing values.

Examples
In these examples, the position of a specified argument is returned. The results are written to the log.

DATA _NULL_;
 n1 = WHICHN(4.1, 1,2,3,4,5);
 PUT n1=;
 n2 = WHICHN(4, 1,.,2,3,4,5);
 PUT n2=;
 n3 = WHICHN(4, 1,2,3,4,5);
 PUT n3=;
RUN;

This produces the following output:

n1=0
n2=5
n3=4

The first example returns 0 because value 4.1 is not found in the value list.

The second example returns a different value than the third one because the missing value in the list is
counted along with non-missing values.

CALL SORTC
Sorts a list of strings.

CALL SORTC (
,

string

) ;

Sorts a list of strings, presented as arguments, into alphabetic order. The contents of the arguments are
changed to match the sort order.

string
Optional argument

Type: Character

An argument containing a string to be sorted.

Reference for language elements
Version 4.1

1939

Basic example
In this example, the function is used to sort a list of strings. The result is written to the log.

DATA _NULL_;
 LENGTH c1 c2 c3 $ 11;
 c1 = 'Magnificent';
 c2 = 'London';
 c3 = 'Bikes';
 CALL SORTC(c1,c2,c3);
 PUT c1 " " c2 " " c3;
RUN;

This produces the following output:

Bikes London Magnificent

Example – sorting array of strings
In this example, the function is used to sort the strings in an array. The result is written to the log.

DATA _NULL_;
 ARRAY jj(12) $10 ('jack' 'jill'
 'janet' 'john'
 'humpty' 'dumpty'
 'tom' 'jerry'
 'captain' 'pugwash'
 'black' 'pig');
 CALL SORTC(of jj(*));
 PUT jj(*);
RUN;

This produces the following output:

black captain dumpty humpty jack janet jerry jill john pig pugwash tom

CALL SORTN
Returns the values in a list of numeric variables sorted in ascending order.

CALL SORTN (
,

x

) ;

Defined for numeric values only. Numeric and missing values in the variables given in the argument
list are sorted in ascending order and re-assigned to these variables. Missing values are considered
smaller than any non-missing values.

x
Optional argument

Type: Numeric

Reference for language elements
Version 4.1

1940

The point at which to calculate the values in a list of numeric variables sorted in ascending order.

Examples
In these examples, the values in a list of numeric variables sorted in ascending order is returned. The
results are written to the log.

DATA _NULL_;
 s1=0; s2=-1.1; s3=6.5; s4="4";
 CALL SORTN (s1,s2,s3,s4);

 PUT s1=;

 PUT s2=;

 PUT s3=;

 PUT s4=;

 m1=0; m2=-1.1; m3=-6.5; m4="four";
 CALL SORTN (m1,m2,m3,m4);

 PUT m1=;

 PUT m2=;

 PUT m3=;

 PUT m4=;
RUN;

This produces the following output:

s1=-1.1
s2=0
s3=4
s4=6.5

m1=.
m2=-1.1
m3=0
m4=6.5

The argument value "4" has been converted into a number, but the argument value "four" is
considered missing. The sort order is adjusted accordingly, starting with the missing value.

Reference for language elements
Version 4.1

1941

String functions and CALL routines
Manipulate strings and characters. Strings are sequences of one or more characters.

You can find and replace characters and substrings, find the length of strings and substrings, and
so on. Functions are also provided that enable you to manipulate strings and characters comprised
of double-byte character set (DBCS) characters. A double-byte character consists of a lead byte
and a trail byte and requires two consecutive storage bytes; it must be treated as a single unit in
any operation involving characters and strings. The DBCS functions begin with a K (for example,
KCOMPARE, KLENGTH and so on).

The string functions and CALL routines are grouped by function.

Calculate edit distances ..1942
Calculate the edit distances between strings.

Change character case in strings ...1949
Change the case of strings.

Compare strings ..1956
Compare strings in various ways.

Concatenate strings .. 1966
Concatenate strings in various ways, including or removing separators and spaces as required.

Count characters or strings in a source string ... 1978
Returns the number of specified characters or strings in source strings.

Extract a substring from a source string .. 1988
Returns a specified substring extracted from a source string.

Find first character of a type .. 2012
Return the first character of specified type in a source string.

Find characters or rank in collating sequence ..2043
Return characters from specified positions in a collating sequence, or return the rank of a
character in a sequence.

Find position and length of substrings ..2045
Return the length and/or position of specified substrings in source strings.

Modifying strings, characters and numerics ... 2071
Return a source string modified in a particular way.

Name literal check and manipulation ... 2098
Check whether a string is a valid variable name, and convert strings to name literals.

Remove spaces from a source string ...2101
Removes spaces from a specified string.

Reference for language elements
Version 4.1

1942

Calculate edit distances
Calculate the edit distances between strings.

Edit distances can be calculated using various methods.

COMPGED .. 1942
Returns the generalised edit distance between two strings.

COMPLEV ... 1944
Returns the Levenshtein edit distance between two strings.

SPEDIS ... 1946
Returns the spelling distance between two words.

CALL COMPCOST ... 1947
Adjusts the costs of various operations associated with the transformation of one string into
another, such as deleting a character, or swapping one character with another.

COMPGED

Returns the generalised edit distance between two strings.

COMPGED (string1 , string2)

COMPGED (string1 , string2 , cutoff

, modif iers

)

COMPGED (string1 , string2 , modif iers

, cutoff

)

Compares two strings and calculates an overall cost, based on the generalised edit distance, of
transforming a specified string to another specified string. It can be regarded as a measure of
the difference between two character strings. The generalised edit distance defines additional
transformations to the standard (Levenshtein) edit distance.

Return type: Numeric

string1

Type: Character

The string to be compared to string2.

string2

Type: Character

The string to be compared to string1.

Reference for language elements
Version 4.1

1943

cutoff

Type: Numeric

The maximum cost to be returned by the function; above this value, costs will be ignored. For
example if this argument is set to 100, and the function calculates that the cost of transformation
is 200, the function will return 100.

modifiers
Optional argument

Type: Character

One or more characters that specify how the output should be modified. The following modifiers
are available:

D

Provide detailed information on how the edit distance is calculated. The information is
provided in a tabular format. See the example below.

I

Ignore case in the source string.

L

Ignore leading spaces in string1.

N

If the string is a name literal, ignore differences in case. For example, in
compged("Ford"N,"FoRd"N, 'N') the case of r and R would be ignored.

:

If string2 is longer than string1, ignore characters in string2 beyond the length of string1.
For example, COMPGED('London Bikes','London Bikes s', ':'); would return
the value 0 (zero).

The order of the cutoff and modifiers arguments can be swapped; for example COMPGED('London
Bikes','London Bokes', 100, 'I') and COMPGED('London Bikes','London Bokes',
'I', 100) are equivalent.

Basic example
In this example, the function is used to find the generalised edit distance between two strings. The
result is written to the log.

DATA _NULL_;
 result = COMPGED('London Bikes','London Bokes');
 PUT "The generalised edit distance is: " result;
RUN;

Reference for language elements
Version 4.1

1944

This produces the following output:

The generalised edit distance is: 100

Example – showing detailed informatin
In this example, the function is used to find the generalised edit distance between two strings. The D
modifier is specified to provide detailed information. The result is written to the log.

DATA _NULL_;
 result = COMPGED('London Bikes','London Bokes',200,'D');
 PUT "The generalised edit distance is: " result;
RUN;

This produces the following output:

 L o n d o n B i k e s
 0 200 200 200 200 200 200 200 200 200 200 200 200
L 200 0 100 200 300 300 300 300 300 300 300 300 300
o 200 200 0 100 200 220 320 330 400 400 400 400 400
n 200 300 100 0 100 200 220 230 330 430 500 500 500
d 200 300 200 100 0 100 200 210 310 410 510 600 600
o 200 300 300 200 100 0 100 110 210 310 410 510 610
n 200 300 400 300 200 100 0 10 110 210 310 410 510
 200 300 400 310 210 110 10 0 100 200 300 400 500
B 200 300 400 410 310 210 110 100 0 100 200 300 400
o 200 300 300 400 410 310 210 200 100 100 200 300 400
k 200 300 400 400 500 410 310 300 200 200 100 200 300
e 200 300 400 500 500 510 410 400 300 300 200 100 200
s 200 300 400 500 600 600 510 500 400 400 300 200 100
 L : MATCH
 o : MATCH
 n : MATCH
 d : MATCH
 o : MATCH
 n : MATCH
 : MATCH
 B : MATCH
 o -> i : REPLACE
 k : MATCH
 e : MATCH
 s : MATCH
The generalised edit distance is: 100

COMPLEV

Returns the Levenshtein edit distance between two strings.

COMPLEV (string1 , string2)

COMPLEV (string1 , string2 , cutoff

, modif iers

)

Reference for language elements
Version 4.1

1945

COMPLEV (string1 , string2 , modif iers

, cutoff

)

Compares two strings and calculates an overall cost, based on the Levenshtein edit distance, of
transforming a specified string to another specified string. It can be regarded as a measure of the
difference between two character strings.

Return type: Numeric

string1

Type: Character

The string to be compared to string2.

string2

Type: Character

The string to be compared to string1.

cutoff

Type: Numeric

The maximum cost to be returned by the function; above this value, costs will be ignored. For
example if this argument is set to 10, and the function calculates that the cost of transformation is
12, the function will return 10. By default, there is no cut-off.

modifiers
Optional argument

Type: Character

Parameters that modify the output. These are optional. The following modifiers are available:

I

Ignore case in string1.

L

Ignore leading spaces in string1.

N

If the string is a name literal, ignore differences in case. For example, in
COMPLEV("Ford"N,"FoRd"N, 'N') the case of r and R would be ignored.

:

If string2 is longer than string1, ignore characters in string2 beyond the length of string1.
For example, COMPLEV('London Bikes','London Bikes s', ':'); would return
the value 0 (zero).

Reference for language elements
Version 4.1

1946

Example
In this example, the function is used to find the Levenshtein edit distance between two strings. This
produces the following output:

DATA _NULL_;
 result = COMPLEV('London Bikes','London Bokes');
 PUT "The Levenshtein edit distance is: " result;
RUN;

This produces the following output:

The Levenshtein edit distance is: 1

SPEDIS

Returns the spelling distance between two words.

SPEDIS (string1 , string2)

Determines the degree to which two words match, based on the spelling distance between them.
The function returns the distance as an asymmetric value; that is, changing a to z is not the same as
changing z to a.

Return type: Numeric

string1

Type: Character

The source string.

string2

Type: Character

The string to which string1 is compared.

The spelling distance is calculated based on the transformations that would be required to make string2
match string1. The following operations will be tried:

• Insert a letter
• Delete a letter
• Replace a letter
• Append a letter
• Delete the first letter
• Insert a first a letter
• Replace the first letter

Reference for language elements
Version 4.1

1947

Each operation has an associated cost. The function used default costs, but you can specify alternative
costs using the CALL COMPCOST (page 1947) routine.

Example
In this example, the function is used to calculate the spelling distance between the target string London
and the source string Londin. The result is written to the log.

DATA _NULL_;
 result = SPEDIS('London','Londin');
 PUT 'The spelling distance is: ' result;
RUN;

This produces the following output:

The spelling distance is: 16

CALL COMPCOST

Adjusts the costs of various operations associated with the transformation of one string into another,
such as deleting a character, or swapping one character with another.

CALL COMPCOST (

,

opt ion) ;

This CALL routine is most often called before the COMPGED function, which calculates the generalised
edit distance for the transformation of two strings. The costs provided by CALL COMPCOST can be used
to adjust the cost calculations performed by COMPGED.

option

Type: Character or numeric value

Specifes an editing operation, and the cost associated with that operation. The option is specified
as a pair of values, a character operation name, enclosed in quotation marks, and a numeric cost
for the operation. The format is:

'operation=', n

where operation is the name for an operation such as appending a character or inserting a blank.
The following operations are available:

APPEND

Specifies the cost of appending a character.

BLANK

Specifies the cost of replacing a character with a blank.

Reference for language elements
Version 4.1

1948

DELETE

Specifies the cost of deleting a character.

DOUBLE

Specifies the cost of doubling a character (modifying O to be OO, for example).

FDELETE

Specifies the cost of deleting the first character in the string.

FINSERT

Specifies the cost of inserting a character at the first position in the string.

FREPLACE

Specifies the cost of replacing the first character in the string.

INSERT

Specifies the cost of inserting a character.

MATCH

Specifies the cost of maching a character.

PUNCTUATION

Specifies the cost of inserting a punctuation character.

REPLACE

Specifies the cost of replacing a character.

SINGLE

Specifies the cost of making a doubled character single (modifying OO to be O, for
example).

SWAP

Specifies the cost of swapping one character with another.

TRUNCATE

Specifies the cost of truncating a string.

Example
In this example,COMPGED is first used to calculate the generalised edit distance between two strings
based on the default costs used to calculate that distance. CALL COMPCOST is used to change the cost

Reference for language elements
Version 4.1

1949

of inserting a value; COMPGED is then used to calculate the generalised edit distance using the new cost
for inserting a character. The result is written to the log.

DATA _NULL_;
 result1 = COMPGED("London Bike","London Boke");
 PUT "Generalised edit distance is: " result1;
 call COMPCOST('replace=',10,'insert=',30);
 result2 = COMPGED("London Bike","London Boke");
 PUT "Generalised edit distance is now: " result2;
RUN;

This produces the following output:

Generalised edit distance is: 100
Generalised edit distance is now: 10

The generalised edit distance is first calculated to be 100. After executing CALL COMPCOST, the
generalised edit distance is calculated to be 10.

Change character case in strings
Change the case of strings.

The case in strings can be changed to all upper, to all lower, and to sentence case.

LOWCASE ...1950
Returns a string in which all upper-case characters in a specified string have been converted to
lower case.

KLOWCASE .. 1950
Returns a string in which all uppercase characters in a specified string of DBCS characters have
been converted to lowercase.

KPROPCASE .. 1951
Returns a string in which the characters of a specified string of DBCS characters have been
converted to another form, such as half-katakana to full-katakana or uppercase to lowercase.

KUPCASE ... 1953
Returns the string that results from converting all lowercase characters in a specified DBCS
string to uppercase.

PROPCASE ...1953
Returns the string that results from changing the case of words in a specified string so that the
first letter is uppercase and other letters lowercase.

UPCASE ..1955
Returns a string in which all lowercase characters have been converted to uppercase.

Reference for language elements
Version 4.1

1950

LOWCASE

Returns a string in which all upper-case characters in a specified string have been converted to lower
case.

LOWCASE (string)

Return type: Character

string

Type: Character

The string in which upper-case characters are to be converted.

Example
In this example, the function is used to examine the string for upper-case characters, which are then
converted to lower-case characters. The result is written to the log.

DATA _NULL_;
 result = lowcase('Magnificent Bike Company Bike A 1 2 50 London');
 PUT 'The converted string is: ' result;
RUN;

This produces the following output:

The converted string is: magnificent bike company bike a 1 2 50 london

KLOWCASE

Returns a string in which all uppercase characters in a specified string of DBCS characters have been
converted to lowercase.

KLOWCASE (string)

Converts all uppercase alphabetic characters in a string consisting of characters from a double-
byte character set (DBCS) to corresponding lowercase characters, and returns the result. Strings in
languages that have no equivalent lowercase characters are returned unmodified.

Return type: Character

string

Type: Character

A string in which uppercase characters are to be converted.

Reference for language elements
Version 4.1

1951

Example
In this example, the function is used to find upper case characters in the source strings; these are then
converted to lowercase characters. The result is written to the log.

DATA _NULL_;
 result = KLOWCASE('ΙΑΝΟΥΆΡΙΣ ΦΕΒΡΟΥΆΡΙΟΣ');
 PUT result;
RUN;

This produces the following output:

ιανουάρις φεβρουάριος

KPROPCASE

Returns a string in which the characters of a specified string of DBCS characters have been converted
to another form, such as half-katakana to full-katakana or uppercase to lowercase.

KPROPCASE (string

, opt ions

)

Converts characters from a double-byte character set from one form to another, such as a half-width
katakana character to a full-width katakana, or a lowercase character to an uppercase character, and
returns the results.

Return type: Character

string

Type: Character

The string to be converted.

options
Optional argument

Type: Character

Options that define the type of conversion. The following are available:

HALF-KATAKANA, FULL-KATAKANA Convert half-width katakana to full-width katakana.
FULL-KATAKANA, HALF-KATAKANA Convert full-width katakana to half-width katakana.
KATAKANA, ROMAJI Convert katakana characters to romaji characters.
ROMAJI, KATAKANA Convert romaji characters to katakana characters.
HALF-ALPHABET, FULL-ALPHABET Convert half-width characters (as used to display

Korean or Chinese characters, for example) into full-
width characters.

Reference for language elements
Version 4.1

1952

FULL-ALPHABET, HALF-ALPHABET Convert full-width characters (as used to display
Korean or Chinese. for example,) into half-width
characters.

LOWERCASE, UPPERCASE Convert lowercase characters to uppercase
characters.

UPPERCASE, LOWERCASE Convert uppercase characters to lowercase
characters.

Convert full-width katakana to half-width
The following example changes Japanese katakana characters to half-katakana characters and back
again.

DATA example;
 result1 = KPROPCASE('テレビ コンピューター', 'FULL-KATAKANA, HALF-KATAKANA');
 result2 = KPROPCASE(result1, 'HALF-KATAKANA, FULL-KATAKANA');
 PUT result1;
RUN;

This produces the following output:

Example – katakana characters to romaji and back
In this example, Japanese characters are changed to romaji characters, then changed back again.

DATA example;
 result = QUOTE(KRIGHT(text));
 result2 = CAT('熨斗目花色', KRIGHT(text));
 PUT result;
 PUT '熨斗目花色 ' result;
 PUT result2;
RUN;

This produces the following output:

TEREBI KONPYŪTĀ
テレビ コンピューター

Convert Uppercase Characters to Lowercase and Back
In this example, uppercase Greek characters are changed to lowercase characters, and then changed
back again.

DATA _NULL_;
 result1 = KPROPCASE('ΙΑΝΟΥΆΡΙΣ ΦΕΒΡΟΥΆΡΙΟΣ','uppercase, lowercase');
 result2 = KPROPCASE(result1,'lowercase, uppercase');
 PUT result1;
 PUT result2;
RUN;

Reference for language elements
Version 4.1

1953

This produces the following output:

ιανουάρις φεβρουάριος
ΙΑΝΟΥΆΡΙΣ ΦΕΒΡΟΥΆΡΙΟΣ

KUPCASE

Returns the string that results from converting all lowercase characters in a specified DBCS string to
uppercase.

KUPCASE (string)

Converts all lowercase alphabetic characters in a string consisting of characters from a double-byte
character set (DBCS) to corresponding uppercase characters, and returns the modified string. Strings in
languages that have no equivalent uppercase characters are returned unmodified.

Return type: Character

string

Type: Character

A character or string of characters to be converted from lowercase to uppercase.

Example
In this example, the function is used to convert lowercase characters to uppercase. The result is written
to the log.

DATA _NULL_;
 result = KUPCASE('ιανουάρις φεβρουάριος');
 PUT result;
RUN;

This produces the following output:

ΙΑΝΟΥΆΡΙΣ ΦΕΒΡΟΥΆΡΙΟΣ

PROPCASE

Returns the string that results from changing the case of words in a specified string so that the first
letter is uppercase and other letters lowercase.

PROPCASE (string

, delimiters

)

Reference for language elements
Version 4.1

1954

Words in a string are separated by spaces by default, but a different separator can be used as a
separator if required.

Return type: Character

string

Type: Character

A string containing words to be converted.

delimiters
Optional argument

Type: Character

One or more characters to be recognised as delimiters (separators).

Example – using default space separators
In this example, the function converts the case of words separated by spaces. The result is written to
the log.

DATA _NULL_;
 result = PROPCASE('london bike company');
 PUT "Converted string is: " result;
RUN;

This produces the following output:

Converted string is: London Bike Company

Example – using a specified separator
In this example, the function converts the case of words separated by full-stops. The result is written to
the log.

DATA _NULL_;
 result = PROPCASE('london bike.company', '.');
 PUT "Converted string is: " result;
RUN;

This produces the following output:

Converted string is: London bike.Company

Note:
If the string had been london bike. company (note the space after the full stop), the result would
be London bike. company. In this example, the character after the full-stop is a space, rather than a
letter, so there is nothing to convert.

Reference for language elements
Version 4.1

1955

Example – using multiple separators
In this example, the function converts the case of words separated by full-stops and commas. The
result is written to the log.

DATA _NULL_;
 sentence='london,lovely bike.company';
 seps= ',.';
 result = PROPCASE(sentence, seps);
 PUT "Converted string is: " result;
RUN;

This produces the following output:

Converted string is: London,Lovely bike.Company

UPCASE

Returns a string in which all lowercase characters have been converted to uppercase.

UPCASE (string)

Return type: Character

string

Type: Character

The string in which lowercase characters are to be converted.

Example
In this example, the function is used to convert lowercase characters to uppercase. The result is written
to the log.

DATA _NULL_;
 result= UPCASE("Magnificent Bike Company A 1 2 50 London");
 PUT result;
RUN;

This produces the following output:

MAGNIFICENT BIKE COMPANY A 1 2 50 LONDON

Reference for language elements
Version 4.1

1956

Compare strings
Compare strings in various ways.

Strings can be compared to see how alike they are, or to check which is higher or lower in the collating
sequence.

COMPARE .. 1956
Returns the first position at which two strings differ.

KCOMPARE .. 1958
Returns a value indicating whether two strings comprised of characters from a DBCS differ.

LIKE ...1960
Returns a value indicating whether two strings are similar.

MAXC .. 1962
Returns the higher in the collating sequence of two strings after comparing them.

MINC ... 1964
Returns the lower in the collating sequence of two strings after comparing them.

SOUNDSLIKE ... 1965
Returns a value that indicates whether two strings are similar or not. The strings are converted to
soundex equivalents, and then compared.

COMPARE

Returns the first position at which two strings differ.

COMPARE (string1 , string2

, modif iers

)

Return type: Numeric

string1

Type: Character

The string to be compared against string2.

string2

Type: Character

The string against which string1 is compared.

modifiers
Optional argument

Reference for language elements
Version 4.1

1957

One or more modifiers. A modifier changes the operation of the function. The following modifiers
are available:

":"

If string2 is longer than string1, ignore characters in string2 beyond the length of string1.

"I"

Differences in case when comparing alphabetic characters are ignored.

"L"

Ignore leading spaces in the comparision.

"N"

If the string is a name literal, differences in case are ignored. For example,
COMPARE("Ford"N,"FoRd"N, 'N') would return 0 (zero).

If the character that differs is higher in the collating sequence in string1 than it is in string2, then the
value returned is positive.

If the character that differs is higher in the collating sequence in string2 than it is in string1, then the
value returned is negative.

For example, comparing Bicycle to Bacycle returns 2, whereas comparing Bacycle to Bicycle
returns -2.

Example – specifying no arguments
In this example, the function is used to compare two strings, with no arguments specified. The result is
written to the log.

DATA _NULL_;
 result = COMPARE("Ford","Ford");
 PUT "The result of the comparison is: " result;
RUN;

This produces the following output:

The result of the comparison is: 0

The function returns 0 (zero), as both strings are identical.

Example – how collation sequence affects result
In this example, the function is used to compare two strings, with no arguments specified. The result is
written to the log.

DATA _NULL_;
 result = COMPARE("Ford","Fprd");
 PUT "The result of the comparison is: " result;
RUN;

Reference for language elements
Version 4.1

1958

This produces the following output:

The result of the comparison is: -2

The function returns -2, which is the position of the first character that is different in the second string;
the value is negative because o is lower in the collating sequence than p.

Example – using modifiers
In this example, the function is used to compare two strings while ignoring differences in case. The
result is written to the log.

DATA _NULL_;
 result = COMPARE("Ford","FOrd", 'I');
 PUT "The result of the comparison is: " result;
RUN;

This produces the following output:

The result of the comparison is: 0

The function returns 0 (zero). Because I has been specified, the two strings are seen as identical.

KCOMPARE

Returns a value indicating whether two strings comprised of characters from a DBCS differ.

KCOMPARE (string1 , posit ion ,

count , string2

)

Compares two strings containing characters from a double-byte character set (DBCS), and returns a
value that indicates whether they differ. You can compare the entire strings, or a substring to a string.

Return type: Numeric

string1

Type: Character

The source string to be compared.

position

Type: Character or numeric value

The position in source at which to start the comparison. If this argument is specified, count must
also be specified.

count
Optional argument

Reference for language elements
Version 4.1

1959

Type: Character or numeric value

The number of characters to be compared. If this argument is specified, position must also be
specified.

string2
Optional argument

Type: Character

The string to be compared against source.

If position and count are not specified, the entire string in source is compared to the entire string in
compare. If the two strings do not differ, 0 (zero) is returned.

If position and count are specified, the substring in source is compared to the string in compare. If the
two strings do not differ, 0 (zero) is returned.

If the strings or the substrings do differ, the following values are returned:

-1 The first character that differs is lower in the collating sequence in source than it is in compare. For example,
kcompare('r','s') will return -1.

1 The first character that differs is higher in the collating sequence in source than it is in compare. For example,
kcompare('s','r') will return 1.

See the examples below for more information.

Basic example
In this example, the function is used to compare two strings. The result is written to the log.

DATA _NULL_;
 result = KCOMPARE("熨斗目花色","熨斗目花色");
 PUT result;
RUN;

This produces the following output:

0

Both strings are exactly the same. As position and count are not specified, the entire strings are
compared.

Example – showing affect of collation sequence
In this example, the function is used to compare two strings. The result is written to the log.

DATA _NULL_;
 result = KCOMPARE("熨斗目花色","熨目目花色");
 PUT result;
RUN;

Reference for language elements
Version 4.1

1960

This produces the following output:

-1

The value will be negative because 斗 is lower in the collating sequence than 目.

Example – specifying substrings
In this example, the function is used to compare a substring of the source to another string. The result is
written to the log.

DATA _NULL_;
 result = KCOMPARE("熨斗目花色",3,2,"目花");
 PUT result;
RUN;

This produces the following output:

0

The specified substring of the source string matches the string being compared.

In this example, the function is again used to compare a substring of the source to another string. The
result is written to the log.

DATA _NULL_;
 result = KCOMPARE("熨斗目花色",3,2,"目色");
 PUT result;
RUN;

This produces the following output:

1

The specified substring of the source does not match the string being compared, and the first character
that does not match in the source is higher in the collating sequence.

LIKE

Returns a value indicating whether two strings are similar.

LIKE (string1 , string2)

Compares two strings, and if they exactly alike, or match based on specified wildcards, returns 1 (true);
otherwise returns 0 (false). Characters of different case are regarded as different; for example, A is not
the same as a.

Return type: Numeric

string1

Type: Character

Reference for language elements
Version 4.1

1961

A string to be compared.

string2

Type: Character

A string to compare with string1.

string2 can contain the wildcards:

% Any number of characters.
_ Any single character.

For example:

• Fird, Foord, Fooord and Fard match F%rd
• Ford and Fird match F_rd
• Fooord does not match F_rd

Example – Strings are alike, one character varies
In this example, the function is used to compare two similar strings. The result is written to the log.

DATA _NULL_;
 a="Magnificent";
 b="Magnifice_t";
 same = LIKE(a,b);
 result = IFC(same, 'Yes','No');
 PUT 'Are the strings alike? ' result;
RUN;

This produces the following output:

Are the strings alike? Yes

Example – Strings are alike, various characters differ
In this example, the function is used to compare strings. The result is written to the log.

DATA _NULL_;
 a="Magnificent";
 b="Mag%ice_t";
 same = LIKE(a,b);
 result = IFC(same, 'Yes','No');
 PUT 'Are the strings alike? ' result;
RUN;

This produces the following output:

Are the strings alike? Yes

The function returns 0, therefore the strings are not identical.

Reference for language elements
Version 4.1

1962

Example – Strings differ
In this example, the function is used to compare strings. The result is written to the log.

DATA _NULL_;
 a="Magnificent";
 b="Ma%ificeNt";
 same = LIKE(a,b);
 result = IFC(same, 'Yes','No');
 PUT 'Are the strings alike? ' result;
RUN;

This produces the following output:

Are the strings alike? No

Although the gn is matched through the wildcard %, the N differs in case.

MAXC

Returns the higher in the collating sequence of two strings after comparing them.

MAXC (string1 , string2)

The function uses the collating sequence on the device on which the function runs. If one string is
longer than the other, the shorter string is padded with spaces before the comparison. Case is ignored.

Strings are compared character by character. The higher string in the collating sequence is that string in
which the first character that differs from the other is higher in the sequence. For example:

string1 string2 Result
Lundon London Lundon
Lundun Luudun Luudon
b21e B20e b21e

In the last example, b21e is higher, even though uppercase characters are higher in the collating
sequence, because case is ignored.

If two strings are the same, or are the same apart from case (for example, Bike and BIkE), string1 is
returned.

Return type: Character

string1

Type: Character

The character or string to be compared with string2.

Reference for language elements
Version 4.1

1963

string2

Type: Character

The character or string to be compared with string1.

string1 string2 Result
Lundon London Lundon
Lundun Luudun Luudon
b21e B20e B21e

Example – comparing characters
In this example, the function is used to compare two characters. The result is written to the log.

DATA _NULL_;
 result1 = maxc('M', 'm');
 result2 = maxc('m', 'M');
 result3 = maxc('M', 'o');
 PUT 'The higher character in the collating sequence is ' result1;
 PUT 'The higher character in the collating sequence is ' result2;
 PUT 'The higher character in the collating sequence is ' result3;
RUN;

This produces the following output:

The higher character in the collating sequence is M
The higher character in the collating sequence is m
The higher character in the collating sequence is o

In the first two uses of the function the characters are the same apart from case, so the first argument is
returned: In the third use of the function, M is higher in the collating sequence than o, so M is returned.

Example – comparing strings
In this example, the function is used to compare two strings. The result is written to the log.

DATA _NULL_;
 result = maxc('London ', 'Londun');
 PUT 'The higher string in the collating sequence is ' result;
RUN;

This produces the following output:

The higher string in the collating sequence is Londun

The second string is padded with spaces to match the length of the first string. The function returns the
value Londun, as u in the second string is the first character higher than o in the first.

Reference for language elements
Version 4.1

1964

MINC

Returns the lower in the collating sequence of two strings after comparing them.

MINC (string1 , string2)

The function uses the collating sequence on the device on which the function runs. If one string is
longer than the other, the shorter string is padded with spaces before the comparison. Case is ignored.
If two strings are the same apart from case (for example, Bike and BIkE), the first argument is
returned.

Strings are compared character by character. The lower string in the collating sequence is that string in
which the first character that differs from the other is lower in the sequence. For example:

string1 string2 Result
Lundon London London
Lundun Luudun Luudon
b21e B20e B20e

In the last example, B20e is lower, even though uppercase characters are higher in the collating
sequence, because case is ignored.

If two strings are the same, or are the same apart from case (for example, Bike and BIkE), string1 is
returned.

string1
Type: Character

A character or string.

string2
Type: Character

A character or string.

Return type: Character

string1

Type: Character

A character or string.

string2

Type: Character

A character or string.

Reference for language elements
Version 4.1

1965

Example – comparing characters
In this example, the function is used to compare two characters. The result is written to the log.

DATA _NULL_;
 result1 = MINC('M', 'm');
 result2 = MINC('m', 'M');
 result3 = MINC('M', 'o');
 PUT 'The lower character in the collating sequence is ' result1;
 PUT 'The lower character in the collating sequence is ' result2;
 PUT 'The lower character in the collating sequence is ' result3;
RUN;

This produces the following output:

The lower character in the collating sequence is M
The lower character in the collating sequence is m
The lower character in the collating sequence is M

Example – comparing strings
In this example, the function is used to compare two strings. The result is written to the log.

DATA _NULL_;
 result = MINC('London ', 'Londun');
 PUT 'The lower string in the collating sequence is ' result;
RUN;

This produces the following output:

The lower string in the collating sequence is London

The second string is padded with spaces to match the length of the first string. The function returns the
value London, as o is the first character in the collating sequence lower than a matching character, u in
the other string.

SOUNDSLIKE

Returns a value that indicates whether two strings are similar or not. The strings are converted to
soundex equivalents, and then compared.

SOUNDSLIKE (string1 , string2)

If the strings are similar based on this comparison, 1 is returned; if they are not , 0 is returned.

Return type: Numeric

string1

Type: Character

The string to be compared with string2.

Reference for language elements
Version 4.1

1966

string2

Type: Character

The string to be against string1.

Example
In this example, the function is used to compare various strings. The result is written to the log.

DATA _NULL_;

 result1 = SOUNDSLIKE('Bike', 'Bike');
 result2 = SOUNDSLIKE('Bike', 'Bikes');
 result3 = SOUNDSLIKE('Bike', 'Buke');
 result4 = SOUNDSLIKE('Bike', 'Bkue');
 result5 = SOUNDSLIKE('Bike', 'Bite');

 rc = ifc(result1, "Bike and Bike do soundlike","Bike and Bike do not
 soundlike");
 PUT rc;
 rc = ifc(result1, "Bike and Bikes do soundlike","Bike and Bikes do not
 soundlike");
 PUT rc;
 rc = ifc(result1, "Bike and Buke do soundlike","Bike and Buke do not
 soundlike");
 PUT rc;
 rc = ifc(result1, "Bike and Bkue do soundlike","Bike and Bkue do not
 soundlike");
 PUT rc;
 rc = ifc(result1, "Bike and Bite do soundlike","Bike and Bite do not
 soundlike");
 PUT rc;

RUN;

This produces the following output:

Bike and Bike do soundlike
Bike and Bikes do not soundlike
Bike and Buke do soundlike
Bike and Bkue do soundlike
Bike and Bite do not soundlike

Because the comparison is based on soundex, Bike and Bkue are more similarthan Bike and Bite.

Concatenate strings
Concatenate strings in various ways, including or removing separators and spaces as required.

CAT ... 1967
Returns the string that results from concatenating specified characters or strings. Spaces are
preserved and included in the concatenated string.

Reference for language elements
Version 4.1

1967

CATQ ...1968
Returns the string that results from concatenating specified characters or strings, adding or
removing spaces and separators as specified using modifiers to the function.

CATS ... 1972
Returns the string that results from concatenating specified characters or strings after first
stripping leading and trailing spaces.

CATT ... 1973
Returns the string that results from concatenating specified characters or strings after first
stripping trailing spaces.

CATX ... 1973
Returns the string that results from concatenating specified characters or strings, where the
strings and characters are separated by a specified separator.

CALL CATS ...1974
Returns a string created by concatenating characters or strings, after stripping leading and
trailing spaces from those characters or strings. The concatenated string is returned to an
argument in the CALL routine.

CALL CATT ...1975
Returns a string created by concatenating characters or strings, after stripping trailing spaces
from those characters or strings. The concatenated string is returned to an argument in the CALL
routine.

CALL CATX ...1976
Returns a string created by concatenating characters or strings, inserting a specified separator
between those characters or strings. The concatenated string is returned to a specified argument
in the routine.

KSTRCAT ..1977
Returns the string that results from concatenating specified DBCS characters or strings.

CAT

Returns the string that results from concatenating specified characters or strings. Spaces are preserved
and included in the concatenated string.

CAT (

,

item)

Return type: Character

item

Type: Character or numeric value

A character or string.

Reference for language elements
Version 4.1

1968

Example
In this example, the function concatenates the comma-separated list of strings to form a new string. The
result is written to the log.

DATA _NULL_;
 result = CAT(" Magnificent"," Bicycle "," Company");
 PUT "Concatenated string: " result;
RUN;

This produces the following output:

Concatenated string: Magnificent Bicycle Company

Strings have been concatenated and their spaces preserved (except for the first string where leading
spaces have been removed by the PUT operation). No separators have been inserted between strings.

CATQ

Returns the string that results from concatenating specified characters or strings, adding or removing
spaces and separators as specified using modifiers to the function.

CATQ (modif iers , delimiter ,

,

item)

CATQ (modif iers ,

,

item)

Provides a flexible way to concatenate characters or strings to create another string. You can specify
which separators separate strings, and whether:

• Spaces will be stripped from strings
• Strings will be enclosed in quotation marks

Return type: Character

modifiers

One or more characters that specify how the output should be modified. You can specify more
than one modifier. For example, you can specify 'C', or 'CA1S'.

The following modifiers are available:

"1"

Specifies that modifiers that insert quotation marks to delimit substrings in the
concatenated string should use single quotation marks. By default, double quotation marks
are used in such instances. You can alternatively specify the single quotation mark (') in
place of 1.

Reference for language elements
Version 4.1

1969

You can use this modifier with the modifiers A and B; for example, you can specify A1
or A'. If you specify this modifier without also specifying the A and B modifier,results are
unpredictable.

"2"

Specifies that modifiers that insert quotation marks to delimit substrings in the
concatenated string should use double quotation marks. You can alternatively specify the
double quotation mark (") in place of 2.

This modifier can be used with the A or B modifiers; for example, you can specify A2 or A".

If you specify this modifier without also specifying the A or B modifier, results are
unpredictable.

"A"

Strings will be enclosed in quotation marks in the resulting string. Any leading and trailing
spaces in the strings are preserved.

By default, double quotation marks will be used, but this modifier can be used with the 1 or
2 modifier, described above, to define the type of quotation mark to be used. For example,
specifying the modifier A1 will enclose a string in single quotation marks.

"B"

Strings with leading and/or trailing spaces are enclosed in quotation marks in the resulting
string, and separated by a space character.

By default, double quotation marks will be used, but this modifier can be used with the 1 or
2 modifier, described above, to define the type of quotation mark to be used. For example,
specifying the modifier B1 will enclose a string in single quotation marks.

"C"

Strings are separated by commas in the resulting string. Any leading and trailing spaces in
the strings are preserved.

"D"

Strings are separated by a specified delimiter in the resulting string.

If you specify this modifier, you must specify the delimiter; otherwise, the first string or
character in your put is used as the delimiter. Any leading and trailing spaces in the strings
are preserved. See delimiter below for more information.

"H"

Strings are separated by horizontal tabs in the resulting string. Any leading and trailing
spaces in the strings are preserved.

Reference for language elements
Version 4.1

1970

"M"

Use a delimiter to separate all strings and characters, even nulls and hidden characters.
This modifier should be used with the D modifier to specify a delimiter.

"N"

If the format of a resulting string is not a valid data variable name (for example, it starts
with a numeric or contains spaces), it is converted to a name literal by wrapping the string
in quotation marks and appending an N character.

"Q"

Retains the quotation marks around the strings, and maintains the leading and trailing
spaces exactly as they exist between the quotation marks.

Strings are separated by spaces in the resulting string. If a string contains quotation marks,
the quotation marks in the resulting string are set such that the result will not cause an
error. For strings that do not contain quotation marks, the quotation mark for the string in
the resulting string will be the default, or that set by the A modifier.

For example, the CAT function cat(' "Hello"','"World" ',' Programming');
would return the concatenated string "Hello""World" Programming. The quoted
quotation marks and leading and trailing spaces have been retained, except for the leading
spaces of the first string, which have been removed as expected for CAT. However, if you
enter the same strings into CATQ with the Q modifier:

catQ('q', ' "Hello"','"World" ',' Programming')

The output would be as follows:

' "Hello"' '"World" ' " Programming"

Here, the leading and trailing spaces have been preserved, and the style of the quotation
marks used from the input strings to surround the strings in the concatenated string.
However, the final string, " Programming" has been surrounded with double quotation
marks, as there are no other quotation marks to preserve, and double quotation marks are
the default marks for delimiting strings.

"S"

Strips leading and trailing spaces in strings in the resulting string, and separates the strings
with spaces. Strings that contain spaces are wrapped in quotation marks.

"T"

Strips trailing spaces in strings in the resulting string, and separates the strings with
spaces. If strings still contain spaces, they are wrapped in quotation marks.

"X"

Any non-printable character in the input is replaced by its hexadecimal equivalent.

Reference for language elements
Version 4.1

1971

delimiter

Type: Character

A character or string to be used as a separator for concatenated strings. delimiter must be
specified with the D modifier.

item

Type: Character or numeric value

A character or string.

Unless the Q option is specified, strings are concatenated without the quotation marks used to define
them as strings. However, if a string contains a space, the string is concatenated with its quotation
marks. For example:

DATA _NULL_;
 x = CATQ(, "Hello","World","Prog ramming");
 PUT x;
RUN;

This produces the following output:

Hello World "Progr amming"

Example – compressing spaces and inserting Separators using CTA
Modifiers
In this example,a new string will be created by concatenating the strings in the function. Multiple
modifiers are used to:

• Strip trailing spaces in the strings before concatenation (T modifier)
• Insert commas as separators items in the resulting string (C modifier)
• Wrap each concatenated string in single quotes, (A and 1 modifiers)

The result is written to the log.

DATA _NULL_;
 string1='Programming';
 mods='CA1T';
 result = catq(mods, ' Hello',' World ', string1);
 PUT "Concatenated string: " result;
RUN;

This produces the following output:

Concatenated string: ' Hello',' World','Programming'

Reference for language elements
Version 4.1

1972

Example – compressing spaces and inserting separators using DS
modifiers
In this example,a new string will be created by concatenating the strings in the function. Multiple
modifiers have been used to:

• Strip all leading and trailing spaces in strings before concatenation (S modifier)
• Separate concatenated strings in the resulting string using the ** characters as specified by the D

modifier and the second argument

The result is written to the log.

DATA _NULL_;
 string1='Programming';
 result = CATQ('DS', '**', ' Hello',' World ', string1);
 PUT "Concatenated string: " result;
RUN;

This produces the following output:

Concatenated string: Hello**World**Programming

CATS

Returns the string that results from concatenating specified characters or strings after first stripping
leading and trailing spaces.

CATS (

,

item)

Return type: Character

item

Type: Character or numeric value

A character or string.

Example
In this example, the function concatenates the comma-separated list of strings to form a new string,
stripping leading and trailing spaces as it does so. The result is written to the log.

DATA _NULL_;
 result = CATS(" Hello"," World "," Programming");
 PUT "Concatenated string: " result;
RUN;

Reference for language elements
Version 4.1

1973

This produces the following output:

Concatenated string: HelloWorldProgramming

CATT

Returns the string that results from concatenating specified characters or strings after first stripping
trailing spaces.

CATT (

,

item)

Return type: Character

item

Type: Character or numeric value

A character or string.

Example
In this example, the function concatenates the comma-separated list of strings to form a new string,
stripping the trailing spaces. The result is written to the log.

DATA _NULL_;
 result = CATT(" Hello","World "," Programming");
 PUT "Concatenated string: " result;
RUN;

This produces the following output:

Concatenated string: HelloWorld Programming

Whether leading spaces are removed from the resulting concatenated string depends on the operation
on the result; for example, the PUT in this example removes them, but a QUOTE would retain them.

CATX

Returns the string that results from concatenating specified characters or strings, where the strings and
characters are separated by a specified separator.

CATX (separator ,

,

item)

Reference for language elements
Version 4.1

1974

Return type: Character

separator

Type: Character

A character or string that will be used as the string separator.

item

Type: Character or numeric value

A character or string, or a variable containing a character or string.

Example
In this example, the function concatenates the comma-separated list of strings to form a new string, first
stripping the leading and trailing spaces from each string and inserting the specified separator between
them. This produces the following output:

DATA _NULL_;
 result = CATX('*', " Hello","World "," Programming");
 PUT "Concatenated string: " result;
RUN;

This produces the following output:

Concatenated string: Hello*World*Programming

CALL CATS

Returns a string created by concatenating characters or strings, after stripping leading and trailing
spaces from those characters or strings. The concatenated string is returned to an argument in the
CALL routine.

CALL CATS (result

,

,

string

) ;

result

Type: Character

An argument into which the concatenated string is returned.

string
Optional argument

Type: Character or numeric value

Reference for language elements
Version 4.1

1975

A character or string to be concatenated.

Example
In this example, the routine concatenates the comma-separated list of strings to form a new string,
stripping the leading and trailing spaces. The concatenated string is returned to the strng variable.The
result is written to the log.

DATA _NULL_;
 LENGTH strng $ 17;
 CALL CATS(strng,'London',' Bike',' Company ');
 PUT "The concatenated string is " strng;
RUN;

This produces the following output:

The concatenated string is LondonBikeCompany

CALL CATT

Returns a string created by concatenating characters or strings, after stripping trailing spaces from
those characters or strings. The concatenated string is returned to an argument in the CALL routine.

CALL CATT (result

,

,

string

) ;

result

Type: Character

An argument into which the concatenated string is returned.

string
Optional argument

Type: Character or numeric value

A character or string to be concatenated.

Reference for language elements
Version 4.1

1976

Example
In this example, the routine concatenates the comma-separated list of strings to form a new string,
stripping the trailing spaces. The concatenated string is returned to the strng variable. The result is
written to the log.

DATA _NULL_;
 LENGTH strng $ 26;
 call CATT(strng," Hello","World "," Programming");
 result = QUOTE(strng);
 PUT "The concatenated string is " result;
RUN;

This produces the following output:

The concatenated string is " HelloWorld Programming"

Note:

If PUT had been used to write strng to the log without quotes, the result would have have been:

HelloWorld Programming

The leading spaces would have been removed.

CALL CATX

Returns a string created by concatenating characters or strings, inserting a specified separator between
those characters or strings. The concatenated string is returned to a specified argument in the routine.

CALL CATX (separator , result

,

,

string

) ;

separator

Type: Character

A character or string that will be used as the string separator.

result

Type: Character

The argument into which the string is returned.

string
Optional argument

Type: Character or numeric value

Reference for language elements
Version 4.1

1977

A character or string.

Example
In this example, the routine strips the leading and trailing spaces from each comma-separated string,
and then concatenates each string, inserting the specified separator between strings, to form a new
string. The concatenated string is returned to the strng variable. The result is written to the log.

DATA _NULL_;
 LENGTH strng $ 25;
 CALL CATX('**', strng, " Hello "," World "," Programming");
 PUT "The concatenated string is " strng;
RUN;

This produces the following output:

The concatenated string is Hello**World**Programming

KSTRCAT

Returns the string that results from concatenating specified DBCS characters or strings.

KSTRCAT (

,

item)

Concatenates a comma-separated list of double-byte character set (DBCS) characters, or strings
consisting of such characters, to create another string. Any spaces in the strings are preserved and
included in the concatenated string. Otherwise, the strings are concatenated without spaces.

Return type: Character

item

Type: Character

A character or string.

Example
In this example, the function concatenates the comma-separated list of strings to form a new string. The
result is written to the log.

DATA _NULL_;
 result1 = KSTRCAT("青碧","熨斗目花色","青柳鼠");
 result2 = KSTRCAT(" 青碧"," 熨斗目花色 "," 青柳鼠");
 PUT "The concatenated string is: " result1;
 PUT "The concatenated string is: " result2;
RUN;

Reference for language elements
Version 4.1

1978

This produces the following output:

The concatenated string is: 青碧熨斗目花色青柳鼠
The concatenated string is: 青碧 熨斗目花色 青柳鼠

In the first result, the strings have been concatenated. No separators have been inserted between
strings.

In the second result, the strings have been concatenated and their spaces retained (except for the
first string where leading spaces have been stripped by the PUT). No separators have been inserted
between strings. The only spaces are those associated with the original strings.

Count characters or strings in a source string
Returns the number of specified characters or strings in source strings.

COUNT ..1978
Returns the number of occurrences of a specified string in a source string.

COUNTC ... 1980
Returns the number of occurrences of specified characters in a source string.

COUNTW .. 1981
Returns the number of words in a specified string. The character that separates words can be
specified.

KCOUNT ... 1987
Returns the number of characters in a string that require more than one byte to represent them in
the current character set.

COUNT

Returns the number of occurrences of a specified string in a source string.

COUNT (string , substring

, modif iers

)

Return type: Numeric

string

Type: Character

The string to be examined.

substring

Type: Character

Reference for language elements
Version 4.1

1979

The string to find in source.

modifiers
Optional argument

One or more characters that specify how the output should be modified. The following modifiers
are available:

"I"

Ignore case in the source string.

"T"

Trim trailing spaces from both arguments.

"I"

Ignore case in the source string.

"T"

Trim trailing spaces from both arguments.

Example – finding a matching string
In this example, the function is used to find the number of times Bike is found in the source string.The
result is written to the log.

DATA _NULL_;
 search = 'Bike';
 result = COUNT('Magnificent Bike Company (Bikes)', search);
 PUT "The string is found " result "times";
RUN;

This produces the following output:

The string is found 2 times

The string is found twice, so 2 is returned.

Example – finding matches by ignoring case
In this example, the function is used to match a string while ignoring case. The result is written to the
log.

DATA _NULL_;
 search = 'company';
 result = COUNT('Magnificent Bike Company (Bikes)', search, 'I');
 PUT "The string is found " result "times";
RUN;

This produces the following output:

The string is found 1 times

Reference for language elements
Version 4.1

1980

The string company matches Company because the I modifier has been set, so 1 is returned.

COUNTC

Returns the number of occurrences of specified characters in a source string.

COUNTC (string , characters

, modif iers

)

Return type: Numeric

string

Type: Character

The string to be examined.

characters

Type: Character

One or more characters to find in source.

modifiers
Optional argument

Parameters that modify the output. The following modifiers are available:

"I"

Ignore case in the source string.

"O"

Store the list of separators required the first time the function is called. This can increase
processing efficiency if there are multiple calls to the function.

"T"
Trim trailing spaces from both arguments.

"V"
Return the number of characters that do not match the search.

"I"

Ignore case in the source string.

"O"

Store the list of separators required the first time the function is called. This can increase
processing efficiency if there are multiple calls to the function.

Reference for language elements
Version 4.1

1981

"T"
Trim trailing spaces from both arguments.

"V"
Return the number of characters that do not match the search.

Example – searching for characters
In this example, the function is used to find the characters i and B in the source string. The result is
written to the log.

DATA _NULL_;
 search = 'iB';
 result = COUNTC('Magnificent Bike Company Bike A 1 2 50 London', search);
 PUT "Specified character(s) found " result "times";
RUN;

This produces the following output:

Specified character(s) found 6 times

The character B is found twice in the two instances of Bike, and i four times in Bike and
Magnificent.

Example – returning the count of unmatched characters
In this example, the function is used to find the character i in the source string. The modifier V specifies
that the value returned is the number of characters that do not match the search string. The result is
written to the log.

DATA _NULL_;
 search = 'i';
 result = COUNTC('Magnificent Bike Company Bike A 1 2 50 London', search, 'V');
 PUT "Other character(s) found " result "times";
RUN;

This produces the following output:

Other character(s) found 43 times

The character i is found four times; as there are 47 characters in the source string, 43 is returned.

COUNTW

Returns the number of words in a specified string. The character that separates words can be specified.

COUNTW (string ,

characters , modif iers

)

Reference for language elements
Version 4.1

1982

By default words are seperated by spaces and punctuation marks. Multiple adjacent separators are
treated as one seperator.

Return type: Numeric

string

Type: Character

The string to be examined.

characters
Optional argument

Type: Character

One or more characters that identify the separator between words in source. By default, this
function uses a space as a separator.

modifiers
Optional argument

One or more characters that specify how the output should be modified. For example, you might
specify 'A', or 'AIM'.

The following modifiers are available:

"A"

Alphabetic characters will be used as separators.

"B"

Examine source backwards; that is, start searching from the right-hand side of the string
towards the left-hand side.

"C"

Control characters will be used as separators.

"D"

Decimal numbers (0 though 9) will be used as separators.

"F"

A character that is a valid character for the first position in a variable name will be
considered a separator.

"G"

Graphics characters will be used as separators.

"H"

Horizontal tabs will be used as separators.

Reference for language elements
Version 4.1

1983

"I"

If an alphabetic character is set as a separator, ignore the case of the character.

"K"

Causes modifiers to act in the opposite way. So, for example, if L is set, instead of
removing all lower-case characters, the function will instead remove all uppercase
characters.

"L"

Lower-case alphabetic characters will be used as separators.

"M"

Specifies that multiple adjacent separators delimit nulls. By default, multiple adjacent
separators are assumed to operate as a single seperator. In this example,this option is not
specifed (the default):

DATA _NULL_;
 result = COUNTW('london,,,bike,company;;A1', ',;');
 PUT result;
RUN;

The function would return 4, as the adjacent separators are treated as a single separator.
However, if you specified the M modifier:

DATA _NULL_;
 result = COUNTW('london,,,bike,company;;A1', ',;', 'M');
 PUT result;
RUN;

the function would return 7, as adjacent separators are now treated as individual
separators each delimiting a null.

"N"

A character that is a valid character for a variable name will be considered a separator.

"O"

Store the list of separators required the first time the function is called. This can increase
processing efficiency if there are multiple calls to the function.

"P"

Punctuation marks will be considered separators.

Reference for language elements
Version 4.1

1984

"Q"

Separators in strings delimited by quotation marks will be ignored. For example:

DATA _NULL_;
 result1 = COUNTW('"The London Bike Company" A1 London ',' ','q');
 result2 = COUNTW('"The London Bike Company" A1 London ',' ');
 PUT result1;
 PUT result2;
RUN;

In this example, the following is written to the log:

3
6

In the first use of the function, the first word is The London Bike Company, as the Q
modifier ensures the quoted text is counted as one word; the function therefore counts
three words. In the second use of the function, spaces within the quoted string are
identified as separators, as the Q modifier is not specified; the function therefore counts six
words.

"R"

Trims the result.

"S"

White space (including spaces and tabs) is used as a separator.

"T"

Removes trailing spaces from each substring in the source string before applying
separators.

"U"

Uppercase alphabetic characters will be used as separator.

"W"

Use print characters as separator.

"X"

Use all characters that can constitute hexadecimal numbers (0-9, A-F) as separator.

"A"

Alphabetic characters will be used as separators.

"B"

Examine source backwards; that is, start searching from the right-hand side of the string
towards the left-hand side.

Reference for language elements
Version 4.1

1985

"C"

Control characters will be used as separators.

"D"

Decimal numbers (0 though 9) will be used as separators.

"F"

A character that is a valid character for the first position in a variable name will be
considered a separator.

"G"

Graphics characters will be used as separators.

"H"

Horizontal tabs will be used as separators.

"I"

If an alphabetic character is set as a separator, ignore the case of the character.

"K"

Causes modifiers to act in the opposite way. So, for example, if L is set, instead of
removing all lower-case characters, the function will instead remove all uppercase
characters.

"L"

Lower-case alphabetic characters will be used as separators.

"M"

Specifies that multiple adjacent separators delimit nulls. By default, multiple adjacent
separators are assumed to operate as a single seperator. In this example,this option is not
specifed (the default):

DATA _NULL_;
 result = COUNTW('london,,,bike,company;;A1', ',;');
 PUT result;
RUN;

The function would return 4, as the adjacent separators are treated as a single separator.
However, if you specified the M modifier:

DATA _NULL_;
 result = COUNTW('london,,,bike,company;;A1', ',;', 'M');
 PUT result;
RUN;

the function would return 7, as adjacent separators are now treated as individual
separators each delimiting a null.

Reference for language elements
Version 4.1

1986

"N"

A character that is a valid character for a variable name will be considered a separator.

"O"

Store the list of separators required the first time the function is called. This can increase
processing efficiency if there are multiple calls to the function.

"P"

Punctuation marks will be considered separators.

"Q"

Separators in strings delimited by quotation marks will be ignored. For example:

DATA _NULL_;
 result1 = COUNTW('"The London Bike Company" A1 London ',' ','q');
 result2 = COUNTW('"The London Bike Company" A1 London ',' ');
 PUT result1;
 PUT result2;
RUN;

In this example, the following is written to the log:

3
6

In the first use of the function, the first word is The London Bike Company, as the Q
modifier ensures the quoted text is counted as one word; the function therefore counts
three words. In the second use of the function, spaces within the quoted string are
identified as separators, as the Q modifier is not specified; the function therefore counts six
words.

"R"

Trims the result.

"S"

White space (including spaces and tabs) is used as a separator.

"T"

Removes trailing spaces from each substring in the source string before applying
separators.

"U"

Uppercase alphabetic characters will be used as separator.

"W"

Use print characters as separator.

Reference for language elements
Version 4.1

1987

"X"

Use all characters that can constitute hexadecimal numbers (0-9, A-F) as separator.

Example – unmodified count
In this example, the function counts the words in the source string with no modifiers applied, so the
words are by default separated by spaces and punctuation characters. The result is written to the log.

DATA _NULL_;
 result = COUNTW('Magnificent Bike Company. A 1 2 50-London');
 PUT result "words were found ";
RUN;

This produces the following output:

8 words were found

Example – using specified separator
In this example, the function counts the words in the source string with a separator applied; in this case,
the space character. The result is written to the log.

DATA _NULL_;
 search = 'i';
 result = COUNTW('Magnificent Bike Company. A 1 2 50-London', ' ');
 PUT result "words were found ";
RUN;

This produces the following output:

7 words were found

As the separator has been expressly set to the space character, Company. and 50-London are each
a single string; the source string therefore contains seven words.

KCOUNT

Returns the number of characters in a string that require more than one byte to represent them in the
current character set.

KCOUNT (string)

Counts the number of characters in a string that require more than one byte to represent them in the
character set used during the current session, and returns that count.

Return type: Numeric

Reference for language elements
Version 4.1

1988

string

Type: Character

The string to be examined for DBCS characters.

Example
In this example, the function is used to count the characters requiring more than one byte to represent
them in a string containing both Latin and Japanese characters. The locale of WPS Workbench would
need to be set to Japanese_Japan to enable the example to work correctly. The result is written to the
log.

DATA _NULL_;
 result = KCOUNT('SIN(x)　の冪級数展開.その2: 奇数{1,3,5,7}');
 PUT result;
RUN;

This produces the following output:

11

Extract a substring from a source string
Returns a specified substring extracted from a source string.

COALESCEC .. 1989
Returns the first string that contains characters other than all spaces or null.

KSCAN .. 1990
Returns the word at a specified index position in a string consisting of DBCS characters.

KSUBSTR ..1991
Returns a substring from a source string consisting of DBCS characters, starting at a specified
character.

KSUBSTRB ... 1992
Returns a substring from a source string consisting of DBCS characters, starting at a specified
byte.

SCAN ...1994
Returns the word at a specified index position in a string. The separator between words can be
specified, if required. Various modifiers can be also be used to specify additional delimiters and
to modify the way the source string is searched.

SCANQ ..1998
Returns the word at a specified index position in a string. The separator between words can be
specified if required.

SUBPAD ..2000
Returns the substring of a specified length that starts at a specified position in a source string,
and pads the returned substring to a specified length if required.

Reference for language elements
Version 4.1

1989

SUBSTR .. 2001
Returns either a substring of a specified length from a source string, or the string that results from
replacement of a specified substring in a source string.

SUBSTRN ... 2003
Returns a substring of a specified length from a specified starting point in a source string.

CALL SCAN .. 2005
Returns the position and/or length of the substring at the specified index position in a source
string.

CALL SCANQ ... 2010
Returns the position and/or length of the substring at the specified index position in a source
string, specifying the separator between substrings.

COALESCEC

Returns the first string that contains characters other than all spaces or null.

COALESCEC (

,

string)

Return type: Character

string

Type: Character

A string to be examined.

Example
In this example, the function searches the strings provided to it for the first that does not contain only
spaces or is null. The result is written to the log.

DATA _NULL_;
 empty=" ";
 result = COALESCEC('', ' ', empty, ' World Programming');
 PUT "The resulting string is: " result;
RUN;

This produces the following output:

The resulting string is: World Programming

The first string provided to the function is null, the second string is all spaces, and the variable empty
also contains all spaces; the function therefore returns World Programming.

Reference for language elements
Version 4.1

1990

KSCAN

Returns the word at a specified index position in a string consisting of DBCS characters.

KSCAN (string , n

, delimiters

)

Finds and returns a specified index position in a source string containing characters from a double-byte
character set (DBCS).

The source string is treated as a list of words delimited by spaces (by default) or any other character
you specify. Each word occupies a position in the list from 1–n and can be accessed using this function.

Return type: Character

string

Type: Character

The string to be examined.

n

Type: Numeric

The position of the word in the string you want to examine. This argument is mandatory.

delimiters
Optional argument

Type: Character

A delimiter used to separate words. You can specify more than one delimiter.

If you do not specify a delimiter, spaces (but not tabs) are recognised as delimiters. If you specify
delimiters, spaces are still recognised as delimiters. Tabs are not recognised as spaces, so if the
source includes tab delimiters you must enter a tab in delimiter.

Basic example
In this example, the function is used to find the fourth word in a string. The result is written to the log. No
delimiter is specified, so spaces are used as delimiters.

DATA _NULL_;
 result = KSCAN('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠',4);
 PUT "The fourth word is: " result;
 RUN;

This produces the following output:

The fourth word is: 猩々緋

Reference for language elements
Version 4.1

1991

Example – source using specified delimiters
In this example, the function is used to find the fourth word in a string. The result is written to the log.

DATA NULL;
 word1 = KSCAN('青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶',1,'、 ');
 word2 = KSCAN('青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶',2,'、 ');
 word3 = KSCAN('青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶',3,'、 ');

 PUT "The first word is: " word1;
 PUT "The second word is: " word2;
 PUT "The third word is: " word3;
RUN;

This produces the following output:

The first word is: 青碧 熨斗目花色
The second word is: 猩々緋 青柳鼠
The third word is: ときがら茶

The first delimiter found is 、 so the first two strings are seen as one word. The second delimiter
found is a tab (the space in 猩々緋 青柳鼠 is ignored), so the third and fourth strings are seen as one
word. The third word ときがら茶 appears after the second delimiter, the tab.

KSUBSTR

Returns a substring from a source string consisting of DBCS characters, starting at a specified
character.

KSUBSTR (string , posit ion

, length

)

Finds and returns the substring that starts at a specified position in a source string consisting of double-
byte character set (DBCS) characters. You can also optionally specify the length of string to return.

Return type: Character

string

Type: Character

The source string.

position

Type: Numeric

The position in the source string at which to return the substring of length.

length
Optional argument

Reference for language elements
Version 4.1

1992

Type: Numeric

The number of characters of the source string to be read.

If you do not specify length, the substring found starting at position through to the end of the source
string is returned. If length would result in an attempt to read over the end of string, the length is
assumed to be through to the end of the string. If length is set to 0 (zero), no substring is returned.

Basic example
In this example, the function is used to find and return the string that begins at position 18 and is six
characters long. The result is written to the log.

DATA _NULL_;
 result=QUOTE(KSUBSTR("青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶", 18,6));
 PUT "The substring found is: " result;
RUN;

This produces the following output:

The substring found is: 柳鼠 ときが

Example – reading over the end of string
In this example, the function is used to find and return the string that begins at position eighteen and is
fifteen characters long. The result is written to the log.

DATA _NULL_;
 result=KSUBSTR("青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶", 18,15);
 PUT "The substring found is: " result;
RUN;

This produces the following output:

The substring found is: 柳鼠 ときがら茶

In this example, there are fewer than fifteen characters after character position eighteen, so the
substring from position eighteen through to the end of the string is returned.

KSUBSTRB

Returns a substring from a source string consisting of DBCS characters, starting at a specified byte.

KSUBSTRB (string , posit ion

, length

)

Finds and returns the substring that starts at a specified byte in a source string comprised of double-
byte character set characters. You can also optionally specify the length of string to return.

Return type: Character

Reference for language elements
Version 4.1

1993

string

Type: Character

The source string.

position

Type: Numeric

The byte position in the source string at which to return the substring.

length
Optional argument

Type: Numeric

The number of bytes of the source string to be read.

If you do not specify length, the substring found starting at position through to the end of the source
string is returned. If length would result in an attempt to read over the end of the string, an error
message is returned with the result; the result is the substring from the starting position specified
through to the end of the string. If length is set to 0 (zero), no substring is returned.

Basic example
In this example, the function is used to find and return the string that begins at byte eighteen and is 24
bytes long. The result is written to the log.

DATA _NULL_;
 result=KSUBSTRB("青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶", 18,24);
 PUT "The substring found is: " result;
RUN;

This produces the following output:

The substring found is: 花色 、 猩々緋 青

Note:
If you had specified 19 as that start byte, no string would have been returned as that start position
would have split the byte representing a character.

Example – returning an error
In this example, the function is used to find and return the string that begins at byte 38 and is 28 bytes
long. The result is written to the log.

DATA _NULL_
 result=KSUBSTRB("青碧 熨斗目花色 、 猩々緋 青柳鼠 ときがら茶", 38,28);
 PUT "The substring found is: " result;
RUN;

Reference for language elements
Version 4.1

1994

This produces the following output:

NOTE: Argument 3 to function KSUBSTRB at line 3669 column 11 is invalid
The substring found is: 青柳鼠 ときがら茶

SCAN

Returns the word at a specified index position in a string. The separator between words can be
specified, if required. Various modifiers can be also be used to specify additional delimiters and to
modify the way the source string is searched.

SCAN (string , n ,

delimiters , modif iers

)

The source string is treated as a list of words delimited by spaces (by default), or by any other character
you specify. Each word occupies a position in the list from 1 through n, where n is the number of words
in the specified string.

Return type: Character

string

Type: Character

The string to be examined.

n

Type: Numeric

The ordinal position of the word in the string you want to examine.

delimiters
Optional argument

Type: Character

A delimiter used to separate words. You can specify more than one delimiter.

modifiers
Optional argument

Parameters that specify characters to be used:

• As delimiters if the string contains none of the delimiters specified in delimiter
• In addition to the specified delimiters
• to modify the search in the string

You can specify more than one modifier. For example, you can specify 'C', or 'CAS'.

The following modifiers are available:

Reference for language elements
Version 4.1

1995

"A"

Alphabetic characters, or a string of characters, are considered delimiters.

"B"

Examines the string from right to left rather then left to right.

"C"

Control characters are considered delimiters.

"D"

Decimal numbers (0 through 9) are considered delimiters.

"F"

Characters considered valid characters for the first position in a variable name are
considered delimiters.

"G"

Graphical characters are considered delimiters.

"H"

All spaces including tabs are considered delimiters. As with spaces, if the H modifier is
used, punctuation characters and spaces are also considered delimiters.

"I"

Ignore the case of alphabetic characters specified as delimiters. For example, this modifier
will make A equivalent to a as a delimiter.

"K"

Cause modifiers to act in the opposite way. For example, if L is set, instead of considering
all lower-case characters as delimiters, the function will instead consider all uppercase
characters as delimiters.

"L"

Lowercase alphabetic character will be considered a delimiter.

"M"

Multiple adjacent separators delimit nulls. By default, multiple adjacent separators are
assumed to operate as a single separator. In this example,this option is not specified (the
default):

DATA _NULL_;
 result1 = SCAN('london,,,bike,company;;A1', 3, ',;');
 PUT result1;
RUN;

Reference for language elements
Version 4.1

1996

The function would return company, as the adjacent separators are treated as a single
separator. However, if you specified the M modifier:

DATA _NULL_;
 result1 = QUOTE(SCAN('london,,,bike,company;;A1', 3, ',;', 'M'));
 PUT result1;
RUN;

the function would return "", as adjacent separators are now treated as individual
separators each delimiting a null.

Note:
The QUOTE function has been used in this example so that the null can be seen in the
result written to the log.

"N"

Characters considered valid for a variable name are considered delimiters.

"O"

Store the list of separators required the first time the function is called. This can increase
processing efficiency if there are multiple calls to the function.

"P"

Punctuation marks are considered delimiters. Punctuation marks are as defined in the
collating sequence for the device.

"Q"

Ignore separators in strings delimited by quotation marks. For example:

data _null_;
 result1 = scan('"The London Bike Company" A1 London ',2,' ','q');
 result2 = scan('"The London Bike Company" A1 London ',2,' ');
 PUT result1;
 PUT result2;
RUN;

In this example, the following is written to the log:

A1
London

In the first use of the function, the first word is The London Bike Company, as the Q
modifier ensures the spaces are not identified as separators; the second word is therefore
A1. In the second use of the function, spaces within the quoted string are identified as
separators, as the Q modifier is not specified; the second word is therefore London.

"R"

Remove opening and closing quotation marks from a string containing them.

Reference for language elements
Version 4.1

1997

"S"

Remove leading and trailing spaces from the returned string.

"T"

Remove trailing spaces from delimiter and from source.

"U"

Uppercase alphabetic character are considered delimiters.

"V"

Not currently available.

"W"

Printing characters are considered delimiters.

"X"

Characters that constitute a hexadecimal number (0-9, a-f, A-F) are considered delimiters.

Basic example
In this example, the function is used to find the fourth word in a string. The result is written to the log. No
delimiter is specified, so spaces are used as delimiters.

DATA _NULL_;
 result = SCAN('Steve Bike Company A 1 2 50 London',4);
 PUT "The word found is: " result;
RUN;

This produces the following output:

The word found is: A

Example – source with comma-delimited items
In this example, the function is used to find the fourth word in a string. The result is written to the log. No
delimiter is specified, so the commas are recognised as delimiters.

DATA _NULL_;
 result = SCAN('Steve,Bike,Company,A,1,2,50,London',4);
 PUT "The word found is: " result;
RUN;

This produces the following output:

The word found is: A

Reference for language elements
Version 4.1

1998

Example – source with various delimiters
In this example, the function is used to find the sixth word in a string. The result is written to the log. No
delimiter is specified, so spaces and punctuation characters are recognised as delimiters; the H modifier
has been used to ensure that horizontal tabs are also recognised as delimiters.

DATA _NULL_;
 result = SCAN('Steve,Bike Company;A 1 2 50 London',8,,'H');
 PUT "The word found is: " result;
RUN;

This produces the following output:

The word found is: London

SCANQ

Returns the word at a specified index position in a string. The separator between words can be
specified if required.

SCANQ (string , n

, delimiters

)

The source string is treated as a list of words delimited by spaces (by default), or by any other character
you specify. Each word occupies a position in the list from 1 through n, where n is the number of words
in the specified string.

Note:
This function is a similar to the SCAN function but has a simpler format; it is also, therefore, less flexible
than SCAN. If you require more flexibility in searching the source string, see the SCAN function.

Return type: Character

string

Type: Character

The string to be examined.

n

Type: Numeric

The position of the word in the string you want to examine.

delimiters
Optional argument

Type: Character

A delimiter used to separate words. You can specify more than one delimiter.

Reference for language elements
Version 4.1

1999

If you do not set the delimiter argument, or set it to null (''), spaces are recognised as delimiters. Tabs
are not recognised as spaces.

Basic example
In this example, the function is used to find the fourth word in a string. The result is written to the log.
No delimiter is specified, so spaces are used as delimiters.

DATA _NULL_;
 result = SCANQ('Steve Bike Company A 1 2 50 London',4);
 PUT "The word found is: " result;
RUN;

This produces the following output:

The word found is: A

As no delimiter has been specified, spaces are used as delimiters; the function returns the string A.

Example – specifying delimiter
In this example, the function is used to find the fourth word in a string. The result is written to the log.

DATA _NULL_;
 result = SCANQ('Steve,Bike,Company,A,1,2,50,London',4, ',');
 PUT "The word found is: " result;
RUN;

This produces the following output:

The word found is: A

Example – specifying multiple delimiters
In this example, the function is used to find the sixth word in a string. The result is written to the log.
Comma (,) and semi-colon (;) are specified as delimiters.

DATA _NULL_;
 result = SCANQ('Steve,Bike Company;A 1 2 50 London',3,',;');
 PUT "The word found is: " result;
RUN;

This produces the following output:

The word found is: A 1 2 50 London

Reference for language elements
Version 4.1

2000

SUBPAD

Returns the substring of a specified length that starts at a specified position in a source string, and pads
the returned substring to a specified length if required.

SUBPAD (string , startpos

, length

)

Finds a substring of a specified length in a source string that starts at a specified position. If the
returned string is shorter than the length of substring you requested (if, for example, the end of the
string is reached), padding is added in the form of trailing spaces.

Return type: Character

string

Type: Character

The source string.

startpos

Type: Numeric

The position in the source string at which to return the substring.

length
Optional argument

Type: Numeric

The number of characters of the source string to be returned.

If you do not specify length, the function returns the substring that begins at position and continues
through to the end of the source string.

If length is set to 0 (zero), null ('') is returned; unlike SUBSTR, no error is returned.

Example
In this example, the function is used to find and return the string that begins at position 35 and is
ten characters long. The result is written to the log. The QUOTE function has been used to make the
padding visible.

DATA _NULL_;
 result=QUOTE(SUBPAD("Magnificent Bike Company A 1 2 50 London",35,10));
 PUT 'The padded substring is: ' result;
RUN;

This produces the following output:

The padded substring is: "London "

Reference for language elements
Version 4.1

2001

Because the source string ends after the last character of the substring London, and that substring is
only six characters long, the function returns "London "; four trailing spaces have been added to pad
the result to the required ten character length.

SUBSTR

Returns either a substring of a specified length from a source string, or the string that results from
replacement of a specified substring in a source string.

SUBSTR (string , startpos

, length

)

This function can be used in two ways:

• You can return a substring of a specified length from a source string. For example, you can return
the substring that starts at the second character in the string London, and is three characters long:
ond.

• You can return the string that results from replacing a specified substring in a source string with a
specified string. For example, in the string Linden you could replace inde with ondo and return
London.

Return type: Character

string

Type: Character

The source string.

startpos

Type: Numeric

The position in the source string at which to return the substring, or replace a substring

length
Optional argument

Type: Numeric

The number of characters of the source string to be returned, or to be replaced.

You return a substring by specifying a return variable on the left-hand side of the function. For example,
a = substr("London", 2, 2).

Reference for language elements
Version 4.1

2002

You replace a substring by specifying a replacement string on the right-hand side of the function. For
example, substr(x, 2, 6) = "ondo". If the function is used in this way, string must be a variable.
The replacement is made in the specified variable. If the replacement string is shorter than the length
specified, the replacement string is padded with spaces. If the replacement string is longer than the
length specified, the replacement string is truncated appropriately. See the examples below.

If the combination of startpos and length is longer than the source string, an error occurs and a note is
written to the log, but the program continues to run. Use SUBPAD (page 2000) or SUBSTRN (page
2003) if you want to return a substring, but do not want an error to occur. With SUBPAD, if the value of
length causes the function to read beyond the end of the source string, the returned substring is padded
with spaces to the specified length. With SUBSTRN, if length causes the function to read beyond the
source string, the substring starting at the specified position and finishing at the end of the string is
returned. For both functions, no error message is returned.

Example – returning substring
In this example, the function is used to find and return the string that begins at position 35 and is six
characters long. The result is written to the log.

DATA _NULL_;
 result = SUBSTR("Magnificent Bike Company A 1 2 50 London", 35,6);
 PUT "The returned substring is: " result;
RUN;

This produces the following output:

The returned substring is: "London"

Example – replacing substring
In this example, the function is used to replace the string that begins at position two and is four
characters long. The result is written to the log.

DATA _NULL_;
 name = "Linden";
 SUBSTR(name, 2,4) = "ondo";
 PUT "The new string is: " name;
RUN;

This produces the following output:

The returned substring is: "London"

Example – replacing with a substring shorter than specified length
In this example, the function is used to replace the string that begins at position six and is four
characters long. The result is written to the log.

DATA _NULL_;
 name = "Linden";
 SUBSTR(name, 2,4) = "YY";
 PUT "The new string is: " name;
RUN;

Reference for language elements
Version 4.1

2003

This produces the following output:

The new string is: LYY n

Because the replacement string is only two characters long, but the length of the substring to be
replaced is four characters, spaces have been used to pad the replacement string.

Example – replacing with a substring longer than specified length
In this example, the function is used to replace the string that begins at position six and is two
characters long. The result is written to the log.

DATA _NULL_;
 name = "London";
 SUBSTR(name, 2,2) = "ABCDE";
 PUT "The new string is: " name;
RUN;

This produces the following output:

The new string is: LABdon

Because the replacement string is five characters long, but the length of string to be replaced is only
two characters, the replacement string is truncated.

Example – returning an error
In this example, the function is used to find and return the string that begins at position 35 and is ten
characters long. The result is written to the log.

DATA _NULL_;
 result = SUBSTR("Magnificent Bike Company A 1 2 50 London", 35,10);
 PUT "The returned substring is: " result;
RUN;

This produces the following output:

NOTE: Argument 3 to function SUBSTR at line 3296 column 11 is invalid
The returned substring is: London
N=1 _ERROR_=1 result=London

This example returns the string starting at the position specified through to the end of the string, and a
message indicating that an error has occurred.

SUBSTRN

Returns a substring of a specified length from a specified starting point in a source string.

SUBSTRN (string , startpos

, length

)

Reference for language elements
Version 4.1

2004

The substring can have zero length, and the function can also read beyond the end of the source string
without error.

Return type: Character

string

Type: Character

The source string.

startpos

Type: Numeric

The position in the source string at which to return the substring of length.

length
Optional argument

Type: Numeric

The number of characters of the source string to be read.

If you do not specify length, the substring found starting at position through to the end of the source
string is returned.

If length would result in an attempt to read over the end of the string, the characters from position
through to the end of the string are returned. Unlike SUBSTR, no error is returned; unlike SUBPAD, no
padding is appended.

If length is set to 0 (zero), null ('') is returned; unlike SUBSTR, no error is returned.

Basic example
In this example, the function is used to find and return the string that begins at position 35 and is six
characters long. The result is written to the log.

DATA _NULL_;
 result = SUBSTRN("Magnificent Bike Company A 1 2 50 London", 35,6);
 PUT "The returned substring is: " result;
RUN;

This produces the following output:

The returned substring is: London

Reference for language elements
Version 4.1

2005

Example – with zero length
In this example, the function is used to find and return the string that begins at position 35 and is zero
characters long. The result is written to the log. The QUOTE function is also used in this example to help
visualise the result.

DATA _NULL_;
 result=QUOTE(SUBSTRN("Magnificent Bike Company A 1 2 50 London", 35,0));
 PUT "The returned substring is: " result;
RUN;

This produces the following output:

The returned substring is: ""

Unlike SUBSTR, no error message is returned.

Example – reading over end of line
In this example, the function is used to find and return the substring that is ten characters long,
beginning at position 35 in a string that is 40 characters long. The result is written to the log.

DATA _NULL_;
 result=SUBSTRN("Magnificent Bike Company A 1 2 50 London",35,10);
 PUT "The returned substring is: " result;
RUN;

This produces the following output:

The returned substring is: London

Unlike SUBSTR, no error message is returned for exceeding the end of the source string. The function
has read from the starting position to the end of the source string, and returned only that substring. No
trailing spaces have been appended; you would need to use SUBPAD to achieve that result.

CALL SCAN

Returns the position and/or length of the substring at the specified index position in a source string.

CALL SCAN

(string , n , posit ion , length ,

delimiters , modif iers

)

;

The position and/or length are returned to variables specified in the routine. The source string is treated
as a list of substrings delimited by spaces (by default) or any other character you specify. Each word
occupies a position in the list from 1 through n. Various modifiers can be used to specify additional
delimiters and to modify the way in which the source string is searched.

Reference for language elements
Version 4.1

2006

string

Type: Character

The string to be examined.

n

Type: Numeric

The position of the word you want to examine in the string.

position

Type: Numeric

The argument into which the character position of the substring in the source string is returned.

Note:
The delimiters are included in the character count for position.

length

Type: Numeric

The argument into which the length of the substring is returned. The length is the number of
characters it comprises from its first character to the next delimiter.

delimiters
Optional argument

Type: Character

A delimiter used to separate words. You can specify more than one delimiter.

modifiers
Optional argument

Specifies characters to be used as delimiters if the string contains none of the delimiters specified
in delimiter, or in addition to the specified delimiters, or to modify the search in the string. You can
specify more than one modifier. For example, you can specify 'C', or 'CAS'.

The following modifiers are available:

"A"

Alphabetic characters, or a string of characters, are considered delimiters.

"B"

Examines the string from right to left rather then left to right.

"C"

Control characters are considered delimiters.

Reference for language elements
Version 4.1

2007

"D"

Decimal numbers (0 through 9) are considered delimiters.

"F"

Characters considered valid characters for the first position in a variable name are
considered delimiters.

"G"

Graphical characters are considered delimiters.

"H"

All spaces including tabs are considered delimiters. As with spaces, if the H modifier is
used, punctuation characters and spaces are also considered delimiters.

"I"

Ignore the case of alphabetic characters specified as delimiters. For example, this modifier
will make A equivalent to a as a delimiter.

"K"

Cause modifiers to act in the opposite way. For example, if L is set, instead of considering
all lower-case characters as delimiters, the function will instead consider all uppercase
characters as delimiters.

"L"

Lowercase alphabetic character will be considered a delimiter.

"M"

Multiple adjacent separators delimit nulls. By default, multiple adjacent separators are
assumed to operate as a single separator. In this example,this option is not specified (the
default):

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('london,,,bike,company;;A1', 3, pos, len, ',;');
 PUT pos= len=
 RUN;

In this example, pos would be set to 15, and len to 7, as the adjacent separators (,,,)
are treated as a single separator. Therefore, the third string found is company. However,
if you specified the M modifier:

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('london,,,bike,company;;A1', 3, pos, len, ',;', 'M');
 PUT pos= len=;
RUN;

Reference for language elements
Version 4.1

2008

pos would be set to 9, and len to 0, as adjacent separators (,,,) are now treated as
individual separators each delimiting a null.

"N"

Characters considered valid for a variable name are considered delimiters.

"O"

Store the list of separators required the first time the function is called. This can increase
processing efficiency if there are multiple calls to the function.

"P"

Punctuation marks are considered delimiters. Punctuation marks are as defined in the
collating sequence for the device.

"Q"

Ignore separators in strings delimited by quotation marks. For example:

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('"The London Bike Company" A1 London ', 2, pos,
 len,,'q');
 PUT pos= len=;
 CALL SCAN('"The London Bike Company" A1 London ', 2, pos, len,);

 PUT pos= len=;
RUN;

In this example, the following is written to the log:

pos=27 len=2
pos=6 len=6

In the first use of the function, the first string is The London Bike Company, as the Q
modifier ensures the spaces are not identified as separators; the second string is therefore
A1. In the second use of the function, spaces within the quoted string are identified as
separators, as the Q modifier is not specified; the second string is therefore London.

"R"

Remove opening and closing quotation marks from a string containing them.

"S"

Remove leading and trailing spaces from the returned string.

"T"

Remove trailing spaces from delimiter and from source.

Reference for language elements
Version 4.1

2009

"U"

Uppercase alphabetic character are considered delimiters.

"V"
Not currently available.

"W"

Printing characters are considered delimiters.

"X"

Characters that constitute a hexadecimal number (0-9, a-f, A-F) are considered delimiters.

If you do not specify a delimiter, spaces and punctuation characters are recognised as delimiters; in this
case, spaces and punctuation characters can be mixed in the source string and will be recognised as
delimiters. Tabs are not recognised as spaces, so if the source includes tab delimiters you need to use
the H modifier; as with spaces, if the H modifier is used, punctuation characters and spaces will also be
recognised as delimiters.

Basic example
In this example, the function is used to find the position and length of the third substring in a string. The
result is written to the log. No delimiter is specified, so spaces are used as delimiters.

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('Magnificent Bike Company A 1 2 50 London',3,pos,len);
 PUT "The position of the third substring is " pos;
 PUT "The length of the third substring is " len;
RUN;

This produces the following output:

The position of the third substring is 18
The length of the third substring is 7

The third substring in the source is Company

Example – source with comma-delimited items
In this example, the function is used to find the position and length of the eighth substring in a string. No
delimiter is specified, so the commas in the source are recognised as delimiters. The result is written to
the log.

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('Magnificent,Bike,Company,A,1,2,50,London',8,pos,len);
 PUT "The position of the eighth substring is " pos;
 PUT "The length of the eighth substring is " len;
RUN;

Reference for language elements
Version 4.1

2010

This produces the following output:

The position of the eighth substring is 35
The length of the eighth substring is 6

The eighth substring in the source is London.

Example – source with various delimiters
In this example, the function is used to find the sixth word in a string delimited by tabs. The result
is written to the log. No delimiter is specified, so spaces and punctuation characters are recognised
as delimiters; the H modifier has been used to ensure that horizontal tabs are also recognised as
delimiters.

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('Magnificent,Bike,Company A 1 2 50 London', 8, pos, len,,'H');
 PUT "The position of the eighth substring is " pos;
 PUT "The length of the eighth substring is " len;
RUN;

This produces the following output:

The position of the eighth substring is 39
The length of the eighth substring is 6

The eighth substring in the source is London (as commas, spaces and tabs have been recognised as
delimiters).

CALL SCANQ

Returns the position and/or length of the substring at the specified index position in a source string,
specifying the separator between substrings.

CALL SCANQ

(source , n , posit ion , length

, delimiters

) ;

The position and/or length are returned to variables specified in the routine. The source string is treated
as a list of words delimited by spaces (by default) or any other character you specify. Each word
occupies a position in the list from 1 through n.

source

Type: Character

The string to be examined.

Reference for language elements
Version 4.1

2011

n

Type: Numeric

The position of the word you want to examine in the string.

position

Type: Numeric

The argument into which the character position of the substring in the source string is returned.

Note:
The delimiters are included in the character count for position.

length

Type: Numeric

The argument into which the length of the substring is returned. The length is the number of
characters it comprises from its first character to the next delimiter.

delimiters
Optional argument

Type: Character

A delimiter used to separate words. This argument is optional. You can specify more than one
delimiter.

If you do not set the delimiter argument, or set it to null (''), spaces are recognised as delimiters. Tabs
are not recognised as spaces. Multiple adjacent delimiters are recognisd as one delimiter, but each
adjacent delimiter is included in the character count.

Basic example
In this example, the function is used to find to find the position and length of the third substring in a
string. This produces the following output:No delimiter is specified, so spaces are used as delimiters.

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCAN('Magnificent Bike Company A 1 2 50 London',3,pos,len);
 PUT "The position of the third substring is " pos;
 PUT "The length of the third substring is " len;
RUN;

This produces the following output:

The position of the third substring is 18
The length of the third substring is 7

The third substring in the source is Company

Reference for language elements
Version 4.1

2012

Example – specifying delimiter
In this example, the function is used to find the position and length of the third substring in the source
string. The result is written to the log.

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCANQ('Magnificent,Bike,Company A 1 2 50 London',3,pos,len,',');
 PUT "The position of the third substring is " pos;
 PUT "The length of the third substring is " len;
RUN;

This produces the following output:

The position of the third substring is 18
The length of the third substring is 23

As the delimiter has been specified as the comma, spaces are not used as delimiters. The third
substring in the source is, therefore, Company A 1 2 50 London.

Example – specifying multiple delimiters
In this example, the function is used to find the position and length of the fifth substring in a source
string delimited using various punctuation marks. The result is written to the log. In this example,
hyphen (-), full stop (.) and colon (:) are specified as delimiters.

DATA _NULL_;
 pos=0;
 len=0;
 CALL SCANQ('Magnificent-Bike-Company.A:1:2:50.London',5,pos,len,'-:.');
 PUT "The position of the fifth substring is " pos;
 PUT "The length of the fifth substring is " len;
RUN;

This produces the following output:

The position of the fifth substring is 28
The length of the fifth substring is 1

In this example, the fifth sustring is 1, and is one character long.

Find first character of a type
Return the first character of specified type in a source string.

Character types can be alphanumeric character, punctuation, control and so on.

ANYALNUM ...2014
Returns the position of the first alphanumeric character in a string.

ANYALPHA ... 2015
Returns the position at which the first alphabetic character is found in a specified string.

Reference for language elements
Version 4.1

2013

ANYCNTRL ... 2016
Returns the position at which the first control character is found in a specified string.

ANYDIGIT ..2017
Returns the position at which the first numeric character is found in a specified string.

ANYFIRST ...2018
Returns the position at which the first character that matches the format of the first character of a
variable name is found in a specified string.

ANYGRAPH .. 2019
Returns the position at which the first graphical character is found in a specified string.

ANYLOWER .. 2020
Returns the position at which the first lower case character is found in a specified string.

ANYNAME ...2021
Returns the position of the first character in a string that could be a character in a variable name.

ANYPRINT .. 2023
Returns the position at which the first print character is found in a specified string.

ANYPUNCT ...2024
Returns the position at which the first punctuation character is found in a specified string.

ANYSPACE ... 2025
Returns the position at which the first space character is found in a specified string.

ANYUPPER ...2026
Returns the position at which the first uppercase character is found in a specified string.

ANYXDIGIT ... 2027
Returns the position at which the first character that could constitute a hexadecimal number (0-9,
a-f, A-F) is found in a specified string.

FIRST .. 2028
Returns the first character of a specified string.

NOTALNUM .. 2029
Returns the position in a string at which the first non-alphanumeric character is found.

NOTALPHA ... 2030
Returns the position of the first non-alphabetic character in a string.

NOTCNTRL ... 2031
Returns the position of the first non-control character in a string.

NOTDIGIT ... 2032
Returns the position of the first non-numeric character in a string.

NOTFIRST ...2033
Returns the position of the first character in a string that cannot be used as the first character of a
variable name.

NOTGRAPH .. 2034
Returns the position of the first character that is not a graphical character in a string.

Reference for language elements
Version 4.1

2014

NOTLOWER ..2035
Returns the position of the first character in a string that is not a lower-case character .

NOTNAME ...2036
Returns the position of the first character in a string that cannot be a character in a variable
name.

NOTPRINT .. 2037
Returns the position in a string of the first character that is not a print character.

NOTPUNCT ...2038
Returns the position in a string of the first character that is not a punctuation character.

NOTSPACE ...2039
Returns the position in a string of the first character that is not a space character.

NOTUPPER ...2041
Returns the position in a string of the first character that is not in uppercase.

NOTXDIGIT ... 2042
Find the position in a string of the first character that is not a hexadecimal number (that is, not
one of the characters 0 through 9, a through f, and A through F). .

ANYALNUM

Returns the position of the first alphanumeric character in a string.

ANYALNUM (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2..

Return type: Numeric

If no such character is found in the string, the value 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

Reference for language elements
Version 4.1

2015

For example, ANYALNUM("A101 01aSDx", 5) returns 7, the position of the first alphanumeric
after character position 5 (the space); ANYALNUM("A101 01aSDx", -5) returns 4, the position
of the last alphanumeric before character position5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the first instance of an alphanumeric in a string,
starting at the fourth character in the string. The result is written to the log.

DATA _NULL_;
 result = ANYALNUM("101 01adx", 4);
 PUT "First alphanumeric found at position: " result;
RUN;

This produces the following output:

First alphanumeric found at position: 6

ANYALPHA

Returns the position at which the first alphabetic character is found in a specified string.

ANYALPHA (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2..

Return type: Numeric

If no such character is found in the string, the value 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

Reference for language elements
Version 4.1

2016

For example, ANYALPHA("A101 01aSDx", 5) returns 9, the position of the first alphabetic
character after position 5 (the space); ANYALPHA("A101 01aSDx", -5) returns 1, the position
of the last alphabetic character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first alphabetic character, starting
from the fifth character. The result is written to the log.

DATA _NULL_;
 string1 = "0101 adxG" ;
 result=ANYALPHA(string1, 5);
 PUT "First alphabetic found at position: " result;
RUN;

This produces the following output:

First alphabetic found at position: 8

ANYCNTRL

Returns the position at which the first control character is found in a specified string.

ANYCNTRL (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2..

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

Reference for language elements
Version 4.1

2017

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYCNTRL('33330A33330A'x ,5) returns 6, the position of the first control
character after character position 5; ANYCNTRL('33330A33330A'x ,-5) returns 3, the
position of the last control character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first control character. The result
is written to the log.

DATA _NULL_;
 a='33330A'x;
 result=ANYCNTRL(a);
 PUT "First control character found at position: " result;
RUN;

This produces the following output:

First control character found at position: 3

This is the position of the LF character.

ANYDIGIT

Returns the position at which the first numeric character is found in a specified string.

ANYDIGIT (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Reference for language elements
Version 4.1

2018

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYDIGIT("A101 01aSDx", 5) returns 7, the position of the first number after
position 5 (the space); ANYALPHA("A101 01aSDx", -5) returns 4, the position of the last
number before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first numeric character, starting
from the fourth character. The result is written to the log.

DATA _NULL_;
 string1="101 01adx";
 result = ANYDIGIT(string1, 4);
 PUT "First digit found at position: " result;
RUN;

This produces the following output:

First digit found at position: 6

ANYFIRST

Returns the position at which the first character that matches the format of the first character of a
variable name is found in a specified string.

ANYFIRST (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

Reference for language elements
Version 4.1

2019

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYFIRST("A101 01aSDx", 5) returns 9, the position of the first character,
after position 5 (the space), that can be used as the first character in a variable name;
ANYFIRST("A101 01aSDx", -5) returns 1, the position of the last character, before character
position 5, that can be used as the first character in a variable name.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first character that can start a
variable name. The result is written to the log.

DATA _NULL_;
 string1 = "0101 adxG" ;
 result=ANYFIRST(string1);
 PUT "Character that can be first in variable name found at position: " result;
RUN;

This produces the following output:

Character that can be first in variable name found at position: 8

Numbers and spaces cannot be the first character of a variable name.

ANYGRAPH

Returns the position at which the first graphical character is found in a specified string.

ANYGRAPH (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

Reference for language elements
Version 4.1

2020

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

>

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYGRAPH('1C1C311C1C31'x, 5) returns 6, the position of the first graphical
character after position 5; ANYGRAPH('1C1C311C1C31'x, -5) returns 3, the position of the
last graphical character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the first graphical character. The result is written to
the log.

DATA _NULL_;
 a='1C1C31'x;
 result=ANYGRAPH(a);
 PUT "First graphic character found at position: " result;
RUN;

This produces the following output:

First graphic character found at position: 3

ANYLOWER

Returns the position at which the first lower case character is found in a specified string.

ANYLOWER (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Reference for language elements
Version 4.1

2021

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, anylower("A1b01 01aSDx", 5) returns 10, the position of the first lowercase
after position 5 (the space); anylower("A1b01 01aSDx", -5) returns 3, the position of the
last lowercase character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the first lowercase character, starting from the fifth
character in the string. This produces the following output:

DATA _NULL_;
 string1 = "0101 adxG" ;
 result=ANYLOWER(string1, 5);
 PUT "First lowercase character found at position: " result;
RUN;

This produces the following output:

First lowercase character found at position: 8

ANYNAME

Returns the position of the first character in a string that could be a character in a variable name.

ANYNAME (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Reference for language elements
Version 4.1

2022

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYNAME("A101 01aSDx", 5) returns 7, the position of the first character,
after position 5 (the space), that can be used in any position except the first in a variable name;
ANYNAME("A101 01aSDx", -5) returns 4, the position of the last character before character
position 5 that can be used in any position except the first in a variable name.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for for the first character than could be used in a
variable name, starting from the fifth character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "0101 adxG" ;
 result=ANYNAME(string1, 5);
 PUT "Character that can exist in variable name found at position: " result;
RUN;

This produces the following output:

Character that can exist in variable name found at position: 8

The function will start searching the string from the fifth character in the string. The result will be 8,
as spaces cannot be part of a variable name. If you had not specified that the search should start at
the fifth character, but at the first, the result would have been 1 as numeric characters can be used in
variable names (although not for the first character of a variable).

Reference for language elements
Version 4.1

2023

ANYPRINT

Returns the position at which the first print character is found in a specified string.

ANYPRINT (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYPRINT('C1C01C1C311C1C31C1C010'x, 6) returns 8, the position of
the first printing character after position 6; ANYPRINT('C1C01C1C311C1C31C1C010'x, -6)
returns 5, the position of the last printing character before the sixth character position.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the first print character. The result is written to the
log.

DATA _NULL_;
 a='C1C010'x;
 result=ANYPRINT(a);
 PUT "First printing character found at position: " result;
RUN;

This produces the following output:

First printing character found at position: 1

Reference for language elements
Version 4.1

2024

ANYPUNCT

Returns the position at which the first punctuation character is found in a specified string.

ANYPUNCT (string

, startpos

)

Punctuation characters are defined by the translation table in use.

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYPUNCT("A1,01 01aS;Dx", 5) returns 12, the position of the first
punctuation character after position 5 (the space); ANYPUNCT("A1,01 01aS;Dx", -5)
returns 3, the position of the last punctuation character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the first punctuation character, starting from the fifth
character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "0101ad;xG" ;
 result=ANYPUNCT(string1, 5);
 PUT "First punctuation character found at position: " result;
RUN;

This produces the following output:

First punctuation character found at position: 7

Reference for language elements
Version 4.1

2025

ANYSPACE

Returns the position at which the first space character is found in a specified string.

ANYSPACE (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYSPACE("A10 101a SDx", 5) returns 9, the position of the first space after
position 5; ANYSPACE("A10 101a SDx", -5) returns 4, the position of the last space before
character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Spaces include:

• Space character
• Horizontal tab
• Vertical tab
• Line feed
• Form feed

Reference for language elements
Version 4.1

2026

Example
In this example, the function searches the string for the first space character, starting from the third
character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "0101 adxG" ;
 result = ANYSPACE(string1, 3);
 PUT "First space found at position: " result;
RUN;

This produces the following output:

First space found at position: 5

ANYUPPER

Returns the position at which the first uppercase character is found in a specified string.

ANYUPPER (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYUPPER("A10 101a SDx", 5) returns 10, the position of the first uppercase
character after position 5 (the space); ANYUPPER("A10 101a SDx", -5) returns 1, the
position of the last uppercase character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Reference for language elements
Version 4.1

2027

Example
In this example, the function searches the string for an uppercase character starting at the fifth
character. The result is written to the log.

DATA _NULL_;
 string1 = "0101 adxG" ;
 result = ANYUPPER(string1, 5);
 PUT "First uppercase found at position: " result;
RUN;

This produces the following output:

First uppercase found at position: 11

ANYXDIGIT

Returns the position at which the first character that could constitute a hexadecimal number (0-9, a-f, A-
F) is found in a specified string.

ANYXDIGIT (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no such character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, ANYXDIGIT("AB9 101a SDx", 4) returns 7, the position of the first character
that can be used in a hexadecimal number, after position 4; ANYXDIGIT("AB9 101a SDx",
-4) returns 3, the position of the last character that can be used in a hexadecimal number,
before character position 5.

Reference for language elements
Version 4.1

2028

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for a character that could be used in a hexadecimal
number, starting at the fifth character. The result is written to the log.

DATA _NULL_;
 string1 = "City xA0" ;
 result=ANYXDIGIT(string1, 5);
 PUT "First hexadecimal character is found at position: " result;
RUN;

This produces the following output:

First hexadecimal character is found at position: 9

FIRST

Returns the first character of a specified string.

FIRST (string)

Return type: Character

string

Type: Character

The string or a variable containing the string to be examined.

If the string you specify is null (''), a space character is returned.

Example
In this example, the function is used to find the first character in the source string. The result is written
to the log.

DATA _NULL_;
 result = FIRST('Magnificent Bike Company Bike A 1 2 50 London');
 PUT "The first character in the string is: " result;
RUN;

This produces the following output:

The first character in the string is: M

Reference for language elements
Version 4.1

2029

NOTALNUM

Returns the position in a string at which the first non-alphanumeric character is found.

NOTALNUM (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only alphanumeric characters are found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTALNUM("A101 01aSDx", 5) returns 9, the position of the first character after
position 5 that is not an alphnumeric; NOTALNUM("A101 01aSDx", -5) returns 4, the position
of the last character before character position 5 that is not an alphanumeric.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches for the first instance of an alphanumeric in a string, starting at the
tenth character in the string. The result is written to the log.

DATA _NULL_;
 result = NOTALNUM("Magnificent Bike Company A 1 2 50 London", 10);
 PUT "First non-alphanumeric found at position: " result;
RUN;

This produces the following output:

First non-alphanumeric found at position: 12

If the string had been "MagnificentBikeCompany", the result returned would be 0, as all characters
in the string are alphanumeric.

Reference for language elements
Version 4.1

2030

NOTALPHA

Returns the position of the first non-alphabetic character in a string.

NOTALPHA (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no non-alphabetic character is found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTALPHA("AB9 AA1a SDx", 5) returns 7, the position of the first character
after position 5 that is not an alphabetic; NOTALPHA("AB9 AA1a SDx", -5) returns 4, the
position of the last character that is not an alphabetic before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first non-alphabetic character.
The result is written to the log.

DATA _NULL_;
 string1 = "London0101 adxG" ;
 result = NOTALPHA(string1);
 PUT "First non-alphabetic found at position: " result;
RUN;

This produces the following output:

First non-alphabetic found at position: 7

Reference for language elements
Version 4.1

2031

NOTCNTRL

Returns the position of the first non-control character in a string.

NOTCNTRL (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only control characters are found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTCNTRL('C1C01C1C311C1C31C1C010'x, 6) returns 8,
the position of the first character after position 5 that is not a control character;
NOTCNTRL('C1C01C1C311C1C31C1C010'x, -6) returns 5, the position of the last character
that is not an a control control character before character position 5 (that is, that position contains
the last such character).

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first character that is not a control
character. The result is written to the log.

DATA _NULL_;
 a='0A3333'x;
 result = NOTCNTRL(a);
 PUT "First non-control character found at position: " result;
RUN;

Reference for language elements
Version 4.1

2032

This produces the following output:

First non-control character found at position: 2

NOTDIGIT

Returns the position of the first non-numeric character in a string.

NOTDIGIT (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only numeric characters are found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTDIGIT("AB9 111a SDx", 6) returns 8, the position of the first character
after position 5 that is not a number; NOTDIGIT("AB9 AA1a SDx", -5) returns 4, the position
of the last character that is not a number before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the position of the first non-numeric character. The
result is written to the log.

DATA _NULL_;
 result = NOTDIGIT("101London 01adx");
 PUT "First non-numeric found at position: " result;
RUN;

Reference for language elements
Version 4.1

2033

This produces the following output:

First non-numeric found at position: 4

NOTFIRST

Returns the position of the first character in a string that cannot be used as the first character of a
variable name.

NOTFIRST (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If no matching characters are found, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTFIRST("A101AA AA1aSDx", 5) returns 7, the position of the first character,
after position 5 (the space), that cannot be used as the first character in a variable name;
NOTFIRST("A101AA AA1aSDx", -5) returns 1, the position of the last character, before
character position 4, that cannot be used as the first character in a variable name.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Reference for language elements
Version 4.1

2034

Example
In this example, the function searches the string for the position of the first character that can start a
variable name, starting from the fifth character. The result is written to the log.

DATA _NULL_;
 string1 = "ad0101 xG" ;
 result = NOTFIRST(string1);
 PUT "First character that cannot be used as first character"
 " of variable name found at position: " result;
RUN;

This produces the following output:

First character that cannot be used as first character of variable name found at
 position: 3

NOTGRAPH

Returns the position of the first character that is not a graphical character in a string.

NOTGRAPH (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only graphical characters are found in the string, 0 (zero) is returned

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTGRAPH('1C1C45311C1C4531'x, 4) returns 5, the position of the first non-
graphical character after position 5; NOTGRAPH('1C1C45311C1C4531'x, -4) returns 2, the
position of the last non-graphical character before character position 5.

Reference for language elements
Version 4.1

2035

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

If only graphical characters are found in the string, the value 0 (zero) is returned.

Example
In this example, the function searches the string for the first non-graphical character, starting from the
fifth character in the string. The result is written to the log.

DATA _NULL_;
 a='1C1C31'x;
 result=notgraph(a);
 PUT "First non-graphical character found at position: " result;
RUN;

This produces the following output:

First non-graphical character found at position: 1

NOTLOWER

Returns the position of the first character in a string that is not a lower-case character .

NOTLOWER (string

, startpos

)

You can specify a position at which to start searching the string, or start at the first character of the
string (the default). For example, if you want to start the search at the second position of the string, you
set startpos to 2.

Return type: Numeric

If only lower-case characters are found in the string, 0 (zero) is returned.

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

Reference for language elements
Version 4.1

2036

For example, NOTLOWER("aa10a bA1aSDx", -7) returns 8, the position of the first non-
lowercase character after position 7; NOTLOWER("aa10abA1aSDx", -7) returns 6, the
position of the last non-lowercase character (in this case, the space) before character position 7.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for the first character that is not lowercase, starting
from the fifth character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "bicycle, A1, 120";
 result = NOTLOWER(string1,5);
 PUT "First non-lowercase character found at position: " result;
RUN;

This produces the following output:

First non-lowercase character found at position: 8

This is the comma (,) after the word bicycle.

NOTNAME

Returns the position of the first character in a string that cannot be a character in a variable name.

NOTNAME (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only characters that can be used in a variable name are found in the string, 0 (zero) is returned

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

Reference for language elements
Version 4.1

2037

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTNAME("A 01SDx", 3) returns 0, as no there is no character after position 3
, that cannot be used in any position except the first in a variable name; NOTNAME("A 01SDx",
-3) returns 3, the position of the last character before character position 3 that cannot be used in
any position except the first in a variable name.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for a character that could be used in a variable name,
starting from the third character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "ad0101 xG";
 result = NOTNAME(string1,3);
 PUT "First character that cannot be a character "
 "in a variable name found at position: " result;
RUN;

This produces the following output:

First character that cannot be a character in a variable name found at position: 7

This result is returned because spaces cannot be part of a variable name. If the starting position of the
function had not been the third character, but the first; the result would still have been 7 as alphabetic
and numeric characters can be used in variable names (although numerics cannot be used for the first
character of a variable name).

NOTPRINT

Returns the position in a string of the first character that is not a print character.

NOTPRINT (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only print characters are found in the string, 0 (zero) is returned

string

Type: Character

Reference for language elements
Version 4.1

2038

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTPRINT('1C1C45311C1C4531'x, 4) returns 5, the position of the first non-
printing character after position 4; NOTPRINT('1C1C45311C1C4531'x, -4) returns 2, the
position of the last non-printing character before character position 4.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

If no print character is found in the string, the value 0 (zero) is returned.

Example
In this example, the function searches the string for the first non-printing character, starting from the fifth
character in the string. The result is written to the log.

DATA _NULL_;
 a='C1C010'x;
 result=notprint(a);
 PUT "First non-printing character found at position: " result;
RUN;

This produces the following output:

First non-printing character found at position: 3

NOTPUNCT

Returns the position in a string of the first character that is not a punctuation character.

NOTPUNCT (string

, startpos

)

Punctuation characters are defined by the translation table in use.

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

Reference for language elements
Version 4.1

2039

If only punctuation characters are found in the string, 0 (zero) is returned

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTPUNCT("A1,01...01aS", 7) returns 9, the position of the first non-
punctuation character after position 7; NOTPUNCT("A1,01...01aS", -7) returns 5, the
position of the last non-punctuation character before character position 7.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

If only punctuation characters are found in the string, the value 0 (zero) is returned.

Example
In this example, the function searches the string for the first non-punctuation character, starting from the
fifth character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "#1,0,1ad;xG";
 result = NOTPUNCT(string1, 5);
 PUT "First non-punctuation character found at position: " result;
RUN;

This produces the following output:

First non-punctuation character found at position: 6

NOTSPACE

Returns the position in a string of the first character that is not a space character.

NOTSPACE (string

, startpos

)

Reference for language elements
Version 4.1

2040

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only space characters are found in the string, 0 (zero) is returned

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTSPACE("A10 101a SDx", 9) returns 11, the position of the first non-space
character after position 9; NOTSPACE("A10 101a SDx", -9) returns 8, the position of the last
non-space character space before character position 9.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

If only space characters are found in the string, the value 0 (zero) is returned.

Spaces include:

• Space character
• Horizontal tab
• Vertical tab
• Line feed
• Form feed

Example
In this example, the function searches the string for the first non-space character, starting from the ninth
character in the string. The result is written to the log.

DATA _NULL_;
 string1 = "10 01 01 adxG" ;
 result= NOTSPACE(string1, 9);
 PUT "First non-space found at position: " result;
RUN;

Reference for language elements
Version 4.1

2041

This produces the following output:

First non-space found at position: 12

NOTUPPER

Returns the position in a string of the first character that is not in uppercase.

NOTUPPER (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only uppercase characters are found in the string, 0 (zero) is returned

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTUPPER("a10 ABCEG SDx", 5) returns 10, the position of the first non-
uppercase character after position 5; NOTUPPER("a10 ABCEG SDx", -5) returns 4, the
position of the last non-uppercase character before character position 5.

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Reference for language elements
Version 4.1

2042

Example
In this example, the function searches the string for a character not in uppercase. The result is written to
the log.

DATA _NULL_;
 string1 = "LONDON0101 adx G" ;
 result = NOTUPPER(string1);
 PUT "First non-uppercase character found at position: " result;
RUN;

This produces the following output:

First non-uppercase character found at position: 7

NOTXDIGIT

Find the position in a string of the first character that is not a hexadecimal number (that is, not one of
the characters 0 through 9, a through f, and A through F). .

NOTXDIGIT (string

, startpos

)

You can optionally specify a position at which to start searching the string. For example, if you want to
start the search at the second position of the string, you set startpos to 2.

Return type: Numeric

If only characters that constitute hexadecimal numbers are found in the string, 0 (zero) is returned

string

Type: Character

The string to be analysed.

startpos
Optional argument

Type: Numeric

The position in string at which the search starts.

If you set startpos to a positive number, the function searches for the first instance of the
character at or beyond that character position. If you set startpos to a negative number, the
function looks backward through the string starting at the (positive) character position.

For example, NOTXDIGIT("AB9H 101aH SDx", 6) returns 10, the position of the first
character that cannot be used in a hexadecimal number, after position 6; NOTXDIGIT("AB9H
101aH SDx", -6) returns 5, the position of the last character that cannot be used in a
hexadecimal number, before character position 5.

Reference for language elements
Version 4.1

2043

If you do not specify a value for this argument, the search starts at the first (leftmost) character of
string.

Example
In this example, the function searches the string for characters that do not make up hexadecimal
numbers. The result is written to the log.

DATA _NULL_;
 string1 = "01A0London00Bicycle" ;
 result = NOTXDIGIT(string1);
 PUT "First non-hexadecimal character found at position: " result;
RUN;

This produces the following output:

First non-hexadecimal character found at position: 5

Find characters or rank in collating sequence
Return characters from specified positions in a collating sequence, or return the rank of a character in a
sequence.

COLLATE .. 2043
Returns the collating sequence between specified positions.

RANK ...2045
Returns the rank of a character in the collating sequence of the device on which the function is
executed.

COLLATE

Returns the collating sequence between specified positions.

COLLATE (startpos , endpos

, length

)

The string returned consists of the ASCII or EBCDIC collating sequence (depending on the device on
which the function is run) from startpos to endpos inclusive.

Return type: Character

startpos

Type: Numeric

Reference for language elements
Version 4.1

2044

The position in the collating sequence at which the function should start returning characters,
specified as an integer.

endpos

Type: Numeric

>

The position in the collating sequence at which the function should stop returning characters,
specified as an integer. If you specify this argument, you do not need to specify length. If you
omit this argument because you are specifying length, you must delimit the position with a
comma (see examples below).

length
Optional argument

Type: Numeric

The number of characters to be returned. If you specify this argument, you do not need to specify
end-position.

Note:
If you specify both length and endpos, the value of endpos will take precedence. For example,
result=COLLATE(65,90,10) will return ABCDEFGHIJKLMNOPQRSTUVWXYZ rather than
ABCDEFGHIJ.

Example – using specified start and end positions
In this example, the function is used to return the collating from position 65 through to position 122. The
result is written to the log.

DATA _NULL_;
 result=COLLATE(65,122);
 PUT "The collating sequence is: " result;
RUN;

This produces the following output:

The collating sequence is:
 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz

This is the collating sequence for the specified starting position (65) through to the end position (122).

Example – specifying start position and number of characters
DATA _NULL_;
 result=collate(65,,26);
 PUT "The collating sequence is: " result;
RUN;

Reference for language elements
Version 4.1

2045

This produces the following output:

The collating sequence is:
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

This is the ASCII collating sequence from and including position 65 through the next 26 characters.

RANK

Returns the rank of a character in the collating sequence of the device on which the function is
executed.

RANK (character)

Return type: Numeric

character

Type: Character

The character for which you want the rank returned. (You can also specify a string, but the
function will only examine the first character.)

Example
In this example, the rank of the character A in the current collating sequence is returned. The result is
written to the log.

DATA _NULL_;
 char='A';
 result=RANK(char);
 PUT "Rank of character in the collating sequence: " result;
RUN;

This produces the following output:

Rank of character in the collating sequence: 65

Find position and length of substrings
Return the length and/or position of specified substrings in source strings.

CHAR .. 2047
Returns the character found at the specified position in a string.

CONTAINS .. 2047
Returns a value identifying whether a specified string exists in another string.

Reference for language elements
Version 4.1

2046

FIND .. 2048
Returns the position of the first occurrence of a specified substring within a string.

FINDC ..2050
Returns the position at which the specified character is first found within a string.

INDEX ..2053
Returns the starting position of a substring within a specified string.

INDEXC ... 2053
Returns the first position at which a specified character occurs in a string.

INDEXW .. 2054
Returns the first position at which a specified word occurs in a string.

KINDEX ... 2056
Returns the starting position of a string within another string that consists of DBCS characters.

KINDEXC ...2057
Returns the first position at which specified characters occur in a string that consists of DBCS
characters.

KLENGTH ..2057
Returns the length of a non-blank character string consisting of DBCS characters.

KVERIFY ... 2058
Returns a value indicating whether a character or string exists in another DBCS string.

LENGTH .. 2060
Returns the length of a character string, including leading spaces but excluding trailing spaces. If
the string is null (''), or contains only spaces, 0 (zero) is returned.

LENGTHC ... 2062
Returns the storage length of a character string. If the string is null, 1 is returned.

LENGTHM ... 2064
Returns the length of a string, including any leading or trailing spaces. If the string is null 1 is
returned.

LENGTHN ... 2066
Returns the length of a character string, including leading spaces but excluding trailing spaces,
and returns 0 (zero) if the string is null ('') or contains only spaces.

VERIFY ..2068
Returns the position of the first character of the source string that does not match a specified
substring.

WHICHC ..2070
Returns the position of the first string in a list of strings that matches a specified string.

Reference for language elements
Version 4.1

2047

CHAR

Returns the character found at the specified position in a string.

CHAR (string , posit ion)

Return type: Character

string

Type: Character

The string in which you want to find a character.

position

Type: Numeric

The position in the string at which to find the character.

Example
In this example, the function examines the string at the specified position, and returns the character at
that position. The result is written to the log.

DATA _NULL_;
 result = CHAR("101 01adx", 8);
 PUT "The character at the specified position is: " result;
RUN;

This produces the following output:

The character at the specified position is: a

CONTAINS

Returns a value identifying whether a specified string exists in another string.

CONTAINS (string , f ind- string)

Searches a source string for a specified string, and returns 1 if the string is found in the source string, 0
otherwise.

Return type: Numeric

string

Type: Character

Reference for language elements
Version 4.1

2048

The string to be examined.

find-string

Type: Character

The string to find in source.

Example – matching specified string
In this example, the function is used to find the string London in the source string. The result is written
to the log.

DATA _NULL_;
 search = 'London';
 result = CONTAINS('Steve Bike Company A 1 2 50 London', search);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 1

The string London is found in the source string, therefore 1 is returned.

Example – not matching specified string
In this example, the function is used to find the string london in the source string. The result is written
to the log.

DATA _NULL_;
 search='london';
 result=contains('Steve Bike Company A 1 2 50 London', search);
 PUT "The result is: " result;
RUN;

This produces the following output:

The result is: 0

The string london is not found in the source string, therefore 0 (zero) is returned.

FIND

Returns the position of the first occurrence of a specified substring within a string.

FIND (string , substring ,

modif iers , startpos

)

FIND (string , substring ,

startpos , modif iers

)

Reference for language elements
Version 4.1

2049

Return type: Numeric

If the source string does not contain an instance of the specified search string, the function returns 0.

string

Type: Character

The string in which you want to search for another string.

substring

Type: Character

The string for which you want to search in string.

modifiers
Optional argument

Parameters that modify the output. The following modifiers are available:

"I"

Ignore case.

"T"

Trim spaces from the end of substring.

startpos
Optional argument

Type: Numeric

The position in string at which the function should start searching for substring.

Example – finding location of a string
In this example, the function is used to find the first occurrence of the string Bike in the source string.
The result is written to the log.

DATA _NULL_;
 search = 'Bike';
 result = FIND('Magnificent Bike Company A 1 2 50 (Bike) London', search);
 PUT "The string is found at character position: " result;
RUN;

This produces the following output:

The string is found at character position: 13

This is the position at which the first instance of the string Bike starts.

Reference for language elements
Version 4.1

2050

Example – ignoring case in search
In this example, the function is used to find the first occurrence of the string Bike or bike (or bIke or
BikE) in the source string. The result is written to the log.

DATA _NULL_;
 search = 'bike';
 result = FIND('Magnificent Bike Company A 1 2 50 London', search, 'I');
 PUT "The string is found at character position: " result;
RUN;

This produces the following output:

The string is found at character position: 13

In this case, bike matches Bike because the I modifier tells the function to ignore case.

Example – starting search at specified location
In this example, the function is used to find the first occurrence of the string 'Bike' in the source string
from and including the character at the 20th position in the string. The result is written to the log.

DATA _NULL_;
 search = 'Bike';
 result = FIND('Magnificent Bike Company A 1 2 50 London', search, 20);
 PUT "The string is found at character position: " result;
RUN;

This produces the following output:

The string is found at character position: 0

The function starts searching the source string at the specified position, 20. The function doesn't find
a match for the search string, because the search starts after the position of the only occurrence of the
search string in the source string. The function therefore returns the value 0.

FINDC

Returns the position at which the specified character is first found within a string.

FINDC (string , characters ,

modif iers , startpos

)

FINDC (string , characters ,

startpos , modif iers

)

You can specify more than one character for the search, and the function will find the first occurrence of
any character in the string.

Return type: Numeric

Reference for language elements
Version 4.1

2051

If the source string does not contain an instance of a specified character, 0 (zero) is returned.

string

Type: Character

The string in which you want to search for character.

characters

Type: Character

One or more characters for which you want to search in string.

modifiers
Optional argument

"I"

Ignore case.

"O"

Store the list of characters to be searched for the first time the function is called. This can
increase processing efficiency if there are multiple calls to the function.

"T"

Strips any trailing spaces in characters.

"V"

Return the value 1 to indicate that at least one of the search characters exists in the string.

startpos
Optional argument

Type: Numeric

The position in string at which the function should start searching for characters.

Example – simple find
In this example, the function is used to find any of the characters F5ox in the source string. The result is
written to the log.

DATA _NULL_;
 search = 'F5ox';
 result = FINDC('Magnificent, Bike, Company A 1 2 50 London', search);
 PUT "The character is first found at character position: " result;
RUN;

This produces the following output:

The character is first found at character position: 21

Reference for language elements
Version 4.1

2052

This is the position at which the first instance of a character in the search string (in this example o)
occurs.

Example – ignoring case in search
In this example, the function is used to find any of the characters F5ox in the source string, and ignores
the case of the characters in the search string. The result is written to the log.

DATA _NULL_;
 search = 'F5ox';
 result = FINDC('Magnificent, Bike, Company A 1 2 50 London', search, 'I');
 PUT "The character is first found at character position: " result;
RUN;

This produces the following output:

The character is first found at character position: 6

This is the position at which the first instance of the f character occurs; this matches the search
character F because the I modifier has been set.

Example – starting search at specified location
In this example, the function is used to find any the character B in the source string, starting from
character position 20. The result is written to the log.

DATA _NULL_;
 search = 'B';
 result = FINDC('Magnificent Bike Company A 1 2 50 London', search, 20);
 PUT "The character is first found at character position: " result;
RUN;

This produces the following output:

The character is first found at character position: 0

Because the function starts searching the source string at the specified position, 20, the function finds
no match for the search character.

Example – confirming existence of character
In this example, the function is used to find whether the character B exists in source string. The result is
written to the log.

DATA _NULL_;
 search = 'B';
 result = FINDC('Magnificent Bike Company A 1 2 50 London', search, 'V');
 PUT "The character is first found at character position: " result;
RUN;

This produces the following output:

The character is first found at character position: 1

Reference for language elements
Version 4.1

2053

Because the V modifier has been specified, the function returns 1 to confirm that the character exists in
the string, not the position at which the character was first was found.

INDEX

Returns the starting position of a substring within a specified string.

INDEX (string , substring)

Finds a specified substring within a string, and returns the position of that substring.

Return type: Numeric

If the substring is not found, 0 (zero) is returned.

string

Type: Character

A string to be examined for a substring.

substring

Type: Character

The substring to be found in source.

Example
In this example, the function is used to find a substring in a source string. The result is written to the log.

DATA _NULL_;
 search='Bike';
 result = INDEX('Magnificent Bike Company Bike A 1 2 50 London', search);
 PUT "The string is found at character position: " result;
RUN;

This produces the following output:

The string is found at character position: 13

This is the first position at which the string was found.

INDEXC

Returns the first position at which a specified character occurs in a string.

INDEXC (source ,

,

chars)

Reference for language elements
Version 4.1

2054

You can specify more than one character, in which case the position of the first matching character is
found. For example, if you specify a search for the character i in the string Bike, the function returns
2, which is the position of the first occurrence of that character. However, if you search for iB, the
function returns 1, which is the position of the first of the characters found, in this case B.

Return type: Numeric

If the character is not found, 0 (zero) is returned.

source

Type: Character

A string be examined for one or more characters.

chars

Type: Character

One or more characters to be searched for in source.

Example
In this example, the function is used to find one of the characters i (excerpt) in a source string. The
result is written to the log.

DATA _NULL_;
 search='bko';
 result = indexc('Magnificent Bike Company Bike A 1 2 50 London', search);
 PUT "The first character is found at position: " result;
RUN;

This produces the following output:

The first character is found at position: 15

This is the first position at which a matching character was found; in this example, k. Case must match,
therefore b was not matched with the B in Bike.

INDEXW

Returns the first position at which a specified word occurs in a string.

INDEXW (source , word

, delimiter

)

By default, a word is a string delimited by spaces. You can, however, specify the delimiter that is used
in the string. A word must be completely delimited to be found; for example, Bike will not be matched
in the source MagnificentBike, as MagnificentBike is the entire delimited word; see examples
below for more detail.

Reference for language elements
Version 4.1

2055

Return type: Numeric

If the word is not found, 0 (zero) is returned.

source

Type: Character

A string to be examined for an occurrence of a word.

word

Type: Character

The word to be searched for in source.

delimiter
Optional argument

Type: Character

The character used as the separator in source.

Basic example
In this example, the function is used to find the position at which the word Bike is first found in a source
string. The result is written to the log.

DATA _NULL_;
 search='Bike';
 result = INDEXW('Magnificent Bike Company (Bike)', search);
 PUT "The word is found at character position: " result;
RUN;

This produces the following output:

The word is found at character position: 13

This is the position at which the first occurrence of the word Bike was found. Case must match; if bike
had been specified in search, it would not have matched Bike and 0 would have been returned.

Example – using a separator
In this example, the function is used to find the position at which the word Bike in a source string;
words in the source are separated by commas (,). The result is written to the log.

DATA _NULL_;
 search='Bike';
 separator=',';
 result = INDEXW('Magnificent Bike Company,Bike,London', search, separator);
 PUT "The word is found at character position: " result;
RUN;

This produces the following output:

The word is found at character position: 26

Reference for language elements
Version 4.1

2056

This is the position at which the first occurrence of the word Bike was found. In this example, the string
Magnificent Bike Company is delimited by a comma, and is thus seen as one word. If the string
had been:

Magnificent Bike Company, Bike,London

no match would have been found as a word is delimited by separators, and the word Bike in this case
is preceded by a space which would be included as part of the word.

KINDEX

Returns the starting position of a string within another string that consists of DBCS characters.

KINDEX (string , substring)

Finds the starting point of a substring within a source string that consists of characters from a double-
byte character set (DBCS). If the substring is not found, zero (0) is returned.

Return type: Numeric

string

Type: Character

A string to be examined for a substring.

substring

Type: Character

The substring to be found in source.

Example
In this example, the function is used to find the position at which the substring ときがら茶 is found in a
source string. The result is written to the log.

DATA _NULL_;
 search='ときがら茶';
 result = KINDEX('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠', search);
 PUT result;
RUN;

This produces the following output:

10

which is the first position at which the string was found.

Reference for language elements
Version 4.1

2057

KINDEXC

Returns the first position at which specified characters occur in a string that consists of DBCS
characters.

KINDEXC (string ,

,

chars)

Finds a specified character or string (an excerpt) within a string consisting of characters from double-
byte character set (DBCS), and returns the position at which the excerpt is first found. If the excerpt is
not found, 0 (zero) is returned.

Return type: Numeric

string

Type: Character

A string be examined for an excerpt.

chars

Type: Character

A character or string to be searched for in source.

Example
In this example, the function is used to find the position at which one of the characters と斗 is first
found in a source string. The result is written to the log.

DATA _NULL_;
 search='と斗';
 result = KINDEXC('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠', search);
 PUT result;
RUN;

This produces the following output:

5

This is the position at which 斗 is first found.

KLENGTH

Returns the length of a non-blank character string consisting of DBCS characters.

KLENGTH (string)

Reference for language elements
Version 4.1

2058

Returns the length of a non-blank character string consisting of characters from a double-byte character
set (DBCS), excluding any trailing blanks. If the string is blank (null, or composed entirely of spaces),
the functions returns the value 1. If a number is specified as an argument, a value of 12 is returned,
and a message written to the log noting that numeric values have been converted to character values.

Return type: Numeric

string

Type: Character

The string to be examined.

Example
In this example, the function is used to find the length of various strings. The result is written to the log.

DATA _NULL_;
 number=123456789012345678;
 result1=KLENGTH('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠 ');
 result2=KLENGTH(' ');
 result3=KLENGTH(number);

 PUT result1;
 PUT result2;
 PUT result3;
run;

This produces the following output:

22 0 12

In this example:

• The first use of the function returns the value 22, which is the length of the string without trailing
blanks.

• The second use of the function returns the value 0, as the string contains only blanks.
• The third use of the function returns the value 12, because the string contains a numeric value. A

message is written to the log noting that numeric values have been converted to character values.

KVERIFY

Returns a value indicating whether a character or string exists in another DBCS string.

KVERIFY (string ,

,

excerpt)

Reference for language elements
Version 4.1

2059

Searches a source string, consisting of characters from a double-byte character set, and verifies
whether one or more substrings (excerpts) exist or not in that string. The function returns the position
of the first character in the source string that does not match the excerpt. If the source string contains
none of the specified excerpts 0 (zero) is returned.

Return type: Numeric

string

Type: Character

The string to be searched for specified substrings.

excerpt

Type: Character

A character or substring to be found in source.

Example – checking that a string contains a character
In this example, the function searches for the character 青. The result is written to the log.

DATA _NULL_;
 result = KVERIFY('青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶', '青');
 PUT 'The character is first NOT found at position: ' result;
RUN;

This produces the following output:

The character is first NOT found at position: 2

In this example, the function searches for the character 碧. The result is written to the log.

DATA _NULL_;
 result = KVERIFY('青青青青青青青青碧碧碧碧碧碧', '碧');
 PUT 'The character is first NOT found at position: ' result;
RUN;

This produces the following output:

The character is first NOT found at position: 1

In this example, the function searches for the characters 碧 and 青. The result is written to the log.

DATA _NULL_;
 result = KVERIFY('青青青青青青青青碧碧碧碧碧碧', '碧','青');
 PUT 'The character is first NOT found at position: ' result;
RUN;

This produces the following output:

The character is first NOT found at position: 0

The function returns 0 (zero) in this instance as there is nowhere in the string where one of the
characters does not exist.

Reference for language elements
Version 4.1

2060

Example – checking that a string contains a substring
In this example, the function searches for the string 熨斗目花色. The result is written to the log.

DATA _NULL_;
 result = KVERIFY('青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶', '熨斗目花色');
 PUT 'The string is first NOT found at position: ' result;
RUN;

This produces the following output:

The string is first NOT found at position: 1

In this example, the function searches for the strings 青碧 and 熨斗目花色. The result is written to the
log.

DATA NULL;
 RESULT = KVERIFY('青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶', '青碧', '熨斗目花色');
 PUT 'The strings are first NOT found at position: ' result;
RUN;

This produces the following output:

The strings are first NOT found at position: 15

LENGTH

Returns the length of a character string, including leading spaces but excluding trailing spaces. If the
string is null (''), or contains only spaces, 0 (zero) is returned.

LENGTH (string)

If a number is specified as an argument, a value of 12 is returned, and a message written to the log
noting that numeric values have been converted to character values.

Return type: Numeric

string

Type: Character

A string to be examined for a substring.

If the length of a variable has been specified and the variable contains a string to be checked, then if
the string is longer than the specified length, the length of the variable will be returned.

Reference for language elements
Version 4.1

2061

Basic example
In this example, the function is used to find the length of various strings. The result is written to the log.

DATA _NULL_;
 number = 1234567890123456789;
 result1 = LENGTH('Magnificent Bike Company Bike A 1 2 50 London ');
 result2 = LENGTH(' ');
 result3 = LENGTH('');
 result4 = LENGTH(number);

 PUT "The length of the string is: " result1;
 PUT "The length of the string is: " result2;
 PUT "The length of the string is: " result3;
 PUT "The length of the string is: " result4;
RUN;

This produces the following output:

The length of the string is: 51
The length of the string is: 0
The length of the string is: 0
The length of the string is: 12

In this example:

• The first use of the function returns the value 51, which is the length of the string ignoring the trailing
blanks.

• The second use of the function returns the value 0, as the string contains only spaces.
• The third use of the function returns the value 0, as the string contains a null.
• The fourth use of the function returns the value 12, because the string contains a numeric value. A

message is written to the log by WPS noting that numeric values have been converted to character
values.

Reference for language elements
Version 4.1

2062

Example – strings in variables of a specified length
In this example, the function is used to find the length of various strings that have been assigned to
variables with a specified length. The result is written to the log.

DATA _NULL_;
 LENGTH twsl twsln $10;
 twsl = "Bicycle";
 result = LENGTH(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsl = "Twenty-three bicycles";
 result = LENGTH(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsln="";
 result = LENGTH(twsln);
 ps = QUOTE(twsln);
 PUT "The string is now: " ps " and its length is: " result;

 RUN;

This produces the following output:

The string is now: "Bicycle " and its length is: 7
The string is now: "Twenty-thr" and its length is: 10
The string is now: " " and its length is: 1

Because this function excludes trailing spaces, the padding spaces applied to the strings to make
them match the length specified for the variable are ignored. However, the string that is longer than the
specified variable length has been truncated, and the length returned by the function is the same as the
variable length.

Contrast this result to that obtained with LENGTHC (page 2062), LENGTHM (page 2064) and
LENGTHN (page 2066).

LENGTHC

Returns the storage length of a character string. If the string is null, 1 is returned.

LENGTHC (string)

If a number is specified as an argument, the value 12 is returned, and a message written to the log
noting that numeric values have been converted to character values.

The storage length is set when the program is compiled. If you explicitly set the length of the variable
using LENGTH before assigning a value to it, then the value returned will be the length specified by
LENGTH. If you assign the value before specifying LENGTH, the value returned will be length of the
string (excluding trailing spaces). See examples below.

Reference for language elements
Version 4.1

2063

Return type: Numeric

string

Type: Character

A string.

Basic example
In this example, the function is used to find the length of various strings. The result is written to the log.

DATA _NULL_;
 number = 1234567123456789;
 result1 = LENGTHC('Magnificent Bike Company Bike A 1 2 50 London ');
 result2 = LENGTHC(' ');
 result3 = LENGTHC('');
 result4 = LENGTHC(number);

 PUT "The length of the string is: " result1;
 PUT "The length of the string is: " result2;
 PUT "The length of the string is: " result3;
 PUT "The length of the string is: " result4;
RUN;

This produces the following output:

The length of the string is: 51
The length of the string is: 4
The length of the string is: 1
The length of the string is: 12

• The first use of the function returns the value 51, which is the length of the string including trailing
spaces.

• The second use of the function returns the value 4, which is the number of (trailing) spaces in the
string.

• The third use of the function returns the value 1, because the string is a null.
• The fourth use of the function returns the value 12, because the string contains a numeric value.

A message is written to the log noting that the numeric values have been converted to character
values.

Reference for language elements
Version 4.1

2064

Example – strings in variables of a specified length
In this example, the function is used to find the length of various strings that have been assigned to
variables with a specified length. The result is written to the log.

DATA _NULL_;
 twslt = "Bicycle";
 LENGTH twsl twsln twslt $10;
 twsl = "Bicycle";
 result = LENGTHC(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsl="Twenty-three bicycles";
 result = LENGTHC(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsln="";
 result = LENGTHC(twsln);
 ps = QUOTE(twsln);
 PUT "The string is now: " ps " and its length is: " result;

 result = LENGTHC(twslt);
 ps = QUOTE(twslt);
 PUT "The string is now: " ps " and its length is: " result;
 RUN;

This produces the following output:

The string is now: "Bicycle " and its length is: 10
The string is now: "Twenty-thr" and its length is: 10
The string is now: " " and its length is: 10
The string is now: "Bicycle" and its length is: 7

Strings shorter than the variable length have been padded with spaces, and strings longer than the
variable length have been truncated. In this example, therefore, the result returned is 10 for each string,
because both variables have been assigned a length of ten characters and padding spaces are not
ignored.

The variable twslt is set before its length is specified in the LENGTH statement; therefore its length is
returned as 7, the number of characters in the string.

Contrast this result to that obtained with LENGTH (page 2060), LENGTHM (page 2064) and
LENGTHN (page 2066).

LENGTHM

Returns the length of a string, including any leading or trailing spaces. If the string is null 1 is returned.

LENGTHM (string)

Reference for language elements
Version 4.1

2065

If a number is specified as an argument, a value of 12 is returned, and a message written to the log
noting that numeric values have been converted to character values.

Return type: Numeric

string

Type: Character

The string to be examined.

If the length of a variable has been specified, and the string to be checked is contained in that variable,
then the number returned will correspond to the length of the variable.

Basic example
In this example, the function is used to return results for various strings. The result is written to the log.

DATA _NULL_;
 number = 1234567123456789;
 result1 = LENGTHM(' Magnificent Bike Company Bike A 1 2 50 London ');
 result2 = LENGTHM(' ');
 result3 = LENGTHM('');
 result4 = LENGTHM(number);

 PUT "The number of bytes occupied by the string is: " result1;
 PUT "The number of bytes occupied by the string is: " result2;
 PUT "The number of bytes occupied by the string is: " result3;
 PUT "The number of bytes occupied by the string is: " result4;
RUN;

This produces the following output:

The number of bytes occupied by the string is: 55
The number of bytes occupied by the string is: 4
The number of bytes occupied by the string is: 1
The number of bytes occupied by the string is: 12

In this example:

• The first use of the function returns the value 55, which is the number of bytes of memory occupied
by the string; the string in this case includes leading and trailing spaces.

• The second use of the function returns the value 4, which is the number of bytes of memory
occupied by the string.

• The third use of the function returns the value 1, as the string contains a null.
• The fourth use of the function returns the value 12, because the string contains a numeric value.

A message is written to the log noting that the numeric values have been converted to character
values.

Reference for language elements
Version 4.1

2066

Example – strings in variables of a specified length
In this example, the function is used to return results for various strings that have been assigned to
variables with a specified length. The result is written to the log.

DATA _NULL_;
 twslt = "Bicycle";
 LENGTH twsl twsln twslt $10;
 twsl = "Bicycle";
 result = LENGTHM(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsl="Twenty-three bicycles";
 result = LENGTHM(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsln="";
 result = LENGTHM(twsln);
 ps = QUOTE(twsln);
 PUT "The string is now: " ps " and its length is: " result;

 result = LENGTHM(twslt);
 ps = QUOTE(twslt);
 PUT "The string is now: " ps " and its length is: " result;

 RUN;

This produces the following output:

The string is now: "Bicycle " and its length is: 10
The string is now: "Twenty-thr" and its length is: 10
The string is now: " " and its length is: 10
The string is now: "Bicycle" and its length is: 7

Strings shorter than the variable length have been padded with spaces, and strings longer than the
variable length have been truncated. In this example, therefore, the result returned is 10 for each string,
because both variables have been assigned a length of ten characters and padding spaces are not
ignored.

The variable twslt is set before its length is specified in the LENGTH statement; therefore its length is
returned as 7, the number of characters in the string.

Contrast this result to that obtained with LENGTH (page 2060), LENGTHC (page 2062) and
LENGTHN (page 2066).

LENGTHN

Returns the length of a character string, including leading spaces but excluding trailing spaces, and
returns 0 (zero) if the string is null ('') or contains only spaces.

LENGTHN (string)

Reference for language elements
Version 4.1

2067

If a number is specified as an argument, a value of 12 is returned, and a message written to the log
noting that numeric values have been converted to character values.

Return type: Numeric

string

Type: Character

The string for which the length is required.

If the length of a variable has been specified, and the string to be checked is contained in that variable,
then the length returned will be length of the variable minus any leading spaces. See below for an
example.

Basic example
In this example, the function is used to find the length of various strings. The result is written to the log.

DATA _NULL_;
 number = 1234567123456789;
 result1 = LENGTHN(' Magnificent Bike Company Bike A 1 2 50 London ');
 result2 = LENGTHN(' ');
 result3 = LENGTHN('');
 result4 = LENGTHN(number);

 PUT "The length of the string is: " result1;
 PUT "The length of the string is: " result2;
 PUT "The length of the string is: " result3;
 PUT "The length of the string is: " result4;
RUN;

This produces the following output:

The length of the string is: 51
The length of the string is: 0
The length of the string is: 0
The length of the string is: 12

In this example:

• The first use of the function returns the value 51, which is the length of the string including leading
spaces but excluding trailing spaces.

• The second use of the function returns the value 0, as the string consists only of spaces.
• The third use of the function returns the value 0, as the string consists of a null.
• The fourth use of the function returns the value 12, because the string contains a numeric value.

A message is written to the log noting that the numeric values have been converted to character
values.

Reference for language elements
Version 4.1

2068

Example – strings in variables of a specified length
In this example, the function is used to find the length of various strings that have been assigned to
variables with a specified length. The result is written to the log.

DATA _NULL_;
 LENGTH twsl twsln $15;
 twsl="Bicycle";
 result = LENGTHN(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsl=" Bicycle ";
 result = LENGTHN(twsl);
 ps = QUOTE(twsl);
 PUT "The string is now: " ps " and its length is: " result;

 twsln="";
 result = LENGTHN(twsln);
 ps = QUOTE(twsln);
 PUT "The string is now: " ps " and its length is: " result;
 RUN;

This produces the following output:

The string is now: "Bicycle " and its length is: 7
The string is now: " Bicycl" and its length is: 10
The string is now: " " and its length is: 0

This function includes leading spaces from the count, but ignores trailing spaces, including the padding
spaces applied to the strings to make them match the length specified for the variable. However, the
string that is longer than the specified variable length has been truncated, and the length returned by
the function is the same as the variable length.

Contrast this result to that obtained with LENGTH (page 2060), LENGTHC (page 2062) and
LENGTHM (page 2064).

VERIFY

Returns the position of the first character of the source string that does not match a specified substring.

VERIFY (string ,

,

substring)

If the source string contains none of the specified substrings, 0 (zero) is returned.

Return type: Numeric

string

Type: Character

The string to be searched for specified substrings.

Reference for language elements
Version 4.1

2069

substring

Type: Character

A substring to be found in source.

Example – verifying string contains single characters
In each of the following examples, the result is written to the log.

In this example, the function searches for the character a.

DATA _NULL_;
 result = VERIFY('aaabbb', 'a');
 PUT 'The character is first NOT found at position: ' result;
RUN;

This produces the following output:

The character is first NOT found at position: 4

In this example, the function searches for the character b.

DATA _NULL_;
 result = VERIFY('aaabbb', 'b');
 PUT 'The character is first NOT found at position: ' result;
RUN;

This produces the following output:

The character is first NOT found at position: 1

In this example, the function searches for the characters a and b .

DATA _NULL_;
 result1 = VERIFY('aaabbb', 'a','b');
 PUT 'The character is first NOT found at position: ' result1;
RUN;

This produces the following output:

The character is first NOT found at position: 0

The function returns 0 (zero) in this instance as there is nowhere in the string where one of the
characters does not exist.

Example – verifying string contains substrings
In each of the following examples, the result is written to the log.

In this example, the function searches for the string BigCat.

DATA _NULL_;
 result = VERIFY('BigCatLeopard', 'BigCat');
 PUT 'The string is first NOT found at position: ' result;
RUN;

Reference for language elements
Version 4.1

2070

This produces the following output:

The string is first NOT found at position: 7

In this example, the function searches for the strings Big and Cat.

DATA _NULL_;
 result = VERIFY('BigCatLeopard', 'Big', 'Cat');
 PUT 'The strings are first NOT found at position: ' result;
RUN;

This produces the following output:

The strings are first NOT found at position: 7

Character position seven is the first at which neither of the strings Big and Cat is found.

In this example, the function searches for the strings Big, Cat and Leopard. The result is written to
the log.

DATA _NULL_;
 result = VERIFY('BigCatLeopard', 'Big', 'Cat', 'Leopard');
 PUT 'The strings are first NOT found at position: ' result;
RUN;

This produces the following output:

The strings are first NOT found at position: 0

The function returns 0 as there is no position in the source strings at which one of the strings is not
found.

Finally, in the following example the function searches for the string Leopard:

DATA _NULL_;
 result = VERIFY('BigCatLeopard', 'Leopard');
 PUT 'The strings are first NOT found at position: ' result;
RUN;

This produces the following output:

The string is first NOT found at position: 1

The function returns 1 because that is the first position at which Leopard is not found.

WHICHC

Returns the position of the first string in a list of strings that matches a specified string.

WHICHC (string ,

,

comp- string)

Reference for language elements
Version 4.1

2071

Identifies the first string in a list of strings that matches the string you specify, and returns as a number
the ordinal position of the matched string in the list of strings. The strings for which to search are
specified as one or more comma-separated strings. For example, if the list of strings has four items,
and the third string matches, then 3 is returned. If no matching string is found, 0 is returned.

Return type: Numeric

string

Type: Character

The string you want to find in a list of other strings.

comp-string

Type: Character

A string to be matched with string.

Example
In this example, the function is used to find the string Bike in a list of strings. The result is written to the
log.

DATA _NULL_;
 result1 = WHICHC('Bike','Bice', 'Boke', 'Bike');
 PUT "The string is number " result1 "in the list";
RUN;

This produces the following output:

The string is number 3 in the list

Modifying strings, characters and numerics
Return a source string modified in a particular way.

A specified string can be modified in various ways, depending on the function selected. You can
add quotes to or remove them from strings, repeat the string, convert specified characters to other
characters, and so on.

BYTE ... 2073
Returns the result of converting a specified decimal value to a character. You might need to
do this if, for example, data contains decimal values for characters rather than the characters
themselves.

COMPRESS .. 2074
Returns the string that is the result of removing specified characters from a source string. This
function can be used to remove spaces, separators, tabs, numbers, and so on, depending on
modifiers you specify in the function.

Reference for language elements
Version 4.1

2072

DEQUOTE ...2077
Returns the string that results from stripping quotation marks from a specified string.

KCOMPRESS ..2078
Returns the string that is the result of removing specified characters from a source string
comprised of DBCS characters.

KCVT ... 2080
Returns the string that results from converting a source string encoded in one character set to
another character set.

KREVERSE ... 2081
Returns a string that is the reverse of the specified string of DBCS characters.

KTRANSLATE ... 2082
Returns the string that results from changing a specified character in a DBCS string.

KTRUNCATE ...2083
Returns the string that results from truncating a specified DBCS string at a specified position.

KUPDATE ..2084
Returns the string that results from replacing a substring at a specified position in a DBCS string.

KUPDATEB ... 2085
Return the string that results from replacing a substring at a specified byte position in a DBCS
string.

MISSING ... 2086
Returns a flag that indicates whether a string is missing a value.

QUOTE ..2087
Returns the string that results from wrapping a specified string in quotation marks.

REPEAT .. 2088
Returns the string that results from repeating the specified character or string a specified number
of times.

REVERSE ... 2089
Returns the string that results from reversing a specified string.

SOUNDEX ...2089
Returns the soundex equivalent of a specified string.

TRANSLATE ... 2091
Returns a string that consists of a source string that has had all instances of a specified string
translated to another specified character. You can change more than one character.

TRANSTRN ... 2092
Replace a substring in a source string with another substring.

TRANTAB ..2093
Returns strings modified by translation tables.

TRANWRD .. 2095
Replace a word in a source string with another word.

Reference for language elements
Version 4.1

2073

CALL MISSING ... 2096
Assigns numeric missing values to numeric values, and spaces to string values. By default,
numeric missing values are represented by a full stop (.). String values are replaced with the
same number of spaces as there are characters in the original string.

CALL SORTC ..2097
Sorts a list of strings.

BYTE

Returns the result of converting a specified decimal value to a character. You might need to do this if,
for example, data contains decimal values for characters rather than the characters themselves.

BYTE (n)

Return type: Character

n

Type: Numeric

An unsigned decimal number. If n is not a decimal number, an error occurs.

Example
In this example, the SUBSTR function is used to search the string for a number at the specified location,
and returns the result to NUM. The BYTE function is then used to convert that number. The result is
written to the log.

DATA _NULL_;
 num=SUBSTR("101 01adx", 1,3);
 result = BYTE(num);
 PUT "Converted value is: " result;
RUN;

This produces the following output:

Converted value is: e

The function converts the value found in num, which is 101, to a character, which will be e in the US
English ASCII code page.

Reference for language elements
Version 4.1

2074

COMPRESS

Returns the string that is the result of removing specified characters from a source string. This function
can be used to remove spaces, separators, tabs, numbers, and so on, depending on modifiers you
specify in the function.

COMPRESS (string ,

characters- to- remove , modif iers

)

Return type: Character

string

Type: Character

The string to be examined.

characters-to-remove
Optional argument

Type: Character

A list of characters to be removed from the string. For example, setting this argument to
'aeiou' would remove all vowels from the string. If you omit this argument, only those
characters specified by by modifiers are removed. If you set this argument to null (''), all spaces
(but not tabs) are removed. If you omit this argument but want to specify the modifiers argument,
you must insert the associated separator.

modifiers
Optional argument

One or more characters that specify how the output should be modified. You can specify more
than one modifier. For example, you can specify 'C', or 'CAS'. The following modifiers are
available:

"A"

All alphabetic characters will be removed

"C"

All control characters are removed.

"D"

All decimal numbers (0 through 9) are removed.

"F"

All characters considered a valid character for the first position in a variable name will be
removed.

Reference for language elements
Version 4.1

2075

"G"

All graphics characters are removed.

"H"

All spaces including tabs are removed.

"I"

Ignore case of characters to remove. For example, if you specify B in
characters-to-remove, and then specify this modifier, both B and b will be removed.

"K"

Causes modifiers to act in the opposite way. So, for example, if L is set, instead of
removing all lower-case characters, the function will instead remove all uppercase
characters.

"L"

Removes all lower-case alphabetic characters.

"N"

A character considered a valid character for a variable name will be considered a delimiter.

"O"

Store the list of characters to be removed the first time the function is called. This can
increase processing efficiency if there are multiple calls to the function.

"P"

Removes all punctuation marks.

"S"

Removes all spaces, including tabs.

"T"

If you specify characters-to-remove other than spaces (the default), any trailing spaces at
the end of the value specified for string are retained. To remove these spaces, use this
modifier. For example:

DATA _NULL_;
 result = QUOTE(compress('London ','L','T'));
 PUT result;
RUN;

returns "ondon"; without the modifier, "ondon " would have been returned.

"U"

Removes all upper-case alphabetic characters.

Reference for language elements
Version 4.1

2076

"W"

Removes all printing characters.

"X"

Removes all strings/characters that comprise hexadecimal numbers (0-9, a-f and A-F).

Example – removing spaces
In this example, the function is used to remove spaces. The result is written to the log.

DATA _NULL_;
 result = COMPRESS('Steve Bike Company A 1 2 50 London', ' ');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: SteveBikeCompany A 1250 London

Spaces have been removed, but tabs have been retained.

Example – removing spaces and hexadecimal numbers
In this example, the function is used to compress multiple spaces to nulls, and to remove characters
that might represent hexadecimal numbers. The result is written to the log.

DATA _NULL_;
 result = COMPRESS('Steve Bike Company A 1 2 50 London', ' ', 'X');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: Stvikompny Lonon

The function has removed spaces (but retained tabs) and characters that might represent hexadecimal
numbers.

Example – upper-case characters
In this example, the function is used to compress one or more spaces to nulls, and to remove upper-
case characters. This produces the following output:

DATA _NULL_;
 result = COMPRESS('Steve Bike Company A 1 2 50 London',, 'U');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: teve ike ompany 1 2 50 ondon

Reference for language elements
Version 4.1

2077

All upper-case characters have been removed. No other characters were removed, because the second
argument (characters-to-remove) is not specified.

Example – removing specified alphabetic and upper-case characters
In this example, the function is used to remove lower-case letter e and upper-case characters. This
produces the following output:

DATA _NULL_;
 result = COMPRESS('Steve Bike Company A 1 2 50 London','e', 'U');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: tv ik ompany 1 2 50 ondon

All occurrences of the letter e have been removed, and all upper-case characters as specified by the U
option.

Example – removing multiple specified characters
In this example, the function is used to remove all vowels and all numeric characters. The result is
written to the log.

DATA _NULL_;
 result = COMPRESS('Steve Bike Company A 1 2 50 London','aeio', 'D');
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: Stv Bk Cmpny A Lndn

The letters a, e, i and o have been removed. All numeric characters have also been removed, as
specified by the D option.

DEQUOTE

Returns the string that results from stripping quotation marks from a specified string.

DEQUOTE (string)

Return type: Character

string

Type: Character

The string to be stripped.

Reference for language elements
Version 4.1

2078

Example
In this example, the function is used to strip the opening and closing quotation marks from the source
string to the function. The result is written to the log.

DATA _NULL_;
 result = DEQUOTE("'Magnificent Bike Company A 1 2 50 London'");
 PUT result;
RUN;

This produces the following output:

Magnificent Bike Company A 1 2 50 London

This is the original string with the quotation marks removed.

KCOMPRESS

Returns the string that is the result of removing specified characters from a source string comprised of
DBCS characters.

KCOMPRESS (string1

, rem- chars

)

Removes occurrences of specified characters from a string consisting of characters from a double-
byte character set, and returns the modified string. This function can be used to remove one or more
characters you specify.

Return type: Character

string1

Type: Character

The string to be examined.

rem-chars
Optional argument

Type: Character

A list of characters or a variable containing a list of characters to be removed from source. For
example, setting this argument to '青柳鼠' would remove all occurrences of those characters
from source. If you omit this argument, all spaces and tabs are removed. If you set it to null (''),
all spaces are removed, but tabs are retained.

Reference for language elements
Version 4.1

2079

Basic example
In this example, the function is used to compress spaces to nulls. The result is written to the log. In this
example there is a tab between 猩々緋 and 青柳鼠.

DATA _NULL_;
 result = KCOMPRESS('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠');
 PUT result;
 RUN;

This produces the following output:

青碧熨斗目花色ときがら茶猩々緋青柳鼠

Spaces and tabs have been removed.

Example – removing spaces while retaining tabs
In this example, the function is used to compress multiple spaces, excluding tabs. The result is written
to the log. In this example there is a tab between 猩々緋 and 青柳鼠.

DATA _NULL_;
 result = KCOMPRESS('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠', '');
 PUT result;
RUN;

This produces the following output:

青碧熨斗目花色ときがら茶猩々緋青柳鼠

Spaces and tabs have been removed.

Example – removing spaces while retaining tabs
In this example, the function is used to compress multiple spaces, excluding tabs. The result is written
to the log. In this example there is a tab between 猩々緋 and CALL ALLPERM>青柳鼠.

DATA _NULL_;
 result = KCOMPRESS('青碧 熨斗目花色 ときがら茶 猩々緋 青柳鼠', '');
 PUT result;
RUN;

This produces the following output:

青碧熨斗目花色ときがら茶猩々緋 青柳鼠

All spaces have been removed, excluding tabs

Reference for language elements
Version 4.1

2080

Example – removing other characters
In this example, the function is used to remove other characters. The result is written to the log.

DATA _NULL_;
 result = KCOMPRESS('青碧、熨斗目花色、ときがら茶:とうきん煤竹 空五倍子色', '、:');
 PUT result;
RUN;

This produces the following output:

青碧熨斗目花色ときがら茶とうきん煤竹 空五倍子色

The commas and colon have been removed, but the space retained.

KCVT

Returns the string that results from converting a source string encoded in one character set to another
character set.

KCVT (string , from- charset , to- charset)

Return type: Character

Converts a source string from one character set to another character set, and returns the resulting
string. You must specify both the character set to be converted from and converted to.

string

Type: Character

The string to be converted.

from-charset

Type: Character

The character set of the source string.

to-charset

Type: Character

The character set to which the string will be converted.

You will need to know the character set of the source string to convert it. If you specify an unrecognised
character set for from-charset or to-charset, the function fails and an error message is written to
the log. If a character in the string cannot be mapped to another character in the to-charset, the
message WARNING: An unmappable character was encountered during character
transcoding is written to the log.

Reference for language elements
Version 4.1

2081

Example
In this example, the function is used to convert a string from the windows-1252 dataset to UTF-8. The
result is written to the log.

DATA _NULL_;
 result = QUOTE(KCVT('†‡€','windows-1252','UTF-8'));
 PUT result;
RUN;

This produces the following output:

"â€ â€¡â‚¬"

The quotation marks are added by the QUOTE function. The UTF-8 conversion cannot be rendered
correctly in WPS on Windows using the default character set.

KREVERSE

Returns a string that is the reverse of the specified string of DBCS characters.

KREVERSE (string)

Reverses a string containing characters from a double-byte character set (DBCS), and returns the
result.

Return type: Character

string

Type: Character

The string to be reversed.

Example
In this example, a string is reversed. The result is written to the log.

DATA _NULL_;
 sentence='熨斗目花色';
 result=KREVERSE(sentence);
 PUT 'The word reversed is: result;
RUN;

This produces the following output:

色花目斗熨

Reference for language elements
Version 4.1

2082

KTRANSLATE

Returns the string that results from changing a specified character in a DBCS string.

KTRANSLATE (string , from ,

,

to)

Finds all instance of a specified character in a string consisting of double-byte character set (DBCS)
characters, changes (translates) them to another specified character, and returns the modified string.
You can change more than one character.

Return type: Character

string

Type: Character

The string to be modified.

from

Type: Character

The character to convert (translate) to.

to

Type: Character

The character to convert (translate) from.

Note:
You can also specify multiple characters to change as groups of to/from arguments; for example,
KTRANSLATE(orig, '鼠青', '柳斗')

Example
In this example, the function is used to convert the characters 柳 and 斗 into 鼠 and 青. The result is
written to the log.

DATA _NULL_;
 orig = "青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶";
 result1 = KTRANSLATE(orig, '鼠', '青', '柳', '斗');
 result2 = KTRANSLATE(orig, '鼠柳', '青斗');
 PUT "Original string is: " orig;
 PUT "Transformed string is: " result1;
 PUT "Transformed string is: " result2;
RUN;

Reference for language elements
Version 4.1

2083

This produces the following output:

Original string is: 青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶
Transformed string is: 鼠碧 熨柳目花色 猩々緋 鼠柳鼠 ときがら茶
Transformed string is: 鼠碧 熨柳目花色 猩々緋 鼠柳鼠 ときがら茶

In the first translation, multiple characters to be translated have been grouped in the to and from
arguments. In the second translation, each character to translate to and from have been specified in
separate to and from arguments. The results are, however, the same.

KTRUNCATE

Returns the string that results from truncating a specified DBCS string at a specified position.

KTRUNCATE (string , length)

Truncates a string consisting of characters from a double-byte character set (DBCS) at a specified
position, and returns the truncated string.

Return type: Character

string

Type: Character

The string to be truncated.

length

Type: Numeric

The number of bytes of the string in argument, starting from the first character, to be retained.

Example
In this example, the function is used to truncate a string. The result is written to the log.

DATA _NULL_;
 result1 = KTRUNCATE('青碧 熨斗目花色 猩々緋 青柳鼠', 12);
 PUT "The truncated string is: " result1;
RUN;

This produces the following output:

The truncated string is: 青碧 熨

The resulting string retains the first four characters (including the space), which is the first twelve bytes
of the source string.

Reference for language elements
Version 4.1

2084

KUPDATE

Returns the string that results from replacing a substring at a specified position in a DBCS string.

KUPDATE (string , posit ion , n

, replacement

)

Replaces a substring in a string consisting of characters from a double-byte character set (DBCS),
with another string. The replacement starts at a specified point in the string, and replaces a specified
number of characters. The number of characters replaced do not have to match the length of the
replacement string.

Return type: Character

string

Type: Character

The source string.

position

Type: Numeric

The character position in source at which insert replacement. If this is beyond the end of source,
replacement is appended to source.

n

Type: Character or numeric value

The number of characters in source to be replaced.

replacement
Optional argument

Type: Character

The string to be inserted into source.

Example
In this example, the function is used to insert the string テレビ starting at the fourteenth character in the
source string. The result is written to the log.

DATA _NULL_;
 result = KUPDATE("青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶", 14, 3, 'テレビ');
 PUT "Modified output: " result;
RUN;

In this example,

Modified output: 青碧 熨斗目花色 猩々緋 テレビ ときがら茶

Reference for language elements
Version 4.1

2085

KUPDATEB

Return the string that results from replacing a substring at a specified byte position in a DBCS string.

KUPDATEB (string , posit ion , n

, replacement

)

Replaces a substring in a string consisting of characters from a double-byte character set with another
string. The replacement starts at a specified byte in the string, and optionally replaces a specified
number of characters. The number of characters replaced do not have to match the length of the
replacement string.

Return type: Character

string

Type: Character

The source string.

position

Type: Numeric

The byte in source at which to insert replacement. If this is beyond the end of source,
replacement is appended to source.

n

Type: Character or numeric value

The number of bytes in source to be replaced.

replacement
Optional argument

Type: Character

The string to be inserted into source.

Example
In this example, the function is used to insert the string テレビ starting at the 34th byte in the string. The
result is written to the log.

data example;
 result = KUPDATEB("青碧 熨斗目花色 猩々緋 青柳鼠 ときがら茶", 34, 10, 'テレビ');
 PUT "Modified output: " result;
RUN;

This produces the following output:

Modified output: 青碧 熨斗目花色 猩々緋 テレビ ときがら茶

Reference for language elements
Version 4.1

2086

MISSING

Returns a flag that indicates whether a string is missing a value.

MISSING (argument)

Examines the argument provided, which can be a number, string or variable, and flags whether it is,
or contains, something other than null, only spaces or a missing value. You can use this function, for
example, to ensure an observation or variable contains meaningful data.

Return type: Numeric

If a string contains null (''), only spaces, or a missing value, then 1 is returned. If a string contains any
other characters, then 0 is returned.

argument

Type: Character or numeric value

The string to be examined.

Example
In this example, the function is used to examine various strings. The result is written to the log.

DATA _NULL_;
 num=num2-3;
 result1 = MISSING('');
 result2 = MISSING(' ');
 result3 = MISSING(' h ');
 result4 = MISSING(5);
 result5 = MISSING(num);

 PUT result1;
 PUT result2;
 PUT result3;
 PUT result4;
 PUT result5;
RUN;

This produces the following output:

1
1
0
0
1

In this example:

• result1 is 1, as the first string is null.
• result2 is 1, as the second string consists entirely of spaces.
• result3 is 0, as the string contains a character that is not null or space.

Reference for language elements
Version 4.1

2087

• result4 is 0, as the value is numeric.
• result5 is 1, as the value is missing because the uninitialised variable num2 was used in the

expression.

QUOTE

Returns the string that results from wrapping a specified string in quotation marks.

QUOTE (string

, type

)

By default, double quotation marks are added to the string. You can specify single quotation marks if
required.

Return type: Character

string

Type: Character

The string to which quotation marks will be applied.

type
Optional argument

Type: Character

Specifies the type of quotation mark. Enter "'" for single quotation marks.

Example – using default quotation marks
In this example, the string is wrapped in default double quotation marks. The result is written to the log.

DATA _NULL_;
 sentence='London Bikes';
 result=QUOTE(sentence);
 PUT "Quoted string: " result;
RUN;

This produces the following output:

Quoted string: "London Bikes"

Reference for language elements
Version 4.1

2088

Example – using single quotation marks
In this example, the string is wrapped in single double quotation marks. The result is written to the log.

DATA _NULL_;
 sentence='London Bikes';
 result=quote(sentence, "'");
 PUT "Quoted string: " result;
RUN;

This produces the following output:

Quoted string: 'London Bikes'

REPEAT

Returns the string that results from repeating the specified character or string a specified number of
times.

REPEAT (string , n)

Return type: Character

string

Type: Character

A character or a string to be repeated.

n

Type: Numeric

An integer that specifies the number of repetitions.

The result returned is a string containing the specified number n of instances of the character or string,
plus the initial character or string. Therefore, if n is 2, for example, there will be three instances of the
character or string. The characters or strings returned are concatenated with the original. See the
example below for more detail.

Example
In this example, a string is repeated three times. The result is written to the log.

DATA _NULL_;
 sentence='London Calling';
 result=REPEAT(sentence, 3);
 PUT "Resulting string is: " result;
RUN;

Reference for language elements
Version 4.1

2089

This produces the following output:

Resulting string is: London CallingLondon CallingLondon CallingLondon Calling

There are three repeated strings concatenated with the original string, giving a total of four instances of
the original string.

REVERSE

Returns the string that results from reversing a specified string.

REVERSE (string)

Return type: Character

string

Type: Character

The string to be reversed.

Example
In this example, a string is reversed. The result is written to the log.

DATA _NULL_;
 sentence='London Calling';
 result=REVERSE(sentence);
 PUT "Reversed string is: " result;
RUN;

This produces the following output:

Reversed string is: gnillaC nodnoL

SOUNDEX

Returns the soundex equivalent of a specified string.

SOUNDEX (string)

Soundex is an algorithm that enables words that sound alike to be represented in a similar way, despite
differences in spelling. For example, Smith, Smyth and Smythe can all be represented by the soundex
value, S53.

Reference for language elements
Version 4.1

2090

The soundex algorithm retains the first letter of a word (converting it to upper case, if necessary), drops
all other occurrences of the letters AEIOUYHW, and then assigns a numeric value to other letters. If
there are two or more adjacent letters with the same number only the first number is retained; letters
with the same number separated by H or W are coded as a single number; letters with the same
number separated by a vowel are coded twice. For more information on the soundex algorithm, see the
soundex coding rules at the National Archives and Records Administration Web site.

Note:
The soundex algorithm truncates the result at four characters, and pads results shorter than four
characters with zeros. The SOUNDEX function returns all characters formed by the algorithm through to
the end of the string, and does not pad returned values shorter than four characters with zeros; if you
need to make the value returned by SOUNDEX match the soundex algorithm, you will have to perform
further operations, such as using SUBSTR to return only the first four characters.

Return type: Character

string

Type: Character

The source string.

Example
In this example, the function is used to convert various strings to soundex form. The result is written to
the log.

DATA _NULL_;
 result1 = SOUNDEX('Bike');
 result2 = SOUNDEX('Boke');
 result3 = SOUNDEX('Orange');
 result4 = SOUNDEX('Oranj');
 result5 = SOUNDEX('Orange Juice');

 PUT result1;
 PUT result2;
 PUT result3;
 PUT result4;
RUN;

This produces the following output:

B2
B2
O652
O652
O65222

http://www.archives.gov/research/census/soundex.html

Reference for language elements
Version 4.1

2091

TRANSLATE

Returns a string that consists of a source string that has had all instances of a specified string
translated to another specified character. You can change more than one character.

TRANSLATE (string , to ,

,

from)

Return type: Character

string

Type: Character

The string in which character changes are required.

to

Type: Character

One or more characters to convert (translate) to.

from

Type: Character

One or more characters to convert (translate) from.

Note:

You can also specify multiple characters to change as pairs of to/from arguments; for example:

translate("Bike Company', 'a', 'o', 'u', 'i')

Example
In this example, the function is used to convert the letters a and i into o and u. The result is written
to the log.

DATA _NULL_;
 result = TRANSLATE("Magnificent Bike Company", 'ou', 'ai');
 PUT result;
RUN;

This produces the following output:

Mognufucent Buke Compony

Reference for language elements
Version 4.1

2092

TRANSTRN

Replace a substring in a source string with another substring.

TRANSTRN (string , from , to)

Finds a specified substring in a source string, changes (translates) all instances of it to a specified
substring, and returns the modified source string.

Return type: Character

string

Type: Character

The string which contains one or more substrings to be changed.

from

Type: Character

The substring to replace.

to

Type: Character

The replacement substring. A null (zero length string) can be used as the replacement string.

Note:
The only difference between TRANWRD and TRANSRTN is in how they handle a null (empty) string
specified in the to argument. With TRANSWRD, if to is null a space is used instead.

The string provided in from must match a substring in the source string exactly for a replacement to be
made.

Example
In this example, the substring Bike is replaced with Car. The result is written to the log.

DATA _NULL_;
 result1=transtrn('Magnificent Bike Company', 'Bike', 'Car');
 result2=transtrn('Magnificent Bike Company', 'Bike', trimn(''));
 PUT result1;
 PUT result2;
RUN;

The first use of the function returns the result:

Magnificent Car Company

Reference for language elements
Version 4.1

2093

Note:
If you had specified bike as the from string, no changes would have been made, as bike would not
match Bike.

The second use of the function returns the result:

Magnificent Company

In this case, Bike has been replaced with the null string ('').

Note:
The example uses TRIMN to ensure any spaces are removed from the null string, as null strings are
expanded to a space in the DATA step.

TRANTAB

Returns strings modified by translation tables.

TRANTAB (string , t rantab- name

, table- number

)

Return type: Character

string

Type: Character

The string to be modified

trantab-name

Type: Character

The name of a catalog containing the translation table.

table-number
Optional argument

Type: Numeric

The number of a specific table within catalogue.

Reference for language elements
Version 4.1

2094

Example
In this example, the function is used to modify a string using tables. The tables are first set up using
PROC TRANTAB and PROC CATALOG. The TRANTAB function is then used to modify a string. The result
is written to the log.

/* Create an example TRANTAB.
 Table 1 decrements every byte.
 Table 2 increments every byte.
*/
PROC TRANTAB table=WPSTEST;
REPLACE 0
 'FF000102030405060708090A0B0C0D0E'x
 '0F101112131415161718191A1B1C1D1E'x
 '1F202122232425262728292A2B2C2D2E'x
 '2F303132333435363738393A3B3C3D3E'x
 '3F404142434445464748494A4B4C4D4E'x
 '4F505152535455565758595A5B5C5D5E'x
 '5F606162636465666768696A6B6C6D6E'x
 '6F707172737475767778797A7B7C7D7E'x
 '7F808182838485868788898A8B8C8D8E'x
 '8F909192939495969798999A9B9C9D9E'x
 '9FA0A1A2A3A4A5A6A7A8A9AAABACADAE'x
 'AFB0B1B2B3B4B5B6B7B8B9BABBBCBDBE'x
 'BFC0C1C2C3C4C5C6C7C8C9CACBCCCDCE'x
 'CFD0D1D2D3D4D5D6D7D8D9DADBDCDDDE'x
 'DFE0E1E2E3E4E5E6E7E8E9EAEBECEDEE'x
 'EFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFE'x;
SWAP;
REPLACE 0
 '0102030405060708090A0B0C0D0E0F10'x
 '1112131415161718191A1B1C1D1E1F20'x
 '2122232425262728292A2B2C2D2E2F30'x
 '3132333435363738393A3B3C3D3E3F40'x
 '4142434445464748494A4B4C4D4E4F50'x
 '5152535455565758595A5B5C5D5E5F60'x
 '6162636465666768696A6B6C6D6E6F70'x
 '7172737475767778797A7B7C7D7E7F80'x
 '8182838485868788898A8B8C8D8E8F90'x
 '9192939495969798999A9B9C9D9E9FA0'x
 'A1A2A3A4A5A6A7A8A9AAABACADAEAFB0'x
 'B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0'x
 'C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0'x
 'D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0'x
 'E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0'x
 'F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF00'x;
SWAP;
SAVE BOTH;
RUN;

/* Modify the catalog description of the new trantab */
PROC CATALOG c=wpsuser.profile entrytype=trantab;
MODIFY WPSTEST(description='Decrement/Increment order');
RUN;

/* Modify a string using the tables of the trantab. */
DATA _NULL_;
 s = '123456789BCDEFGbcdefg';
 s1 = TRANTAB(s, 'WPSTEST', 1);

Reference for language elements
Version 4.1

2095

 s2 = TRANTAB(s, 'WPSTEST', 2);
 s3 = TRANTAB(s1, 'WPSTEST', 2);
 PUT "All characters decreased one step from original: " s1;
 PUT "All characters increased one step from original: " s2;
 PUT "Modified string decreased one step (back to original): " s3; ;
RUN;

This produces the following output:

All characters decreased one step from original: 012345678ABCDEFabcdef
All characters increased one step from original: 23456789:CDEFGHcdefgh
Modified string decreased one step (back to original): 123456789BCDEFGbcdefg

TRANWRD

Replace a word in a source string with another word.

TRANWRD (string , from , to)

Finds a specified word in a source string, changes all instances of it to a specified word, and returns the
modified source string.

Note:
The only difference between TRANWRD and TRANSTRN is in how they handle a null (empty) string
specified in the to argument. With TRANSTRN, to can be zero length (null).

Return type: Character

string

Type: Character

The string which contains one or more word to be changed.

from

Type: Character

The word to replace.

to

Type: Character

The replacement word. If this argument is null, a space is used as the replacement string.

The word provided in from must match a substring in the source string exactly for a replacement to be
made.

Reference for language elements
Version 4.1

2096

Example
In this example,the word Bike is replaced with other strings. The result is written to the log.

DATA _NULL_;
 a='';
 result1=tranwrd('Magnificent Bike Company', 'Bike', 'Car');
 result2=tranwrd('Magnificent Bike Company', 'Bike', trimn(a));
 PUT result1;
 PUT result2;
RUN;

The first use of the function returns the result:

Magnificent Car Company

Note:
If you had specified bike as the from string, no changes would have been made, as bike would not
match Bike.

The second use of the function returns the result:

Magnificent Company

In this case, Bike has been replaced with a ('').

Note:
TRIMN is used to ensure any spaces are removed from the null string; this example demonstrates that
the null string is replaced by a null in the result of the TRANWRD function.

CALL MISSING

Assigns numeric missing values to numeric values, and spaces to string values. By default, numeric
missing values are represented by a full stop (.). String values are replaced with the same number of
spaces as there are characters in the original string.

CALL MISSING (
,

value

) ;

value
Optional argument

Type: Character or numeric value

The argument to which a missing value is to be applied.

Reference for language elements
Version 4.1

2097

Example
In this example, the function is used to set various values with a corresponding missing value. The
result is written to the log.

DATA _NULL_;
 a = 5;
 b = 6;
 CALL MISSING(a,b);
 PUT a;
 PUT b;
 c = 'London';
 d = 'Bike';
 CALL MISSING(c,d);
 result1=QUOTE(c);
 result2=QUOTE(d);
 PUT result1;
 PUT result2;
RUN;

This produces the following output:

.

.
" "
" "

In the first CALL MISSING, the numeric values 5 and 6 are both replaced by the numeric missing value
. (full stop). In the second CALL MISSING, the string values London and Bike have been replaced by
spaces; these strings have the same length as the orginal string. The QUOTE function has been used to
wrap the strings in quotation marks, so that the spaces can be seen.

CALL SORTC

Sorts a list of strings.

CALL SORTC (
,

string

) ;

Sorts a list of strings, presented as arguments, into alphabetic order. The contents of the arguments are
changed to match the sort order.

string
Optional argument

Type: Character

An argument containing a string to be sorted.

Reference for language elements
Version 4.1

2098

Basic example
In this example, the function is used to sort a list of strings. The result is written to the log.

DATA _NULL_;
 LENGTH c1 c2 c3 $ 11;
 c1 = 'Magnificent';
 c2 = 'London';
 c3 = 'Bikes';
 CALL SORTC(c1,c2,c3);
 PUT c1 " " c2 " " c3;
RUN;

This produces the following output:

Bikes London Magnificent

Example – sorting array of strings
In this example, the function is used to sort the strings in an array. The result is written to the log.

DATA _NULL_;
 ARRAY jj(12) $10 ('jack' 'jill'
 'janet' 'john'
 'humpty' 'dumpty'
 'tom' 'jerry'
 'captain' 'pugwash'
 'black' 'pig');
 CALL SORTC(of jj(*));
 PUT jj(*);
RUN;

This produces the following output:

black captain dumpty humpty jack janet jerry jill john pig pugwash tom

Name literal check and manipulation
Check whether a string is a valid variable name, and convert strings to name literals.

NLITERAL ... 2099
Returns the string that results from converting a specified string to a name literal.

NVALID ..2099
Returns a value that indicates whether a specified string is a valid variable name.

Reference for language elements
Version 4.1

2099

NLITERAL

Returns the string that results from converting a specified string to a name literal.

NLITERAL (string)

If the specified variable does not have the format of a variable name, the source string is wrapped in
double quotation marks and appended with the N character. If it does have the format of a valid variable
name, the string is returned unchanged.

Return type: Character

string

Type: Character

The string to be converted.

Example
In this example, the function converts two strings to name literals. The result is written to the log.

DATA _NULL_;
 result1 = NLITERAL('text');
 result2 = NLITERAL('1text');
 PUT result1;
 PUT result2;
RUN;

This produces the following output:

text
"1text"N

NVALID

Returns a value that indicates whether a specified string is a valid variable name.

NVALID (string

, check- rule

)

Return type: Numeric

If the string is a valid name, 1 is returned; 0 is returned otherwise.

string

Type: Character

Reference for language elements
Version 4.1

2100

The string to be analyzed.

check-rule
Optional argument

Specifies how the string should be checked.

"ANY"

Any characters are accepted.

"V7"

A strict interpretation of validity in which strings must meet rules the for variable names
introduced at Version 7 of the language of SAS.

Example – valid variable name
In this example, the function checks whether a string is a valid variable name, and returns a value
indicating whether it is or not. The result is written to the log.

DATA _NULL_;
 b = 'string1';
 result = NVALID(b);
 PUT "Is it a valid variable name? " result;
RUN;

This produces the following output:

Is it a valid variable name? 1

In this example, string1 is a valid variable name.

Example – invalid variable name
In this example, the function checks whether a string is a valid variable name, and returns a value
indicating whether it is or not. The result is written to the log.

DATA _NULL_;
 b = '1string';
 result = NVALID(b);
 PUT "Is it a valid variable name? " result;
RUN;

This produces the following output:

Is it a valid variable name? 0

In this case, 1string is an invalid variable name.

Reference for language elements
Version 4.1

2101

Example – using ANY to allow invalid variable names
In this example, the function checks whether a string is a valid variable name, and returns a value
indicating whether it is or not. The result is written to the log.

DATA _NULL_;
 b = '1string';
 result = NVALID(b, 'ANY');
 PUT "Is it a valid variable name? " result;
RUN;

This produces the following output:

Is it a valid variable name? 1

Although 1string is an invalid variable name, the ANY argument allows any characters to be
accepted as valid.

Remove spaces from a source string
Removes spaces from a specified string.

You can compress multiple spaces to single spaces, remove leading and trailing spaces, and so on.

COMPBL ... 2102
Returns the string that results from replacing each instance of multiple consecutive spaces with a
single space. Tabs are unaffected.

LEFT ..2102
Return the string that results from removing leading (left-hand) spaces from a specified string.

KLEFT ... 2103
Returns a specified string of DBCS characters with any leading (left-hand) spaces removed.

KRIGHT ... 2104
Returns a specified string of DBCS characters with any trailing (right-hand) spaces removed.

KTRIM ... 2105
Returns the string that results from trimming trailing spaces from a string consisting of DBCS
characters.

RIGHT ... 2106
Returns a string with any trailing (right-hand) spaces removed and prepended to the left-hand
side.

STRIP .. 2107
Returns a specified string and removes any leading and trailing spaces it might have. No other
spaces are stripped.

TRIM ..2108
Returns a string that contains the source string trimmed of trailing spaces. No other spaces are
stripped.

Reference for language elements
Version 4.1

2102

TRIMN ... 2108
Returns a string that contains the source string trimmed of trailing spaces. No other spaces are
stripped. The source string can be a null string.

COMPBL

Returns the string that results from replacing each instance of multiple consecutive spaces with a single
space. Tabs are unaffected.

COMPBL (string)

Return type: Character

string

Type: Character

The string to be examined.

Example
In this example, the function is used to replace multiple consecutive spaces with single spaces. There is
a tab between 2 and 50 in the string.This produces the following output:

DATA _NULL_;
 result = COMPBL("Steve Bike Company 0 1 2 50");
 PUT "The string returned is: " result;
RUN;

This produces the following output:

The string returned is: Steve Bike Company 0 1 2 50

LEFT

Return the string that results from removing leading (left-hand) spaces from a specified string.

LEFT (string)

The spaces will be appended to the right-hand side of the source string. Whether the appended spaces
are retained with the string depends on subsequent functions and actions; see section below for
examples.

Return type: Character

Reference for language elements
Version 4.1

2103

string

Type: Character

A string from which leading spaces will be removed.

Example
In this example, the function is used to remove the leading spaces from a source string. The result is
written to the log.

The QUOTE function is used to apply quotes to the returned string, enabling you to see that spaces have
been moved to the trailing (right-hand) position. The PUT statements add the word Metal; the second
PUT shows how, in this instance, the appended spaces are lost. The third PUT statement shows the
result of concatenating the LEFT result with the string Metal; again, this demonstrates that the leading
spaces have been removed and appended as trailing spaces.

DATA _NULL_;
 text=' Bike Pedals';
 result = quote(left(text));
 result2 = left(text);
 result3 = cat(left(text),'Metal');
 PUT result 'Metal';
 PUT result2 'Metal';
 PUT result3;
RUN;

"Bike Pedals " Metal
Bike Pedals Metal
Bike Pedals Metal

KLEFT

Returns a specified string of DBCS characters with any leading (left-hand) spaces removed.

KLEFT (string)

Removes any leading spaces at the left-hand of a source string consisting of characters from a double-
byte character set (DBCS). The spaces will be appended to the right of the source; whether the
appended spaces are returned with the string depends on subsequent functions and actions; see the
section below for examples.

Return type: Character

string

Type: Character

A string from which leading spaces will be removed.

Reference for language elements
Version 4.1

2104

Example
In this example, the function is used to remove the leading spaces from a source string. The result is
written to the log. The QUOTE function is used to apply quotation marks to the returned string, enabling
you to see that spaces have been moved to the trailing (right-hand) position. The PUT statements add
the string >熨斗目花色>; the second PUT shows how in this instance the appended spaces are lost. The
third PUT statement shows the result of concatenating the LEFT result with the string >熨斗目花色>;
again, this demonstrates that the leading spaces have been removed and appended as trailing spaces.

DATA _NULL_;
 text=' 熨斗目花色';
 result = QUOTE(KLEFT(text));
 result2 = KLEFT(text);
 result3 = CAT(KLEFT(text),'熨斗目花色');
 PUT result '熨斗目花色';
 PUT result2 '熨斗目花色';
 PUT result3;
RUN;

This produces the following output:

"熨斗目花色 " 熨斗目花色
熨斗目花色 熨斗目花色
熨斗目花色 熨斗目花色

In the first result, quoting the returned string (using the QUOTE function) has retained the appended
spaces. In the second result, concatenating the strings using the PUT function has removed the
appended spaces. In the third result, concatenating strings using the CAT function has retained the
appended spaces.

KRIGHT

Returns a specified string of DBCS characters with any trailing (right-hand) spaces removed.

KRIGHT (string)

Removes any trailing spaces at the right-hand of a source string consisting of characters from a double-
byte character set (DBCS).

The spaces will be prepended at the left-hand side of the source, becoming leading spaces. Whether
the prepended spaces are retained depends on subsequent functions and actions; see the section
below for examples.

Return type: Character

string

Type: Character

The string from which trailing spaces are to be removed.

Reference for language elements
Version 4.1

2105

Example
In this example, the function is used to remove the trailing spaces from a source string. The result
is written to the log. The second PUT statement adds the word Metal; this second example shows
how the appended spaces are lost. The third PUT statement shows the result of concatenating the
RIGHT result with the string Metal; this demonstrates that the trailing spaces have been removed and
appended as leading spaces.

DATA _NULL_;
 text='猩々緋 ';
 result = KRIGHT(text);
 result1 = QUOTE(KRIGHT(text));
 result2 = CAT('熨斗目花色', KRIGHT(text));
 PUT result;
 PUT result1;
 PUT '熨斗目花色 ' result;
 PUT result2;
RUN;

This produces the following output:

猩々緋
" 猩々緋"
熨斗目花色 猩々緋
熨斗目花色 猩々緋

In the first result, the PUT has removed the prepended spaces. In the second result, quoting the
returned string (using the QUOTE function) has retained the prepended spaces. In the third and fourth
results, the concatenation of the strings has also retained the prepended spaces.

KTRIM

Returns the string that results from trimming trailing spaces from a string consisting of DBCS
characters.

KTRIM (string)

Removes trailing spaces from a source string consisting of characters from a double-byte character
set (DBCS), and returns the modified string. No other spaces are stripped. A trailing horizontal tab is
recognised as a space, and so will also be removed.

Return type: Character

string

Type: Character

The string to be stripped of trailing spaces.

Reference for language elements
Version 4.1

2106

Example
In this example, the function is used to strip spaces from a string. The trailing spaces consist of a tab
and two spaces. The result is written to the log.

DATA _NULL_;
 result= QUOTE(KTRIM(" 青碧 熨斗目花色 、 猩々緋 青柳鼠 "));
 PUT result;
RUN;

This produces the following output:

" 青碧 熨斗目花色 、 猩々緋 青柳鼠"

KTRIM has removed all trailing spaces, including tabs, while retaining leading spaces. QUOTE has
wrapped the string in double quotation marks, enabling the retained spaces to be seen.

RIGHT

Returns a string with any trailing (right-hand) spaces removed and prepended to the left-hand side.

RIGHT (string

, length

)

Whether the prepended spaces are retained, and displayed or printed, depends on subsequent
functions and actions; see the section below for examples.

Return type: Character

string

Type: Character

The string from which trailing spaces are to be removed.

length
Optional argument

Type: Numeric

Not yet available.

Reference for language elements
Version 4.1

2107

Example
In this example, the function is used to remove the trailing spaces from a source string. The result
is written to the log. The second PUT statement adds the word Metal; this second example shows
how the prepended spaces are lost. The third PUT statement shows the result of concatenating the
RIGHT result with the string Metal; this demonstrates that the trailing spaces have been removed and
prepended as leading spaces.

DATA _NULL_;
 text = 'Bike Pedals ';
 result1 = RIGHT(text);
 result2 = CAT('Metal', right(text));
 PUT result1;
 PUT 'Metal ' result;
 PUT result2;
RUN;

This produces the following output:

Bike Pedals
Metal Bike Pedals
Metal Bike Pedals

STRIP

Returns a specified string and removes any leading and trailing spaces it might have. No other spaces
are stripped.

STRIP (string)

Return type: Character

string

Type: Character

The string to be stripped of leading and trailing spaces.

Example
In this example, the function is used to strip leading and trailing spaces from a string. The result is
written to the log.

DATA _NULL_;
 result = STRIP(' London Bike Company ');
 PUT 'The space-stripped string is: ' result;
RUN;

Reference for language elements
Version 4.1

2108

This produces the following output:

The space-stripped string is: London Bike Company

TRIM

Returns a string that contains the source string trimmed of trailing spaces. No other spaces are
stripped.

TRIM (string)

Return type: Character

string

Type: Character

The string to be stripped of trailing spaces.

Example
In this example, the function is used to strip spaces from a string. The QUOTE function has also been
used to wrap the result in quotations marks so remaining leading spaces can be seen. The result is
written to the log.

DATA _NULL_;
 result= QUOTE(TRIM(" Magnificent Bike Company A 1 2 50 London "));
 PUT result;
RUN;

This produces the following output:

" Magnificent Bike Company A 1 2 50 London"

TRIM has removed all trailing spaces, while retaining leading spaces.

Note:
A horizontal tab is not recognised as a space, and so will not be trimmed.

TRIMN

Returns a string that contains the source string trimmed of trailing spaces. No other spaces are
stripped. The source string can be a null string.

TRIMN (string)

Reference for language elements
Version 4.1

2109

If the string is a null string, this function does not return a single space.

Note:
A horizontal tab is not recognised as a space, so is not be trimmed.

Return type: Character

string

Type: Character

The string to be stripped of trailing spaces.

Example
In this example, the function is used to strip spaces from a string. The QUOTE function has also been
used to wrap the result in quotation marks to make resulting spaces visible. The result is written to the
log.

DATA _NULL_;
 a='';
 result1 = QUOTE(TRIMN(' Bike '));
 result2 = QUOTE(TRIM(a));
 result3 = QUOTE(TRIMN(a));

 PUT result1;
 PUT result2;
 PUT result3;
RUN;

This produces the following output:

" Bike"
" "
""

In the first result, the trailing spaces have been removed, while leading spaces have been retained

The second and third results compare the use of TRIM and TRIMN on a null. For TRIM, a space is
returned. For TRIMN, a null is returned.

System command function and CALL routine
Execute system commands and run executable files.

You can execute operating system commands such as DIR or COPY on Windows, or cd or rmdir on
Linux. You can also run program executables if paths are specified or set beforehand.

SYSTEM ..2110
Executes an operating system command or a program executable and returns a value.

Reference for language elements
Version 4.1

2110

CALL SYSTEM ... 2111
Executes an operating system command or a program executable.

SYSTEM
Executes an operating system command or a program executable and returns a value.

SYSTEM (command)

If the system option XSYNC is set, no other DATA step instructions are executed until the process
finishes, which might involve the user closing any windows that have been opened by the system
process.

XSYNC is set by default when WPS is installed. If you set the option to NOXSYNC, the DATA step finishes
execution whether the system process has completed or not. See XSYNC (page 90) for more
information.

Return type: Numeric

command

Type: Character

The system command or executable name.

Basic example
In this example, the Windows command prompt window is displayed. The result is written to the log.
The program does not execute the next statement (the PUT), until the command prompt window is
closed.

DATA _NULL_;

 syscmd=SYSTEM("CMD");
 PUT syscmd;

RUN;

This produces the following output:

-1073741510

Reference for language elements
Version 4.1

2111

Example – running program executable
In this example, the Notepad++ program is started. The result is written to the log. Because the system
option NOXSYNC has been specified, the program does not pause after each use of the function.

OPTION NOXSYNC;
DATA _NULL_;

 x = SYSTEM('set PATH=%PATH%;"C:\Program Files (x86)\Notepad++"');
 x = SYSTEM('Notepad++.exe');
 put x;

RUN;

This produces the following output:

0

CALL SYSTEM
Executes an operating system command or a program executable.

CALL SYSTEM (command) ;

If the system option XSYNC is set, no other DATA step instructions are executed until the process
finishes, which might involve the user closing any windows that have been opened by the system
process.

XSYNC is set by default when WPS is installed. If you set the option to NOXSYNC, the DATA step finishes
execution whether the system process has completed or not. See XSYNC (page 90) for more
information.

command

Type: Character

The system command.

Basic example
In this example, a Windows DIR command is executed. The content of the specified folder is displayed
in a Windows CMD window. The DATA step does not execute the next statement (or reach the end of
the step), until the operating system process is closed or terminates.

DATA _NULL_;

 CALL SYSTEM('DIR C:\');

RUN;

Reference for language elements
Version 4.1

2112

Example – running program executable
In this example, the Notepad++ program is started. The result is written to the log. Because the system
option NOXSYNC has been specified, the program does not pause after each use of the routine.

OPTION NOXSYNC;
DATA _NULL_;

 CALL SYSTEM('set PATH=%PATH%;"C:\Program Files (x86)\Notepad++"');
 CALL SYSTEM('Notepad++.exe');

RUN;

System information functions
Return information about the operating system and WPS.

ENVLEN .. 2112
Returns the length of the value of an environment variable.

GETOPTION ... 2113
Returns the current settings of a WPS system option.

SYSGET .. 2114
Returns the value of the specified environment variable.

SYSPARM ... 2115
Returns the value of a system environment parameter.

SYSPROCESSID .. 2117
Returns the current system process identifier.

SYSPROCESSNAME ... 2117
Returns the name of the current system process.

SYSPROD ... 2118
Returns an indicator to determine whether a product license is valid.

ENVLEN
Returns the length of the value of an environment variable.

ENVLEN (environment- variable)

Return type: Numeric

The variable length.

Reference for language elements
Version 4.1

2113

environment-variable

Type: Character

The variable.

Example
In this example, the function is used to find the length of five environment variables. The result is written
to the log.

DATA _NULL_;

 var_path=ENVLEN('PATH');
 var_temp=ENVLEN('TEMP');
 var_tmp=ENVLEN('TMP');
 var_usname=ENVLEN('USERNAME');
 var_psmpath=ENVLEN('PSModulePath');

 PUT "The length for the environment variable 'PATH' is: " var_path;
 PUT "The length for the environment variable 'TEMP' is: " var_temp;
 PUT "The length for the environment variable 'TMP' is: " var_tmp;
 PUT "The length for the environment variable 'USERNAME' is: " var_usname;
 PUT "The length for the environment variable 'PSModulePath' is: " var_psmpath;

RUN;

This produces the following output:

The length for the environment variable 'PATH' is: 937
The length for the environment variable 'TEMP' is: 38
The length for the environment variable 'TMP' is: 38
The length for the environment variable 'USERNAME' is: 10
The length for the environment variable 'PSModulePath' is: 93

GETOPTION
Returns the current settings of a WPS system option.

GETOPTION (opt ion- name

, return- value- opt ion

)

Return type: Character

option-name

Type: Character

The name of the system option.

Reference for language elements
Version 4.1

2114

return-value-option
Optional argument

Type: Character

Enter HOWSET, to obtain the location of the source information, or enter HOWRESTRICTED,
to determine whether any restriction applies to the WPS system option. By default, only
option-name is returned.

Example 1 – using the default return value option
In this example, the current WPS system option is returned. The result is written to the log.

DATA _NULL_;
 col1=GETOPTION("YEARCUTOFF");
 col2=GETOPTION("ENGINE");
 col3=GETOPTION("EMAILSYS");
 col4=GETOPTION("EMAILPORT");
 col5=GETOPTION("ENCODING");
 PUT col1 col2 col3 col4 col5;
RUN;

This produces the following output:

1920 WPD MAPI 25 UTF-8

Example 2 – specifying a value for the return value option
In this example, the return-value-option is used to either find the source location of a WPS
system option, or to determine whether any restrictions apply to the WPS system option. The result is
written to the log.

DATA _NULL_;
 col1=GETOPTION("YEARCUTOFF", "HOWSET");
 col2=GETOPTION("ENGINE", "HOWSET");
 col3=GETOPTION("EMAILSYS", "HOWSET");
 col4=GETOPTION("EMAILPORT", "HOWRESTRICTED");
 col5=GETOPTION("ENCODING", "HOWRESTRICTED");
 PUT col1 col2 col3 col4 col5;
RUN;

This produces the following output:

Config file Config file Built-in default Unrestricted Unrestricted

SYSGET
Returns the value of the specified environment variable.

SYSGET (environment- variable)

Reference for language elements
Version 4.1

2115

Return type: Character

The value of the environment variable.

environment-variable

Type: Character

The name of the environment variable.

Example
In this example, the function is used to return the value for four environment variables. The result is
written to the log.

DATA _NULL_;

 var_win=SYSGET("WINDIR");

 var_os=SYSGET("OS");

 var_proc_arch=SYSGET("PROCESSOR_ARCHITECTURE");

 var_user_name=SYSGET("USERNAME");

 PUT "The value for WINDIR is: " var_win;
 PUT " ";
 PUT "The value for OS is: " var_os;
 PUT " ";
 PUT "The value for PROCESSOR_ARCHITECTURE is: " var_proc_arch;
 PUT " ";
 PUT "The value for USERNAME is: " var_user_name;
 PUT " ";

RUN;

This produces the following output:

The value for WINDIR is: C:\WINDOWS

The value for OS is: Windows_NT

The value for PROCESSOR_ARCHITECTURE is: AMD64

The value for USERNAME is: tom.phillips

SYSPARM
Returns the value of a system environment parameter.

SYSPARM ()

Return type: Character

Reference for language elements
Version 4.1

2116

The value of the environment parameter.

When set, the system environment parameter is unique and the information can be shared in many
programs running during the same session. It can be reset by running an update program with a new
value, or restarting WPS (in which case the information is removed).

Example – finding a value of the system environment parameter set
by OPTIONS
In this example, the system environment parameter is set up using the OPTIONS statement and then
tested in the DATA step. The result is written to the log.

OPTIONS SYSPARM="hello world";

 DATA _NULL_;
 FORMAT p $32.;

 p = SYSPARM();

 PUT p;

RUN;

This produces the following output:

hello world

Example – finding a value of the system environment parameter set
by a macro
In this example, an environment parameter is set up by a macro and then tested in the DATA step. The
result is written to the log.

%Global environmentParameter;
%Let SYSPARM=Port=3000;

DATA _NULL_;

 param = SYSPARM();
 PUT param;
RUN;

This produces the following output:

Port=3000

Reference for language elements
Version 4.1

2117

SYSPROCESSID
Returns the current system process identifier.

SYSPROCESSID ()

Return type: Character

A process identifier.

Example
In this example, the current system process identifier is returned. The result is written to the log.

DATA _NULL_;
 sysid = SYSPROCESSID();
 PUT "System Process Id = " sysid;
RUN;

This produces the following output:

System Process Id = 41DB229294FE56040000000000000000

SYSPROCESSNAME
Returns the name of the current system process.

SYSPROCESSNAME (

, process- id

)

Return type: Character

A product name.

process-id
Optional argument

Type: Character

A process identifier.

Reference for language elements
Version 4.1

2118

Example
In this example, both the current system process identification and name are returned. The result is
written to the log.

DATA _NULL_;
 sysid = SYSPROCESSID();
 sysnameid = SYSPROCESSNAME();
 PUT "System Process Id = " sysid;
 PUT "System Process Name = " sysnameid;
RUN;

This produces the following output:

System Process Id = 41DB2C313F37DF3B0000000000000000
System Process Name = Wpslinks Server

SYSPROD
Returns an indicator to determine whether a product license is valid.

SYSPROD (product- name)

Return type: Numeric

1 if valid, or -1 for not available.

product-name

Type: Character

The product name.

Example
In this example, products are checked to determine whether a license is available. The result is written
to the log.

DATA _NULL_;

 a = SYSPROD("WPS");
 b = SYSPROD("WPSWEB");
 c = SYSPROD("ORACLE");
 d = SYSPROD("COBOL");
 e = SYSPROD("C++");
 f = SYSPROD("GRAPH");

 if a = 1 THEN PUT "A license is available for WPS ";
 ELSE PUT "A license is not available for WPS ";

 if b = 1 THEN PUT "A license is available for WPSWEB ";
 ELSE PUT "A license is not available for WPSWEB ";

Reference for language elements
Version 4.1

2119

 if c = 1 THEN PUT "A license is available for ORACLE ";
 ELSE PUT "A license is not available for ORACLE ";

 if d = 1 THEN PUT "A license is available for COBOL ";
 ELSE PUT "A license is not available for COBOL ";

 if e = 1 THEN PUT "A license is available for C++ ";
 ELSE PUT "A license is not available for C++ ";

 if f = 1 THEN PUT "A license is available for GRAPH ";
 ELSE PUT "A license is not available for GRAPH ";
RUN;

This produces the following output:

A license is available for WPS
A license is not available for WPSWEB
A license is available for ORACLE
A license is not available for COBOL
A license is not available for C++
A license is available for GRAPH

Truncation and rounding functions
Define how numbers will be truncated or rounded.

CEIL ...2120
Returns the next higher integer for a decimal number, unless the fraction is within 1E-12 of the
next lower integer, in which case the next lower integer is returned.

CEILZ .. 2123
Returns the next higher integer for a decimal number.

FLOOR .. 2124
Returns the integer part of a decimal number, unless the fractional part is within 1E-12 of the next
higher integer, in which case that integer is returned.

FLOORZ .. 2126
Returns the integer part of a decimal number.

FUZZ ... 2127
Returns the specified decimal number, unless the fractional part is within 1E-12 (the epsilon) of
the next higher or next lower integer, in which case that integer is returned.

INT ...2130
Returns the integer part of a specified decimal number, unless the fractional part is within 1E-12
(the epsilon) of the next higher (if positive) or next lower (if negative) integer, in which case that
integer is returned.

INTZ ...2134
Returns the integer part of a specified decimal number.

Reference for language elements
Version 4.1

2120

ROUND ... 2135
Returns the rounded value of a specified number. If the value is within a very small fraction (an
epsilon) of the midpoint of the numbers to which the specified number could be rounded, the
result is treated as being at the midpoint and rounded up.

ROUNDE ... 2138
Returns the rounded value of a specified number. If the value falls exactly halfway, or is within a
very small fraction (the epsilon) of halfway between numbers to which the specified number could
be rounded, the nearest even multiple of the specified unit is returned.

ROUNDZ ... 2141
Returns the rounded value of a specified number. If the value falls exactly halfway between
numbers to which the specified number could be rounded, the nearest even multiple of the
specified unit is returned.

TRUNC .. 2143
Returns the number that results from truncating the floating point representation of a specified
number to a defined number of bytes.

CEIL
Returns the next higher integer for a decimal number, unless the fraction is within 1E-12 of the next
lower integer, in which case the next lower integer is returned.

CEIL (value)

Return type: Numeric

An integer.

value

Type: Numeric

The decimal number to be rounded to the next higher integer.

CEIL can be visualised as acting on a number line:

Reference for language elements
Version 4.1

2121

If a number falls within the grey area (the epsilon), the integer n is returned. If a number falls elsewhere
on the number line, the integer n+1 is returned. For example, if value is:

• 1.09, then 2 is returned, as this is the next higher integer
• 1.0000000000009, then 1 is returned, as the fractional part falls below the 1E-12 boundary, and 1

is the next lower integer
• -1.99, then -1 is returned, as this is the next higher integer
• -1.9999999999999, then -2 is returned, as the fractional part falls below the 1E-12 boundary, and

-2 is the next lower integer

If you want to return the next higher integer whatever the magnitude of the fractional part of the number,
see CEILZ (page 2123).

Basic example
In this example, various numbers are truncated; the function return either the next higher integer,
depending on whether the fractional part falls within the epsilon for the function. The result is written to
the log.

RUN;

DATA _NULL_;

 tot = 2 + 1e-6;
 cl = CEIL(tot);
 PUT "Because the number " tot "is above the epsilon, returns: " cl;

 tot = 2 + 1E-14;
 cl = CEIL(tot);
 PUT "Because the number " tot 16.14 " is within the epsilon, returns: " cl;

 tot = 2 + 0.75;
 cl = CEIL(tot);
 PUT "Because the number " tot "is above the epsilon, returns: " cl;

RUN;

Reference for language elements
Version 4.1

2122

This produces the following output:

Because the number 2.000001 is above the epsilon, returns: 3
Because the number 2.000000000000010 is within the epsilon, returns: 2
Because the number 2.75 is above the epsilon, returns: 3

These results can be visualised on the following number line:

2.00000000000001 falls within the epsilon, so the lower integer is returned. The other numbers are
above the epsilon, so the higher integer is returned.

Example – positive and negative numbers
In this example, various numbers are truncated; the function returns either the next higher or next lower
integer, depending on whether the fractional part falls within the epsilon for the function. The result is
written to the log.

DATA _NULL_;

 tot = 2 + 1e-12;
 cl = CEIL(tot);
 PUT "Because the number " tot "is on the upper boundary, returns: " cl;

 tot = -2 + 1E-14;
 cl = CEIL(tot);
 PUT "Because the number " tot " is within the epsilon, returns: " cl;

 tot = -2 + 0.75;
 cl = CEIL(tot);
 PUT "Because the number " tot 4.2 " is above the epsilon, returns: " cl;

RUN;

This produces the following output:

Because the number 2 is on the upper boundary, returns: 3
Because the number -1.99999999999999 is within the epsilon, returns: -2
Because the number -1.3 is above the epsilon, returns: -1

Reference for language elements
Version 4.1

2123

Because the first number falls exactly on the upper boundary of the epsilon, the number returned is the
next higher integer. In the second use of the function, the number is within the epsilon of the next lower
integer, so that integer is returned. In the third use of the function, the number is above the epsilon, so
the next higher integer is returned.

CEILZ
Returns the next higher integer for a decimal number.

CEILZ (value)

Return type: Numeric

An integer.

value

Type: Numeric

The decimal number to be rounded to the next higher integer.

If you want to return the next lower integer when the fractional part of the number is within a very close
range (less than 1E-12) of that integer, see CEIL (page 2120).

Example
In this example, numbers are rounded to the next higher integer. The result is written to the log.

DATA _NULL_;

 nhi = CEILZ(2.0000000000000001);
 PUT "The next higher integer is: " nhi;

 nhi = CEILZ(1.5);
 PUT "The next higher integer is: " nhi;

 nhi = CEILZ(-1.5);
 PUT "The next higher integer is: " nhi;

RUN;

This produces the following output:

The next higher integer is: 2
The next higher integer is: 2
The next higher integer is: -1

Reference for language elements
Version 4.1

2124

FLOOR
Returns the integer part of a decimal number, unless the fractional part is within 1E-12 of the next
higher integer, in which case that integer is returned.

FLOOR (value)

Return type: Numeric

An integer.

value

Type: Numeric

The decimal number to be rounded to the integer part.

FLOOR can be visualised as acting on a number line:

If a number falls within the grey area (the epsilon), the integer n is returned. If a number falls elsewhere
on the number line, the integer n-1 is returned. For example, if value is:

• 1.75, then 1 is returned, as this is the next lower integer
• 1.9999999999999, then 2 is returned, as the fractional part falls above the 1E-12 boundary, and 2

is the next higher integer
• -1.01, then -2 is returned, as this is the next lower integer
• -1.0000000000001, then -1 is returned, as the fractional part falls above the 1E-12 boundary,

and -1 is the next higher integer

If you want to return the next lower integer whatever the magnitude of the fractional part of the number,
see FLOORZ (page 2126).

Reference for language elements
Version 4.1

2125

Basic example
In this example, various numbers are truncated; the function return either the next higher or next lower
integer, depending on whether the fractional part falls within the epsilon for the function. The result is
written to the log.

DATA _NULL_;

 tot = 2 + 0.999999;
 fl = FLOOR(tot);
 PUT "Because the number " tot 9.6 " is below the epsilon, returns: " fl;

 tot = 2 + 0.9999999999999;
 fl = FLOOR(tot);
 PUT "Because the number " tot 15.13 " is within the epsilon, returns: " fl;

 tot = 2 + 0.75;
 fl = FLOOR(tot);
 PUT "Because the number " tot "is below the epsilon, returns: " fl;

RUN;

This produces the following output:

Because the number 2.999999 is below the epsilon, returns: 2
Because the number 2.9999999999999 is within the epsilon, returns: 3
Because the number 2.75 is below the epsilon, returns: 2

These results can be visualised on the following number line:

2.999999999999999 falls within the epsilon, so the higher integer is returned. The other numbers are
below the epsilon, so the lower integer is returned.

Reference for language elements
Version 4.1

2126

Example – positive and negative numbers
In this example, various numbers are truncated; the function return either the next higher or next lower
integer, depending on whether the fractional part falls within the epsilon for the function. The result is
written to the log.

DATA _NULL_;

 tot = -2-1e-12;
 fl = FLOOR(tot);
 PUT "Because the number " tot 16.12 " is on the upper boundary, returns: " fl;

 tot = -2 -1e-13;
 fl = FLOOR(tot);
 PUT "Because the number " tot 16.13 " is within the epsilon, returns: " fl;

 tot = -2-0.75;
 fl = FLOOR(tot);
 PUT "Because the number " tot 4.2 " is above the epsilon, returns: " fl;

RUN;

This produces the following output:

Because the number -2.000000000001 is on the upper boundary, returns: -3
Because the number -2.0000000000001 is within the epsilon, returns: -2
Because the number -2.8 is above the epsilon, returns: -3

Because the first number falls exactly on the upper boundary of the epsilon, the number returned is the
next lower integer. In the second use of the function, the number is within the epsilon of the previous
integer (-2), so that integer is returned. In the third use of the function, the number is below the epsilon,
so the next lower integer (-3) is returned.

FLOORZ
Returns the integer part of a decimal number.

FLOORZ (value)

Return type: Numeric

An integer.

value

Type: Numeric

The decimal number to be rounded to the integer part.

If you want to return the next higher integer when the fractional part of the number is within a very close
range (less than 1E-12) of that integer, use FLOOR (page 2124).

Reference for language elements
Version 4.1

2127

Example
In this example, various numbers are rounded. The result is written to the log.

DATA _NULL_;

 rc = FLOORZ (2.5);
 PUT rc = ;

 rc = FLOORZ (2.9999999999991);
 PUT rc = ;

 rc = FLOORZ (-2.5);
 PUT rc = ;

RUN;

This produces the following output:

rc=2
rc=2
rc=-3

FUZZ
Returns the specified decimal number, unless the fractional part is within 1E-12 (the epsilon) of the next
higher or next lower integer, in which case that integer is returned.

FUZZ (value)

Return type: Numeric

An integer, or value.

value

Type: Numeric

A number to be rounded.

FUZZ can be visualised as acting on a number line:

Reference for language elements
Version 4.1

2128

If the specified number falls within the epsilon, the corresponding lower or higher integer is returned. If
the specified number falls elsewhere on the number line, that number is returned. For example, if value
is:

• 1.75, then 1.75 is returned
• 1.9999999999999, then 2 is returned, as the fractional part falls within the epsilon, and 2 is the

next higher integer
• -1.01, then -1.01 is returned
• -1.9999999999999, then -2 is returned, as the fractional part falls within the epsilon, and -2 is the

next lower integer

Basic example
In this example, the next higher or lower integer is returned for numbers where the fractional part falls
within the epsilon of the numbers, otherwise the specified numbers are returned. The result is written to
the log.

DATA _NULL_;

 tot = 2 + 0.75;
 fz = FUZZ(tot);
 PUT "Because the number " tot 4.2" is not within either epsilon, returns: " fz;

 tot = 2 + 0.0000001;
 fz = FUZZ(tot);
 PUT "Because the number " tot 9.7" is not within either epsilon, returns: " fz;

 tot = 2 + 0.9999999999999;
 fz = FUZZ(tot);
 PUT "Because the number " tot 15.13 " is within the upper epsilon, returns: " fz;

 tot = 2 + 0.999999;
 fz = FUZZ(tot);
 PUT "Because the number " tot 8.6 " is not within either epsilon, returns: " fz;

 tot = 2 + 0.0000000000001;
 fz = FUZZ(tot);
 PUT "Because the number " tot 15.13 " is within the lower epsilon, returns: " fz;

RUN;

Reference for language elements
Version 4.1

2129

This produces the following output:

Because the number 2.75 is not within either epsilon, returns: 2.75
Because the number 2.0000001 is not within either epsilon, returns: 2.0000001
Because the number 2.9999999999999 is within the upper epsilon, returns: 3
Because the number 2.999999 is not within either epsilon, returns: 2.999999
Because the number 2.0000000000001 is within the lower epsilon, returns: 2

These results can be visualised on the following number line:

2.999999999999999 falls within the upper epsilon, so the higher integer (3) is returned.
2.0000000000001 falls within the lower epsilon, so the lower integer (2) is returned. The other
numbers not within either epsilon, so the specified number is returned.

Reference for language elements
Version 4.1

2130

Example – positive and negative numbers
In this example, various numbers are truncated; the function returns either the next lower integer,
depending on whether the fractional part falls within the epsilon for the function. The result is written to
the log.

DATA _NULL_;

 tot = -2-1e-12;
 fz = FUZZ(tot);
 PUT "Because " tot 15.12 " is on boundary of upper epsilon, returns number: " fz
 15.12;

 tot = -2-1e-13;
 fz = FUZZ(tot);
 PUT "Because " tot 16.13 " is within epsilon, returns higher integer: " fz;

 tot = -2-0.9999999999999;
 fz = FUZZ(tot);
 PUT "Because " tot 17.14 " is within epsilon, returns lower integer: " fz;

 tot = -2-0.75;
 fz = FUZZ(tot);
 PUT "Because " tot 5.2 " is outside an epsilon, returns number: " fz;

RUN;

This produces the following output:

Because -2.000000000001 is on boundary of upper epsilon, returns number:
 -2.000000000001
Because -2.0000000000001 is within the epsilon, returns higher integer: -2
Because -2.99999999999990 is within the epsilon, returns lower integer: -3
Because -2.75 is outside an epsilon, returns number: -2.75

Because the first number falls exactly on the boundary of the upper epsilon, the specified number is
returned. In the second use of the function, the number is within the epsilon of the higher integer (-2), so
that integer is returned. In the third use of the function, within the epsilon of the lower integer (-3) so that
integer is returned.

INT
Returns the integer part of a specified decimal number, unless the fractional part is within 1E-12 (the
epsilon) of the next higher (if positive) or next lower (if negative) integer, in which case that integer is
returned.

INT (value)

Return type: Numeric

An integer.

Reference for language elements
Version 4.1

2131

value

Type: Numeric

The number to be rounded.

INT can be visualised as acting on a number line. For positive numbers:

For negative numbers:

If the specified number falls within a grey area, the corresponding lower or higher integer n is returned.
If the specified number falls elsewhere on the number line, the integer part of that number is returned.
For example, if value is:

• 1.75, then 1 is returned
• 1.9999999999999, then 2 is returned, as the fractional part falls within the epsilon for positive

numbers, and 2 is the next higher integer
• -1.01, then -1 is returned
• -1.9999999999999, then -2 is returned, as the fractional part falls within the epsilon for negative

numbers, and -2 is the next lower integer

If you want to return the integer of the specified value whatever the magnitude of the fractional part of
the number, use INTZ (page 2134).

Reference for language elements
Version 4.1

2132

Example – with positive numbers
In this example, the integer part of decimal numbers is returned, unless the fractional part falls within
the epsilon of the next higherinteger, in which case that integer is returned instead. The result is written
to the log.

DATA _NULL_;

 tot = 2 + 0.75;
 in = INT(tot);
 PUT "Because " tot "is outside of epsilon, returns integer part of number: " in;

 tot = 2 + 1e-12;
 in = INT(tot);
 PUT "Because " tot 15.12 " is on boundary of upper epsilon, returns integer part
 of number: " in;

 tot = -2-1e-13;
 in = INT(tot);
 PUT "Because " tot 16.13 " is within epsilon, returns next higher integer: " in;

RUN;

This produces the following output:

Because 2.75 is outside of epsilon, returns integer part of number: 2
Because 2.000000000001 is on boundary of upper epsilon, returns integer part of
 number: 2
Because -2.0000000000001 is within epsilon, returns next higher integer: -2

These results can be visualised on the following number line:

2.999999999999999 falls within the upper epsilon, so the higher integer (3) is returned.
2.9999999999 falls on the boundary of the epsilon, so the integer portion of the value is returned. The
other numbers are also not within the epsilon, so the integer of the specified value is returned.

Reference for language elements
Version 4.1

2133

Example – with negative numbers
In this example, the integer part of decimal numbers is returned, unless the fractional part falls within
the epsilon of the next lower integer, in which case that integer is returned instead. The result is written
to the log.

DATA _NULL_;

 tot = -2 - 0.75;
 in = INT(tot);
 PUT "Because " tot "is outside of epsilon, returns integer part of number: " in;

 tot = - 2 - 0.999999999999;
 in = INT(tot);
 PUT "Because " tot 15.12 " is on boundary of upper epsilon, returns integer part
 of number: " in;

 tot = -2 - 0.9999999999999;
 in = INT(tot);
 PUT "Because " tot 16.13 " is within epsilon, returns next higher integer: " in;

RUN;

This produces the following output:

Because -2.75 is outside epsilon, returns integer part of number: -2
Because -2.999999999999 is on boundary of lower epsilon, returns integer part of
 number: -2
Because -2.9999999999999 is within epsilon, returns next higher integer: -3

These results can be visualised on the following number line:

-2.999999999999999 falls within the lower epsilon, so the lower integer (-3) is returned.
-2.9999999999 falls on the boundary of the epsilon, so the integer portion of the value is returned
(-2). The other numbers are also not within the epsilon, so the integer of the specified value is returned.

Reference for language elements
Version 4.1

2134

INTZ
Returns the integer part of a specified decimal number.

INTZ (value)

Return type: Numeric

An integer.

value

Type: Numeric

The number to be rounded.

If you want to return the next lower or higher integer when the fractional part of the number is within a
very close range (less than 1E-12) of that integer, use INT (page 2130).

Example
In this example, the appropriate integer is returned for rounded decimal numbers. The result is written
to the log.

DATA _NULL_;

 rc = intz(2.99999);
 PUT rc = ;

 rc = intz(-3.1);
 PUT rc = ;

 rc = intz(2.9999999999991);
 PUT rc = ;

 rc = intz(1.00000000000001);
 PUT rc = ;

RUN;

This produces the following output:

rc=2
rc=-3
rc=2
rc=1

Reference for language elements
Version 4.1

2135

ROUND
Returns the rounded value of a specified number. If the value is within a very small fraction (an epsilon)
of the midpoint of the numbers to which the specified number could be rounded, the result is treated as
being at the midpoint and rounded up.

ROUND (value

, unit

)

A unit can be specified to which the number will be rounded. The number is rounded to the closest
multiple of that unit. The closest multiple will be the higher multiple if the last digit is five or greater, or
the lower multiple if the last digit is less than five. For example:

• If the number is 5.25, and the unit is 0.1, the number is rounded up to 5.3
• If the number is 5.4, and the unit is 1, the number is rounded down to 5

Return type: Numeric

The rounded number.

value

Type: Numeric

The number to be rounded.

unit
Optional argument

Type: Numeric

The unit to which the number is rounded. By default, this is 1.

Multiples of unit are calculated starting from 0 (zero).

ROUND can be visualised as acting on a number line:

Reference for language elements
Version 4.1

2136

In this diagram, epsilon indicates a very small fraction to the midpoint between numbers. If the fractional
part of a number falls within the epsilon, then the number is treated as being exactly at the midpoint. For
example, if unit is 0.5, and value is 1.24999999999999999999, the number falls within the epsilon
and is treated as equivalent to 1.25; the number is therefore rounded to 1.5, the next appropriate
multiple of the unit.

The fraction at which the epsilon starts depends on the order of magnitude of the specified number. For
numbers up to 1000, the epsilon is less than 1E-12. For numbers above 1000, the epsilon is less than
1E-6. For example, if unit is 1, then 1000.4999999 is equivalent to 1000.5, and 5.4999999999999 is
equivalent to 5.5.

If you want to round to the nearest even multiple of a unit when the specified number is exactly halfway
between units, use ROUNDZ (page 2141). If you want to round to the nearest even multiple of a
unit when the specified number is exactly halfway between units or within an epsilon of halfway, see
ROUNDE (page 2138) .

Basic example
In this example, a number is rounded using the default unit. The result is written to the log.

DATA _NULL_;

 rc = ROUND(5.51);
 PUT "Rounds to: " rc;

RUN;

This produces the following output:

Rounds to: 6

Example – specifying a unit
In this example, two numbers are rounded using a specified unit. The result is written to the log.

DATA _NULL_;

 rc = ROUND(5.05, 0.1);
 PUT "Rounds to: " rc;

 rc = ROUND(5.343, 0.01);
 PUT "Rounds to: " rc;

RUN;

This produces the following output:

Rounds to: 5.1
Rounds to: 5.34

In the first use of the function, the unit specified is 0.1; because the next significant digit is 5 or
greater, the next highest multiple of that unit is returned, 5.1. In the second use of the function, the
unit specified is 0.01; because the next significant digit is lower than 5, the lower multiple of that unit is
returned, 5.34.

Reference for language elements
Version 4.1

2137

Example – specifying a number with a fraction within the epsilon
In this example, two numbers are rounded. Both are within the epsilon for rounding. The result is written
to the log.

DATA _NULL_;

 rc = ROUND(1000.24999999, 0.5);
 PUT "Rounds to: " rc;

 rc = ROUND(1000.2499999, 0.5);
 PUT "Rounds to: " rc;

RUN;

This produces the following output:

Rounds to: 1000.5
Rounds to: 1000

These results can be visualised on the following number line:

The epsilon for numbers above 1000 is 1E-6. The number 1000.24999999 falls within the
epsilon, so is treated as 1000.25, and rounded up to the next multiple of 0.5 (1000.5). The number
1000.2499999 is on the boundary of the epsilon, but not within it; it is below 1000.25, so is rounded
down to 1000.

Reference for language elements
Version 4.1

2138

ROUNDE
Returns the rounded value of a specified number. If the value falls exactly halfway, or is within a
very small fraction (the epsilon) of halfway between numbers to which the specified number could be
rounded, the nearest even multiple of the specified unit is returned.

ROUNDE (value

, unit

)

A unit can be specified to which the number will be rounded. The number is rounded to the closest
multiple of that unit. By default the unit is 1.

A number is rounded up if greater than halfway between units, or rounded down if less than halfway
between units. For example, 5.5 (with a default unit of 1) is rounded up to 6, while 5.4 is rounded down
to 5. If the number is 5.25, and the unit is 0.1, the number is rounded up to 5.3.

However, if a number lies exactly between two units, it is rounded to the nearest even multiple of the
unit. For example, if the number is:

• 5.5, and the unit is 1, the number is rounded up to 6
• 5.125 and unit is 0.25, the number is rounded down to 5
• 5.15 and the unit is 0.1, the number is rounded up to 5.2.

Because rounding is to the nearest even multiple of the unit, the specified number might be rounded up
or down.

A number will be treated as halfway between units if it is within the epsilon of the halfway point.

If you want to round to the nearest even multiple of a unit when the specified number is exactly halfway
between units, ignoring the epsilon, use ROUNDZ (page 2141). If you want to round to the next higher
number if the specified number is within an epsilon of halfway, see ROUND (page 2135) .

Return type: Numeric

The rounded number.

value

Type: Numeric

The number to be rounded.

unit
Optional argument

Type: Numeric

The unit to which the number is rounded. By default, this is 1.

Multiples of unit are calculated starting from 0 (zero).

Reference for language elements
Version 4.1

2139

How ROUNDE behaves if the number falls within the epsilon can be can be visualised as acting on a
number line:

In this diagram, epsilon indicates a very small fraction below the midpoint between two numbers n1 and
n2. If the fractional part of a number falls within the epsilon, then the number is treated as being exactly
at the midpoint. For example, if unit is 0.5, and value is 1.74999999999999999999, the number falls
within the epsilon and is treated as equivalent to 1.75; the number is therefore rounded to 2.0, the next
appropriate multiple of the unit, rather than 1.5.

The fraction at which the epsilon starts depends on the order of magnitude of the specified number. For
numbers up to 1000, the epsilon is less than 1E-12. For numbers above 1000, the epsilon is less than
1E-6. For example, if unit is 1, then 1000.4999999 is equivalent to 1000.5, and 5.4999999999999 is
equivalent to 5.5.

Basic example
In this example, two numbers are rounded to the next even multiple of the default unit. The result is
written to the log.

DATA _NULL_;

 re = ROUNDE(3.5);
 PUT "Rounds to: " re;

 re = ROUNDE(2.5);
 PUT "Rounds to: " re;

RUN;

This produces the following output:

Rounds to: 4
Rounds to: 2

The first use of the function, the number is rounded up, and in the second use, the number is rounded
down.

Reference for language elements
Version 4.1

2140

Example – specifying a unit
In this example, two numbers are rounded to the next even multiple of the specified unit. The result is
written to the log.

DATA _NULL_;

 rc = ROUNDE(5.05, 0.1);
 PUT rc = ;

 rc = ROUND(5.05, 0.1);
 PUT rc = ;

RUN;

This produces the following output:

Rounds to: 5
Rounds to: 5.1
Rounds to: 5.2

In the functions in this example, the unit is set to 0.1. In the first use of ROUNDE, the number returned
is 5; because 5.05 is exactly halfway between multiples of the unit, the nearest even multiple of the
unit (5.0) is returned. Compare this to the result for ROUND, where the number returned is 5.1. In this
case, because 5.05 is exactly halfway between multiples of the unit, the number returned is the higher
multiple of the unit.

In the second use of ROUNDE, the number returned is 5.2. 5.14999999999999 is within 1E-12 of
5.15, which is halfway between two multiples of the unit. The nearest even multiple of the unit to which
the number can be rounded is therefore 5.2.

Example – specifying a number with a fraction within the epsilon
In this example, two numbers are rounded. Both are within the epsilon for rounding. The result is written
to the log.

DATA _NULL_;

 rc = ROUNDE(1001.49999999999999, 1);
 PUT "Rounds to: " rc;

 rc = ROUNDE(1001.49999, 1);
 PUT "Rounds to: " rc;

RUN;

This produces the following output:

Rounds to: 1002
Rounds to: 1001

These results can be visualised on the following number line:

Reference for language elements
Version 4.1

2141

The epsilon for numbers above 1000 is 1E-6. The number 1001.499999999999 falls within the
epsilon, so is treated as 1001.5, and rounded to the nearest even multiple of 0.5 (1002). The number
1001.4999999 is on the boundary of the epsilon, but not within it; it is below 1000.5, so is rounded
down to 1001.

ROUNDZ
Returns the rounded value of a specified number. If the value falls exactly halfway between numbers
to which the specified number could be rounded, the nearest even multiple of the specified unit is
returned.

ROUNDZ (value

, unit

)

A unit can be specified to which the number will be rounded. The number is rounded to the closest
multiple of that unit. The closest multiple will be the higher multiple if the last digit is five or greater, or
the lower multiple if the last digit is less than five. For example:

• If the number is 5.25, and the unit is 0.1, the number is rounded up to 5.3
• If the number is 5.4, and the unit is 1, the number is rounded down to 5

If rounding results in a value that is exactly halfway between even multiples of rounding units, the
nearest even multiple that matches the unit is returned.

Return type: Numeric

The rounded number.

value

Type: Numeric

Reference for language elements
Version 4.1

2142

The number to be rounded.

unit
Optional argument

Type: Numeric

The unit to which the number is rounded. By default, this is 1.

Multiples of unit are calculated starting from 0 (zero).

Basic example
In this example, two numbers are rounded. The result is written to the log.

DATA _NULL_;

 rc = ROUNDZ(5.17);
 PUT rc = ;

 rc = ROUNDZ(5.59, 0.5);
 PUT rc = ;

RUN;

This produces the following output:

rc=5
rc=5.5

In the first use of the function, no unit is specified, so the default unit is used (1); ROUNDZ, the number
returned is 5. In the second use of the function, because 5.17 is closer to 5.2, the next multiple of the
unit, than it is to 5.1, that is the value returned.. In the second use of ROUNDZ, the number returned is
5.1; because 5.14999999999999 is less than halfway between units, the lower multiple of the unit is
returned.

Example – rounding to even multiple
In this example, two numbers fall exactly between multiples of the specified unit, and are rounded to the
closest even multiple of the unit. The result is written to the log.

DATA _NULL_;

 rc = ROUNDZ(5.25, 0.5);
 PUT rc = ;

 rc = ROUNDZ(5.75, 0.5);
 PUT rc = ;

RUN;

This produces the following output:

rc=5
rc=6

Reference for language elements
Version 4.1

2143

In both functions in this example, the unit is set to 0.5. In the first use of ROUNDZ, the number returned
is 5 rather than 5.5, because 5 is an even multiple of 0.5, while 5.5 is an odd multiple of the unit. In
the second use of ROUNDZ, the number returned is 6; because 5.75 is halfway between multiples of the
unit, the nearest even multiple of the unit is returned, which in this case is 6.

TRUNC
Returns the number that results from truncating the floating point representation of a specified number
to a defined number of bytes.

TRUNC (value , length)

A number is represented in a computer using some form of floating-point architecture; for example,
the IEEE 754 standard, or the IBM hexadecimal floating-point format. These architectures ensure that
numbers are represented as accurately as possible, and that operations on them return accurate and
expected results.

In floating-point architectures, numbers are represented by binary numbers in a normalised scientific
notation, consisting of a sign bit, an exponent, and a mantissa. For example, the number 5.15 would be
represented using the IEEE 754 standard as:

0 10000001 01001001100110011001101

where, reading from left to right:

• 0 is the sign bit (positive)
• 10000001 is the exponent
• 101001001100110011001101 is the mantissa

In this case, the number is represented as a single precision number and consists of 32 bits. A double
precision number would consist of 64 bits, and the exponent would then consist of 11 bits, and the
mantissa of 52 bits.

This function truncates the binary representation of a number by a specified number of bytes, starting
from the right; that is, the mantissa is truncated. The truncated portion is padded with zeros.

The IEEE floating-point standard can be found at IEEE Standard for Binary Floating-Point Arithmetic .
Information on IBM hexadecimal floating point can be found at Hexadecimal floating-point literals .

Return type: Numeric

The truncated number.

value

Type: Numeric

The number to be truncated.

http://ieeexplore.ieee.org/document/30711/
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/rzarg/hex_float_constants.htm

Reference for language elements
Version 4.1

2144

length

Type: Numeric

The number of bytes to which to truncate the number. The value can be:

• 2 to 8 on z/OS
• 3 to 8 on all other operating systems

If you specify any other value, an error message and a missing value is returned.

For example, as noted above, the single precision representation of 5.15 is represented, using the IEEE
754 standard, as:

01000000101001001100110011001101

If you truncate to the third byte, then the result would be:

01000000101001001100110000000000

as the truncated digits are padded with zeros. This floating point representation would then be returned
by the function as the equivalent decimal, 5.1494140625 (using default formats).

Example
In this example, two numbers are truncated to the specified number of bytes. The result is written to the
log.

DATA _NULL_;

 rc = TRUNC(5.15, 3);
 PUT rc = ;

 rc = TRUNC(5.15, 4);
 PUT rc = ;

 rc = TRUNC(5.15, 1);
 PUT rc = ;

RUN;

This produces the following output:

rc=5.1494140625
rc=5.1499977112
NOTE: Argument 2 to function TRUNC at line 2333 column 8 is invalid
rc=.

In the third use of the function, an invalid value for length is specified; this causes an error message to
be generated.

Reference for language elements
Version 4.1

2145

Unicode functions
Convert strings and characters to Unicode format.

UNICODE .. 2145
Returns a string of text converted from Unicode.

UNICODEC ... 2147
Returns a string in which characters of a source string are replaced by Unicode code points of a
specified format.

UNICODELEN ... 2149
Returns the length of a string encoded in Unicode code points.

UNICODE
Returns a string of text converted from Unicode.

UNICODE (string

, encoding- type

)

Converts a string of Unicode code points to its text equivalent. You can specify the encoding type (such
as UTF-8, UTF-16, or UCS-4) to which the code points belong.

Return type: Character

string

Type: Character

The string of code points to be converted.

encoding-type
Optional argument

Type: Character

The Unicode encoding of the code points comprising source. This can be:

UTF8 Convert source to UTF-8.
UCS2 Convert source to UTF-16.
UTF16 Convert source to UTF-16.
UCS2B Convert source to UTF-16BE.
UTF16B Convert source to UTF-16BE.
UCS2L Convert source to UTF-16LE.
UTF16L Convert source to UTF-16LE.

Reference for language elements
Version 4.1

2146

UCS4 Convert source to UTF-32LE.
UCS4B Convert source to UTF-32BE.
UCS4L Convert source to UTF-3LBE.
ESC Convert Unicode code points specified with the escape (\) character to the

equivalent character in the project character set; for example, \u5927 is
converted to the letter a. This is the default.

NCR Convert Unicode code points specified using numeric character reference format
to the equivalent character in the project character set; for example: 大 is
converted to the letter a.

PAREN Convert Unicode code points specified using parentheses (<>) to the equivalent
character in the project character set; for example: <u5927> is converted to the
letter a.

A code point can only be converted to a character if the current character set for the session contains
that code point.

Example
In this example, the function is used to convert hexadecimal strings to UTF-8 and UTF-16 encodings.
The result is written to the log.

DATA _NULL_;
 result1 = UNICODE('004C006F006F006B0021203A'x, 'UTF16');
 result2 = UNICODE('004C006F006F006B0021203A'x, 'UTF8');
 result3 = UNICODE('\u004C\u006F\u006F\u006B\u0021\u203A', 'ESC');
 PUT 'Conversion to UTF-16: ' result1;
 PUT 'Conversion to UTF-8: ' result2;
 PUT 'Conversion from escaped Unicode: ' result3;
 RUN;

In WPS on Windows 10 with the default character set (CP1252), this produces the following output:

Conversion to UTF-16: Look!›
Conversion to UTF-8: L o o k ! :
Conversion from escaped Unicode: Look!›

The UTF-8 encoding has alternate unprintable characters (determined by the hexadecimal values
'00'x and '20'x), because in UTF-8 a character might be represented by one, two or more bytes.
For example, the string begins with '004C'x, and in UTF-8, '00'x is the NUL character, and '4C'x
is the L character. In UTF-16, however, a character is represented by two two-byte groups; therefore,
the same '004C'x is the L character. Similarly the string ends with the hexadecimal number '203A'x.
In UTF-8, this represents two characters, '20'x, the space character, and '3A'x, the colon (:). In
UTF-16, the hexadecimal number'203A'x is the single right-pointing angle quotation mark.

In the third example of the function, the characters are Unicode codepoints indentified by the \u
combination, and these are returned as characters from the character set of Workbench.

Reference for language elements
Version 4.1

2147

UNICODEC
Returns a string in which characters of a source string are replaced by Unicode code points of a
specified format.

UNICODEC (string

, encoding- type

)

Although this function can be used to replace any character with a Unicode code point, it is perhaps
most useful for replacing characters that cannot be represented in the session encoding. You can
specify the code set (for example, UTF-8, UTF-16, or UCS-4) in which you want code points returned.
You can alternatively specify that characters are converted to a code point representation.

Return type: Character

source

Type: Character

The string to be converted.

encoding-type
Optional argument

Type: Character

The Unicode format in which the characters in source are returned. The following options are
available:

UTF8 Convert source to UTF-8.
UCS2 Convert source to UTF-16.
UTF16 Convert source to UTF-16.
UCS2B Convert source to UTF-16BE.
UTF16B Convert source to UTF-16BE.
UCS2L Convert source to UTF-16LE.
UTF16L Convert source to UTF-16LE.
UCS4 Convert source to UTF-32LE.
UCS4B Convert source to UTF-32BE.
UCS4L Convert source to UTF-3LBE.
ESC Convert characters other than ASCII printable characters to Unicode code points

specified with the escape (\) character. This is the defaiult. For example, a is
represented as a, but À is represented as \u00C0.

NCR Convert characters other than ASCII printable characters to Unicode code
points specified with the numeric character reference format. For example, a is
represented as a, but À is represented as À.

Reference for language elements
Version 4.1

2148

PAREN Convert characters other than ASCII printable characters to Unicode code points
specified using parentheses (<>). For example, a is represented as a, but À is
represented as <u00C0>.

If a codepoint is specified, it will only be converted to a character if the session encoding contains that
codepoint.

The formatted length of the value returned is the same length as source. To ensure the returned value
is output in full, specify a suitable length.

Example – using code point representation
In this example, encoded strings are returned in the specified format. The result is written to the log.

DATA NULL;

 LENGTH result $10;

 result = UNICODEC('A大');
 PUT "ESC returns: " result;

 result = UNICODEC('A大', "NCR");
 PUT "NCR returns: " result ;

 result = UNICODEC('A大', "PAREN");
 PUT "PAREN returns: " result;

RUN;

This produces the following output:

ESC returns: A\u5927
NCR returns: A大
PAREN returns: A<u5927>

The character A is an ASCII printable character, so is not converted to a Unicode code point reference.

Example – using a different UTF encoding
In this example, strings are returned in the specified UTF encoding. The UNICODE function is first used
to create a character using escaped Unicode format. The result is written to the log.

DATA NULL;

 x = UNICODE('\u03d7');

 result1 = UNICODEC(x, "UTF8");
 put result1 $hex.;

 result2 = UNICODEC(x, "UTF16");
 put result2 $hex.;
 put x;

RUN;

Reference for language elements
Version 4.1

2149

This produces the following output:

CF9720202020
FFFED7032000
ϗ

Note:
In this example, the character ϗ can be displayed in the Workbench session encoding.

UNICODELEN
Returns the length of a string encoded in Unicode code points.

UNICODELEN (string

, encoding- type

)

Find the length of a string in a specified Unicode encoding, and return the result. You can specify that
the string is comprised of code points in various encodings.

Return type: Numeric

string

Type: Character

The string whose length is to be found.

encoding-type
Optional argument

Type: Character

The Unicode encoding for source. This can be:

UTF8 UTF-8.
UCS2 UTF-16.
UTF16 UTF-16.
UCS2B UTF-16BE.
UTF16B UTF-16BE.
UCS2L UTF-16LE.
UTF16L UTF-16LE.
UCS4 UTF-32LE.
UCS4B UTF-32BE.
UCS4L UTF-32LBE.

Reference for language elements
Version 4.1

2150

ESC Unicode codepoints specified with the escape (\) character; for example,
\u5927 (the letter a). This is the default.

NCR Unicode codepoints specified as numeric character references; for example:
大 (the letter a).

PAREN Unicode codepoints specified using parentheses (<>); for example: <u5927>
(the letter a).

Example
In this example, the function finds the length of a string in UTF-8 and UTF-16 encoding. The result is
written to the log.

DATA _NULL_;
 result1 = UNICODELEN('004C006F006F006B0021203A'x, 'UTF8');
 result2 = UNICODELEN('004C006F006F006B0021203A'x, 'UCS2B');
 result3 = UNICODELEN('\u004C\u006F\u006F\u006B\u0021\u203A', 'ESC');
 PUT result1;
 PUT result2;
 PUT result3;
RUN;

In WPS on Windows 10 with the default character set (CP1252), this example produces the following
output:

12
6
6

The UTF-8 encoding has alternate unprintable characters (determined by the hexadecimal values
'00'x and '20'x), because in UTF-8 a character might be represented by one, two or more bytes.
For example, the string begins with '004C'x, and in UTF-8, '00'x is the NUL character, and '4C'x
is the L character. In UTF-8, the string is L o o k ! : and is therefore twelve characters long. In
UTF-16, however, a character is represented by two two-byte groups; therefore, the same '004C'x is
the L character. Similarly, at the end of the string the hexadecimal number '1203'x represents space
('20'x), and colon (:) in UTF-8. In UTF-16, the hexadecimal number '203A'x represents the single
right-pointing angle quotation mark (›). In UTF-16, the string is Look!›, and is six characters long.

In the third result, the number of Unicode characters identified by the escape character (\) are counted;
the string is therefore six characters long, and 6 is returned as the length of the string.

Value formatting and assignment functions
Format and assign data to variables.

Data can be formatted and assigned to a variable. The data can formatted for input (using an informat)
or for output (using a format). The type (numeric or character) of formats can also be checked. The
formats or informats can be system-defined or user-defined (for example, through PROC FORMAT).

Reference for language elements
Version 4.1

2151

FORMAT ... 2151
Return a value that indicates whether a specified format is known and valid, and, if so, whether it
is a character or numeric format.

INFORMAT ..2153
Return a value that indicates whether a specified informat is known and valid, and, if so, whether
it is a character or numeric informat.

INPUT ..2155
Returns the formatted value of a variable to which a specified informat has been applied.

INPUTC ... 2156
Returns a value that has been formatted using the specified informat.

INPUTN ... 2157
Returns a numeric value from a string, that is read in using a numeric informat.

PUT ... 2159
Returns the formatted value of a variable to which a specified format has been applied.

PUTC ...2160
Returns value that has been formatted using the specified format.

PUTN ...2161
Returns a number in a specified numeric format.

FORMAT
Return a value that indicates whether a specified format is known and valid, and, if so, whether it is a
character or numeric format.

FORMAT (format , type)

Return type: Numeric

1 The format is known and valid, and is of the specified type
0 The format is unknown, invalid, or does not have the specified type.

format

Type: Character

The name of a format. The format must be specified as it is defined in Formats (page 373);
it must contain a period. If it does not, it is not recognised as a format. For example, $HEX is
not a valid format, $HEX. is. The specified format can include width and decimal if required; for
example, BEST. and BEST4.2 are both numeric formats.

You can also specify a user-defined format.

Reference for language elements
Version 4.1

2152

type

Specifies for which type, numeric or character, the format is checked.

"C"

Checks whether the specified format is a character format.

"N"

Checks whether the specified format is a numeric format.

Basic example
In this example, various formats are checked for validity and type. The result is written to the log.

DATA _NULL_;
 len = 12;
 INPUT fy $VARYING12. len;

 IF FORMAT(fy,"n") EQ 1 OR INFORMAT(strip(fy),"c") EQ 1 THEN
 DO;
 IF FORMAT(fy,"n") EQ 1 THEN PUT fy $CHAR11. "is a valid numeric format";
 IF FORMAT(fy,"c") EQ 1 THEN PUT fy $CHAR11. "is a valid character format";
 END;
 ELSE PUT fy $CHAR11. "is an invalid format";

DATALINES;
$HEX32768.
$HEX32767.
D12.5
HEXA.
$ASCII12.
;

This produces the following output:

$HEX32768. is an invalid format
$HEX32767. is a valid character format
D12.5 is a valid numeric format
HEXA. is an invalid format
$ASCII12. is a valid character format

The formats are valid, apart from HEXA., which does not exist in WPS and is not a user-defined format,
and $HEX32768., the width of which exceeds the maximum width for the format.

Reference for language elements
Version 4.1

2153

Example – user-defined informat
In this example, an informat is created using PROC FORMAT; this informat is then specified to the
INFORMAT function. The result is written to the log.

PROC FORMAT;
 VALUE ftype
 1 = "commercial"
 2 = "self-funding"
;
RUN;

DATA _NULL_;

 isc = FORMAT("ftype.","n");
 rc = IFC(isc, "the format is a numeric format", "the format is not a numeric
 format");
 PUT "The return code is " isc "so " rc;

RUN;

This produces the following output:

The return code is 1 so the format is a numeric format

INFORMAT
Return a value that indicates whether a specified informat is known and valid, and, if so, whether it is a
character or numeric informat.

INFORMAT (informat , type)

Return type: Numeric

1 The informat is known and valid, and is of the specified type
0 The informat is unknown, invalid, or does not have the specified type.

informat

Type: Character

The name of an informat. The informat must be specified as it is defined in Informats (page
538); it must contain a period. If it does not, it is not recognised as an informat. For example,
$PHEX is not a valid informat, $PHEX. is. The specified informat can include width and decimal if
required; for example, BEST. and BEST4.2 are both numeric informats.

You can also specify a user-defined informat.

type

Specifies for which type, numeric or character, the informat is checked.

Reference for language elements
Version 4.1

2154

"C"

Checks whether the specified informat is a character informat.

"N"

Checks whether the specified informat is a numeric informat.

Basic example
In this example, various informats are checked for validity and type. The result is written to the log.

DATA _NULL_;
 len = 12;
 INPUT infy $VARYING12. len;

 if INFORMAT(infy,"n") EQ 1 OR INFORMAT(strip(infy),"c") EQ 1 then
 do;
 IF INFORMAT(infy,"n") EQ 1 THEN PUT infy $CHAR11. "is a valid numeric format";
 IF INFORMAT(infy,"c") EQ 1 THEN PUT infy $CHAR11. "is a valid character
 format";
 END;
 ELSE PUT infy $CHAR11. "is an invalid format";

DATALINES;
$HEX32768.
$HEX32767.
HEX4.5
HEXA.
$ASCII12.
;

This produces the following output:

$HEX32768. is an invalid format
$HEX32767. is a valid character format
HEX4.5 is a valid numeric format
HEXA. is an invalid format
$ASCII12. is a valid character format

The informats are valid, apart from HEXA., which does not exist in WPS and is not a user-defined
informat, and $HEX32768., the width of which exceeds the maximum width for the informat.

Reference for language elements
Version 4.1

2155

Example – user-defined informat
In this example, an informat is created using PROC FORMAT; this informat is then specified to the
INFORMAT function. The result is written to the log.

PROC FORMAT;
 INVALUE $ftype
 'co' = 'commercial'
 'sf' = 'self-funded'
;
RUN;

DATA _NULL_;

 isc = INFORMAT("$ftype.","c");
 fi = IFC(isc, "The informat is a character informat", "The informat is not a
 character informat");
 PUT fi;

RUN;

This produces the following output:

The informat is a character informat

INPUT
Returns the formatted value of a variable to which a specified informat has been applied.

INPUT (string , informat)

Return type: Character

Formatted input.

string

Type: Character

The input variable to be formatted.

informat

Type: Informat

An informat, as described in the section Informats.

Reference for language elements
Version 4.1

2156

Example
In this example, the function is used to apply informats to data. The result is written to the log.

DATA _NULL_;

 INPUT prod $ price;

 IF _N_ EQ 2 THEN DO;
 f1 = INPUT(prod, $REVERJ10.);
 f2 = INPUT(price, BEST4.2);
 PUT f1 f2;
 END;
 ELSE DO;
 f1 = INPUT(prod, $F3.);
 f2 = INPUT(price, 6.3);
 PUT f1 f2;
 END;

DATALINES;
Tea 1002
Cabinet 200506
Coffee 3713

This produces the following output:

Tea 1.002
tenibaC 2005.06
Cof 3.713

INPUTC
Returns a value that has been formatted using the specified informat.

INPUTC (source , informat
, w

)

Return type: Character

source

Type: Character

The source value to be formatted.

informat

Type: Character

The informat to apply source. The format must be enclosed in quotation marks; for example,
'$CHAR5.'. You do not have to enter either the leading $ or the terminating period. of the
format; for example, '$CHAR5.' and 'CHAR5' are equivalent.

Reference for language elements
Version 4.1

2157

For information on formats, see Formats (page 373).

w
Optional argument

Type: Numeric

The width to apply to the format. This value overrides any width specified to the format in format.
For example, if you specify var = INPUTC('sometext', '$CHAR5, 7), the value returned
will be sometex.

Example
In this example, a string and a numeric variable are used with the function. The result is written to the
log.

DATA _NULL_;

 str = 'Hello world';
 a = 1;

 out = INPUTC(str, '10.', 5);
 PUT 'str: ' out;

 out = INPUTC(a, '10.', 5);
 PUT 'num: out;

RUN;

This produces the following output:

str: Hello
num:

The string is formatted; however, the function cannot convert the numerical variable to a character
string, so a string of the specified length that contains only spaces is returned.

INPUTN
Returns a numeric value from a string, that is read in using a numeric informat.

INPUTN (source , informat ,
w , d

)

Return type: Numeric

source

Type: Character

Reference for language elements
Version 4.1

2158

The input string.

informat

Type: Character

The informat applied to the source.

w
Optional argument

Type: Numeric

The width to apply to the informat.

d
Optional argument

Type: Numeric

The number of decimal digits to apply to the informat.

Basic example
In this example, a numerical string and a numerical variable are used with the function. The result is
written to the log.

DATA _NULL_;
 str = "12345678910";
 a = 1;

 out = INPUTN(str, '8.2', 5, 3);
 PUT "str: " out;

 out = INPUTN(a, '8.2', 5);
 PUT "num: " out;
RUN;

This produces the following output:

str: 12.345
num: .

The numerical string is processed, however the function is unable to convert the numerical variable to
a numerical string for output.

Example – removing symbols
In this example, the specified informat does what is expected, removing the '$' and ',' symbols and
returns the number. The result is written to the log.

DATA _NULL_;
 str = "$1,35907";
 out = INPUTN(str,'dollar10.2');
 PUT "str: " out;
RUN;

Reference for language elements
Version 4.1

2159

This produces the following output:

str: 135907

PUT
Returns the formatted value of a variable to which a specified format has been applied.

PUT (value , format)

Return type: Character

Formatted variable. Numbers are formatted and returned as characters.

value

Type: Character or numeric value

The value to be formatted.

format

Type: Format

A format. For information on formats, see Formats (page 373).

Example
In this example, the function is used to apply formats to variables. The result is written to the log.

DATA _NULL_;

 INPUT prod $ price;

 IF _N_ EQ 2 THEN DO;
 f1 = PUT(prod, $REVERJ10.);
 f2 = PUT(price, BEST4.2);
 PUT f1 f2;
 END;
 ELSE DO;
 f1 = PUT(prod, $F3.);
 f2 = PUT(price, 6.3);
 PUT f1 f2;
 END;

DATALINES;
Tea 1002
Cabinet 200506
Coffee 3713

Reference for language elements
Version 4.1

2160

This produces the following output:

Tea 1002
tenibaC 2E5
Cof 3713

PUTC
Returns value that has been formatted using the specified format.

PUTC (value , format
, w

)

Return type: Character

The specified character format.

value

Type: Character

The value to be formatted.

format

Type: Character

The format applied to the character. The format must be enclosed in quotation marks; for
example, '$CHAR5.'. You do not have to enter either the leading $ or the terminating period. of
the format; for example, '$CHAR5.' and 'CHAR5' are equivalent.

For information on formats, see Formats (page 373).

w
Optional argument

Type: Numeric

The width to apply to the format. This value overrides any width specified to the format in format.
For example, if you specify var = PUTC('sometext', '$CHAR5.', 7), the value returned
will be sometex.

Reference for language elements
Version 4.1

2161

Example
In this example, the function is used to format two strings. The result is written to the log.

DATA _NULL_;

 x='AbCDeFGHi';

 var=PUTC(x, '$UPCASE');
 PUT 'The formatted string is: ' var;

 var=PUTC(x, '$5.', 7);
 PUT 'The formatted string is: ' var;

RUN;

This produces the following output:

The formatted string is: ABCDEFGHI
The formatted string is: AbCDeFG

PUTN
Returns a number in a specified numeric format.

PUTN (value , format ,
w , d

)

Return type: Character

The specific numeric format.

value

Type: Numeric

The variable.

format

Type: Character

The format to be applied to the number.

w
Optional argument

Type: Numeric

The width of the format.

Reference for language elements
Version 4.1

2162

d
Optional argument

Type: Numeric

The number of digits to apply to the format.

Example
In this example, in the first use of the function, it is configured to display only two decimal places. In the
second use of the function, a binary format is specified. The result is written to the log.

DATA _NULL_;
 y=142.00039;
 col1=PUTN(y, '6.0', 6, 2);
 col2=PUTN(y, 'BINARY.', 8, 0);
 PUT col1 col2;
RUN;

This produces the following output:

142.00 10001110

Variable information functions and CALL routines
These functions return information about variables assigned in the DATA step, either explicitly or from
a dataset.

When a function-name is appended by 'X', variable names should be entered enclosed by quotes.

VARRAY ..2164
Returns a value indicating whether it is the name of an array variable.

VARRAYX ... 2165
Returns a value indicating whether an array exists when using the specified quoted variable
name.

VFORMAT ... 2166
Returns the format for the specified variable name.

VFORMATD .. 2167
Returns the digits of the format for a specified variable name.

VFORMATDX .. 2168
Returns the digits of the format for a specified quoted variable name.

VFORMATN .. 2170
Returns the format name for a specified variable name.

VFORMATNX .. 2171
Returns the format name for a specified quoted variable name.

Reference for language elements
Version 4.1

2163

VFORMATW ..2173
Returns the width of the format for the specified variable name.

VFORMATWX ... 2175
Returns the width of the format for the specified quoted variable name.

VFORMATX ...2177
Returns the format for the specified quoted variable name.

VINARRAY .. 2179
Returns a value indicating whether the specified variable name is in an array.

VINARRAYX ..2180
Returns a value indicating whether the specified quoted variable name is in an array.

VINFORMAT ... 2181
Returns the informat for a specified variable name.

VINFORMATD ...2182
Returns the digits of the informat for the specified variable name.

VINFORMATDX .. 2183
Returns the digits of the informat for the specified quoted variable name.

VINFORMATN ...2184
Returns the informat name for a specified variable name.

VINFORMATNX .. 2185
Returns the informat name for a specified quoted variable name.

VINFORMATW .. 2187
Returns the width of the informat for the specified variable name.

VINFORMATWX ..2188
Returns the width of the informat for the specified quoted variable name.

VINFORMATX ... 2190
Returns the informat for a specified quoted variable name.

VLABEL ... 2191
Returns the label of the specified variable name.

VLABELX ...2193
Returns the label of the specified quoted variable name.

VLENGTH ..2195
Returns the length of the specified variable name.

VLENGTHX ... 2197
Returns the length of the specified quoted variable name.

VNAME ..2198
Returns the name of a specified variable name.

VNAMEX ... 2199
Returns the name of a specified quoted variable name.

VTRANSCODE ..2201
Returns a value indicating whether a specified variable name can be transcoded.

Reference for language elements
Version 4.1

2164

VTRANSCODEX ... 2202
Returns a value indicating whether a specified quoted variable name can be transcoded.

VTYPE ...2203
Returns the type of data associated with the specified variable name. This will be N for numeric
or C for character.

VTYPEX .. 2205
Returns the type of data associated with the specified quoted variable name. This will be N for
numeric or C for character.

VVALUE .. 2207
Returns the formatted value of the specified variable name.

VVALUEX .. 2208
Returns the formatted value of the specified quoted variable name.

CALL LABEL ... 2210
Returns the label for a specified variable name. The label is returned as an argument in the
CALL routine.

CALL VNAME ... 2211
Returns the name for a specified variable name. The name is returned as an argument in the
CALL routine.

CALL VNEXT .. 2213
Returns the variable names from a DATA step.

VARRAY
Returns a value indicating whether it is the name of an array variable.

VARRAY (variable- name)

Return type: Numeric

1 if the variable name is an array, 0 (zero) otherwise.

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2165

Example
In this example, the function is used twice with variables. The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (15 21 307 42 55);
 i = 10;

 var = VARRAY(nums);
 if var = 1 THEN PUT "The nums variable name is an array: " var;
 ELSE PUT "The nums variable name is not an array " var;

 pax = VARRAY(i);
 if pax = 1 THEN PUT "The i variable name is an array: " pax;
 ELSE PUT "The i variable name is not an array: " pax;
RUN;

This produces the following output:

The nums variable name is an array: 1
The i variable name is not an array: 0

VARRAYX
Returns a value indicating whether an array exists when using the specified quoted variable name.

VARRAYX (variable- name)

Return type: Numeric

1 if the variable name is an array, 0 (zero) otherwise.

variable-name

Type: Character

The quoted variable name.

Reference for language elements
Version 4.1

2166

Example
In this example, the function indicates that a specified variable name is an array. The result is written to
the log.

DATA _NULL_;
 ARRAY nums(5) (15 27 39 42 500);
 i = 10;

 var = VARRAYX("nums");
 if var = 1 THEN PUT "nums is a name of an array: " var;
 ELSE PUT "nums is not a name of an array " var;

 pax = VARRAYX("i");
 if pax = 1 THEN PUT "i is a name of an array: " pax;
 ELSE PUT "i is not a name of an array: " pax;
RUN;

This produces the following output:

nums is a name of an array: 1
i is not a name of an array: 0

Example
In this example, the nums variable is then assigned to a second variable abc. The function indicates
that a specified variable name is an array. The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (10 25 3 42 55);
 i = 10;

 abc = "nums";

 var = VARRAYX(abc);
 if var = 1 THEN PUT "abc is a name of an array: " var;
 ELSE PUT "abc is not a name of an array " var;

 pax = VARRAYX("i");
 if pax = 1 THEN PUT "i is a name of an array: " pax;
 ELSE PUT "i is not a name of an array: " pax;
RUN;

This produces the following output:

abc is a name of an array: 1
i is not a name of an array: 0

VFORMAT
Returns the format for the specified variable name.

VFORMAT (variable- name)

Reference for language elements
Version 4.1

2167

Return type: Character

The format for the variable.

variable-name

Type: Var

The variable name.

Example
In this example, formats for variables are returned. Some of these variables have default formats, while
others have formats assigned. The result is written to the log.

DATA _NULL_;
 i = 10;
 FORMAT p21 $8.;
 p21 = "Twenty-One-Today";
 dp = 1.7E+308;
 FORMAT date Date9.;
 date = "19-MAY-2017"D;

 var = VFORMAT(i);
 PUT "The format for the i variable is: " var;
 pax = VFORMAT(p21);
 PUT "The format for the p21 variable is: " pax;
 zar = VFORMAT(dp);
 PUT "The format for the dp variable is: " zar;
 cur = VFORMAT(date);
 PUT "The format for the date variable is: " cur;
RUN;

This produces the following output:

The format for the i variable is: BEST12.
The format for the p21 variable is: $8.
The format for the dp variable is: BEST12.
The format for the date variable is: DATE9.

VFORMATD
Returns the digits of the format for a specified variable name.

VFORMATD (variable- name)

Return type: Numeric

variable-name

Type: Var

Reference for language elements
Version 4.1

2168

The variable name.

Example – using a dataset
In this example, digits of the decimal format for each variable are returned from a dataset. It is known
that there are four named variables in a dataset, but the digits of the decimal format for each variable
are unknown. The result is written to the log.

LIBNAME mydir "c:\temp";
DATA _NULL_;

 SET mydir.VARFMAT (OBS=1);

 var_i = VFORMATD(i);
 PUT "The number of digits for the i variable is: " var_i;

 var_sp = VFORMATD(sp);
 PUT "The number of digits for the sp variable is: " var_sp;

 var_dp = VFORMATD(dp);
 PUT "The number of digits for the dp variable is: " var_dp;

 var_frac = VFORMATD(fraction);
 PUT "The number of digits for the fraction variable is: " var_frac;
RUN;

This produces the following output:

The number of digits for the i variable is: 2
The number of digits for the sp variable is: 3
The number of digits for the dp variable is: 4
The number of digits for the fraction variable is: 3

The properties of the VARFMAT dataset is as follows:

Name Type Length Format Informat Label
dp number 8 8.4
fraction number 8 7.3
i number 8 BEST3.2
sp number 8 4.3

VFORMATDX
Returns the digits of the format for a specified quoted variable name.

VFORMATDX (variable- name)

Return type: Numeric

variable-name

Type: Character

Reference for language elements
Version 4.1

2169

The quoted variable name.

Example
In this example, a variable has a format and value assigned to it. The number of digits for the format of
the variable are then returned. The result is written to a log.

DATA _NULL_;
 FORMAT a F5.2;
 a = 2.554;

 fmtv = VFORMATDX("a");
 PUT "The number of digits is: " fmtv;

RUN;

This produces the following output:

The number of digits is: 2

Example
In this example, a variable has a format and value assigned to it. The variable is then assigned to a
second variable. The number of digits for the format of the first variable are then returned. The result is
written to a log.

DATA _NULL_;

 FORMAT a F5.2;
 a = 2.554;
 b = "a";

 fmtv = VFORMATDX(b);
 PUT "The number of digits is: " fmtv;

RUN;

This produces the following output:

The number of digits is: 2

Reference for language elements
Version 4.1

2170

Example – using a dataset
In this example, digits of the decimal format for each variable are returned from a dataset. It is known
that the dataset contains four variables, but the digits of the decimal format for each variable are
unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARDFMAT (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varcount;
 varname = CAT(varStart, i);
 varformat = VFORMATDX(varname);
 PUT 'The number of digits for ' varname' is ' varformat;
 END;

RUN;

This produces the following output:

The number of digits for X1 is 3
The number of digits for X2 is 0
The number of digits for X3 is 4
The number of digits for X4 is 2

The properties of the VARDFMAT dataset is as follows:

Name Type Length Format Informat Label
X1 number 8 F8.3
X2 number 8 DATE9.
X3 number 8 F8.4
X4 number 8 F7.2

VFORMATN
Returns the format name for a specified variable name.

VFORMATN (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2171

Example
In this example, format names for specified variables are returned. nums4 is the fourth variable in
ARRAY nums(5). Some of these variables have default formats, while fraction has an assigned
format. The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (10 22 36 4 54);
 p2 = "Racing Colours";
 FORMAT fraction F7.3;
 fraction = 125.525;

 var_nums4 = VFORMATN(nums4);
 PUT "The format name for the nums4 variable is: " var_nums4;

 var_p2 = VFORMATN(p2);
 PUT "The format name for the p2 variable is: " var_p2;

 var_frac = VFORMATN(fraction);
 PUT "The format name for the fraction variable is: " var_frac;
RUN;

This produces the following output:

The format name for the nums4 variable is: BEST
The format name for the p2 variable is: $
The format name for the fraction variable is: F

VFORMATNX
Returns the format name for a specified quoted variable name.

VFORMATNX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Reference for language elements
Version 4.1

2172

Example
In this example, a variable has a format and value assigned to it. The format name for the specified
variable is then returned. The result is written to a log.

DATA _NULL_;

 FORMAT sp BEST4.;
 sp = 3.4E+38;

 fmtv = VFORMATNX("sp");
 PUT "The format name is: " fmtv;

RUN;

This produces the following output:

The format name is: BEST

Example
In this example, a variable has a format and value assigned to it. This variable is then assigned to a
second variable. The format name of the first variable is then returned. The result is written to a log.

DATA _NULL_;

 FORMAT sp BEST4.;
 sp = 3.4E+38;

 b = "sp";

 fmtv = VFORMATNX(b);
 PUT "The format name is: " fmtv;

RUN;

This produces the following output:

The format name is: BEST

Example – using a dataset
In this example, format names for variables are returned from a dataset. It is known that the dataset
contains four variables, but the format names are unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARFMAT (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 varformat = VFORMATNX(varname);
 PUT 'The format name of ' varname ' is ' varformat;
 END;
RUN;

Reference for language elements
Version 4.1

2173

This produces the following output:

The format name of X1 is BEST
The format name of X2 is DATE
The format name of X3 is F
The format name of X4 is F

The properties of the VARFMAT dataset is as follows:

Name Type Length Format Informat Label
X1 number 8 BEST3.2
X2 number 8 DATE9.
X3 number 8 F8.4
X4 number 8 F7.3

VFORMATW
Returns the width of the format for the specified variable name.

VFORMATW (variable- name)

Return type: Numeric

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2174

Example
In this example, the widths of the formats for variables are returned. nums(2) is the second variable in
ARRAY nums(5). Some of these variables have default formats, while others have formats assigned.
The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (1 2 3 4 5);
 FORMAT p21 $10.;
 p21 = "First-Past-The-Post";
 sp = 3.4E+38;
 FORMAT date Date9.;
 date = "19-MAY-2017"D;

 var_nums2 = VFORMATW(nums(2));
 PUT "The width of the format for the nums(2) variable is: " var_nums2;

 var_p21 = VFORMATW(p21);
 PUT "The width of the format for the p21 variable is: " var_p21;

 var_sp = VFORMATW(sp);
 PUT "The width of the format for the sp variable is: " var_sp;

 var_date = VFORMATW(date);
 PUT "The width of the format for the date variable is: " var_date;
RUN;

This produces the following output:

The width of the format for the nums(2) variable is: 12
The width of the format for the p21 variable is: 10
The width of the format for the sp variable is: 12
The width of the format for the date variable is: 9

Example – using a dataset
In this example, variables are read from a dataset and their widths are returned. The result is written to
the log.

LIBNAME mydir "c:\temp";
DATA _NULL_;

 SET mydir.BOOKS (OBS=1) ;

 ARRAY NB{*} _NUMERIC_ ;
 ARRAY CB{*} _CHARACTER_ ;

 hw = "has the width: ";
 sp = " ";
 tv = "The variable: ";

 PUT tv;

 DO i = 1 TO DIM(NB);
 vn = VNAME(NB{i});
 vfw = VFORMATW(NB{i});
 PUT sp vn hw vfw;
 END;

Reference for language elements
Version 4.1

2175

 DO i = 1 TO DIM(CB);
 vn = VNAME(CB{i});
 vfw = VFORMATW(CB{i});
 PUT sp vn hw vfw;
 END;

 whw = VFORMATW(hw);

 PUT " ";

 PUT "The variable whw has the width: " whw;
RUN;

This produces the following output:

The variable:
 Purchased has the width: 9
 Dewey has the width: 9
 Price has the width: 9
 Title has the width: 114
 Author has the width: 23
 ISBN has the width: 14
 Subject has the width: 21

The variable whw has the width: 15

The properties of the BOOKS dataset is as follows:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 $14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

VFORMATWX
Returns the width of the format for the specified quoted variable name.

VFORMATWX (variable- name)

Return type: Numeric

variable-name

Type: Character

The quoted variable name.

Reference for language elements
Version 4.1

2176

Example
In this example, a variable has a format and value assigned to it. The width of the format for the
variable is then returned. The result is written to a log.

DATA _NULL_;

 FORMAT sp BEST4.;
 sp = 3.4E+38;

 fmtv = VFORMATWX("sp");
 PUT "The width of the format is: " fmtv;

RUN;

This produces the following output:

The width of the format is: 4

Example
In this example, a variable has a format and value assigned to it. This variable is then assigned to a
second variable. The width of the format of the first variable is then returned. The result is written to a
log.

DATA _NULL_;

 FORMAT sp BEST4.;
 sp = 3.4E+38;

 b = "sp";

 fmtv = VFORMATWX(b);
 PUT "The with of the format is: " fmtv;

RUN;

This produces the following output:

The width of the format is: 4

Reference for language elements
Version 4.1

2177

Example – using a dataset
In this example, widths of the formats for variables are returned from a dataset. It is known that the
dataset contains four variables, but the widths of the formats for the variables are unknown. The result
is written to a log.

DATA _NULL_;
 SET mydir.VARWIDTH (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 varwidth = VFORMATWX(varname);
 PUT 'The width of the format of ' varname ' is ' varwidth;
 END;
RUN;

This produces the following output:

The width of the format of X1 is 10
The width of the format of X2 is 9
The width of the format of X3 is 8
The width of the format of X4 is 8

The properties of the VARWIDTH dataset is as follows:

Name Type Length Format Informat Label
X1 character 10 $10.
X2 number 8 DATE9.
X3 number 8 F8.4
X4 number 8 F8.2

VFORMATX
Returns the format for the specified quoted variable name.

VFORMATX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Reference for language elements
Version 4.1

2178

Example
In this example, a variable has a format and value assigned to it. The format of the variable is then
returned. The result is written to a log.

DATA _NULL_;

 FORMAT a F3.1;
 a = 2;

 fmtv = VFORMATX("a");
 PUT "The format is: " fmtv;

RUN;

This produces the following output:

The format is: F3.1

Example
In this example, a variable has a format and value assigned to it. This variable is then assigned to a
second variable. The format of the first variable is then returned. The result is written to a log.

DATA _NULL_;

 FORMAT a F3.1;
 a = 2;
 b = "a";

 fmtv = VFORMATX(b);
 PUT "The format is: " fmtv;

RUN;

This produces the following output:

The format is: F3.1

Example – using a dataset
In this example, formats for variables are returned from a dataset. It is known that there are five
variables in a dataset, but the formats for the variables are unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARFMAT (OBS=1);
 varstart = 'X';
 varcount = 5;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 varfmat = VFORMATX(varname);
 PUT 'The value for ' varname 'is ' varfmat;
 END;

RUN;

Reference for language elements
Version 4.1

2179

This produces the following output:

The value for X1 is BEST3.2
The value for X2 is DATE9.
The value for X3 is F8.4
The value for X4 is F7.3
The value for X5 is $200.

The structure of the VARFMAT dataset is as follows:

Name Type Length Format Informat Label
X1 number 8 BEST3.2
X2 number 8 Date9.
X3 number 8 F8.4
X4 number 8 F7.3
X5 character 200 $200.

VINARRAY
Returns a value indicating whether the specified variable name is in an array.

VINARRAY (variable- name)

Return type: Numeric

1 if the variable name is in an array, 0 otherwise.

variable-name

Type: Var

The variable.

Example
In this example, the function is used to check whether the variable nums(7) is available. nums(7) is
the seventh variable in ARRAY nums(12). The result is written to the log.

DATA _NULL_;
 ARRAY nums(12);

 var = VINARRAY(nums(7));

 if var = 1 THEN PUT "The nums(7) variable is in an array: " var;
 ELSE PUT "The nums(7) variable is not part of an array: " var;

RUN;

This produces the following output:

The nums(7) variable is in an array: 1

Reference for language elements
Version 4.1

2180

VINARRAYX
Returns a value indicating whether the specified quoted variable name is in an array.

VINARRAYX (variable- name)

Return type: Numeric

1 if the variable with the specified name is in an array, 0 otherwise.

variable-name

Type: Character

The name of the variable.

Example
In this example, the function is used to indicate whether the variable nums4 is available. nums4 is the
fourth variable name in ARRAY nums(12). The result is written to the log.

DATA _NULL_;
 ARRAY nums(12);

 var = VINARRAYX("nums4");

 if VAR = 1 THEN PUT "The nums4 variable is in an array: " var;
 ELSE PUT "The nums4 variable is not part of an array: " var;

RUN;

This produces the following output

The nums4 variable is in an array: 1

Example
In this example, the function is used to indicate whether the variable nums8 is available. nums8 is the
eighth variable name in ARRAY nums(12). This variable is then assigned to a second variable. The
result is written to the log.

DATA _NULL_;
 ARRAY nums(12);

 abc = "nums8";

 var = VINARRAYX(abc);

 if VAR = 1 THEN PUT "The abc variable is in an array: " var;
 ELSE PUT "The abc variable is not part of an array: " var;

RUN;

Reference for language elements
Version 4.1

2181

This produces the following output

The abc variable is in an array: 1

VINFORMAT
Returns the informat for a specified variable name.

VINFORMAT (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Example
In this example, informats for variables are returned. Some of these variables have default informats,
while others have informats assigned. The result is written to the log.

DATA _NULL_;
 INFORMAT sp BEST4.;
 sp = 3.4E+38;
 paddle = 208.77 + RANNOR(153)*9.2076838;
 INFORMAT date Date9.;
 date = "12-MAY-2017"D;

 var_sp = VINFORMAT(sp);
 PUT "The informat for the sp variable is: " var_sp;

 var_paddle = VINFORMAT(paddle);
 PUT "The informat for the Paddle variable is: " var_paddle;

 var_date = VINFORMAT(date);
 PUT "The informat for the Date variable is: " var_date;
RUN;

This produces the following output:

The informat for the sp variable is: BEST4.
The informat for the paddle variable is: 32.
The informat for the date variable is: DATE9.

Reference for language elements
Version 4.1

2182

VINFORMATD
Returns the digits of the informat for the specified variable name.

VINFORMATD (variable- name)

Return type: Numeric

variable-name

Type: Var

The variable name.

Example – using a dataset
In this example, digits of the decimal informat for each variable are returned from a dataset. It is known
that the dataset contains four named variables, but the digits of the informat for each variable are
unknown. The result is written to the log.

LIBNAME mydir "c:\temp";
DATA _NULL_;

 SET mydir.VARDFMAT (OBS=1);

 var = VINFORMATD(i);
 PUT "The number of digits for the i variable informat is: " var;

 var = VINFORMATD(sp);
 PUT "The number of digits for the sp variable informat is: " var;

 var = VINFORMATD(dp);
 PUT "The number of digits for the dp variable informat is: " var;

 var = VINFORMATD(fraction);
 PUT "The number of digits for the fraction variable informat is: " var;
RUN;

This produces the following output:

The number of digits for the i variable informat is: 2
The number of digits for the sp variable informat is: 3
The number of digits for the dp variable informat is: 4
The number of digits for the fraction variable informat is: 3

The properties of the VARDFMAT dataset is as follows:

Name Type Length Format Informat Label
dp number 8 8.4
fraction number 8 7.3
i number 8 BEST3.2
sp number 8 4.3

Reference for language elements
Version 4.1

2183

VINFORMATDX
Returns the digits of the informat for the specified quoted variable name.

VINFORMATDX (variable- name)

Return type: Numeric

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable has an informat and value assigned to it. The number of digits for the
informat of the variable are then returned. The result is written to a log.

DATA _NULL_;

 INFORMAT a F5.2;
 a = 2.369;

 fmtv = VINFORMATDX("a");
 PUT "The number of digits is: " fmtv;

RUN;

This produces the following output:

The number of digits is: 2

Example
In this example, a variable has an informat and value assigned to it. This variable is then assigned to a
second variable. The number of digits for the informat of the first variable is then returned. The result is
written to a log.

DATA _NULL_;

 INFORMAT a F5.2;
 a = 2.369;
 b = "a";

 fmtv = VINFORMATDX(b);
 PUT "The number of digits is: " fmtv;

RUN;

This produces the following output:

The number of digits is: 2

Reference for language elements
Version 4.1

2184

Example – using a dataset
In this example, digits of the decimal informat for each variable are returned from a dataset. It is known
that the dataset contains four variables, but the digits of the decimal informat for each variable are
unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARDFMAT (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 vardigit = VINFORMATDX(varname);
 PUT 'The number of digits for ' varname'is ' vardigit;
 END;

RUN;

This produces the following output:

The number of digits for X1 is 2
The number of digits for X2 is 3
The number of digits for X3 is 4
The number of digits for X4 is 3

The properties of the VARDFMAT dataset is as follows:

Name Type Length Format Informat Label
X1 number 8 BEST3.2
X2 number 8 4.3
X3 number 8 8.4
X4 number 8 7.3

VINFORMATN
Returns the informat name for a specified variable name.

VINFORMATN (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2185

In this example, the informat names for specified variables are returned. The p21 variable uses a
default informat, while the other variables have informats assigned. The result is written to the log.

DATA _NULL_;
 INFORMAT i BEST2.;
 i = 10;
 p21 = "Twenty-One-Today";
 INFORMAT date Date9.;
 date = "19-MAY-2017"D;

 var = VINFORMATN(i);
 PUT "The informat name for the i variable is: " var;

 var = VINFORMATN(p21);
 PUT "The informat name for the p21 variable is: " var;.

 var = VINFORMATN(date);
 PUT "The informat name for the date variable is: " var;
RUN;

This produces the following output:

The informat name for the i variable is: BEST
The informat name for the p21 variable is: $
The informat name for the date variable is: DATE

VINFORMATNX
Returns the informat name for a specified quoted variable name.

VINFORMATNX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Reference for language elements
Version 4.1

2186

Example
In this example, an informat name for a specified variable is returned. The result is written to a log.

DATA _NULL_;

 INFORMAT a F3.1;
 a = 2;

 fmtv = VINFORMATNX("a");
 PUT "The informat name is: " fmtv;

RUN;

This produces the following output:

The informat name is: F

Example
In this example, a variable has an informat and value assigned to it. This variable is then assigned to a
second variable. The informat name of the first variable is then returned. The result is written to a log.

DATA _NULL_;

 INFORMAT a F3.1;
 a = 2;
 b = "a";

 fmtv = VINFORMATNX(b);
 PUT "The informat name is: " fmtv;

RUN;

This produces the following output:

The informat name is: F

Example – using a dataset
In this example, informat names for variables are returned from a dataset. It is known that the dataset
contains four variables, but the informat names are unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARNFMAT (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varCount;
 varname = CAT(varstart, i);
 varformat = VINFORMATNX(varName);
 PUT 'The informat name for ' varname ' is ' varformat;
 END;

RUN;

Reference for language elements
Version 4.1

2187

This produces the following output:

The informat name for X1 is BEST
The informat name for X2 is DATE
The informat name for X3 is F
The informat name for X4 is F

The properties of the VARNFMAT dataset is as follows:

Name Type Length Format Informat Label
 X1 number 8 BEST3.2
 X2 number 8 DATE9.
 X3 number 8 F8.4
 X4 number 8 F7.3

VINFORMATW
Returns the width of the informat for the specified variable name.

VINFORMATW (variable- name)

Return type: Numeric

variable-name

Type: Var

The variable name.

Example
In this example, widths of the informats for the variables are returned. nums(3) is the third variable
in ARRAY nums(5). Some of these variables have default informats, while others have informats
assigned. The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (11 243 386 493 5);
 INFORMAT P21 $10.;
 p21 = "First-Past-The-Post";
 INFORMAT paddle $8.;
 paddle = 208.77 + RANNOR(153)*9.2076838;
 INFORMAT date Date9.;
 date = "19-MAY-2017"D;

 var = VINFORMATW(nums(3));
 PUT "The width of the informat for the nums(3) variable is: " var;

 var = VINFORMATW(p21);
 PUT "The width of the informat for the p21 variable is: " var;

 VAR = VINFORMATW(paddle);
 PUT "The width of the informat for the paddle variable is: " var;

Reference for language elements
Version 4.1

2188

 var = VINFORMATW(date);
 PUT "The width of the informat for the date variable is: " var;
RUN;

This produces the following output:

The width of the informat for the nums(3) variable is: 32
The width of the informat for the p21 variable is: 10
The width of the informat for the paddle variable is: 8
The width of the informat for the date variable is: 9

VINFORMATWX
Returns the width of the informat for the specified quoted variable name.

VINFORMATWX (variable- name)

Return type: Numeric

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable has an informat and value assigned to it. The width of the informat for the
variable is then returned. The result is written to a log.

DATA _NULL_;

 INFORMAT sp BEST4.;
 sp = 3.4E+38;

 fmtv = VINFORMATWX("sp");
 PUT "The width of the informat is: " fmtv;

RUN;

This produces the following output:

The width of the informat is: 4

Reference for language elements
Version 4.1

2189

Example
In this example, a variable has an informat and value assigned to it. This variable is then assigned to a
second variable. The width of the informat of the first variable is then returned. The result is written to a
log.

DATA _NULL_;

 INFORMAT sp BEST4.;
 sp = 3.4E+38;

 b = "sp";

 fmtv = VINFORMATWX(b);
 PUT "The with of the informat is: " fmtv;

RUN;

This produces the following output:

The width of the informat is: 4

Example – using a dataset
In this example, widths of informats for variables are returned from a dataset. It is known that the
dataset contains four variables, but the widths of the informats are unknown. The result is written to a
log.

DATA _NULL_;
 SET mydir.VARIWIDTH (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 varformat = VINFORMATWX(varName);
 PUT 'The width of the informat of ' varname ' is ' varformat;
 END;
RUN;

This produces the following output:

The width of the informat of X1 is 10
The width of the informat of X2 is 9
The width of the informat of X3 is 8
The width of the informat of X4 is 8

The properties of the VARIWIDTH dataset is as follows:

Name Type Length Format Informat Label
X1 character 10 $10.
X2 number 8 DATE9.
X3 number 8 F8.4
X4 number 8 F8.2

Reference for language elements
Version 4.1

2190

VINFORMATX
Returns the informat for a specified quoted variable name.

VINFORMATX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable has an informat and value assigned to it. The informat for the variable is
returned. The result is written to a log.

DATA _NULL_;

 INFORMAT sp BEST4.;
 sp = 3.4E+38;

 fmtv = VINFORMATX("sp");
 PUT "The informat is: " fmtv;

RUN;

This produces the following output:

The informat is: BEST4

Example
In this example, a variable has an informat and value assigned to it. This variable is then assigned to a
second variable. The informat of the first variable is then returned. The result is written to a log.

DATA _NULL_;

 INFORMAT sp BEST4.;
 sp = 3.4E+38;

 b = "sp";

 fmtv = VINFORMATX(b);
 PUT "The informat is: " fmtv;

RUN;

This produces the following output:

The informat is: BEST4

Reference for language elements
Version 4.1

2191

Example – using a dataset
In this example, informats for variables are returned from a dataset. It is known that the dataset
contains five variables, but the informats are unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARIFMAT (OBS=1);
 varstart = 'X';
 varcount = 5;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 variformat = VINFORMATX(varname);
 PUT 'The informat of ' varname ' is ' variformat;
 END;
RUN;

This produces the following output:

The informat of X1 is $14.
The informat of X2 is DATE9.
The informat of X3 is F8.4
The informat of X4 is F7.3
The informat of X5 is $200.

The properties of the VARIFMAT dataset is as follows:

Name Type Length Format Informat Label
X1 character 14 $14.
X2 number 8 DATE9.
X3 number 8 F8.4
X4 number 8 F7.3
X5 character 200 $200.

VLABEL
Returns the label of the specified variable name.

VLABEL (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2192

Basic Example
In this example variable labels are returned. nums3 is the third variable in ARRAY nums(5). Where
the variable is not assigned a label, the default value is returned. The default label for a variable is its
name. The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (1 2 3 4 5);
 i = "ABCDEFGH";
 s1 = 25500;
 s2 = 5000;
 s3 = s1 - s2;
 LABEL s1 = 'Gross Income: ';
 LABEL S2 = 'Expenses: ';

 var = VLABEL(nums3);
 PUT "The nums3 variable has the following label: " var;

 var = VLABEL(i);
 PUT "The i variable has the following label: " var;

 var = VLABEL(s1);
 PUT "The s1 variable has the following label: " var;

 var = VLABEL(s2);
 PUT "The s2 variable has the following label: " var;

 var = s3;
 PUT "The difference between s1 and s2 is: " var;
RUN;

This produces the following output:

The nums3 variable has the following label: nums3
The i variable has the following label: i
The s1 variable has the following label: Gross Income:
The s2 variable has the following label: Expenses:
The difference between s1 and s2 is: 20500

Reference for language elements
Version 4.1

2193

Example – using a dataset
In this example, variable labels are returned from a dataset. The results are written to the log.

LIBNAME mydir "c:\temp";
DATA _NULL_;

 SET mydir.BOOKS (OBS=1);
 ARRAY BKNUM{*} _NUMERIC_ ;
 ARRAY BKCHAR{*} _CHARACTER_ ;

 DO i = 1 TO DIM(BKNUM);
 vl = VLABEL(BKNUM{i});
 PUT "Variable " i "has the label: " vl;

 END ;

 DO j = 1 TO DIM(BKCHAR);
 vl = VLABEL(BKCHAR{j});
 PUT "Variable " i "has the label: " vl;

 i = i + 1;

 END;

RUN;

This produces the following output:

Variable 1 has the label: Date book purchased
Variable 2 has the label: Dewey decimal number
Variable 3 has the label: Original price paid for book
Variable 4 has the label: Book title
Variable 5 has the label: Author of the book
Variable 6 has the label: International standard book number
Variable 7 has the label: BIC subject class

The structure of the BOOKS dataset is as follows:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 $14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

VLABELX
Returns the label of the specified quoted variable name.

VLABELX (variable- name)

Reference for language elements
Version 4.1

2194

Return type: Character

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable label is returned. The result is written to a log.

DATA _NULL_;

 s1 = 75000;
 LABEL s1 = 'Gross Income: ';

 fmtv = VLABELX("s1");
 PUT "The variable has the following label: " fmtv;

RUN;

This produces the following output:

The variable has the following label: Gross Income:

Example
In this example, the variable is then assigned to a second variable. The label for the first variable is
then returned. The result is written to a log.

DATA _NULL_;

 s1 = 75000;
 LABEL s1 = 'Gross Income: ';

 b = "s1";

 fmtv = VLABELX(b);
 PUT "The variable has the following label: " fmtv;

RUN;

This produces the following output:

The variable has the following label: Gross Income:

Reference for language elements
Version 4.1

2195

Example – using a dataset
In this example, labels for variables are returned from a dataset. It is known that a dataset contains
seven variables, but the labels for the variables are unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.BOOKSX (OBS=1);
 varstart = 'X';
 varcount = 7;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 varformat = VLABELX(varname);
 PUT 'The variable ' varname' has the following label: ' varformat;
 END;
RUN;

This produces the following output:

The variable X1 has the following label: Book title
The variable X2 has the following label: Author of the book
The variable X3 has the following label: BIC subject class
The variable X4 has the following label: International standard book number
The variable X5 has the following label: Date book purchased
The variable X6 has the following label: Dewey decimal number
The variable X7 has the following label: Original price paid for book

The properties of the BOOKSX dataset is as follows:

Name Type Length Format Informat Label
X1 character 114 $114. $114. Book title
X2 character 23 $23. $23. Author of the book
X3 character 21 $21. $21. BIC subject class
X4 character 14 $14. $14. International standard book number
X5 number 8 Date9. Date9. Date book purchased
X6 number 8 BEST9. BEST9. Dewey decimal number
X7 number 8 BEST9. BEST9. Original price paid for book

VLENGTH
Returns the length of the specified variable name.

VLENGTH (variable- name)

Return type: Numeric

The variable length.

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2196

In this example, variable lengths in memory are returned. The result is written to the log.

Note:
Ensure the ENCODING is set to UTF-8 in both the file and local server to handle the string variable in
Japanese.

DATA _NULL_;
 FORMAT sp BEST3.;
 sp = 3.4E+38;
 FORMAT date Date6.;
 date = "19-MAY-2017"D;
 FORMAT p21 $10.;
 p21 = "Twenty-One-Today";
 FORMAT p22 $50.;
 p22 = "ときがら茶:とうきん煤竹 空五倍子色";

 var = VLENGTH(sp);
 PUT "The length for the sp variable is: " var;

 PUT sp;

 var = VLENGTH(date);
 PUT "The length for the date variable is: " var;

 PUT date;

 var = VLENGTH(p21);
 PUT "The length for the p21 variable is: " var;

 PUT p21;

 var = VLENGTH(p22);
 PUT "The length for the p22 variable is: " var;

 PUT p22;
RUN;

This produces the following output:

The length for the sp variable is: 8

The length for the date variable is: 8
19MAY
The length for the p21 variable is: 10
Twenty-One
The length for the p22 variable is: 50
ときがら茶:とうきん煤竹 空五倍子色

In this example, the system recognised that it required at least eight bits to process the sp and date
numeric variables. However, the system did not have sufficient space to display the sp variable, leaving
asterisks in place. Similarly, only four characters of the date variable could be displayed.

Reference for language elements
Version 4.1

2197

While the p21 variable can be handled correctly in the log output, the p22 Japanese string variable
cannot. This is because each Japanese character can be a number of bytes. Any specified string length
falling short on a character in the character string would result in only the length of the character string
being displayed. The character string output is therefore unknown. For example, if the p22 variable
was set to $44., this would display: ときがら茶:とうきん煤竹 空五倍, which is two characters short of
the full string. However, if the p22 variable was set to $48. which falls short on a character, then only
the length of the character string would be displayed.

VLENGTHX
Returns the length of the specified quoted variable name.

VLENGTHX (variable- name)

Return type: Numeric

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable has a value assigned to it. The length of the variable is then returned. The
result is written to a log.

DATA _NULL_;
 sp = 3.4E+38;
 vrlgth = VLENGTHX("sp");
 PUT "The length of the variable is: " vrlgth;
RUN;

This produces the following output:

The length of the variable is: 8

Example
In this example, a variable has a value assigned to it. This variable is then assigned to a second
variable. The length of first variable is then returned. The result is written to a log.

DATA _NULL_;
 sp = 3.4E+38;
 b = "sp";
 vrlgth = VLENGTHX(b);
 PUT "The length of the variable is: " vrlgth;
RUN;

Reference for language elements
Version 4.1

2198

This produces the following output:

The length of the variable is: 8

Example – using a dataset
In this example, lengths for variables are returned from a dataset. It is known that the dataset contains
four variables, but the lengths for the variables are unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.VARLGTH (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varCount;
 varName = CAT(varstart, i);
 varFormat = VLENGTHX(varName);
 PUT 'The length for the ' varname 'variable is ' varformat;
 END;
RUN;

This produces the following output:

The length for the X1 variable is 8
The length for the X2 variable is 8
The length for the X3 variable is 10
The length for the X4 variable is 50

The properties of the VARWIDTH dataset is as follows:

Name Type Length Format Informat Label
X1 number 8 BEST$10.
X2 number 8 DATE9.
X3 character 10 $10.
X4 character 50 $50.

VNAME
Returns the name of a specified variable name.

VNAME (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Reference for language elements
Version 4.1

2199

Example – using a dataset
In this example, variable names are returned from a dataset.

LIBNAME mydir "C:\temp";
DATA _NULL_;
 SET mydir.BOOKS (OBS=1);
 ARRAY BKNUM{*} _NUMERIC_ ;
 ARRAY BKCHAR{*} _CHARACTER_ ;
 length cn $200. ;

 DO i = 1 TO DIM(BKNUM);
 vn = VNAME(BKNUM{i});
 cn = CATX(", ", cn, vn);
 END ;

 DO i = 1 TO DIM(BKCHAR);
 vn = VNAME(BKCHAR{i});
 cn = CATX(", ",cn, vn);
 END;

 PUT cn;
RUN;

This produces the following output:

Purchased, Dewey, Price, Title, Author, ISBN, Subject

The properties of the BOOKS dataset is as follows:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 S14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

VNAMEX
Returns the name of a specified quoted variable name.

VNAMEX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Reference for language elements
Version 4.1

2200

Example
In this example, the variable has a value assigned to it. The name of the variable is returned. The result
is written to a log.

DATA _NULL_;
 a = 2;
 fmtv = VNAMEX("a");
 PUT "The name of the variable is: " fmtv;
RUN;

This produces the following output:

The name of the variable is: a

Example
In this example, a variable has a value assigned to it. This variable is then assigned to a second
variable. The name of the first variable is then returned. The result is written to a log.

DATA _NULL_;
 a = 2;
 b = "a";
 fmtv = VNAMEX(b);
 PUT "The name of the variable is: " fmtv;
RUN;

This produces the following output:

The name of the variable is: a

Example
In this example, the variable names are returned. nums4 is the fourth variable name in ARRAY
nums(5). The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (10 20 33 401 5);
 p2 = "1234567";
 fraction = 125.525;

 var_a4 = "nums4";

 var_n4 = VNAMEX("nums4");
 PUT "The name for the nums4 variable is: " var_n4;

 var4 = VNAMEX(var_a4);
 PUT "The name for the var_a4 variable is: " var4;

 var_p2 = VNAMEX("p2");
 PUT "The name for the p2 variable is: " var_p2;

 var_frac = VNAMEX("fraction");
 PUT "The name for the fraction variable is: " var_frac;
RUN;

Reference for language elements
Version 4.1

2201

This produces the following output:

The name for the nums4 variable is: nums4
The name for the var_a4 variable is: nums4
The name for the p2 variable is: p2
The name for the fraction variable is: fraction

VTRANSCODE
Returns a value indicating whether a specified variable name can be transcoded.

VTRANSCODE (variable- name)

Return type: Numeric

1 if the variable is transcoded, or 0 otherwise. The default VTRANSCODE setting is set to 1.

variable-name

Type: Var

The variable name.

Example
In this example, it has been decided that variable p21 is not to be transcoded. An attribute statement
ATTRIB p21 TRANSCODE=NO is added for variable p21. The variable for p22 is to be transcoded, so
this time the added attribute statement becomes ATTRIB p22 TRANSCODE=YES. The result is written
to the log.

DATA _NULL_;
 FORMAT p21 $10.;
 p21 = "Twenty-One-Today";
 ATTRIB p21 TRANSCODE=NO;
 p22 = "BIRTHDAY GIRL";
 ATTRIB p22 TRANSCODE=YES;
 i = 100;

 var = VTRANSCODE(p21);

 If var = 1 THEN PUT "The variable p21 will be transcoded: " var;
 ELSE PUT "The variable p21 will not be transcoded: " var;

 var = VTRANSCODE(p22);

 If var = 1 THEN PUT "The variable p22 will be transcoded: " var;
 ELSE PUT "The variable p22 will not be transcoded: " var;

 VAR = VTRANSCODE(i);

 If var = 1 THEN PUT "The variable i will be transcoded: " var;
 ELSE PUT "The variable i will not be transcoded: " var;

Reference for language elements
Version 4.1

2202

RUN;

This produces the following output:

The variable p21 will not be transcoded: 0
The variable p22 will be transcoded: 1
The variable i will be transcoded: 1

It can be seen from this example that both variables p22 and i will be transcoded.

VTRANSCODEX
Returns a value indicating whether a specified quoted variable name can be transcoded.

VTRANSCODEX (variable- name)

Return type: Numeric

1 if the variable is transcoded, or 0 otherwise. The default VTRANSCODE setting is set to 1.

variable-name

Type: Character

The variable name in quotes.

Example
In this example, it has been decided that variable p21 is not to be transcoded. An attribute statement
ATTRIB p21 TRANSCODE=NO is added for variable p21. The variable for p22 is to be transcoded, so
this time the added attribute statement becomes ATTRIB p22 TRANSCODE=YES. The result is written
to the log.

DATA _NULL_;
 FORMAT p21 $10.;
 p21 = "Twenty-One-Today";
 ATTRIB p21 TRANSCODE=NO;
 p22 = "BIRTHDAY BOY";
 ATTRIB p22 TRANSCODE=YES;
 i = 100;

 var = VTRANSCODEX("p21");

 If var = 1 THEN PUT "The variable p21 will be transcoded: " var;
 ELSE PUT "The variable p21 will not be transcoded: " var;

 var = VTRANSCODEX("p22");

 If VAR = 1 THEN PUT "The variable p22 will be transcoded: " var;
 ELSE PUT "The variable p22 will not be transcoded: " var;

Reference for language elements
Version 4.1

2203

 var = VTRANSCODEX("i");

 If var = 1 THEN PUT "The variable i will be transcoded: " var;
 ELSE PUT "The variable i will not be transcoded: " var;

RUN;

This produces the following output:

The variable p21 will not be transcoded: 0
The variable p22 will be transcoded: 1
The variable i will be transcoded: 1

It can be seen from this example that both variables p22 and i will be transcoded.

VTYPE
Returns the type of data associated with the specified variable name. This will be N for numeric or C for
character.

VTYPE (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Basic Example
In this example, several variables are checked with the function. nums(5) is the fifth variable in ARRAY
nums(5). The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (11 29 304 405 55);
 p21 = "Twenty-One";
 dp = 1.7E+308;
 dollar = 125;
 date = "27-MAY-1954"D;

 var = VTYPE(nums(5));
 PUT "The variable type for the nums(5) variable is: " var;

 var = VTYPE(p21);
 PUT "The variable type for the p21 variable is: " var;

 var = VTYPE(dp);
 PUT "The variable type for the dp variable is: " var;

 var = VTYPE(dollar);

Reference for language elements
Version 4.1

2204

 PUT "The variable type for the dollar variable is: " var;

 var = VTYPE(date);
 PUT "The variable type for the date variable is: " var;
RUN;

This produces the following outputs:

The variable type for the nums(5) variable is: N
The variable type for the p21 variable is: C
The variable type for the dp variable is: N
The variable type for the dollar variable is: N
The variable type for the date variable is: N

Example – using a dataset
In this example, all the variable names, and variable numerical and character types are returned from a
dataset.

LIBNAME mydir "c:\temp";
DATA _NULL_;
 SET mydir.BOOKS (OBS=1) ;

 ARRAY BKNUM{*} _NUMERIC_ ;
 ARRAY BKCHAR{*} _CHARACTER_ ;

 DO i = 1 TO DIM(BKNUM);
 vn = VNAME(BKNUM{i});
 vl = VTYPE(BKNUM{i});
 PUT "The variable " vn "has type: " vl;
 END ;

 DO i = 1 TO DIM(BKCHAR);
 vn = VNAME(BKCHAR{i});
 vl = VTYPE(BKCHAR{i});
 PUT "The variable " vn "has type: " vl;
 END;
RUN;

This produces the following outputs:

The variable Purchased has type: N
The variable Dewey has type: N
The variable Price has type: N
The variable Title has type: C
The variable Author type: C
The variable ISBN type: C
The variable Subject has type: C

Reference for language elements
Version 4.1

2205

The properties of the BOOKS dataset:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 S14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

VTYPEX
Returns the type of data associated with the specified quoted variable name. This will be N for numeric
or C for character.

VTYPEX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable has a value assigned to it. The type of data associated with the variable is
then returned. The result is written to a log.

DATA _NULL_;

 FORMAT a F3.1;
 a = 2;

 fmtv = VTYPEX("a");
 PUT "The variable type is: " fmtv;

RUN;

This produces the following output:

The variable type is: N

Reference for language elements
Version 4.1

2206

Example
In this example, a variable has a value assigned to it. This variable is then assigned to a second
variable. The type of data associated with the first variable is then returned. The result is written to a
log.

DATA _NULL_;
 FORMAT a F3.1;
 a = 2;
 b = "a";

 fmtv = VTYPEX(b);
 PUT "The variable type is: " fmtv;

RUN;

This produces the following output:

The variable type is: N

Example – using a dataset
In this example, the type of data associated with each variable is returned from a dataset. It is known
that the dataset contains seven variables, but the type of data associated with each variable is
unknown. The result is written to a log.

DATA _NULL_;
 SET mydir.BOOKSX (OBS=1);
 varstart = 'X';
 varcount = 7;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 vartype = VTYPEX(varname);
 PUT 'The variable ' varname 'is ' vartype;
 END;
RUN;

This produces the following output:

The variable X1 is C
The variable X2 is C
The variable X3 is C
The variable X4 is C
The variable X5 is N
The variable X6 is N
The variable X7 is N

Reference for language elements
Version 4.1

2207

The properties of the BOOKSX dataset is as follows:

Name Type Length Format Informat Label
X1 character 114 $114. $114. Book title
X2 character 23 $23. $23. Author of the book
X3 character 21 $21. $21. BIC subject class
X4 character 14 $14. $14. International standard book number
X5 number 8 Date9. Date9. Date book purchased
X6 number 8 BEST9. BEST9. Dewey decimal number
X7 number 8 BEST9. BEST9. Original price paid for book

VVALUE
Returns the formatted value of the specified variable name.

VVALUE (variable- name)

Return type: Character

variable-name

Type: Var

The variable name.

Example
In this example, the formatted values of the variables are returned. nums(3) is the third variable in
ARRAY nums(5). The result is written to the log.

DATA _NULL_;
 ARRAY nums(5) (12 27 37 40 5);
 p2 = "Epsom Derby";
 sp = 3.4E+38;
 dp1 = 1.7976931348623158E+308;
 paddle = 208.77 + RANNOR(153)*9.2076838 + 5;
 FORMAT date Date9.;
 date = "14-JUN-2017"D;

 var = VVALUE(nums(3));
 PUT "The value for the nums(3) variable is: " var;

 var = VVALUE(p2);
 PUT "The value for the p2 variable is: " var;.

 var = VVALUE(dp1);
 PUT "The value for the dp1 variable is: " var;

 var = VVALUE(paddle);
 PUT "The value for the paddle variable is: " var;

 var = VVALUE(date);

Reference for language elements
Version 4.1

2208

 PUT "The value for the date variable is: " var;
RUN;

This produces the following output:

The value for the nums(3) variable is: 3
The value for the p2 variable is: Epsom Derby
The value for the dp1 variable is: 1.797693E308
The value for the paddle variable is: 201.08512308
The value for the date variable is: 14JUN2017

In this example strings are retained, while numerical variables can be processed.

VVALUEX
Returns the formatted value of the specified quoted variable name.

VVALUEX (variable- name)

Return type: Character

variable-name

Type: Character

The quoted variable name.

Example
In this example, a variable has a value assigned to it. The formatted value of a variable is returned. The
result is written to a log.

DATA _NULL_;
 FORMAT a F3.1;
 a = 2;

 fmtv = VVALUEX("a");
 PUT "The value of the variable is: " fmtv;

RUN;

This produces the following output:

The value of the variable is: 2.0

Reference for language elements
Version 4.1

2209

Example
In this example, a variable has a value assigned to it. This variable is then assigned to a second
variable. The formatted value of the first variable is then returned. The result is written to a log.

DATA _NULL_;
 FORMAT a F3.1;
 a = 2;
 b = "a";

 fmtv = VVALUEX(b);
 PUT "The value of the variable is: " fmtv;

RUN;

This produces the following output:

The value of the variable is: 2.0

Example – using a dataset
In this example, the formatted value for each variable is returned from a dataset. It is known that the
dataset contains four variables, but the formatted value for each variable is unknown. The result is
written to a log.

DATA _NULL_;
 SET mydir.VARNFMAT (OBS=1);
 varstart = 'X';
 varcount = 4;

 DO i = 1 TO varcount;
 varname = CAT(varstart, i);
 varvalue = VVALUEX(varName);
 PUT 'The value for ' varname 'is ' varvalue;
 END;

RUN;

This produces the following output:

The value for X1 is 10
The value for X2 is 21216
The value for X3 is 1.7E308
The value for X4 is 125.525

The properties of the VARNFMAT dataset is as follows:

Name Type Length Format Informat Label

X1 number 8 BEST3.2
X2 number 8 DATE9.
X3 number 8 F8.4
X4 number 8 F7.3

Reference for language elements
Version 4.1

2210

CALL LABEL
Returns the label for a specified variable name. The label is returned as an argument in the CALL
routine.

CALL LABEL (variable- name , result) ;

variable-name

Type: Var

The variable name for which to retrieve the label.

result

Type: Character

A character value that will be assigned the label of the first variable.

Example – using a dataset
In this example, the labels are copied from a dataset. The result is written to a log.

LIBNAME mydir "c:\temp";
DATA _NULL_;
 SET mydir.BOOKS (OBS=1) ;
 ARRAY BKNUM{*} _NUMERIC_ ;
 ARRAY BKCHAR{*} _CHARACTER_ ;

 FORMAT label $35.;

 DO i = 1 TO DIM(BKNUM);
 CALL LABEL(BKNUM{i}, label);
 PUT "Variable " i "has the label: " label;
 END;

 DO j = 1 TO DIM(BKCHAR);
 CALL LABEL(BKCHAR{j}, label);
 PUT "Variable " i "has the label: " label;
 i = i + 1;
 END;

RUN;

This produces the following output:

Variable 1 has the label: Date book purchased
Variable 2 has the label: Dewey decimal number
Variable 3 has the label: Original price paid for book
Variable 4 has the label: Book title
Variable 5 has the label: Author of the book
Variable 6 has the label: International standard book number
Variable 7 has the label: BIC subject class

Reference for language elements
Version 4.1

2211

The structure of the BOOKS dataset is as follows:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 S14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

CALL VNAME
Returns the name for a specified variable name. The name is returned as an argument in the CALL
routine.

CALL VNAME (variable- name , result) ;

variable-name

Type: Var

The variable for which to retrieve the name.

result

Type: Character

A character value that will be assigned the name of the first variable.

Reference for language elements
Version 4.1

2212

Example – using a dataset
In this example, the variable names are copied from a dataset. The result is written to a log.

LIBNAME mydir "c:\temp";
DATA _NULL_;

 SET mydir.BOOKS (OBS=1) ;
 ARRAY BKNUM{*} _NUMERIC_ ;
 ARRAY BKCHAR{*} _CHARACTER_ ;

 FORMAT name $35.;

 DO i = 1 TO DIM(BKNUM);

 CALL VNAME(BKNUM{i}, name);
 PUT "Variable " i "has the name: " name;

 END;

 DO j = 1 TO DIM(BKCHAR);

 CALL VNAME(BKCHAR{j}, name);
 PUT "Variable " i "has the name: " name;

 i = i + 1;

 END;

RUN;

This produces the following output:

Variable 1 has the name: Purchased
Variable 2 has the name: Dewey
Variable 3 has the name: Price
Variable 4 has the name: Title
Variable 5 has the name: Author
Variable 6 has the name: ISBN
Variable 7 has the name: Subject

The properties of the BOOKS dataset is as follows:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 S14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

Reference for language elements
Version 4.1

2213

CALL VNEXT
Returns the variable names from a DATA step.

CALL VNEXT (variable- name ,

variable- type , variable- length

) ;

When the routine is first called, the first variable in the DATA step's variable list is returned to varname.
For each subsequent call, the subsequent variable name is returned. It can also supply the variable
type and variable length.

variable-name

Type: Character

The name of the variable.

variable-type
Optional argument

Type: Character

The variable to provide the type of data associated with it (the type of data will be N for numeric
or, C for a character).

variable-length
Optional argument

Type: Numeric

The variable to provide the length.

Example – using a dataset
In this example, all the variables in the DATA step are returned. The result is written to a log.

LIBNAME mydir "C:\temp";
DATA _NULL_;

 SET mydir.BOOKS (OBS=1);

 FORMAT varnext $20.;
 vtype="";
 vlength=0;

 DO UNTIL (varnext = "");
 CALL VNEXT (varnext,vtype, vlength);
 IF varnext != "" THEN PUT "Variable: " Varnext "Type: " vtype "Length: "
 vlength;
 END;
RUN;

Reference for language elements
Version 4.1

2214

This produces the following output:

Variable: _N_ Type: N Length: 8
Variable: _ERROR_ Type: N Length: 8
Variable: _IORC_ Type: N Length: 8
Variable: Title Type: C Length: 114
Variable: Author Type: C Length: 23
Variable: ISBN Type: C Length: 14
Variable: Subject Type: C Length: 21
Variable: Purchased Type: N Length: 8
Variable: Dewey Type: N Length: 8
Variable: Price Type: N Length: 8
Variable: varnext Type: C Length: 20
Variable: vtype Type: C Length: 1
Variable: vlength Type: N Length: 8

The properties of the BOOKS dataset is as follows:

Name Type Length Format Informat Label
Author character 23 $23. $23. Author of the book
Dewey number 8 BEST9. Dewey decimal number
ISBN character 14 S14. $14. International standard book number
Price number 8 BEST9. Original price paid for book
Purchased number 8 DATE9. DATE9. Date book purchased
Subject character 21 $21. $21. BIC subject class
Title character 114 $114. $114. Book title

Web functions
Convert the text in URLs and HTML files to different forms.

Hypertext Markup Language (HTML) uses a language that contains certain reserved characters. A
Uniform Resource Locator (URL) uses a limited set of characters. If an HTML file contains characters
in the reserved set of characters, they are converted to entities; if a URL contains characters outside
the available set, the characters are replaced by escaped characters. The functions in this group enable
you to perform these conversions and replacements.

HTMLDECODE ... 2215
Converts an HTML entity in a string to its equivalent session encoding character.

HTMLENCODE ... 2216
Converts a character in a string to its equivalent HTML character entity for the session encoding.

URLDECODE .. 2218
Returns the result of replacing escaped characters in a URL with the equivalent session
character.

URLENCODE .. 2219
Converts a non-ASCII or special character used in a URL to a code.

Reference for language elements
Version 4.1

2215

HTMLDECODE
Converts an HTML entity in a string to its equivalent session encoding character.

HTMLDECODE (expression)

Hypertext Markup Language (HTML) contains various characters that are reserved in the language,
such as quotation marks (" and ') and angle brackets (< and >). However, a Web page might need
to display these characters. To enable this, the characters are replaced with character entities,
which are codes that represent characters. For example, if a Web page contained the text:

value < 1 and > 7

the angle brackets would be interpreted as the delimiters for HTML tags, and the text would display
incorrectly. To ensure the text displayed correctly the brackets can be replaced by named character
entities (in this case, < and >).

Other characters can also be represented using entities; this is particularly useful for characters outside
the 7-bit ASCII character set that you might want to represent in different session encodings. For
example, the character ä can be represented by the entity ä.

Characters outside the 7-bit ASCII character set are encoded using a decimal entity.

The following named entities can be decoded:

> >
< <
& &
' '
" "

Decimal numeric entities can also be decoded. For example, if a string to be decoded contains Ö,
the character Ö is returned.

Return type: Character

expression

Type: Character

A string of one or more characters that contains character entities.

Reference for language elements
Version 4.1

2216

Basic example
In this example, the function converts character entities to their character equivalents. The result is
written to the log.

DATA _NULL_;
 result = HTMLDECODE("value < 1 and > 7");
 PUT result;
RUN;

This produces the following output:

value < 1 and > 7

Example – decoding decimal numeric entity
In this example, the function converts decimal numeric entities to their character equivalents. The result
is written to the log.

DATA _NULL_;
 result = HTMLDECODE("Die Bären Café");
 PUT result;
RUN;

This produces the following output:

Die Bären Café

HTMLENCODE
Converts a character in a string to its equivalent HTML character entity for the session encoding.

HTMLENCODE (expression

, opt ions

)

Hypertext Markup Language (HTML) contains various characters that are reserved in the language,
such as quotation marks (" and ') and angle brackets (< and >). However, a Web page might need
to display these characters. To enable this, the characters are replaced with character entities,
which are codes that represent characters. For example, if a Web page contained the text:

value < 1 and > 7

the angle brackets would be interpreted as the delimiters for HTML tags, and the text would display
incorrectly. To ensure the text displayed correctly the brackets can be replaced by named character
entities (in this case, < and >).

Other characters can also be represented using entities; this is particularly useful for characters outside
the 7-bit ASCII character set that you might want to represent in different session encodings. For
example, the character ä can be represented by the entity ä.

Reference for language elements
Version 4.1

2217

Return type: Character

expression

Type: Character

A string containing characters to be converted.

options
Optional argument

Type: Character

There is one option, "7bit". This specifies that all characters (including reserved characters) in
the 7-bit ASCII character remain unencoded, while characters outside of that set are encoded. By
default, "7bit" is not set.

Note:
The option must be set as shown here; variations such as "7BIT" are not recognised and cause
an error.

Characters are encoded by the function as hexadecimal number entities, except for the following
characters, which are returned as named entities:

> >

< <

& &

' '

" "

Basic example
In this example, the function converts character entities to equivalent characters. The result is written to
the log.

DATA _NULL_;
 length x $ 23;
 x = HTMLENCODE("value < 1 and > 7");
 PUT x;
run;

This produces the following output:

value < 1 and > 7

Note:
The result of this example has been written to the log, but character entities would normally be written
to a file containing HTML that is to be displayed on the Web.

Reference for language elements
Version 4.1

2218

Example – characters outside seven-bit set
In this example, the function converts characters outside the seven-bit ASCII character set to entities.
The result is written to the log.

DATA _NULL_;

 length x $ 30;
 x = HTMLENCODE("Die Bären Café >", "7bit");
 PUT x;

 x = HTMLENCODE("Die Bären Café >");
 PUT x;

run;

This produces the following output:

Die Bären Café >
Die Bären Café >

In the first use of the function, the "7bit" option has been specified; the string returned contains
entities in place of the characters that are not contained in the 7-bit ASCII character set; however, the
character >, which is contained in the 7-bit ASCII character set, has not been encoded.

In the second use of the function, "7bit" is not specified, so characters in the 8-bit character set are
returned unchanged, while the character > has been encoded.

Note:
The result of this example has been written to the log, but character entities would normally be written
to a file containing HTML that is to be displayed on the Web.

URLDECODE
Returns the result of replacing escaped characters in a URL with the equivalent session character.

URLDECODE (string- to- decode)

A Uniform Resource Locator (URL) can only consist of characters from the ASCII character set. If a
URL contains characters not in the ASCII character set, the characters are replaced by a code before
being sent over the Internet. The code consists of an escape character (%) followed by two hexadecimal
digits. There are also reserved characters, such as the space character, that also need to be converted.
For example, in the URL www.bicycle shop.com the spaces would replaced by the code %20,
producing www.bicycle%20shop.com.

A URL obtained from the Internet or from another Web page might, therefore, contain one or more
codes that need to be converted to equivalent characters.

Return type: Character

Reference for language elements
Version 4.1

2219

string-to-decode

Type: Character

The URL to be decoded.

Example
In this example, the function converts the codes in a URL to their ASCII equivalent. The result is written
to the log.

DATA _NULL_;
 result = URLDECODE("www.steve%27s%20bicycles.com");
 PUT result;
run;

This produces the following output:

www.steve's bicycles.com

URLENCODE
Converts a non-ASCII or special character used in a URL to a code.

URLENCODE (string- to- encode)

A Uniform Resource Locator (URL) can only consist of characters from the ASCII character set. If a
URL contains characters not in the ASCII character set, the characters are replaced by a code before
being sent over the Internet. The code consists of an escape character (%) followed by two hexadecimal
digits. There are also reserved characters, such as the space character, that also need to be converted.
For example, in the URL www.bicycle shop.com the spaces would replaced by the code %20,
producing www.bicycle%20shop.com.

A URL you want to send across the Internet might, therefore, contain one or more characters that need
replacing with an equivalent code.

Return type: Character

string-to-encode

Type: Character

The URL to encode.

Reference for language elements
Version 4.1

2220

Example
In this example, the function converts the special characters in the URL to corresponding codes. The
result is written to the log.

DATA _NULL_;
 result = URLENCODE("www.steve's bicycles.com");
 PUT result;
run;

This produces the following output:

www.steve%27s%20bicycles.com

Note:
The result of this example has been written to the log, but the URL would normally be written to a file
containing an HTML file for display on the Web, or sent across an HTTP connection.

Zipcode functions
Accesses information in the ZIPCODE dataset and returns city names, state numbers, state codes,
state names, and distances between locations.

FIPNAME ...2221
Returns the state name that corresponds to the specified FIPS state numeric code.

FIPNAMEL ...2221
Returns the state name in sentence case that corresponds to the specified FIPS state numeric
code.

FIPSTATE ... 2222
Returns the FIPS state alpha code that corresponds to the specified FIPS state numeric code.

GEODIST .. 2223
Returns the distance between two pairs of coordinates.

STFIPS .. 2225
Returns the FIPS state numeric code that corresponds to the specified FIPS state alpha code.

STNAME ..2225
Returns the state name that corresponds to the specified FIPS state alpha code.

STNAMEL ..2226
Returns the state name in sentence case that corresponds to the specified FIPS state alpha
code.

ZIPCITY ...2227
Returns the city name and FIPS state alpha code that corresponds to the specified ZIP code.

ZIPCITYDISTANCE ...2227
Returns the distance between two cities in miles.

Reference for language elements
Version 4.1

2221

ZIPFIPS ... 2228
Returns the FIPS state numeric code that corresponds to the specified ZIP code.

ZIPNAME ...2229
Returns the state name that corresponds to the specified ZIP code.

ZIPNAMEL ...2229
Returns the state name in sentence case that corresponds to the specified ZIP code.

ZIPSTATE ... 2230
Returns the FIPS state alpha code that corresponds to the specified ZIP code.

FIPNAME
Returns the state name that corresponds to the specified FIPS state numeric code.

FIPNAME (argument)

Return type: Character

The name is returned in uppercase.

argument

Type: Numeric

The FIPS state numeric code.

Example
In this example, the state name that corresponds to the FIPS state numeric code 21 is returned. The
result is written to the log.

DATA _NULL_;
 zipcd = FIPNAME(21);
 PUT "The state name is: " zipcd;
RUN;

This produces the following output:

The state name is: KENTUCKY

FIPNAMEL
Returns the state name in sentence case that corresponds to the specified FIPS state numeric code.

FIPNAMEL (argument)

Reference for language elements
Version 4.1

2222

Return type: Character

The name is returned in sentence case.

argument

Type: Numeric

The FIPS state numeric code.

Example
In this example, the state name that corresponds to the FIPS state numeric code 44 is returned. The
result is written to the log.

DATA _NULL_;
 zipcd = FIPNAMEL(44);
 PUT "The state name is: " zipcd;
RUN;

This produces the following output:

The state name is: Rhode Island

FIPSTATE
Returns the FIPS state alpha code that corresponds to the specified FIPS state numeric code.

FIPSTATE (argument)

Return type: Character

argument

Type: Numeric

The FIPS state numeric code.

Example
In this example, the FIPS alpha state code that corresponds to the FIPS state numeric code 25 is
returned. The result is written to the log.

DATA _NULL_;
 zipcd = FIPSTATE(25);
 PUT "The FIPS state alpha code is: " zipcd;
RUN;

This produces the following output:

The FIPS state alpha code is: MA

Reference for language elements
Version 4.1

2223

GEODIST
Returns the distance between two pairs of coordinates.

GEODIST

(lat itude1 , longitude1 , lat itude2 , longitude2

, modif iers

)

The function calculates the distance between two pairs of coordinates of latitude and longitude. If
required, you can specify the units to be used (degrees or radians).

Return type: Numeric

The distance in kilometres or miles. By default kilometres are used.

latitude1

Type: Numeric

The latitude of the first location.

longitude1

Type: Numeric

The longitude of the first location.

latitude2

Type: Numeric

The latitude of the second location.

longitude2

Type: Numeric

The longitude of the second location.

modifiers
Optional argument

The unit used to specify latitude and longitude, and the unit in which the distance is returned, can
be modified. You can, for example, specify that latitude and longitude are specified in radians,
and the distance is returned in kilometers.

"D"
The values for latitude and longitude are specified in degrees. This is the default.

"K"
The value returned is the distance in kilometres. This is the default.

Reference for language elements
Version 4.1

2224

"M"
The value returned is the distance in miles.

"R"
The values for latitude and longitude are specified in radians.

Example – default distance unit
In this example, coordinates are specified for Ocean Shores in Washington State
(46.970702,-124.150812) and Ocean Beach in New York State (40.647098,-73.151777). Because no
values have been specified for modifiers, the distance is returned in the default unit (kilometres), and
the specified latitude and longitude values are assumed to be in degrees. The result is written to the
log.

DATA _NULL_;
 dist = GEODIST(46.970702,-124.150812,40.647098,-73.151777);
 PUT "The distance is: " dist "kilometres";
RUN;

This produces the following output:

The distance is: 4089.0784652 kilometres

Example – specifying distance in miles
In this example, coordinates are specified for Ocean Shores in Washington State
(46.970702,-124.150812) and Ocean Beach in New York State (40.647098,-73.151777). The M modifier
is specified. The result is written to the log.

DATA _NULL_;
 dist = GEODIST(46.970702,-124.150812,40.647098,-73.151777,"M");
 PUT "The distance is: " dist "miles";
RUN;

This produces the following output:

The distance is: 2540.8355601 miles

Example – specifying distance in radians
In this example, the R modifier is set, so the function assumes that latitudes and longitudes are
specified in radians. The M modifier is also specified, so the distance is returned in miles. The
coordinates in degrees for Ocean Shores in Washington State (46.970702,-124.150812) have been
converted to radians (0.8197934, -2.1668404) before input, and similarly, the coordinates in degrees for
Ocean Beach in New York State (40.647098,-73.151777) have been converted to radians (0.70942569,
-1.27673936). The result is written to the log.

DATA _NULL_;
 dist = GEODIST(0.8197934,-2.1668404,0.70942569,-1.27673936, "RM");
 PUT "The distance is: " dist "miles";
RUN;

Reference for language elements
Version 4.1

2225

This produces the following output:

The distance is: 2540.8354675 miles

STFIPS
Returns the FIPS state numeric code that corresponds to the specified FIPS state alpha code.

STFIPS (argument)

Return type: Numeric

argument

Type: Character

The FIPS state alpha code.

Example
In this example, the FIPS state numeric code corresponding to the specified FIPS state alpha code PR
is returned. The result is written to the log.

DATA _NULL_;
 zipcd = STFIPS("PR");
 PUT "The FIPS state numeric code is: " zipcd;
RUN;

This produces the following output:

The FIPS state numeric code is: 72

STNAME
Returns the state name that corresponds to the specified FIPS state alpha code.

STNAME (argument)

Return type: Character

The name is returned in uppercase.

argument

Type: Character

Reference for language elements
Version 4.1

2226

The FIPS state alpha code.

Example
In this example, the state name corresponding to the specified FIPS state alpha code WV is returned.
The result is written to the log.

DATA _NULL_;
 zipcd = STNAME("WV");
 PUT "The state name is: " zipcd;
RUN;

This produces the following output:

The state name is: WEST VIRGINIA

STNAMEL
Returns the state name in sentence case that corresponds to the specified FIPS state alpha code.

STNAMEL (argument)

The name is returned in sentence case.

Return type: Character

argument

Type: Character

The FIPS state alpha code.

Example
In this example, the state name corresponding to the specified FIPS state alpha code NC is returned.
The result is written to the log.

DATA _NULL_;
 zipcd = STNAMEL("NC");
 PUT "The state name is: " zipcd;
RUN;

This produces the following output:

The state name is: North Carolina

Reference for language elements
Version 4.1

2227

ZIPCITY
Returns the city name and FIPS state alpha code that corresponds to the specified ZIP code.

ZIPCITY (zipcode)

Return type: Character

zipcode

Type: Character or numeric value

The ZIP code.

Example
In this example, the city name and FIPS state alpha code corresponding to the specified ZIP code is
returned. The result is written to the log.

DATA _NULL_;
 zipcd = ZIPCITY(10017);
 PUT "The city and FIPS state alpha code are: " zipcd;
RUN;

This produces the following output:

The city and FIPS state alpha code are: New York, NY

ZIPCITYDISTANCE
Returns the distance between two cities in miles.

ZIPCITYDISTANCE (zipcode1 , zipcode2)

Return type: Numeric

zipcode1

Type: Character or numeric value

The ZIP code for the first city.

zipcode2

Type: Character or numeric value

The ZIP code for the second city.

Reference for language elements
Version 4.1

2228

Example
In this example, the ZIP codes for New York (10017) and Anasco (00610) are used to calculate the
distance in miles between these cities. The result is written to the log.

DATA _NULL_;
 dist = ZIPCITYDISTANCE(10017, 00610);
 PUT "The distance is: " dist "miles";
RUN;

This produces the following output:

The distance is: 1599.7901691 miles

ZIPFIPS
Returns the FIPS state numeric code that corresponds to the specified ZIP code.

ZIPFIPS (zipcode)

Return type: Numeric

zipcode

Type: Character or numeric value

The ZIP code.

Example
In this example, the FIPS state numeric code corresponding to the specified ZIP code is returned. The
result is written to the log.

DATA _NULL_;
 zipcd = ZIPFIPS(55041);
 PUT "The FIPS state numeric code is: "
RUN;

This produces the following output:

The FIPS state numeric code is: 27

In this case, the ZIP code covers an area in South Minnesota, for which the FIPS state numeric code is
27.

Reference for language elements
Version 4.1

2229

ZIPNAME
Returns the state name that corresponds to the specified ZIP code.

ZIPNAME (zipcode)

Return type: Character

The name is returned in uppercase.

zipcode

Type: Character or numeric value

The ZIP code.

Example
In this example, the state name corresponding to the specified ZIP code is returned. The result is
written to the log.

DATA _NULL_;
 zipcd = ZIPNAME(60140);
 PUT "The state name is: " zipcd;
RUN;

This produces the following output:

The state name is: ILLINOIS

In this case, the ZIP code covers an area in North East Illinois.

ZIPNAMEL
Returns the state name in sentence case that corresponds to the specified ZIP code.

ZIPNAMEL (zipcode)

Return type: Character

The name is returned in sentence case.

zipcode

Type: Character or numeric value

The ZIP code.

Reference for language elements
Version 4.1

2230

Example
In this example, the state name corresponding to the specified ZIP code is returned. The result is
written to the log.

DATA _NULL_;
 zipcd = ZIPNAMEL(20016);
 PUT "The state name is: " zipcd;
RUN;

This produces the following output:

The state name is: District of Columbia

ZIPSTATE
Returns the FIPS state alpha code that corresponds to the specified ZIP code.

ZIPSTATE (zipcode)

Return type: Character

zipcode

Type: Character or numeric value

The ZIP code.

Example
In this example, the FIPS state alpha code corresponding to the specified ZIP code is returned. The
result is written to the log.

DATA _NULL_;
 zipcd = ZIPSTATE(10017);
 PUT "The FIPS state alpha code is: " zipcd;
RUN;

This produces the following output:

The FIPS state alpha code is: NY

Reference for language elements
Version 4.1

2231

DATA step Components

HASH Component

Supported statements
• HASH (page 2232)
• ADD (page 2232)
• CHECK (page 2232)
• CLEAR (page 2233)
• DECLARE (page 2233)
• DEFINEDATA (page 2233)
• DEFINEDONE (page 2233)
• DEFINEKEY (page 2233)
• DELETE (page 2233)
• EQUALS (page 2234)
• FIND (page 2234)
• FIND_NEXT (page 2234)
• FIND_PREV (page 2234)
• HAS_NEXT (page 2234)
• HAS_PREV (page 2234)
• ITEM_SIZE (page 2234)
• NUM_ITEMS (page 2235)
• OUTPUT (page 2235)
• REF (page 2235)
• REMOVE (page 2235)
• REMOVEDUP (page 2235)
• REPLACE (page 2235)
• REPLACEDUP (page 2236)
• SUM (page 2236)
• SUMDUP (page 2236)

Reference for language elements
Version 4.1

2232

HASH

DECLARE

DCL

HASH component- name

(

,

argument)

argument

DATASET : dataset with options
i

DUPLICATE : "replace"

"r"

"error"

"e"

HASHEXP : integer

MULTIDATA : yes- no

SUMINC : "variable"

ORDERED : yes- no

i See Input dataset (page 16).

yes-no

"yes"

"y"

"no"

"n"

ADD

ADD (

,

KEY : key- value

,

DATA : value) ;

CHECK

CHECK (

,

KEY : key- value) ;

Reference for language elements
Version 4.1

2233

CLEAR

CLEAR () ;

DECLARE

DECLARE component- type component- nameReference

(

,

component- argument : value)

;

DEFINEDATA

DEFINEDATA (ALL : "YES"
,

variable- name

) ;

DEFINEDONE

DEFINEDONE (MEMRC : "char- value") ;

DEFINEKEY

DEFINEKEY (ALL : "YES"
,

"variable- name"

) ;

DELETE

DELETE () ;

Reference for language elements
Version 4.1

2234

EQUALS

EQUALS (HASH : "other- hash- name" RESULT : "variable- name") ;

FIND

FIND (

,

KEY : "value") ;

FIND_NEXT

FIND_NEXT () ;

FIND_PREV

FIND_PREV () ;

HAS_NEXT

HAS_NEXT (RESULT : variable) ;

HAS_PREV

HAS_PREV (RESULT : variable) ;

ITEM_SIZE

ITEM_SIZE ;

Reference for language elements
Version 4.1

2235

NUM_ITEMS

NUM_ITEMS ;

OUTPUT

OUTPUT (

,

DATASET : dataset- name
i

) ;

i See Dataset (page 16).

REF

REF (

,

KEY : key- value

,

DATA : value) ;

REMOVE

REMOVE (

,

KEY : "key- value") ;

REMOVEDUP

REMOVEDUP (

,

KEY : "key- value") ;

REPLACE

REPLACE (

,

KEY : "key- value"

,

DATA : value) ;

Reference for language elements
Version 4.1

2236

REPLACEDUP

REPLACEDUP (

,

DATA : value) ;

SUM

SUM (SUM : variable) ;

SUMDUP

SUMDUP (SUM : variable) ;

HITER Component

Supported statements
• HITER (page 2236)
• FIRST (page 2237)
• LAST (page 2237)
• NEXT (page 2237)
• PREV (page 2237)
• SUM (page 2237)

HITER

DECLARE

DCL

HITER component- name

(

,

"HITER- object- name")

Reference for language elements
Version 4.1

2237

FIRST

FIRST () ;

LAST

LAST () ;

NEXT

NEXT () ;

PREV

PREV () ;

SUM

SUM (SUM : variable) ;

JAVAOBJ Component

Supported statements
• JAVAOBJ (page 2238)
• CALLSTATICtypeMETHOD (page 2239)
• CALLtypeMETHOD (page 2239)
• CALLSTATICVOIDMETHOD (page 2239)
• CALLVOIDMETHOD (page 2239)
• EXCEPTIONCHECK (page 2240)
• EXCEPTIONCLEAR (page 2240)

Reference for language elements
Version 4.1

2238

• EXCEPTIONDESCRIBE (page 2240)
• FLUSHJAVAOUTPUT (page 2240)
• GETSTATICtypeFIELD (page 2240)
• GETtypeFIELD (page 2241)
• SETSTATICtypeFIELD (page 2241)
• SETtypeFIELD (page 2241)

JAVAOBJ

DECLARE

DCL

JAVAOBJ component- name

(class identifier

,

constructor- argument

)

class identifier

package- name /

class- name

$ nested- class- name

JAVAOBJ type

BYTE

CHAR

SHORT

INT

LONG

FLOAT

DOUBLE

STRING

Substitute term type by one of these types in the component names that follow.

Reference for language elements
Version 4.1

2239

CALLSTATICtypeMETHOD

component- name . CALLSTATICtypeMETHOD

(method- name

,

method- argument

, return- variable) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

CALLtypeMETHOD

component- name . CALLtypeMETHOD

(method- name

,

method- argument

, return- variable) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

CALLSTATICVOIDMETHOD

component- name . CALLSTATICVOIDMETHOD

(method- name

,

method- argument

) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

CALLVOIDMETHOD

component- name . CALLVOIDMETHOD

(method- name

,

method- argument

) ;

Reference for language elements
Version 4.1

2240

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

EXCEPTIONCHECK

component- name . EXCEPTIONCHECK (numeric- variable) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

EXCEPTIONCLEAR

component- name . EXCEPTIONCLEAR () ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

EXCEPTIONDESCRIBE

component- name . EXCEPTIONDESCRIBE (boolean- value) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

FLUSHJAVAOUTPUT

component- name . FLUSHJAVAOUTPUT () ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

GETSTATICtypeFIELD

component- name . GETSTATICtypeFIELD (f ield- name , return- variable) ;

Reference for language elements
Version 4.1

2241

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

GETtypeFIELD

component- name . GETtypeFIELD (f ield- name , return- variable) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

SETSTATICtypeFIELD

component- name . SETSTATICtypeFIELD (f ield- name , value) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

SETtypeFIELD

component- name . SETtypeFIELD (f ield- name , value) ;

The component-name variable used with this statement is created using the DECLARE JAVAOBJ
statement. See JAVAOBJ (page 2238)

Output Delivery System
The Output Delivery System(ODS) routes the contents of program output to the sources described in
this section, including HTML and PDF.

ODS global statements
Statements that affect all output destinations.

Reference for language elements
Version 4.1

2242

ODS _ALL_ CLOSE

ODS _ALL_ CLOSE ;

ODS ESCAPECHAR

ODS ESCAPECHAR = ' character ' ;

ODS GRAPHICS

ODS GRAPHICS OFF

ON

options ;

options

DISCRETEMAX = number

HEIGHT = dimension

IMAGENAME = "f ilename"

OUTPUTFMT = file-type

STATIC

RESET

RESET=option

WIDTH = dimension

ODS PROCLABEL

ODS PROCLABEL " label " ;

ODS PROCTITLE

ODS PROCTITLE

NOPROCTITLE

;

Reference for language elements
Version 4.1

2243

ODS OUTPUT

ODS OUTPUT CLEAR

CLOSE

SHOW

options

;

options

output- object

(PERSIST = proc

run

MATCH_ALL

= macrovarname

)

n

= WPS- Data- set- name

output-object

full- path

. remainder- of- full- path

" label "

" label- path "

" . remainder- of- label- path "

label- and- path- mix ture

ODS TRACE

ODS TRACE ON

OFF / LABEL

LISTING

;

Reference for language elements
Version 4.1

2244

ODS
The generic structure of an ODS global statement is shown below. Subsequent sections detail the use of
the ODS system for specific destinations.

ODS

dest inat ion

generic options markup- options

destination- sepecific- options ;

generic options

CLOSE

SHOW

SELECT

EXCLUDE

output object

PERSIST

ALL

NONE

output object

full- path

. remainder- of- full- path

" label "

" label- path "

" . remainder- of- label- path "

label- and- path- mix ture

output object # n

ODS MARKUP
Below is a generic list of markup options supported by ODS. Each destination accepts a subset of these
options as specified in the corresponding sections.

Reference for language elements
Version 4.1

2245

ODS MARKUP TAGSET = tagset- name

(

ID =

ident if ier)

generic options markup options ;

markup options

ANCHOR = anchor- string

BASE = url- string

BODY

FILE

= f ile- locat ion

location options

CHARSET = charset- id

CODE = code- locat ion

location options

CONTENTS = contents- locat ion

location options

CSSSTYLE = locat ion

(media- type)

ENCODING = encoding- name

FRAME = frame- locat ion

location options

GPATH = path

HEADTEXT = header- tex t- string

METATEXT = meta- tex t- string

PATH = path

RECORD_SEPARATOR

RECSEP

RS

= record- separator- string

STYLE = style- name

STYLESHEET = stylesheet- locat ion

location options

TRANTAB = id- string

Reference for language elements
Version 4.1

2246

location options

(URL = url- string

DYNAMIC

NO_BOTTOM_MATTER

NO_TOP_MATTER

TITLE = t it le- string

)

The following statements are aliases of ODS MARKUP. They are described in the corresponding
sections in further detail.

ODS CHTML is an alias of ODS MARKUP TAGSET=TAGSETS.CHTML
ODS CSV is an alias of ODS MARKUP TAGSET=TAGSETS.CSV
ODS CSVALL is an alias of ODS MARKUP TAGSET=TAGSETS.CSVALL
ODS EXCELXP is an alias of ODS MARKUP TAGSET=TAGSETS.EXCELXP
ODS HTML is an alias of ODS MARKUP TAGSET=TAGSETS.HTMLCSS
ODS HTMLCSS is an alias of ODS MARKUP TAGSET=TAGSETS.HTMLCSS
ODS HTML4 is an alias of ODS MARKUP TAGSET=TAGSETS.HTML4
ODS MSOFFICE2K is an alias of ODS MARKUP TAGSET=TAGSETS.MSOFFICE2K
ODS PHTML is an alias of ODS MARKUP TAGSET=TAGSETS.PHTML
ODS XML is an alias of ODS MARKUP TAGSET=TAGSETS.XML

ODS CHTML

ODS CHTML

MARKUP TAGSET = tagsets.chtml

generic options markup options ;

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• ANCHOR
• BODY
• CHARSET
• CONTENTS
• ENCODING
• FILE
• FRAME
• GPATH

Reference for language elements
Version 4.1

2247

• PAGE
• PATH
• RECORD_SEPARATOR
• TRANTAB

ODS CSV

ODS CSV

MARKUP TAGSET = tagsets.csv

generic options markup options

CSV options ;

CSV options

OPTIONS = (BYLINES = boolean

DELIMITER = character

PROCTITLES = boolean

TITLES = boolean

)

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• BODY
• CHARSET
• ENCODING
• FILE
• GPATH
• PATH
• RECORD_SEPARATOR
• TRANTAB

ODS CSVALL

ODS CSVALL

MARKUP TAGSET = tagsets.csvall

generic options markup options ;

Reference for language elements
Version 4.1

2248

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• BODY
• CHARSET
• ENCODING
• FILE
• GPATH
• PATH
• RECORD_SEPARATOR
• TRANTAB

ODS EXCELXP

ODS EXCELXP

MARKUP TAGSET = tagsets.excelxp

generic options mark- up options

EXCELXP options ;

Reference for language elements
Version 4.1

2249

EXCELXP options

OPTIONS = (AUTOFILTER = all

none

boolean

column- range

AUTOFILTER_TABLE = table- index

ABSOLUTE_COLUMN_WIDTH = numeric- list

AUTOFIT_HEIGHT = boolean

CONTENTS = boolean

CURRENCY_SYMBOL = character

CURRENCY_FORMAT = currency- format

DECIMAL_SEPARATOR = character

DEFAULT_COLUMN_WIDTH = numeric- list

EMBEDDED_FOOTNOTES = boolean

EMBEDDED_TITLES = boolean

FORMULAS = boolean

FROZEN_HEADERS = boolean

number

FROZEN_ROWHEADERS = boolean

number

ORIENTATION = PORTRAIT

LANDSCAPE

PRINT_FOOTER = boolean

PRINT_FOOTER_MARGIN = number

PRINT_HEADER = boolean

PRINT_HEADER_MARGIN = number

SHEET_INTERVAL = BYGROUP

PAGE

PROC

TABLE

NONE

SHEET_LABEL = string

SUPPRESS_BYLINES = boolean

THOUSANDS_SEPARATOR = character

WIDTH_FUDGE = number

WIDTH_POINTS = number

ZOOM = number

)

Reference for language elements
Version 4.1

2250

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• BODY
• CHARSET
• CONTENTS
• ENCODING
• FILE
• GPATH
• PAGE
• PATH
• RECORD_SEPARATOR
• STYLE
• STYLESHEET
• TRANTAB

ODS HTML
The destination HTML is an alias for HTMLCSS, see section ODS HTMLCSS (page 2250).

ODS HTMLCSS

ODS HTMLCSS

MARKUP TAGSET = tagsets.htmlcss

generic options markup options

HTMLCSS options ;

HTMLCSS options

OPTIONS = (BITMAP_MODE = "IMG"

"INLINE"

"EMBED"

"OBJECT"

)

The following markup options are supported (see section ODS MARKUP (page 2244)):

• ANCHOR
• BODY

Reference for language elements
Version 4.1

2251

• CHARSET
• CONTENTS
• CSSSTYLE
• ENCODING
• FILE
• FRAME
• GPATH
• HEADTEXT
• METATEXT
• PAGE
• PATH
• RECORD_SEPARATOR
• STYLE
• STYLESHEET
• TRANTAB

ODS HTML4

ODS HTML4

MARKUP TAGSET = tagsets.html4

generic options markup options ;

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• BODY
• CHARSET
• ENCODING
• FILE
• GPATH
• PATH
• RECORD_SEPARATOR
• TRANTAB

Reference for language elements
Version 4.1

2252

ODS MSOFFICE2K

ODS MSOFFICE2K

MARKUP TAGSET = tagsets.msoff ice2k

generic options markup options ;

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• ANCHOR
• BODY
• CHARSET
• CONTENTS
• CSSSTYLE
• ENCODING
• FILE
• FRAME
• GPATH
• HEADTEXT
• METATEXT
• PAGE
• PATH
• RECORD_SEPARATOR
• STYLE
• STYLESHEET
• TRANTAB

ODS PHTML

ODS PHTML

MARKUP TAGSET = tagsets.phtml

generic options markup options ;

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• BODY
• CHARSET
• ENCODING
• FILE

Reference for language elements
Version 4.1

2253

• GPATH
• HEADTEXT
• METATEXT
• PATH
• RECORD_SEPARATOR
• STYLE
• TRANTAB

ODS XML

ODS XML

MARKUP TAGSET = tagsets.xml

generic options markup options ;

The following markup options are supported. The syntax for these options is shown in markup options
in the section ODS MARKUP (page 2244):

• BODY
• CHARSET
• CONTENTS
• ENCODING
• FILE
• GPATH
• PATH
• RECORD_SEPARATOR
• TRANTAB

ODS EXCEL
ODS EXCEL

(

ID =

ident if ier)

generic options

excel options ;

Reference for language elements
Version 4.1

2254

excel options

CSSSTYLE = locat ion

(media- type)

FILE = path

STYLE = style- name

OPTIONS = (excel sub- options)

Reference for language elements
Version 4.1

2255

excel sub-options

ABSOLUTE_COLUMN_WIDTH = ' integer- list '

AUTOFILTER = ' All

None

range

'

CENTER_HORIZONTAL = ' boolean '

CENTER_VERTICAL = ' boolean '

EMBEDDED_FOOTNOTES = ' boolean '

EMBEDDED_TITLES = ' boolean '

EMBED_FOOTNOTES_ONCE = ' boolean '

EMBED_TITLES_ONCE = ' boolean '

FORMULAS = ' boolean '

FROZEN_HEADERS = ' boolean '

FROZEN_ROWHEADERS = ' boolean '

GRIDLINES = ' boolean '

HIDDEN_COLUMNS = ' integer- list '

MAX_COLUMN_WIDTH = ' number '

ORIENTATION = ' PORTRAIT

LANDSCAPE

'

PAGE_FITWIDTH = ' integer '

PAGE_FITHEIGHT = ' integer '

PRINT_FOOTER = ' string '

PRINT_FOOTER_MARGIN = ' number '

PRINT_HEADER = ' string '

PRINT_HEADER_MARGIN = ' number '

PRINT_ZOOM = ' number '

ROWCOLHEADINGS = ' boolean '

SHEET_INTERVAL = ' NONE

TABLE

PAGE

BYGROUP

PROC

'

SHEET_LABEL = ' string '

SHEET_NAME = ' string '

START_AT = ' integer ' integer '

SUPPRESS_BYLINES = ' boolean '

TAB_COLOR = ' color '

WIDTH_FUDGE_FACTOR = ' number '

ZOOM = ' number '

Reference for language elements
Version 4.1

2256

ODS OLDHTML
ODS OLDHTML generic options OLDHTML options ;

OLDHTML options

BODY

FILE

= body- locat ion

location- options

CSS = " external- f ile "

f ileref

GFOOTNOTE = " Graphics footnote tex t "

GPATH = " graphics output locat ion "

GTITLE = " Graphics t it le tex t "

CONTENTS = contents- locat ion

FRAME = frame- locat ion

location- options

PAGE = page- locat ion

location- options

PATH = path

location-options

(URL = " URL string "

DYNAMIC

NO_BOTTOM_MATTER

NO_TOP_MATTER

TITLE = " Tit le string "

)

ODS LISTING
ODS LISTING generic options LISTING options ;

Reference for language elements
Version 4.1

2257

LISTING options

FILE = f ile- locat ion

ODS PDF
ODS PDF generic options PDF options ;

PDF options

FILE = " pdf- f ile "

f ileref

COLUMNS = n

DPI = m

OUTPUTBY = PAGE

TABLE

STARTPAGE = NO

YES

STYLE = style- name

ODS PDF options
The following system options allow you to determine how PDFs are output via the ODS:

• PAPER SIZE (page 2258)
• ORIENTATION (page 2258)
• TOPMARGIN (page 2258)
• BOTTOMMARGIN (page 2259)
• LEFTMARGIN (page 2259)
• RIGHTMARGIN (page 2259)

Note:
Negative values are not allowed.

Reference for language elements
Version 4.1

2258

PAPER SIZE

This option sets the paper size of the PDFs output via the ODS.

PAPERSIZE = A2

A3

A4

A5

LETTER

USLETTER

Valid in: ODS PDF: in configuration file, Options statement and/or
command line

Default: The paper size associated with the Locale.

ORIENTATION

This option sets the orientation (PORTRAIT or LANDSCAPE) of the PDFs output via the ODS.

ORIENTATION = PORTRAIT

LANDSCAPE

Valid in: ODS PDF: in configuration file, Options statement and/or
command line

Default: PORTRAIT

TOPMARGIN

This option sets the top margin of the of the PDFs output via the ODS.

TOPMARGIN = n.n
cm

in

pt

Valid in: ODS PDF: in configuration file, Options statement and/or
command line

Default: Zero inches

Reference for language elements
Version 4.1

2259

BOTTOMMARGIN

This option sets the bottom margin of the of the PDFs output via the ODS.

BOTTOMMARGIN = n.n
cm

in

pt

Valid in: ODS PDF: in configuration file, Options statement and/or
command line

Default: Zero inches

LEFTMARGIN

This option sets the left margin of the of the PDFs output via the ODS.

LEFTMARGIN = n.n
cm

in

pt

Valid in: ODS PDF: in configuration file, Options statement and/or
command line

Default: Zero inches

RIGHTMARGIN

This option sets the right margin of the of the PDFs output via the ODS.

RIGHTMARGIN = n.n
cm

in

pt

Valid in: ODS PDF: in configuration file, Options statement and/or
command line

Default: Zero inches

Reference for language elements
Version 4.1

2260

Procedures
A fundamental set of procedures which provides a range of access, data manipulation, and basic
statistical analysis.

ACCESS procedure

Supported statements
• PROC ACCESS (page 2260)
• ASSIGN (page 2261)
• CREATE (page 2261)
• DROP (page 2261)
• FORMAT (page 2261)
• LIST (page 2262)
• RENAME (page 2262)
• RESET (page 2262)
• SELECT (page 2262)
• SUBSET (page 2263)
• TABLE (page 2263)
• UNIQUE (page 2263)

PROC ACCESS
Manages access descriptors and view descriptors.

PROC ACCESS

ACCDESC = access- descriptor- name
i

DBMS = database- engine- name

OUT = output- data- set- with- options
i i

VIEWDESC = view- descriptor- name
i i i

;

i See Access Descriptors (page 15).

ii See Output dataset (page 16).

Reference for language elements
Version 4.1

2261

iii See View Descriptors (page 15).

ASSIGN
Specifies whether to automatically assign names to variables in an access descriptor.

ASSIGN = Y

YES

N

NO

;

CREATE
Creates a new access descriptor or view descriptor.

CREATE access- descriptor- name
i

view- descriptor- name
i i

;

i See Access Descriptors (page 15).

ii See View Descriptors (page 15).

DROP
Drops one or more variables from an access descriptor.

DROP integer

column- name

;

FORMAT
Applies formats to variables in an access descriptor.

FORMAT integer

column- name

= format- name ;

Reference for language elements
Version 4.1

2262

LIST
Prints out the description of one or more access descriptors or view descriptors.

LIST ALL

VIEW

integer

column- name

;

RENAME
Renames one or more variables in an access descriptor.

RENAME integer

column- name

= name ;

RESET
Resets to the default state any modification made to variables in an access or view descriptor.

RESET integer

column- name

ALL

;

SELECT
Selects the variables to use in a view descriptor.

SELECT integer

column- name

ALL

;

Reference for language elements
Version 4.1

2263

SUBSET
Applies a subset clause to a view descriptor.

SUBSET dbms- specif ic- subset- clause ;

TABLE
Specifies a database table to which an access descriptor has been applied.

TABLE string- literal

schema- name .

table- name

;

UNIQUE
Specifies whether the names of the variables in the access descriptor must be unique.

UNIQUE = Y

YES

N

NO

;

Connection option
Lists connection options for the specified DBMS. These options include username, password, and so
on.

database- specif ic- opt ion- dependent- on- dbms- opt ion = database- specif ic- value ;

APPEND procedure

Supported statements
• PROC APPEND (page 2264)
• WHERE (page 2264)

Reference for language elements
Version 4.1

2264

PROC APPEND
Appends the observations from one dataset to another dataset.

PROC APPEND

BASE = data- set- name
i

DATA = input- data- set- with- options
i i

FORCE

;

i See Dataset (page 16).

ii See Input dataset (page 16).

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

APPSRV Procedure
The APPSRV procedure configures and launches an Application Server.

Supported statements
• PROC APPSRV (page 2265)
• ADMINLIBS (page 2269)
• ALLOCATE (page 2270)
• DATALIBS (page 2270)
• LOG (page 2271)
• PROGLIBS (page 2273)
• SESSIONLIBS (page 2279)
• SESSIONWORKLIBS (page 2279)
• REQUEST (page 2274)
• STATISTICS (page 2279)
• REQUEST (page 2274)

Reference for language elements
Version 4.1

2265

• WORKLIBS (page 2282)

PROC APPSRV

PROC APPSRV PORT = port

"service_name"

ADMINPW = password

ALLOW_BACKGROUND

CHARSET = charset

LOCALIP = IP- address

NETBUFFK = n

NOCHARSET

UNSAFE = "string"

WEBOUT_ENCODING = "encoding- name"

NOCLEANWORK

NOCLEANSESSION

NOCLEANSESSIONWORK

;

ADMINPW
The ADMINPW option specifies the password that will be required to run programs in the ADMINLIBS
libraries and special administrative programs such as stop. To avoid displaying a plain text password
in the source code of an Application Server launch program, the wpswebpassword program should be
used to generate an obfuscated version to be used as the ADMINPW option.

The following example shows how to set the ADMINPW option, albeit with a plain text password:

PROC APPSRV PORT=5001 ADMINPW="password";
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

ALLOW_BACKGROUND
The ALLOW_BACKGROUND option enables Application Servers that are members of a pool service to be
placed in a background state. If this option is not present, attempts to place an Application Server into
a background state will fail.

Reference for language elements
Version 4.1

2266

This example shows how to set the ALLOW_BACKGROUND option:

PROC APPSRV PORT=5001 ALLOW_BACKGROUND;
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

CHARSET
The CHARSET option is used to pass the encoding type applied to the HTTP content-type header as
generated by the WPS Web automatic header system. If the CHARSET option is not set, it will be set
to the same encoding as is applied to the _WEBOUT fileref. If, rather than the CHARSET option, the
NOCHARSET option is set, then no encoding information will be written by the automatic header system.
CHARSET and NOCHARSET cannot both be set at the same time.

This example sets the CHARSET option to latin1:

PROC APPSRV PORT=5001 CHARSET='latin1';
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

With the above APPSRV invocation, the automatic header system might emit an HTTP header formed
as below:

Content-type: text/html; charset='latin1'

LOCALIP
The LOCALIP option can be used to specify the IP address to which the Application Server should bind
when it starts up. This is useful when a host has multiple addresses assigned to it - a situation known
as a multi-homed host.

This example launches an Application Server that binds to the socket address 192.168.0.1:5001:

PROC APPSRV PORT=5001 LOCALIP=192.168.0.1;
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

NETBUFFK
The NETBUFFK option specifies the number of kilobytes an Application Server should reserve for a net
buffer. A net buffer is used to buffer the number of data transfers between the server and the Broker
as a program generates output. If the option is not specified, the Application Server will not use a net
buffer.

Validation
4 <= NETBUFFK <= 128

Reference for language elements
Version 4.1

2267

The following APPSRV invocation specifies an 8K net buffer:

PROC APPSRV PORT=5001 NETBUFFK=8;
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

NOCHARSET
The NOCHARSET option is used to suppress the generation of an encoding type by the automatic
header system.

This example sets the NOCHARSET option:

PROC APPSRV PORT=5001 NOCHARSET;
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

With the above APPSRV invocation, the automatic header system might emit an HTTP header formed
as below:

Content-type: text/html

NOCLEANSESSION
The NOCLEANSESSION option is used to prevent the cleanup of the SAVE libraries which are created for
any session generated by the Application Server. This option is useful for debugging but should not be
used in production systems.

NOCLEANSESSIONWORK
The NOCLEANSESSIONWORK option is used to prevent the cleanup of the WORK library used when a
SESSION INIT or TERM program is executed (refer to the INIT and TERM options on the SESSION
statement).

NOCLEANWORK
The NOCLEANWORK option is used to prevent the cleanup of the WORK library which is allocated when a
program is executed in response to a WPS Web request.

PORT (required)
The PORT option specifies the TCP port number that the Application Server should bind to when
opening a communication socket. This can be provided as a number or a service name as specified in
the /etc/services file on most UNIX-style operating systems.

Validation
1 <= PORT <= 65535

Reference for language elements
Version 4.1

2268

Note that some operating systems require special user privileges to use port numbers below 1024. The
following example starts an Application Server bound to port 5001:

PROC APPSRV PORT=5001;
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

By contrast, the next example starts an Application Server bound to the port number associated with
the wpsweb service definition:

PROC APPSRV PORT='wpsweb';
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

If the port number is not specified or the service name cannot be resolved to a port number, the
Application Server will fail to start and an error will be returned.

UNSAFE
The UNSAFE option is used to filter unsafe characters from user input. Parameters are passed as
macro variables to the program to be executed, and to reduce the opportunities for a code-injection
attack, unsafe characters are removed from parameter values before they are assigned to macro-
variable values (although the raw value can always be accessed via the APPSRV_UNSAFE() function).

The default unsafe character list contains the language of SAS characters:

• ' - single quote
• " - double quote
• ; - semi-colon
• & - ampersand

The unsafe character list can be changed via the UNSAFE option - but note that any custom list should
include the default characters unless there is a very good reason not to.

The following example starts an Application Server that removes control characters before they are
assigned to macro variables. Note that this example usage of the UNSAFE option simply adds the
default unsafe character list, and so has no practical effect:

PROC APPSRV PORT=5001 UNSAFE="'"";&";
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

The next example adds spaces and vowels to the list of unsafe characters:

PROC APPSRV PORT=5001 UNSAFE="'"";& aeiou";
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

Reference for language elements
Version 4.1

2269

WEBOUT_ENCODING
The WEBOUT_ENCODING option sets the encoding of the _WEBOUT fileref that an Application Server
provides to the programs it executes. Program output written to _WEBOUT is returned via the Broker to
the user.

This option is particularly important if an Application Server runs in EBCDIC environments such as z/
OS. Most web browsers do not recognise EBCDIC encodings.

UTF-8 is often a good, practical choice, since this is understood by many browsers and web clients and
supports the display of multi-byte characters.

This option does not affect the _GRPHOUT fileref, which has no encoding, nor does it affect the
automatic header generation system, which always emits headers in ASCII.

The following example sets the encoding of the _WEBOUT fileref to latin1:

PROC APPSRV PORT=5001 WEBOUT_ENCODING='latin1';
 ALLOCATE FILE demo 'C:\wpswebapp \wpsdemoapp\server';
 PROGLIBS demo;
 RUN;

ADMINLIBS
The ADMINLIBS statement of the APPSRV procedure specifies a list of libraries or directories from
which programs can be executed by an Application Server if a valid password is provided via the
_ADMINPW parameter. ADMINLIBS can be used to distinguish administrative programs from general
programs in an application. The relevant libraries or directories must have been allocated using the
ALLOCATE statement.

ADMINLIBS l ibref

libref .catalog

fileref

;

All ADMINLIBS arguments are the names of librefs, catalogs or filerefs.

This example program starts an Application Server that permits programs in the C:\wpswebapp
\wpsdemoapp\admin directory to be executed if a valid _ADMINPW parameter is provided.

PROC APPSRV PORT=5001 ADMINPW="foo";
ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
ALLOCATE FILE admin "C:\wpswebapp\wpsdemoapp\admin";
PROGLIBS demo;
ADMINLIBS admin;
RUN;

Reference for language elements
Version 4.1

2270

ALLOCATE
The ALLOCATE statement of the APPSRV procedure defines libraries, directories and files as available
for use by an Application Server. These definitions can be passed as parameters to other statements
like PROGLIBS to enable further functionality.

ALLOCATE

FILE

device- type

"directory- or- PDS- path"

host- opt ions

LIBRARY

engine

"data- library"

opt ions

;

ALLOCATE LIBRARY and ALLOCATE FILE are similar to the global statements LIBNAME and
FILENAME in the language of SAS, but scope is restricted to the Application Server only.

The example below allows programs stored as files in C:\wpswebapp\wpsdemoapp\server to
be executed, passing an extra library reference to each program which maps to the C:\wpswebapp
\wpsdemoapp\data directory:

PROC APPSRV PORT=5001 ADMINPW="foo";
ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
ALLOCATE LIBRARY data "C:\wpswebapp\wpsdemoapp\data";
PROGLIBS demo;
DATALIBS data;
RUN;

DATALIBS
The DATALIBS statement of the APPSRV procedure defines a space-separated list of allocated library
references that are passed to programs executed by an Application Server. This allows data to be
stored globally between requests or permanently as required. This facility is particularly useful as the
APSWORK library is cleared when the server is stopped and is therefore only suitable for temporary data
used during program execution.

DATALIBS l ibref

f ileref

;

All DATALIBS arguments are the names of librefs or filerefs, which have to be allocated with the
ALLOCATE statement.

Warning:
Creating a library using DATALIBS which is called SAVE may interfere with the SAVE library used by
Application Server sessions. Therefore, this name should be avoided.

Reference for language elements
Version 4.1

2271

The following example starts an Application Server that passes three libraries to the programs it
executes:

PROC APPSRV PORT=5001 ADMINPW="foo";
ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
ALLOCATE LIBRARY seta "C:\wpswebapp\wpsdemoapp\seta";
ALLOCATE LIBRARY setb "C:\wpswebapp\wpsdemoapp\setb";
ALLOCATE LIBRARY setc "C:\wpswebapp\wpsdemoapp\setc";
PROGLIBS demo;
DATALIBS seta setb setc;
RUN;

LOG
The LOG statement of the APPSRV procedure is used to configure logging of the requests that an
Application Server receives.

LOG

DISPLAY = NONE

ERRORS

ALL

SYMBOLS = NONE

ERRORS

ALL

FILE = allocated- f ileref

"path"

APPEND

REPLACE

;

APPEND and REPLACE
The APPEND and REPLACE options of the LOG statement define how logs are opened. If APPEND is
specified, then log output is appended to an existing log file. If REPLACE is specified, then a log file is
always replaced. If neither is specified, then the behaviour is operating-system dependent. On z/OS
the log file is always appended to, whereas on other operating systems, the log file is replaced if it is
older than six days.

DISPLAY
The DISPLAY option of the LOG statement controls whether the Application Server records the
execution log for each requested program.

If it is set to NONE, then the execution log is never included. If it is set to ERRORS, then the execution
log is recorded if there is an error. If set to ALL then the execution log is always recorded. By default, it
is set to NONE.

Reference for language elements
Version 4.1

2272

The example below configures an Application Server to include the execution log for every request:

PROC APPSRV PORT=5001;
 ALLOCATE FILE logfile "C:\wpswebapps\wpsdemoapp\appsrv-%Y-%m-%d.log";
 LOG FILE=logfile DISPLAY=ALL;
 ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
 PROGLIBS demo;
RUN;

FILE
The FILE option of the LOG statement is used to specify a fileref or a string containing a filename.
The name may include patterns which are expanded as the Application Server writes the log. This is
useful, for example, if you need to embed creation dates within the names of log files. The Substitution
Characters Table (page 2282) details the formatting patterns that can be used.

In the example below, we specify a log file using a file path string:

PROC APPSRV PORT=5001;
 LOG FILE="C:\wpswebapps\wpsdemoapp\appsrv.log";
 ALLOCATE FILE demo 'C:\wpswebapp\wpsdemoapp\server';
 PROGLIBS demo;
RUN;

Here, we specify a file path using an allocated fileref:

PROC APPSRV PORT=5001;
 ALLOCATE FILE logfile "C:\wpswebapps\wpsdemoapp\appsrv.log";
 LOG FILE=logfile;
 ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
 PROGLIBS demo;
RUN;

Below, we configure logging so that it produces files with names such as appsrv-2013-08-01.log
in the wpsdemoapp directory:

PROC APPSRV PORT=5001;
 ALLOCATE FILE logfile "C:\wpswebapps\wpsdemoapp\appsrv-%Y-%m-%d.log";
 LOG FILE=logfile;
 ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
 PROGLIBS demo;
RUN;

SYMBOLS
The SYMBOLS option of the LOG statement controls whether the Application Server logs input symbols/
parameters from incoming requests. The values of symbols whose names begin with _NOLOG_ have
their values obfuscated in the log file.

If set to NONE, no logging is performed. If set to ERRORS then symbols are logged if there is an error
processing the request. Setting it to ALL logs symbols for all requests. By default, this value is set to
NONE.

Reference for language elements
Version 4.1

2273

In the following example, an Application Server is configured to record all symbols for all requests:

PROC APPSRV PORT=5001;
 ALLOCATE FILE logfile "C:\wpswebapps\wpsdemoapp\appsrv-%Y-%m-%d.log";
 LOG FILE=logfile SYMBOLS=ALL;
 ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
 PROGLIBS demo;
RUN;

PROGLIBS
The PROGLIBS statement of the APPSRV procedure defines a space-separated list of allocated library,
catalog or file references that contain programs which can be executed by an Application Server.
Specifying the catalog name after the library name ensures that only programs in that catalog are
accessible.

PROGLIBS l ibref

libref .catalog

fileref

;

All PROGLIBS arguments are the names of librefs, filerefs or catalogs.

This example allows execution of:

• All programs in the server directory using the prefix demo
• All programs contained in any catalog in the proglib library
• All programs contained in the catalog1 and catalog2 catalogs of the adlib library

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
ALLOCATE LIBRARY proglib "C:\wpswebapp\wpsdemoapp\proglib";
ALLOCATE LIBRARY adlib "C:\wpswebapp\wpsdemoapp\admin";
PROGLIBS demo proglib adlib.catalog1 adlib.catalog2;
RUN;

Reference for language elements
Version 4.1

2274

REQUEST
The REQUEST statement of the APPSRV procedure is used to configure aspects of Application Server
request processing.

REQUEST

INIT = program

TERM = program

READ = seconds

TIMEOUT = seconds

MAXTIMEOUT = seconds

FROMADR = ("IP- address")

;

FROMADR
The FROMADR option of the REQUEST statement is used to enhance security by providing a white-list of
IP addresses from which a Broker will accept requests. All other requests will be denied with an error
message and the Application Server will stop processing the request. The FROMADR list is a space-
separated list of strings contained in parentheses.

This example specifies that the Broker should only accept requests from the local host:

PROC APPSRV PORT=5001;
 REQUEST FROMADR=('127.0.0.1');
 ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
 PROGLIBS demo;
RUN;

INIT
The INIT option of the REQUEST statement specifies the name of a program to execute before the
program requested by the Application Server is executed. This is implemented via the use of the
%INCLUDE macro in the language of SAS.

By default, no INIT program is executed.

This option does not affect special programs like stop, ping, replay, status or the program
executed when there is an invalid session as specified by the INVSESS option of the SESSION
statement.

The example below illustrates how to configure an Application Server to execute the init.sas
program before any requested program:

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
REQUEST INIT="demo.init.sas";
PROGLIBS demo;
RUN;

Reference for language elements
Version 4.1

2275

MAXTIMEOUT
The MAXTIMEOUT option of the REQUEST statement specifies the maximum TIMEOUT value that can
be set for a program. This value overrides the value of the TIMEOUT option if the TIMEOUT option is set
to a value higher than the MAXTIMEOUT value.

MAXTIMEOUT should be set to a value greater than zero and less than or equal to INT_MAX which is
the largest integer representable on the specific operating system concerned. By default, it is set to 900
seconds or 15 minutes.

READ
The READ option of the REQUEST statement specifies the maximum duration allowed for the reading of
a request from a Broker in seconds. If a request cannot be read within this time, the server will respond
with an HTTP message containing the status header 408 - Request Timed Out.

READ must be set to a value greater than zero and less than or equal to INT_MAX which is the largest
integer it is possible to represent on the specific operating system concerned. By default, READ is set to
30 seconds.

TERM
The TERM option of the REQUEST statement specifies the name of a program to execute after a
program requested by the user. This is implemented via the %INCLUDE macro in the language of SAS.

By default, no program is executed.

This option does not affect special programs like stop, ping, replay, status or the program
executed when there is an invalid session as specified by the INVSESS option of the SESSION
statement.

This example shows an Application Server that executes the term.sas program after any requested
program:

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
REQUEST TERM="demo.term.sas";
PROGLIBS demo;
RUN;

TIMEOUT
The TIMEOUT option of the REQUEST statement specifies the maximum duration allowed for the
execution of a request including extensions prepended and appended by the INIT and TERM options
of the SESSION or REQUEST statements.

When the duration of a request has exceeded the timeout value, the program is cancelled. It is possible
that this will leave an Application Server in an unexpected state.

A program can increase the time it is allowed to execute for using the APPSRV_SET() function. The
maximum timeout which a program can set for a request is limited by the MAXTIMEOUT option of the
REQUEST statement.

Reference for language elements
Version 4.1

2276

This value is overridden by the value set in MAXTIMEOUT if the TIMEOUT value is set to a value higher
than MAXTIMEOUT.

The value set in TIMEOUT must be greater than zero and less than or equal to that set in MAXTIMEOUT.
The default value for TIMEOUT is 300 seconds.

The following program starts an Application Server which allows programs to execute for at most 120
seconds:

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
REQUEST TIMEOUT=120;
PROGLIBS demo;
RUN;

SESSION
The SESSION statement is used to configure an Application Server's session functionality. The options
listed are not mandatory.

SESSION

INIT = program

TERM = program

INVSESS = program

TIMEOUT = seconds

MAXTIMEOUT = seconds

VERIFY = (variable)

;

INIT
The INIT option of the SESSION statement specifies the name of a program to be executed when a
session is created. The program defined by the INIT option can access:

• The session SAVE library
• Libraries created through the DATALIBS statement
• The _SESSIONID macro variable
• A unique WORK library that is terminated at the end of the program

The program cannot access:

• The _WEBOUT or _GRPHOUT filerefs
• User-provided parameters or macro variables created by the program that launched the session
• The APSWORK library

By default, no program is executed.

Reference for language elements
Version 4.1

2277

This example launches an Application Server which executes the session_init.sas program
whenever sessions are created:

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
SESSION INIT="demo.session_init.sas";
PROGLIBS demo;
RUN;

INVSESS
The INVSESS option of the SESSION statement specifies the name of a program when a request is
received with an invalid _SESSIONID parameter. This can be used to override the default response
from an application server, which in its raw form, resembles the image below:

The specified INVSESS program can access the APSWORK and DATALIBS libraries and inputs through
macro variables just like a regular program. However, the _PROGRAM macro variable becomes the
value of INVSESS and a macro variable called _USERPROGRAM is created and holds the name of the
program that was attempted to be executed.

In this example, an Application Server executes the session_invalidsession.sas program when
an invalid _SESSIONID parameter is received:

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
SESSION INVSESS="demo.session_invalidsession.sas";
PROGLIBS demo;
RUN;

MAXTIMEOUT
The MAXTIMEOUT option of the SESSION statement specifies the maximum duration of sessions in
seconds. It overrides the value set by the TIMEOUT option if the TIMEOUT value is set to a higher value
than MAXTIMEOUT.

MAXTIMEOUT should be set to a value greater than zero and less than or equal to INT_MAX which is
the maximum value an integer can take in the language of SAS on that specific platform. By default,
MAXTIMEOUT is set to INT_MAX.

TERM
The TERM option of the SESSION statement specifies the name of a program to be executed when a
session terminates - either explicitly or if the timeout period is exceeded. This program can access:

• The session SAVE library
• Libraries created through the DATALIBS statement

Reference for language elements
Version 4.1

2278

• The _SESSIONID macro variable
• A unique WORK library that is terminated at the end of the program

The program cannot access:

• The _WEBOUT or _GRPHOUT filerefs
• User-provided parameters or macro variables created by the program that launched the session
• The APSWORK library

By default, no TERM program will be executed, and the program name is not validated until the first
session is removed.

This example executes the session_term.sas program when sessions end:

PROC APPSRV PORT=5001;
ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
SESSION TERM="demo.session_term.sas";
PROGLIBS demo;
RUN;

TIMEOUT
The TIMEOUT option of the SESSION statement specifies the maximum duration of sessions in
seconds, and can only be used once per SESSION statement. The value is overridden by the value of
MAXTIMEOUT if it has been set higher than MAXTIMEOUT.

TIMEOUT must be set to a value greater than zero and less than or equal to the value set as
MAXTIMEOUT. The default is 900 seconds - 15 minutes.

VERIFY
The VERIFY option of the SESSION statement defines a space-separated list of parameter names.
When a session is created, the values of these parameters are recorded, so that, when an attempt is
made to reconnect to the same session, these values can be verified against the parameter values of
the new request to ensure that they are the same.

This example instructs the Application Server to verify the values of FOO, BAR and BAZ:

PROC APPSRV PORT=5001;
 ALLOCATE FILE demo "C:\wpswebapp\wpsdemoapp\server";
 PROGLIBS demo;
 SESSION VERIFY=(FOO BAR BAZ);
RUN;

Reference for language elements
Version 4.1

2279

SESSIONLIBS
This statement controls the location of the SAVE library for each request.

SESSIONLIBS " path "

/ f ileref- opt ions

The Substitution Characters Table (page 2282) can be used with this option. For an example of its
use, refer to the FILE option of the LOG statement.

SESSIONWORKLIBS
This statement controls the location of the WORK library for the session INIT and TERM programs that
are executed when the session is created or destroyed.

SESSIONWORKLIBS " path "

/ f ileref- opt ions

The Substitution Characters Table (page 2282) can be used with this option. For an example of its
use, refer to the FILE option of the LOG statement.

STATISTICS
The STATISTICS statement of the APPSRV procedure instructs an Application Server to generate a
dataset that records requests received. This dataset can be accessed via special macro variables by
programs executed by the Application Server.

STATISTICS CREATE = data- set

DATA = data- set

ADDPORT

EXITONERROR

TEMPLATE = data- set

WRITECOUNT =

WRITEEVERY =

;

i See Dataset (page 16).

Reference for language elements
Version 4.1

2280

ADDPORT
The ADDPORT keyword option of the STATISTICS statement determines whether the port number of
the Application Server should be appended to the name specified in the DATA option to form the name
of the dataset used to log statistics.

CREATE
The CREATE option of the STATISTICS statement is used to create a blank dataset with columns set
to the defaults for Application Server statistics recording. The option prevents PROC APPSRV from
binding to a socket and acting as a normal socket. The only resulting action is the creation of a blank
dataset with the required columns for recording statistics.

The default columns of the statistics dataset are described in the table below:

Column Column type Description

Obstype Character Type of request

Okay Character 1 if request ran OK, else 0

Duplex Character

Http Character

Program Character Name of program executed by
the Application Server

Peeraddr Character

Hostname Character

Username Character

Entry Character Name of the item that was
replayed if the replay program
was used

SessionId Character ID of the session, if there was
one

Service Character Name of the service the
Application Server was part of

Starttime Numeric Date-time the request began

Runtime Numeric Number of seconds taken to
process the request

Port Numeric Port number of the Application
Server

Bytesin Numeric Size of the request in bytes

Bytesout Numeric Size of the response in bytes

Cputime Numeric Milliseconds of CPU time spent
handling the request

Reference for language elements
Version 4.1

2281

DATA
The DATA option of the STATISTICS statement specifies the dataset used to record statistics and
must be in a library that is allocated by the Application Server.

If the specified dataset does not exist already, then it is created and given a set of columns according to
those specified in the TEMPLATE option.

In the following example, the dataset requests in the stats library is assigned to statistics-recording
duties:

PROC APPSRV PORT=5001;
ALLOCATE LIBRARY stats "C:\wpswebapps\wpsdemoapp\stats";
ALLOCATE FILE demo "C:\wpswebapps\wpsdemoapp\server";
PROGLIBS demo;
STATISTICS DATA=stats.requests;
RUN;

STARTTIMEMILLIS
The STARTTIMEMILLIS option of the STATISTICS statement specifies that the starttime will be
recorded in milliseconds, rather than the default seconds.

TEMPLATE
The TEMPLATE option of the STATISTICS statement specifies the name of a dataset whose variables
determine which statistics are recorded by the Application Server in the statistics dataset. These must
be a subset of the full set as described in the CREATE option. If the TEMPLATE option is used, then
for a variable to be included in the statistics dataset, there must be a column with the same name and
type in the template dataset. If the TEMPLATE option is not used, then all statistics variables will be
captured.

WRITECOUNT
The WRITECOUNT option of the STATISTICS statement specifies the number of requests that must be
received before statistics are flushed from memory into the dataset.

This value should be greater than or equal to zero and less than or equal to INT_MAX which is the
largest integer representable on the specific operating system in use. By default, it is set to zero.

WRITEEVERY
The WRITEEVERY option of the STATISTICS statement determines the number of minutes after which
statistics are flushed from memory into the dataset.

The value of this option should be greater than zero and less than or equal to INT_MAX which is the
largest integer representable on the specific operating system in use. By default it is set to 5 minutes.

Reference for language elements
Version 4.1

2282

WORKLIBS
This statement controls the location of the WORK library for each request.

WORKLIBS " path "

/ f ileref- opt ions

The Substitution Characters Table (page 2282) can be used with this option. For an example of its
use, refer to the FILE option of the LOG statement.

Substitution Characters Table
This table details the formatting patterns that can be included when specifying filerefs or strings
containing filenames.

The patterns are expanded as the Application Server writes the log. This is useful, for example, if you
need to embed creation dates within the names of log files.

Format Description Range

%a Day of week Sun-Sat

%b Month Jan-Dec

%d Number of day in month 01-31

%H Hour 00-23

%m Month 01-12

%w Day of week 1-Sunday to 7-Saturday

%Y Full year - e.g. 2015

%y Two-digit year 00-99

%p Port number of Application Server

%n Hostname/node name

%r Request number 00001-99999

%s Session number

CATALOG procedure

Supported statements
• PROC CATALOG (page 2283)

Reference for language elements
Version 4.1

2283

• CHANGE (page 2283)
• CONTENTS (page 2284)
• COPY (page 2284)
• DELETE (page 2284)
• EXCHANGE (page 2285)
• EXCLUDE (page 2285)
• MODIFY (page 2285)
• SAVE (page 2286)
• SELECT (page 2286)

PROC CATALOG
Manages catalog files in libraries.

PROC CATALOG

CATALOG

CAT

C

=

l ibname .

catalog

ENTRYTYPE

ET

= entry- type

KILL

;

CHANGE
Renames catalog entries.

CHANGE

old- entry- name

. old- entry- type

= new- entry- name

. new- entry- type

/ ENTRYTYPE

ET

= entry- type

;

Reference for language elements
Version 4.1

2284

CONTENTS
Lists contents of a catalog.

CONTENTS

CATALOG

CAT

C

=

l ibname .

catalog

OUT =

l ibname .

data- set

;

COPY
Copies all or part of a catalog to another catalog.

COPY ENTRYTYPE

ET

= entry- type

IN =

l ibname .

catalog

MOVE

NEW

OUT =

l ibname .

catalog

;

DELETE
Deletes one or more catalog entries.

DELETE entry- name

. entry- type

/ ENTRYTYPE

ET

= entry- type

;

Reference for language elements
Version 4.1

2285

EXCHANGE
Exchanges entries within a catalog.

EXCHANGE

entry- name- 1

. entry- type- 1

= entry- name- 2

. entry- type- 2

/ ENTRYTYPE

ET

= entry- type

;

EXCLUDE
Specifies catalog entries to be excluded from other catalog operations.

EXCLUDE entry- name

. entry- type

/ ENTRYTYPE

ET

= entry- type

;

MODIFY
Modifies a catalog entry.

MODIFY

entry- name

. entry- type

(DESC

DESCRIPTION

=

descript ion

)

/ ENTRYTYPE

ET

= entry- type

;

Reference for language elements
Version 4.1

2286

SAVE
Saves the specified catalog entries.

SAVE entry- name

. entry- type

/ ENTRYTYPE

ET

= entry- type

;

SELECT
Specifies catalog entries to be used in other catalog operations.

SELECT entry- name

. entry- type

/ ENTRYTYPE

ET

= entry- type

;

CDISC procedure

Supported statements
• PROC CDISC (page 2287)
• ODM (page 2288)
• STUDY (page 2289)
• GLOBALVARIABLES (page 2289)
• USER (page 2289)
• LOCATION (page 2289)
• SIGNATURE (page 2289)
• CLINICALDATA (page 2290)
• CONTENTS (page 2290)
• DATASETS (page 2290)
• SDTM (page 2290)

Reference for language elements
Version 4.1

2287

• DOMAINDATA (page 2291)

PROC CDISC
Reads and writes CDISC XML files, or validates SDTM datasets.

PROC CDISC MODEL = "SDTM"

MODEL = "ODM" READ = f ileref

WRITE = f ileref

FORMATACTIVE = YES

NO

FORMATLIBRARY = f ileref

FORMATNOREPLACE = YES

NO

LANGUAGE = "language"

;

Reference for language elements
Version 4.1

2288

ODM
Defines various settings for ODM files imported or exported using PROC CDISC MODEL= "ODM".

ODM LONGNAMES = YES

NO

ODMMAXIMUMOIDLENGTH = n

ODMMINIMUMKEYSET = YES

NO

ORDERNUMBER = YES

NO

USENAMEASLABEL = YES

NO

ODMVERSION = "1.2"

FILEOID = "f ileident if ier"

FILETYPE = "SNAPSHOT"

"TRANSACTIONAL"

DESCRIPTION = "desc"

GRANULARITY = ALL

METADATA

ADMINDATA

REFERENCEDATA

ALLCLINICALDATA

SINGLESITE

SINGLESUBJECT

ARCHIVAL = YES

CREATIONADATETIME = "ISO8601 datet ime"

PRIORFILEOID = "f ilename"

ASOFDATETIME = "ISO8601 datet ime"

ORIGINATOR = "name"

SOURCESYSTEM = "string"

SOURCESYSTEM = "version- string"

DATA = member.name

;

Reference for language elements
Version 4.1

2289

STUDY
Exports ODM by specifying the datasets containing the STUDYOID.

STUDY STUDYOID = "odm- id"

DATA = member.name

;

GLOBALVARIABLES
Specifies global variables when exporting.

GLOBALVARIABLES STUDYNAME = "name"

STUDYDESCRIPTION = "desc"

PROTOCOLNAME = "name"

DATA = member.name

;

USER
Specifies the username when exporting.

USER DATA = member.name ;

LOCATION
Specifies the specific location when exporting a dataset.

LOCATION DATA = member.name ;

SIGNATURE
Specifies the identifier of the person entering the record.

SIGNATURE DATA = member.name ;

Reference for language elements
Version 4.1

2290

CLINICALDATA
Specifies the dataset to write to on import. Specifies the dataset to read from on export.

CLINICALDATA OUT = member.name

SASDATASETNAME = "name"

DATA = member.name

NAME = "string"

DOMAIN = "domain"

ORIGIN = "string"

PURPOSE = "string"

COMMENT = "string"

INVESTIGATORREF = YES

NO

SITEREF = YES

NO

;

CONTENTS
Prints out the contents of the named dataset.

CONTENTS TABLE = name ;

DATASETS
Reports the datasets in the imported file.

DATASETS ;

SDTM
Validates the contents of a dataset or XML file written in CDISC by checking fields and against the
SDTM standard.

SDTM SDTMVersion = "version" ;

Reference for language elements
Version 4.1

2291

DOMAINDATA
Specifies the datasets to validate.

DOMAINDATA DATA = member.name

DOMAIN = DM

CO

CM

EX

SU

AE

DS

MH

EG

IE

LB

PE

QS

SC

VS

CATEGORY = special

interventions

events

findings

;

CHART procedure

Supported statements
• PROC CHART (page 2292)
• HBAR (page 2292)
• VBAR (page 2294)
• BY (page 2295)
• WHERE (page 2295)

Reference for language elements
Version 4.1

2292

PROC CHART
Generates a text-based bar chart from a dataset.

PROC CHART

DATA = input- data- set- with- options
i

GOUT = value

;

i See Input dataset (page 16).

HBAR
Creates a chart with horizontal bars, values increment from left to right.

HBAR bar- variable

/ options

;

Reference for language elements
Version 4.1

2293

options

AXIS = value

a to b

by c

DISCRETE

FREQ = num- variable

GROUP = group- variable

GSPACE = n

LEVELS = n

MEAN

MIDPOINTS = "char- value"

num- value

a to b

by c

MISSING

NOSTATS

NOSYMBOL

REF = value

SPACE = n

SUBGROUP = sub- variable

SUM

SUMVAR = num- variable

TYPE = CFREQ

CPERCENT

FREQ

MEAN

PERCENT

SUM

WIDTH = n

Reference for language elements
Version 4.1

2294

VBAR
Creates a chart with vertical bars, values increment from bottom to top.

VBAR bar- variable

/ options

;

options

AXIS = value

a to b

by c

DISCRETE

FREQ = num- variable

GROUP = group- variable

GSPACE = n

LEVELS = n

MIDPOINTS = "char- value"

num- value

a to b

by c

MISSING

NOSYMBOL

REF = value

SPACE = n

SUBGROUP = sub- variable

SUMVAR = num- variable

TYPE = CFREQ

CPERCENT

FREQ

MEAN

PERCENT

SUM

WIDTH = n

Reference for language elements
Version 4.1

2295

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

CIMPORT procedure

Supported statements
• PROC CIMPORT (page 2295)
• EXCLUDE (page 2296)
• SELECT (page 2297)

PROC CIMPORT
Imports a transport file containing catalog entries and metadata created using the CPORT procedure.

PROC CIMPORT

option

;

Reference for language elements
Version 4.1

2296

option

CATALOG

CAT

C

DATA

DS

D

LIBRARY

LIB

L

=

l ibname .

f ile name

EET = entry- type

ET = entry- type

EXTENDSN = YES

NO

INFILE = f ile

MEMTYPE

MT

= ALL

CATALOG

CAT

DATA

DS

NEW

EXCLUDE
Includes all members except those listed.

EXCLUDE f ile name

catalog name option

option

ENTRYTYPE = type

MEMTYPE

MTYPE

MT

= ALL

CATALOG

CAT

DATA

DS

Reference for language elements
Version 4.1

2297

SELECT
Includes only the specified members.

SELECT f ile name

catalog name option

option

ENTRYTYPE = type

MEMTYPE

MTYPE

MT

= ALL

CATALOG

CAT

DATA

DS

COMPARE procedure

Supported statements
• PROC COMPARE (page 2297)
• BY (page 2299)
• EXCLUDEVAR (page 2299)
• ID (page 2299)
• VAR (page 2299)
• WITH (page 2300)
• WHERE (page 2300)

PROC COMPARE
Compares the metadata and data of two datasets.

PROC COMPARE

option

;

Reference for language elements
Version 4.1

2298

option

BASE = input- data- set- with- options
i

BRIEF

BRIEFSUMMARY

COMPARE

COMP

C

= input- data- set- with- options
i i

CRITERION = value

DATA

ERROR

FUZZ = fuzz

LISTBASEVAR

LISTCOMPVAR

LISTEQUALVAR

LISTVAR

MAXPRINT = (overall- limit , per- variable- limit)

overall- limit

METHOD = absolute

exact

percent

relative

(delta)

Ivey

NOPRINT

NOSUMMARY

NOTE

OUT = output- data- set- with- options
i i i

OUTALL

OUTBASE

OUTCOMP

OUTDIF

OUTNOEQUAL

OUTPERCENT

WARNING

i See Input dataset (page 16).

ii See Input dataset (page 16).

Reference for language elements
Version 4.1

2299

iii See Output dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables, and compares the
grouped data.

BY

DESCENDING

variable- name

NOTSORTED

;

EXCLUDEVAR
Specifies variables to be omitted from the comparison of two datasets.

EXCLUDEVAR variable ;

ID
Identifies the relevant observations in the output by using one or more specified variable names.

ID

DESCENDING

variable- name

NOTSORTED

;

VAR
Compares only the listed variables, where the variables appear in both datasets.

VAR variable ;

Reference for language elements
Version 4.1

2300

WITH
Compares variables that are not identically named.

WITH variable ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

CONTENTS procedure

Supported statements
• PROC CONTENTS (page 2300)

PROC CONTENTS
Describes one or more datasets in a library.

PROC CONTENTS

options

;

Options
CENTILES

CENTILES

Type: Keyword

DATA

DATA = dataset- name

Type: String

Reference for language elements
Version 4.1

2301

DETAILS

DETAILS

Type: Keyword

DIRECTORY

DIRECTORY

Type: Keyword

FMTLEN

FMTLEN

Type: Keyword

MEMTYPE

MEMTYPE

MTYPE

MT

= ALL

DATA

VIEW

ALL

DATA

VIEW

NODETAILS

NODETAILS

Type: Keyword

NODS

NODS

Type: Keyword

Reference for language elements
Version 4.1

2302

NOPRINT

NOPRINT

Type: Keyword

OUT

OUT = dataset- name

Type: String

OUT2

OUT2 = dataset- name

Type: String

PRINT

PRINT

Type: Keyword

SHORT

SHORT

Type: Keyword

VARNUM

VARNUM

Type: Keyword

COPY procedure

Supported statements
• PROC COPY (page 2303)
• EXCLUDE (page 2303)

Reference for language elements
Version 4.1

2303

• SELECT (page 2304)

PROC COPY
Copies one or more datasets in a library to a different library.

PROC COPY IN

INDD

INLIB

= l ibrary- name- to- copy- from

OUT

OUTDD

OUTLIB

= l ibrary- name- to- copy- to

option

;

option

CLONE

NOCLONE

MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

ALL

MOVE

INDEX = YES

NO

EXCLUDE
Copies all datasets except those listed to the new library.

EXCLUDE data- set

/ option

;

Reference for language elements
Version 4.1

2304

data-set

data- set- name

(MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

)

option

MEMTYPE = DATA

VIEW

CATALOG

ALL

SELECT
Copies only the datasets listed to the new library.

SELECT data- set

/ option

;

data-set

data- set- name

(MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

)

option

MEMTYPE = DATA

VIEW

CATALOG

ALL

Reference for language elements
Version 4.1

2305

CORR procedure

Supported statements
• PROC CORR (page 2305)
• BY (page 2308)
• FREQ (page 2308)
• PARTIAL (page 2308)
• VAR (page 2309)
• WEIGHT (page 2309)
• WHERE (page 2309)
• WITH (page 2309)

PROC CORR
Performs correlation analysis against numeric variables.

PROC CORR

option

;

Reference for language elements
Version 4.1

2306

option

ALPHA

BEST = n

COV

CSSCP

DATA = data- set
i

EXCLNWGT

FISHER

(FisherOptions)

HOEFFDING

KENDALL

NOCORR

NOMISS

NOPRINT

NOPROB

NOSIMPLE

OUTH = output- data- set

OUTK = output- data- set

OUTP = output- data- set

OUTS = output- data- set

PEARSON

PLOTS

MAXPOINTS= NONE

n

= PlotRequest

(PlotRequest)

POLYSERIAL

(PolyserialOptions)

RANK

SINGULAR = p

SPEARMAN

SSCP

VARDEF = DF

N

WDF

WEIGHT

WGT

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2307

FisherOptions

ALPHA = a

BIASADJ = YES

NO

RHO0 = rho

TYPE = LOWER

UPPER

TWOSIDED

PolyserialOptions

CONVERGE = p

MAXITER = number

NGROUPS = ALL

n

ORDINAL = WITH

VAR

PlotRequest

ALL

MATRIX

(MatrixOptions)

NONE

SCATTER

(ScatterOptions)

MatrixOptions

HISTOGRAM

NVAR = ALL

n

NWITH = ALL

n

Reference for language elements
Version 4.1

2308

ScatterOptions

ALPHA = a

ELLIPSE = PREDICTION

CONFIDENCE

NONE

NOINSET

NVAR = ALL

n

NWITH = ALL

n

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

PARTIAL
Calculates partial correlations when the effect of the given variables are allowed for.

PARTIAL variable- name

Reference for language elements
Version 4.1

2309

VAR
Correlates only the specified variables.

VAR variable- name

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

WITH
Calculates the correlation between specified pairs of variables.

WITH variable- name ;

CPORT procedure

Supported statements
• PROC CPORT (page 2310)
• EXCLUDE (page 2311)
• SELECT (page 2311)

Reference for language elements
Version 4.1

2310

PROC CPORT
Creates a transport file containing a backup of datasets.

PROC CPORT

option

;

option

CATALOG

CAT

C

DATA

DS

D

LIBRARY

LIB

L

=

l ibname .

f ile name

AFTER = date

ASIS

CONSTRAINT = YES

NO

TRUE

FALSE

DATACOPY

EET = entry- type

ET = entry- type

FILE = f ile name

INDEX = YES

NO

MEMTYPE

MT

= ALL

CATALOG

CAT

DATA

DS

NOCOMPRESS

TRANSLATE = value- 1 to value- 2

Reference for language elements
Version 4.1

2311

EXCLUDE
Excludes the specified members.

EXCLUDE f ile name

catalog name option

option

ENTRYTYPE = type

MEMTYPE

MTYPE

MT

= ALL

CATALOG

CAT

DATA

DS

SELECT
Includes only the specified members.

SELECT f ile name

catalog name option

option

ENTRYTYPE = type

MEMTYPE

MTYPE

MT

= ALL

CATALOG

CAT

DATA

DS

DATASETS procedure

Supported statements
• PROC DATASETS (page 2312)

Reference for language elements
Version 4.1

2312

• AGE (page 2313)
• APPEND (page 2314)
• CHANGE (page 2314)
• CONTENTS (page 2315)
• COPY (page 2315)
• DELETE (page 2316)
• EXCLUDE (page 2316)
• EXCHANGE (page 2317)
• FORMAT (page 2317)
• INDEX CREATE (page 2318)
• INDEX DELETE (page 2318)
• INFORMAT (page 2318)
• LABEL (page 2318)
• MODIFY (page 2319)
• RENAME (page 2319)
• REPAIR (page 2319)
• SELECT (page 2319)

PROC DATASETS
Manages libraries.

PROC DATASETS

option

;

Reference for language elements
Version 4.1

2313

option

DETAILS

NODETAILS

KILL

LIBRARY

LIB

DDNAME

DD

= l ibrary- name

MEMTYPE

MTYPE

MT

= ALL

CATALOG

DATA

VIEW

NOLIST

NOWARN

AGE
Maintains historical data.

AGE current- data- set related- data- set

MEMTYPE

MTYPE

MT

= CATALOG

DATA

VIEW

;

Reference for language elements
Version 4.1

2314

APPEND
Appends observations from a dataset to a different existing dataset.

APPEND BASE = data- set
i

DATA = data- set
i i

NEW = data- set
i i i

FORCE

OUT

WHERE sub- set condit ion ;

;

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

CHANGE
Changes the name of a member in a library.

CHANGE old- name = new- name

/ change- option

;

change-option

MEMTYPE

MTYPE

MT

= ALL

CATALOG

DATA

VIEW

Reference for language elements
Version 4.1

2315

CONTENTS
Describes one or more datasets in a library.

CONTENTS DATA = data- set
i

DETAILS

NODETAILS

DIRECTORY

FMTLEN

MEMTYPE

MTYPE

MT

= ALL

DATA

VIEW

NODS

OUT = output- data- set- with- options
i i

OUT2 = output- data- set- with- options
i i i

PRINT

NOPRINT

SHORT

VARNUM

POSITION

;

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Output dataset (page 16).

COPY
Copies one or more members in a library to a different library.

COPY IN

INDD

INLIB

= l ibrary- name OUT

OUTDD

OUTLIB

= l ibrary- name

option

;

Reference for language elements
Version 4.1

2316

option

CLONE

NOCLONE

INDEX = YES

NO

MEMTYPE

MTYPE

MT

= ALL

CATALOG

DATA

VIEW

MOVE

DELETE
Deletes one or more members.

DELETE data- set

/ MEMTYPE = ALL

CATALOG

DATA

VIEW

EXCLUDE
Includes all members except those listed.

EXCLUDE data- set

/ option

;

data-set

data- set- name

(MEMTYPE = CATALOG

DATA

VIEW

)

Reference for language elements
Version 4.1

2317

option

MEMTYPE

MTYPE

MT

= ALL

CATALOG

DATA

VIEW

EXCHANGE
Exchanges items within a dataset.

EXCHANGE name- 1 = name- 2

/ exchange- option

;

exchange-option

MEMTYPE = ALL

CATALOG

DATA

VIEW

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2318

INDEX CREATE
Creates an index based on a simple-index-name, or composite-index-name.

INDEX CREATE simple- index- name

composite- index- name = (name)

UNIQUE

;

INDEX DELETE
Deletes one or more members.

INDEX DELETE index- name

ALL

;

INFORMAT
Adds informats to one or more variables in a dataset.

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable =

format

;

Reference for language elements
Version 4.1

2319

MODIFY
Modifies the metadata of the specified dataset.

MODIFY data- set- name

(

LABEL =

"data- set- label"

)

;

RENAME
Renames one or more variables in a dataset.

RENAME old- name = new- name ;

REPAIR
Recreates the index files of a dataset, if they have been deleted.

REPAIR data- set- name

MEMTYPE

MTYPE

MT

= CATALOG

DATA

VIEW

;

SELECT
Includes only those specified members.

SELECT data- set

/ option

;

Reference for language elements
Version 4.1

2320

data-set

data- set- name

(MEMTYPE

MTYPE

MT

= CATALOG

DATA

VIEW

)

option

MEMTYPE

MTYPE

MT

= ALL

CATALOG

DATA

VIEW

DBLOAD procedure

Supported statements
• PROC DBLOAD (page 2321)
• ACCDESC (page 2321)
• COLUMN (page 2321)
• COMMIT (page 2321)
• DELETE (page 2322)
• ERRLIMIT (page 2322)
• LABEL (page 2322)
• LIMIT (page 2322)
• LIST (page 2322)
• LOAD (page 2323)
• NULL (page 2323)
• RENAME (page 2323)
• RESET (page 2323)
• SQL (page 2323)
• TABLE (page 2324)
• TYPE (page 2324)
• WHERE (page 2324)

Reference for language elements
Version 4.1

2321

PROC DBLOAD
Loads data into a database.

PROC DBLOAD

DATA = input- data- set- with- options
i

DBMS = database- engine- name

APPEND

;

i See Input dataset (page 16).

ACCDESC
Creates an access descriptor based on the connection information.

ACCDESC = access- descriptor- name
i

;

i See Access Descriptors (page 15).

COLUMN
Renames one or more variables in a dataset. This statement is an alias for RENAME.

COLUMN = integer ;

COMMIT
Specifies how many operations you have to perform before a COMMIT statement.

COMMIT = integer ;

Reference for language elements
Version 4.1

2322

DELETE
Drops a column from the input dataset.

DELETE integer

column- name

;

ERRLIMIT
Specifies the number of errors to be generated before stopping the task.

ERRLIMIT = integer ;

LABEL
Uses column labels rather than names when generating database column names.

LABEL ;

LIMIT
Maximises the number of rows to insert.

LIMIT = integer ;

LIST
Lists out information about the variables of the data being inserted.

LIST ALL

FIELD

integer

column- name

;

Reference for language elements
Version 4.1

2323

LOAD
Starts the insertion process.

LOAD ;

NULL
Specifies which column can be NULL when the database table is being created.

NULL integer

column- name

= Y

N

D

;

RENAME
Renames input columns before insertion of data.

RENAME integer

column- name

= name ;

RESET
Resets column details back to their default values.

RESET integer

column- name

ALL

;

SQL
Submits unmodified database-specific SQL statements to the database.

SQL database- specif ic- sql- not- returning- a- rowset ;

Reference for language elements
Version 4.1

2324

TABLE
Specifies the name of the table that data will be inserted into.

TABLE string- literal

schema- name .

table- name

;

TYPE
Sets database specific type for one or more columns.

TYPE integer

column- name

= string- literal ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Connection option
Lists connection options for the specified DBMS. These options include, username, password, an so
on.

database- specif ic- opt ion- dependent- on- dbms- opt ion = database- specif ic- value ;

DELETE procedure

Supported statements
• PROC DELETE (page 2325)

Reference for language elements
Version 4.1

2325

PROC DELETE
Deletes one or more datasets from a library.

PROC DELETE

options

;

Options
DATA

DATA = dataset- name

EXPORT procedure

Supported statements
• PROC EXPORT (page 2326)
• DATABASE (page 2327)
• DBLIBOPTS (page 2327)
• DBPASSWORD (page 2327)
• DELIMITER (page 2327)
• MSENGINE (page 2327)
• NEWFILE (page 2328)
• PASSWORD (page 2328)
• PUTNAMES (page 2328)
• SHEET (page 2328)
• USER (page 2328)
• WGDB (page 2329)

Reference for language elements
Version 4.1

2326

PROC EXPORT
Exports a WPS dataset to the specified DBMS file.

PROC EXPORT

option

;

option

DATA = data- set

DBMS = ACCESS

ACCESS97

ACCESS2000

ACCESS2002

ACCESS2003

ACCESS2007

ACCESS2010

CSV

DLM

DBF

EXCEL

EXCEL97

EXCEL2000

EXCEL2002

EXCEL2003

EXCEL2007

EXCEL2010

DBF

TAB

SPSS

SAV

LABEL

OUTFILE = "f ile- name"

OUTTABLE = table- name

REPLACE

Reference for language elements
Version 4.1

2327

DATABASE
Specifies the database only when DBMS = MS Access.

DATABASE
=

"database- name" ;

DBLIBOPTS
Specifies database-specific connection options.

DBLIBOPTS
=

"database- specif ic- opt ions" ;

DBPASSWORD
Specifies the password for a protected Microsoft Access file.

DBPASSWORD
=

"password" ;

DELIMITER
Specifies a delimiter character for delimited text files.

DELIMITER
=

"character"

"hh"x

;

MSENGINE
Specifies the Microsoft engines to use if Microsoft Excel is specified as the export database.

MSENGINE
=

ACE

JET

;

Reference for language elements
Version 4.1

2328

NEWFILE
Specifies whether the file is new or not new.

NEWFILE
=

YES

NO

;

PASSWORD
Specifies the password for a protected Microsoft Access file.

PASSWORD
=

"password" ;

PUTNAMES
Outputs from a text file or MS Excel statement.

PUTNAMES
=

YES

NO

;

SHEET
Specifies the name of the worksheet in the specified Microsoft Excel workbook into which data is
exported.

SHEET
=

"Excel sheet name" ;

USER
Specifies the user name for a protected Microsoft Access database.

USER
=

"user name" ;

Reference for language elements
Version 4.1

2329

WGDB
Specifies the name of a workgroup database access system file.

WGDB
=

"Access system f ile" ;

FMTLIB procedure

Supported statements
• PROC FMTLIB (page 2329)
• EXCLUDE (page 2330)
• INVALUE (page 2330)
• PICTURE (page 2331)
• SELECT (page 2332)
• VALUE (page 2332)

PROC FMTLIB
Manages user-defined format catalogs.

PROC FMTLIB

option

;

Reference for language elements
Version 4.1

2330

option

CNTLIN = input- data- set- with- options
i

CNTLOUT = output- data- set- with- options
i i

LIBRARY = l ibrary

. catalog

NOREPLACE

FMTLIB

LIB

MAXLABLEN = n

MAXSELEN = n

PAGE

i See Input dataset (page 16).

ii See Output dataset (page 16).

EXCLUDE
Excludes entries being processed by the procedure.

EXCLUDE catalog- entry ;

INVALUE
Creates a user-defined informat.

INVALUE format- name

(option)

mapping ;

option

DEFAULT = length

MAX = length

MIN = length

NOTSORTED

Reference for language elements
Version 4.1

2331

mapping
,

invalue- range = informatted- value

,

invalue- range = [ex ist ing- informat]

SAME

invalue-range

value

inclusivestart - inclusiveend

exclusive <- rangeend

inclusivestart -< exclusiveend

exclusivestart <-< exclusiveend

OTHER

PICTURE
Creates a user-defined picture format.

PICTURE format- name

(option)

mapping ;

option

DATATYPE = DATE

DATETIME

TIME

DEFAULT = length

FUZZ = tolerance

MAX = length

MIN = length

NOTSORTED

ROUND

Reference for language elements
Version 4.1

2332

mapping
,

value

start - end

start <- end

start -< end

start <-< end

OTHER

= "picture- string"

(FILL = "f ill- character"

MULTIPLIER = mult iplier

PREFIX = "prefix - string"

NOEDIT

)

SELECT
Selects entries to be processed by the procedure.

SELECT entry ;

VALUE
Creates a user-defined format.

VALUE format- name

(option)

mapping ;

option

DEFAULT = length

FUZZ = tolerance

MAX = length

MIN = length

NOTSORTED

Reference for language elements
Version 4.1

2333

mapping
,

value- range = "formatted- value"

,

value- range = [ex ist ing- format]

value-range

value

start - end

start <- end

start -< end

start <-< end

OTHER

FONT Procedure
Returns information about TrueType fonts that can be used in WPS Analytics.

The FONT procedure reports the details of how WPS Analytics is configured to use TrueType fonts. The
report contains the following tables:

• Font Configuration Files. Lists the top level TrueType font configuration files used by WPS Analytics.
• Font Directories. Lists all folders that are searched for font files. On z/OS systems, this table also

includes MVS datasets.
• Available Fonts. Lists all font files found in the searched font folders. On z/OS systems, this table

also includes MVS datasets.

The available TrueType fonts are used by the Output Delivery System (ODS) GRAPHICS and PDF
destinations in SAS language programs run in WPS Analytics.

Examples ...2334
Examples of using the FONT procedure.

FONT procedure reference ...2336
Describes the syntax and options for PROC FONT.

Reference for language elements
Version 4.1

2334

Examples
Examples of using the FONT procedure.

Basic example ...2334
The following example returns the default level of information about available TrueType fonts.

Example – more detailed font configuration information .. 2335
The following example returns more detailed information about the available TrueType fonts.

Basic example

The following example returns the default level of information about available TrueType fonts.

PROC FONT;

This produces the following tables that are written to ODS output.

Font Configuration Files
This table lists the top level TrueType font configuration file used by WPS Analytics

 Obs Configuration Filename
__
 1 C:\Program Files\WPS\etc\fonts\fonts.conf

Font Directories
This table lists all folders that are searched for font files.

 Obs Directory Name

 1 C:/Windows/fonts
 2 C:/Users/.../.local/share/fonts
 3 C:/Users/.../.fonts

Available Fonts
This table lists the TrueType font files and associated font family found in the searched font folders. A
sub-set of the output is shown below.

Obs Filename Font Family
__
 1 C:/Windows/fonts/ANTQUAB.TTF Book Antiqua
 2 C:/Windows/fonts/ANTQUABI.TTF Book Antiqua
 3 C:/Windows/fonts/arial.ttf Arial
 4 C:/Windows/fonts/arialbd.ttf Arial
 5 C:/Windows/fonts/ARIALN.TTF Arial
 6 C:/Windows/fonts/ARIALN.TTF Arial Narrow
 7 C:/Windows/fonts/ARIALNBI.TTF Arial

Reference for language elements
Version 4.1

2335

 8 C:/Windows/fonts/ARIALNBI.TTF Arial Narrow
 9 C:/Windows/fonts/ariblk.ttf Arial
10 C:/Windows/fonts/ariblk.ttf Arial Black
...

Example – more detailed font configuration information

The following example returns more detailed information about the available TrueType fonts.

PROC FONT NOSHORT;

This produces the same tables written to ODS output as the basic example, with additional information
in the Font Configuration Files and Available Fonts tables.

Font Configuration Files
This table lists all TrueType font configuration files used by WPS Analytics. A sub-set of the output is
shown below.

 Obs Configuration Filename

 1 C:\Program Files\WPS\etc\fonts\fonts.conf
 2 C:\Program Files\WPS\etc\fonts\conf.d
 3 C:\Program Files\WPS\etc\fonts\conf.d/10-scale-bitmap-fonts.conf
 4 C:\Program Files\WPS\etc\fonts\conf.d/20-unhint-small-vera.conf
 ...
 15 C:\Program Files\WPS\etc\fonts\conf.d/69-unifont.conf
 16 C:\Program Files\WPS\etc\fonts\conf.d/80-delicious.conf
 17 C:\Program Files\WPS\etc\fonts\conf.d/90-synthetic.conf

Available Fonts
This table lists the TrueType font files, associated font family, and the full name of the font found in the
searched font folders. A sub-set of the output is shown below.

Obs Filename Font Family Full Name
__
...
298 C:/Windows/fonts/Vera.ttf Bitstream Vera Bitstream Vera Sans
 Sans
299 C:/Windows/fonts/VeraBd.ttf Bitstream Vera Bitstream Vera Sans Bold
 Sans
300 C:/Windows/fonts/VeraBI.ttf Bitstream Vera Bitstream Vera Sans
 Sans Bold Oblique
301 C:/Windows/fonts/VeraIt.ttf Bitstream Vera Bitstream Vera
 Sans Sans Oblique
302 C:/Windows/fonts/VeraMoBd.ttf Bitstream Vera Bitstream Vera
 Sans Mono Sans Mono Bold
303 C:/Windows/fonts/VeraMoBI.ttf Bitstream Vera Bitstream Vera
 Sans Mono Sans Mono Bold Oblique
304 C:/Windows/fonts/VeraMoIt.ttf Bitstream Vera Bitstream Vera
 Sans Mono Sans Mono Oblique
305 C:/Windows/fonts/VeraMono.ttf Bitstream Vera Bitstream Vera Sans Mono
 Sans Mono

Reference for language elements
Version 4.1

2336

306 C:/Windows/fonts/VeraSe.ttf Bitstream Vera Bitstream Vera Serif
 Serif
307 C:/Windows/fonts/VeraSeBd.ttf Bitstream Vera Bitstream Vera Serif Bold
 Serif
...

FONT procedure reference
Describes the syntax and options for PROC FONT.

PROC FONT ... 2336
Enables you to return information for installed TrueType fonts and specify the level of detail
returned.

PROC FONT

Enables you to return information for installed TrueType fonts and specify the level of detail returned.

PROC FONT

options

;

You can specify that the font information returned is detailed or concise, and which tables in the FONT
procedure output are displayed.

Specifying PROC FONT; with no options is the same as specifying

PROC FONT CONFIG FONTDIRS FONTS SHORT;

Options
The following options are available with the PROC FONT statement

CONFIG
Returns information about the font configuration files used by WPS Analytics.

CONFIG

Type: Keyword

The list of configuration files is displayed in the Font Configuration Files table in the FONT
procedure output. The default output includes this table.

• If SHORT is specified, only the location of the top-level font configuration file is listed.
• If NOSHORT is specified, all font configuration files are listed.

Reference for language elements
Version 4.1

2337

The Font Configuration Files table has the following format:

 Obs Configuration Filename

 count file-path

Where:

• count is an incrementing count of the folders searched.
• file-path is the absolute path the font configuration file.

FONTDIRS
Returns a list of the folder paths searched for font files.

FONTDIRS

Type: Keyword

The list of folder paths is displayed in the Font Directories table in the FONT procedure output.
On z/OS, the table displays the path of all files and MVS datasets searched. The default output
includes this table.

The Font Directories table has the following format:

 Obs Directory Name

 count folder-path

Where:

• count is an incrementing count of the folders searched.
• folder-path is the absolute path of the searched folder.

FONTS
Returns a list of the fonts available for use by WPS Analytics.

FONTS

Type: Keyword

The list of fonts is displayed in the Available Fonts table in the FONT procedure output. On z/OS,
the table displays the path of all files and MVS datasets searched. The default output includes
this table.

• If SHORT is specified, the path of the font file and the family (typeface) to which the font
belongs are displayed.

• If NOSHORT is specified, the full name of the font family is also displayed.

The Available Fonts table has the following format:

Obs Filename Font Family Full Name
__
count file-path family-name font-name

Reference for language elements
Version 4.1

2338

Where:

• count is an incrementing count of the font files available in the searched font folders.
• file-path is the absolute path of the font definition file.
• family-name is the generic name for the font. The same generic font name might apply to

multiple entries in the table.
• font-name is the specific name for the font in the font family.

NOCONFIG
No information about configuration files is returned.

NOCONFIG

Type: Keyword

The Font Configuration Files table is not displayed in the FONT procedure output.

NOFONTDIRS
No information about font directories is returned.

NOFONTDIRS

Type: Keyword

The Font Directories table is not displayed in the FONT procedure output.

NOFONTS
No information about available fonts is returned.

NOFONTS

Type: Keyword

The Available Fonts table is not displayed in the FONT procedure output.

NOSHORT
Specifies an increased level of information is displayed in the FONT procedure output.

NOSHORT

Type: Keyword

When specified:

• The Font Configuration Files table displays all font configuration files.
• The Available Fonts table contains the full name column in addition to the filename and font

family columns.

Reference for language elements
Version 4.1

2339

SHORT
Specifies that a reduced level of information is displayed in the FONT procedure output. This is
the default level of detail returned.

SHORT

Type: Keyword

When specified:

• The Font Configuration Files table only displays the op-level font configuration file.
• The Available Fonts table does not contain the full name column.

FORMAT procedure

Supported statements
• PROC FORMAT (page 2339)
• EXCLUDE (page 2330)
• INVALUE (page 2330)
• PICTURE (page 2331)
• SELECT (page 2332)
• VALUE (page 2332)

PROC FORMAT
Manages user-defined format catalogs.

PROC FORMAT

option

;

Reference for language elements
Version 4.1

2340

option

CNTLIN = input- data- set- with- options
i

CNTLOUT = output- data- set- with- options
i i

LIBRARY

LIB

= l ibrary

. catalog

NOREPLACE

FMTLIB

MAXLABLEN = n

MAXSELEN = n

PAGE

i See Input dataset (page 16).

ii See Output dataset (page 16).

EXCLUDE
Excludes entries being processed by the procedure.

EXCLUDE catalog- entry ;

INVALUE
Creates a user-defined informat.

INVALUE format- name

(option)

mapping ;

option

DEFAULT = length

MAX = length

MIN = length

NOTSORTED

Reference for language elements
Version 4.1

2341

mapping
,

invalue- range = informatted- value

,

invalue- range = [ex ist ing- informat]

SAME

invalue-range

value

inclusivestart - inclusiveend

exclusive <- rangeend

inclusivestart -< exclusiveend

exclusivestart <-< exclusiveend

OTHER

PICTURE
Creates a user-defined picture format.

PICTURE format- name

(option)

mapping ;

option

DATATYPE = DATE

DATETIME

TIME

DEFAULT = length

FUZZ = tolerance

MAX = length

MIN = length

NOTSORTED

ROUND

Reference for language elements
Version 4.1

2342

mapping
,

value

start - end

start <- end

start -< end

start <-< end

OTHER

= "picture- string"

(FILL = "f ill- character"

MULTIPLIER = mult iplier

PREFIX = "prefix - string"

NOEDIT

)

SELECT
Selects entries to be processed by the procedure.

SELECT entry ;

VALUE
Creates a user-defined format.

VALUE format- name

(option)

mapping ;

option

DEFAULT = length

FUZZ = tolerance

MAX = length

MIN = length

NOTSORTED

Reference for language elements
Version 4.1

2343

mapping
,

value- range = "formatted- value"

,

value- range = [ex ist ing- format]

value-range

value

start - end

start <- end

start -< end

start <-< end

OTHER

FORMS procedure

Supported statements
• PROC FORMS (page 2343)
• BY (page 2344)
• FREQ (page 2344)
• LINE (page 2345)
• WHERE (page 2345)

PROC FORMS
Processes mail merging layout data that populates forms.

PROC FORMS

option

;

Reference for language elements
Version 4.1

2344

option

ACROSS = n

ALIGN = n

BETWEEN = n

COPIES = n

CC

DATA = input- data- set- with- options
i

DOWN = n

FILE = f ileref

INDENT = n

LINES = n

NDOWN = n

PAGESIZE = n

SETS = n

SKIP = n

WIDTH = n

i See Input dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

Reference for language elements
Version 4.1

2345

LINE
Structures in lines, which provides the format for the fields of data.

LINE l ine- number variable

/ indent = n

lastname

pack

remove

;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

FREQ procedure

Supported statements
• PROC FREQ (page 2345)
• BY (page 2346)
• EXACT (page 2346)
• OUTPUT (page 2348)
• TABLES (page 2350)
• WEIGHT (page 2354)
• WHERE (page 2354)

PROC FREQ
Calculates frequency tables from a given dataset.

PROC FREQ

option

;

Reference for language elements
Version 4.1

2346

option

DATA = input- data- set- with- options
i

FC(1,2,7) = formchar- string

FORMCHAR(1,2,7) = formchar- string

NLEVELS

NOPRINT

ORDER = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

i See Input dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

EXACT
Specifies the type of statistic to be calculated for tables.

EXACT statistic- options

/ computation- options

;

Reference for language elements
Version 4.1

2347

statistic-options

BARNARD

CHISQ

COMOR

EQOR

FISHER

KENTB

LRCHI

MEASURES

MHCHI

OR

PCHI

PCORR

RELRISK

(COLUMN = 1

2

BOTH

METHOD =

FMSCORE

SCORE

)

RISKDIFF

(COLUMN = 1

2

BOTH

)

SCORR

SMDCR

SMDRC

STUTC

ZELEN

computation-options

ALPHA = value

MAXTIME = value

MC

N = n

POINT

SEED = number

Reference for language elements
Version 4.1

2348

OUTPUT
Outputs the last table specified to a dataset.

OUTPUT

options

;

Reference for language elements
Version 4.1

2349

options

OUT = data- set
i

AJCHI

ALL

BD

BDCHI

CHISQ

CMH

CMH1

CMH2

CMHCOR

CMHGA

CMHRMS

COMOR

CONTGY

CRAMV

EQOR

FISHER

GAILSIMON

GAMMA

GS

KENTB

LAMCR

LAMDAS

LAMRC

LGOR

LGRRC1

LGRRC2

LRCHI

MEASURES

MHCHI

MHOR

MHRRC1

MHRRC2

N

NMISS

OR

PCHI

PCORR

PHI

PLCORR

RDIF1

RDIF2

RELRISK

RELRISK1

RELRISK2

RISK1

RISK11

RISK12

RISK2

RISK21

RISK22

RISKDIFF

RISKDIFF1

RISKDIFF2

RRC1

RRC2

RSK1

RSK11

RSK12

RSK2

RSK21

RSK22

SCORR

SMDCR

SMDRC

STUTC

TAUB

TAUC

U

UCR

URC

ZELEN

Reference for language elements
Version 4.1

2350

i See Output dataset (page 16).

TABLES
Lists frequency tables and statistics to be computed for each.

TABLES table- list

/ options

;

Reference for language elements
Version 4.1

2351

options

OUT = data- set
i

ALL

ALPHA = value

BDT

CELLCHI2

CHISQ

CL

CMH cmh- options

CMH1 cmh- options

CMH2 cmh- options

CONVERGE = value

DEVIATION

EXACT

EXPECTED

FISHER

FORMAT = format

GAILSIMON gailsimon- options

GS gailsimon- options

LIST

MANTELFLEISS

MAXITER = n

MEASURES

MF

MISSING

MISSPRINT

NOCOL

NOCUM

NOFREQ

NOPCT

NOPERCENT

NOPRINT

NOROW

NOSPARSE

OR

OUTCUM

OUTEXPECT

OUTPCT

PLCORR

PRINT

RELRISK

RISKDIFF riskdiff- options

RISKDIFFC riskdiff- options

SCORES = MODRIDIT

RANK

RIDIT

TABLE

SCOROUT

SPARSE

TESTF = (value)

TESTP = (value)

V5FMT

Reference for language elements
Version 4.1

2352

i See Output dataset (page 16).

table-list

type- term * type- term

type-term

variable

(table- list)

cmh-options

(BDT

GAILSIMON gailsimon- options

GS gailsimon- options

MANTELFLEISS

MF

)

gailsimon-options

(COLUMN = 1

2

)

Reference for language elements
Version 4.1

2353

riskdiff-options

(CL = cl- option

(cl- option)

COLUMN = 1

2

BOTH

CORRECT

EQUAL

EQUIV

EQUIVALENCE

MARGIN = value

(lower , upper)

METHOD = FM

HA

NEWCOMBE

SCORE

WILSON

WALD

NONINF

NONINFERIORITY

NORISKS

SUP

SUPERIORITY

VAR = SAMPLE

NULL

)

Reference for language elements
Version 4.1

2354

cl-option

AC

AGRESTICAFFO

EXACT

FM

(NULL = value)

HA

MN

(CORRECT = MEE

NO

)

NEWCOMBE

(CORRECT)

SCORE

(CORRECT)

WALD

(CORRECT

NULL

= value

)

WILSON

(CORRECT)

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT weight- variable ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

2355

HADOOP Procedure

Supported statements
• PROC HADOOP (page 2355)
• HDFS (page 2355)
• MAPREDUCE (page 2356)
• PIG (page 2357)

PROC HADOOP
Accesses Hadoop through WPS.

PROC HADOOP

server option

;

server option

OPTIONS = f ile- ref

'ex ternal f ile'

PASSWORD = password

USERNAME = 'ID'

VERBOSE

HDFS
Specifies the Hadoop distributed file system to use.

HDFS

server options command option

;

Reference for language elements
Version 4.1

2356

command option

COPYFROMLOCAL = 'local f ile'

COPYTOLLOCAL = 'hdfs f ile'

DELETE = 'hdfs f ile'

DELETESOURCE

MKDIR = 'hdfs- path'

OUT = 'output- locat ion'

OVERWRITE

RENAME = 'hdfs- f ile'

RECURSIVE

MAPREDUCE
Launches MapReduce jobs.

MAPREDUCE

server options command option

;

command option

COMBINE = class- name

GROUPCOMPARE = class- name

INPUT = hdfs path

INPUTFORMAT = class- name

JAR = 'ex ternal jar f iles'

MAP = class- name

OUTPUT = 'hdfs- path'

OUTPUTFORMAT = class- name

OUTPUTKEY = class- name

OUTPUTVALUE = class- name

PARTITIONER = class- name

REDUCE = class- name

REDUCETASKS = integer

SORTCOMPARE = class- name

WORKINGDIR = hdfs- path

Reference for language elements
Version 4.1

2357

PIG
Enables external files to be submitted to a cluster.

PIG

server options command option

;

command option

CODE = f ile- ref

'ex ternal f ile'

PARAMETERS = f ile- ref

'ex ternal f ile'

REGISTERJAR = 'ex ternal jar f iles'

HTTP procedure
Retrieves and updates data from Uniform Resource Locators (URLs) over the Hypertext Transfer
Protocol (HTTP).

How to use the HTTP procedure ..2357
HTTP procedure reference ... 2358

Enables data to be retrieved and updated from Uniform Resource Locators (URLs) over the
Hypertext Transfer Protocol (HTTP).

How to use the HTTP procedure
In this example, a trace is requested on the transmitted message so that any changes made by the
server, or other servers can be analysed. A HTTP response status code is written to the log to indicate
whether the message has been successfully received or rejected by the server.

PROC HTTP METHOD="TRACE" URL="http://www.worldprogramming.com/home"
CT="text/html; charset='ISO-8859-4'" HEADEROUT="C:\data\web\headertrace.txt" ;
RUN;

Reference for language elements
Version 4.1

2358

This produces the following file output:

Keep-Alive:timeout=5, max=100
null:HTTP/1.1 302 Found
Server:Apache
Connection:Keep-Alive
Content-Length:221
Date:Thu, 21 Jun 2018 13:51:02 GMT
Content-Type:text/html; charset=iso-8859-1
Location:https://www.worldprogramming.com/home

HTTP procedure reference
Enables data to be retrieved and updated from Uniform Resource Locators (URLs) over the Hypertext
Transfer Protocol (HTTP).

PROC HTTP ... 2358
Enables data to be retrieved and updated from Uniform Resource Locators (URLs) over the
Hypertext Transfer Protocol (HTTP). A HTTP response status code is written to the log to
indicate whether the message has been successfully received or rejected by the server.

PROC HTTP

Enables data to be retrieved and updated from Uniform Resource Locators (URLs) over the Hypertext
Transfer Protocol (HTTP). A HTTP response status code is written to the log to indicate whether the
message has been successfully received or rejected by the server.

PROC HTTP

options

;

Options
The following options are available with the PROC HTTP statement

CT

CT = content- type

Type: String

Specifies a content-type header field . For example:

CT = "text/html; charset='ISO-8859-4'"

Reference for language elements
Version 4.1

2359

HEADERIN

HEADERIN = f ile- reference

Type: String

Specifies the name of the file (including the pathname) that contains header information to be
exported to a Web site. The Web site is only successfully updated if the necessary permissions
are in place. For example:

PROC HTTP URL='https://www.worldprogramming.com/home HEADERIN='C:\data\web
\headerin.txt';
RUN;

HEADEROUT

HEADEROUT = f ile- reference

Type: String

Specifies the name of a file (including the pathname) into which the HTTP header information
from a Web site can be saved.

IN

IN = f ile- reference

Type: String

Specifies the name of the file (including a pathname) that contains a page structure that can be
written to a Web site.

METHOD

METHOD = http- method

Type: String

Specifies a request method for processing intended internet data from a client to a server. The
following methods are available:

GET

Requests data from a specified Web site. For example:

PROC HTTP METHOD="GET" URL="http://www.worldprogramming.com/home"
CT="text/html; charset='ISO-8859-4'" HEADEROUT="C:\data\web
\headerout.txt";

Reference for language elements
Version 4.1

2360

This produces the following file output:

Keep-Alive:timeout=5, max=100
null:HTTP/1.1 302 Found
Server:Apache
Connection:Keep-Alive
Content-Length:221
Date:Thu, 28 Jun 2018 10:53:20 GMT
Content-Type:text/html; charset=iso-8859-1
Location:https://www.worldprogramming.com/home

HEAD
Requests data from a specified Web site, but does not return the response body. Use this
to check a site exists before downloading a large body of text.

POST

Transfers data to a specified Web site to create a resource, or to perform an update to an
existing resource. Multiple POST requests to the same Web site will have side effects of
creating multiple resources of the same information.

PUT
Transfers data to a specified Web site to create a resource, or to perform an update to an
existing resoure. Similar to POST, however, if you use a PUT requests in multiple sessions,
it has the same result each time because it replaces the current content with the new
information. If a resource does not exist, it creates it.

OPTIONS
Specifies the HTTP methods that the target server supports in the Allow statement, or can
interrogate the whole Web site.

DELETE
Deletes the specified resource (if permission has been given to do so).

TRACE
Retransmits the message back from the server so that any changes made by the server, or
other servers can be analysed. The message is saved in the file specified by HEADEROUT.

CONNECT
Enables a two-way transparent TCP/IP connection. It is mainly used to link to a Transport
Layer Security (TLS) protocol, formally known as a Secure Socket Layer (SSL). All
contemporary browsers support this protocol. This method is mainly designed for requests
to a proxy. Although the server receiving the request might accept it, most servers do not
include this feature.

PATCH
Similar to PUT, but modifies and existing HTTP resources instead of replacing a entire
resource. The OPTIONS method should be used first to establish whether this method is
available from the server.

Reference for language elements
Version 4.1

2361

OUT

OUT = f ile- reference

Type: String

Specifies the filepath and filename where an output from a Web site of a page structure can
be written to. The text filename can be named to suit your convention. For example:

PROC HTTP URL="https://www.worldprogramming.com/home"
OUT="C:\data\web\webout.txt";
RUN;

This produces the following file output:

<!DOCTYPE html>
<html prefix="og: http://ogp.me/ns#" lang="en-GB" dir="ltr" id="modernizrcom"
class="no-js pagewidth320 pagewidth320orbelow pagewidthbelow768">
<head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <meta charset="utf-8"

PROXYHOST

PROXYHOST = proxy- host

Type: String

Specifies a proxy server that is taking over the tasks for another server. A computer containing
the proxy server is known as a proxy server host. For example:

PROXYHOST="gateway/genie"

PROXYPASSWORD

PROXYPASSWORD = proxy- passwd

Type: String

Specifies a password allowing access to the proxy server.

PROXYPORT

PROXYPORT = proxy- port

Type: Numeric

Specifies a port number of the computer hosting the proxy server.

PROXYUSERNAME

PROXYUSERNAME = proxy- username

Reference for language elements
Version 4.1

2362

Type: String

Specifies a user name allowing access to the proxy server.

URL

URL = resource- address

Type: String

Specifies an address on the World Wide Web.

WEBDOMAIN

WEBDOMAIN = nt lm- auth- domain

Type: String

Specifies a configured identification string by an authority enabling the user to perform a variety
of tasks within the internet.

WEBPASSWORD

WEBPASSWORD = user- passwd

Type: String

Specifies a password enabling access to the internet.

WEBUSERNAME

WEBUSERNAME = user- name

Type: String

Specifies a user name enabling access to the internet.

IMPORT procedure

Supported statements
• PROC IMPORT (page 2363)
• DATABASE (page 2364)
• DATAROW (page 2365)
• DBLIBOPTS (page 2365)
• DBPASSWORD (page 2365)

Reference for language elements
Version 4.1

2363

• DELIMITER (page 2365)
• GETDELETED (page 2365)
• GETNAMES (page 2366)
• GUESSINGROWS (page 2366)
• MEMOSIZE (page 2366)
• MIXED (page 2366)
• MSENGINE (page 2366)
• PASSWORD (page 2367)
• RANGE (page 2367)
• SCANMEMO (page 2367)
• SCANTEXT (page 2367)
• SCANTIME (page 2367)
• SHEET (page 2368)
• TEXTSIZE (page 2368)
• USEDATE (page 2368)
• USER (page 2368)
• WGDB (page 2368)

PROC IMPORT
Imports from an external data source into a WPS dataset.

PROC IMPORT

option

;

Reference for language elements
Version 4.1

2364

option

DATAFILE = "data- f ile"

DATATABLE = table name

DBMS = ACCESS

ACCESS97

ACCESS2000

ACCESS2002

ACCESS2003

ACCESS2007

ACCESS2010

CSV

DLM

DBF

EXCEL

EXCEL95

EXCEL97

EXCEL2000

EXCEL2002

EXCEL2003

EXCEL2007

EXCEL2010

SPSS

SAV

TAB

IGNOREDOSEOF

OUT = data- set

REPLACE

DATABASE
Specifies the database only when DBMS = MS Access.

DATABASE
=

"database- name" ;

Reference for language elements
Version 4.1

2365

DATAROW
In text files, specifies the line to start getting data from.

DATAROW
=

integer ;

DBLIBOPTS
Specifies database-specific connection options.

DBLIBOPTS
=

"database- specif ic- opt ions" ;

DBPASSWORD
Specifies the database password.

DBPASSWORD
=

"password" ;

DELIMITER
Specifies the delimiter character (comma, tab).

DELIMITER
=

"character"

"hh"x

;

GETDELETED
The GETDELETED option is not supported.

GETDELETED
=

YES

NO

;

Reference for language elements
Version 4.1

2366

GETNAMES
Specifies whether a line or row which contains field names.

GETNAMES
=

YES

NO

;

GUESSINGROWS
In text files, specifies how many rows (lines) should be used to work out what the field types are.

GUESSINGROWS
=

number ;

MEMOSIZE
Enters the size of a memo field that the system creates for when it processes a database memo field.

MEMOSIZE
=

integer ;

MIXED
Specifies whether to allows both fixed and random effects in analysis.

MIXED
=

YES

NO

;

MSENGINE
Selects the Microsoft engine.

MSENGINE
=

ACE

JET

;

Reference for language elements
Version 4.1

2367

PASSWORD
Specifies the password for the data being imported.

PASSWORD
=

"password" ;

RANGE
Specifies a Microsoft Excel spreadsheet range.

RANGE
=

"spreadsheet- range" ;

SCANMEMO
Specifies whether Memo should be included.

SCANMEMO
=

YES

NO

;

SCANTEXT
Specifies whether Text should be included.

SCANTEXT
=

YES

NO

;

SCANTIME
Specifies whether Time should be included.

SCANTIME
=

YES

NO

ANY

;

Reference for language elements
Version 4.1

2368

SHEET
Specifies a spreadsheet name.

SHEET
=

"spreadsheet- name" ;

TEXTSIZE
Specifies the size of a text field to use for database text fields.

TEXTSIZE
=

integer ;

USEDATE
Specifies whether to use current date.

USEDATE
=

YES

NO

;

USER
Specifies a user name.

USER
=

"user name" ;

WGDB
Specifies an Access System File name (Working Group Data Base).

WGDB
=

"Access system f ile" ;

Reference for language elements
Version 4.1

2369

JSON Procedure
Enables you to write datasets to a JSON-format file.

JSON (JavaScript Object Notation) syntax is a text-based data format designed to be readable and
easy for machines to generate for processing. The syntax uses the following structures:

• A name–value pair, for example, a variable name and variable value in an observation from a WPS
dataset.

• An object. An unordered collection of name–value pairs, for example an observation from a WPS
dataset. Names must be unique in each object, and must be a string. String values for both names
and values must be formatted to replace any special characters with the JSON escape sequence.

• An array. An ordered list of values, for example the values in an observation from a WPS dataset.

Special characters in a strings
Some special characters and white space characters in JSON string values must be represented by
an escape sequence. An escape sequence consists of a backslash (\) and one or more characters to
identify the required special character:

Required character Escape sequence
backslash \\
quotation marks \"
forward slash \/
backspace \b
form feed \f
newline \n
carriage return \r
horizontal tab \t
Hexadecimal value \uvalue

When using the EXPORT statement to output a dataset, use the SCAN option to correctly format string
variables. See EXPORT (page 2377) for more information.

When using the WRITE statement to create JSON data, either write the correctly-formatted string as
part of the VALUE option, or use the SCAN option of the VALUE option to correctly format string variables
during output. See WRITE (page 2381) for more information.

Example ...2370
These examples shows how to create a JSON-format file.

JSON procedure reference ... 2373
Describes the syntax and options for PROC JSON and its contained statements.

Reference for language elements
Version 4.1

2370

Example
These examples shows how to create a JSON-format file.

The examples are available in 14.0-json-procedure.sas in the samples distributed with WPS
Analytics. You might need to alter the file locations to be able to create the output from the procedure.

Sample Input dataset
The following shows the input dataset that will be written to the JSON file.

DATA 'prem17_18'n;
 INFILE CARDS dlm='#';
 FORMAT Home Away $18.;
 FORMAT HS AS WORDS.;
 INFORMAT PlayedOn YYMMDD.;
 FORMAT PlayedOn DATE11.;
 INPUT Home Away HS AS PlayedOn;
 CARDS;
Liverpool # Manchester City # 4 # 3 # 2018-01-14
Liverpool # Manchester United # 0 # 0 # 2017-10-14
Liverpool # Tottenham Hotspur # 2 # 2 # 2018-02-03
Manchester City # Liverpool # 5 # 0 # 2017-09-09
Manchester City # Manchester United # 2 # 3 # 2018-04-07
Manchester City # Tottenham Hotspur # 4 # 1 # 2017-12-16
Manchester United # Liverpool # 2 # 1 # 2018-01-10
Manchester United # Manchester City # 1 # 2 # 2017-12-09
Manchester United # Tottenham Hotspur # 1 # 0 # 2017-10-24
Tottenham Hotspur # Liverpool # 4 # 1 # 2017-10-24
Tottenham Hotspur # Manchester City # 1 # 3 # 2018-04-14
Tottenham Hotspur # Manchester United # 2 # 0 # 2018-01-30
;
RUN;

A dataset labelled prem17_18 is created in the WORK folder when the DATA step is run. The dataset
viewed in Workbench displays the home team score (HS) and away team score (AS) using the WORDS.
format.

Basic example

This example outputs a dataset.

The following program reads the sample dataset, referred to using _LAST_ and outputs the content a
JSON-formatted file called c:\temp\json\results.json. The PRETTY option of the PROC JSON
statement is used to create a readable output.

PROC JSON OUT='c:\temp\json\results.json' PRETTY;
 EXPORT _LAST_;
RUN;

Reference for language elements
Version 4.1

2371

Part of the output dataset is shown below:

{
 "WPSJSONExport": "1.0 PRETTY",
 "prem17_18": [
 {
 "Home": "Liverpool",
 "Away": "Manchester City",
 "HS": 4,
 "AS": 3,
 "PlayedOn": "14-JAN-2018"
 },
 {
 "Home": "Liverpool",
 "Away": "Manchester United",
 "HS": 0,
 "AS": 0,
 "PlayedOn": "14-OCT-2017"
 },

 ...

 {
 "Home": "Tottenham Hotspur",
 "Away": "Manchester City",
 "HS": 1,
 "AS": 3,
 "PlayedOn": "14-APR-2018"
 },
 {
 "Home": "Tottenham Hotspur",
 "Away": "Manchester United",
 "HS": 2,
 "AS": 0,
 "PlayedOn": "30-JAN-2018"
 }
]
}

The file is output as an object of name–value pairs. The first entry in the output (WPSJSONExport)
is metadata describing the PROC JSON and EXPORT options specified. The dataset name label is
the name of the dataset in the WORK folder. The value is an array of objects, where each object is an
observation from the dataset.

Example – format output of multiple datasets

This example uses the WRITE statement to create custom JSON output.

The following program reads the sample dataset and outputs selected observations to a JSON-
formatted file called c:\temp\json\results-by-division.json.

The PRETTY option of the PROC JSON statement is used to create a readable output. The NOSASTAGS
option of the PROC JSON statement is used to prevent multiple versions of the metadata name–value
pair being output.

Reference for language elements
Version 4.1

2372

• The WRITE OPEN statements create the nested object structures to contain the dataset content.
• Each EXPORT statement selects part of the sample input dataset based on the name of the home

team and outputs an array of observations.
• Specifying NOSASTAGS means the table name cannot be created as part of the EXPORT statement.
• A separate WRITE VALUES statement is required to create the dataset label as the name in the

name–value pair, where the value contains the output of the EXPORT statement.

PROC JSON OUT = 'c:\temp\json\results-by-division.json' PRETTY NOSASTAGS;
 WRITE OPEN OBJECT;
 WRITE VALUES 'premier league';
 WRITE OPEN OBJECT;
 WRITE VALUES 'liverpool';
 EXPORT _LAST_ (WHERE=(HOME='Liverpool'));
 WRITE VALUES 'Manchester City';
 EXPORT _LAST_ (WHERE=(HOME='Manchester City')) /FMTNUMERIC;
 WRITE CLOSE;
 WRITE CLOSE;
RUN;

Part of the output dataset is shown below:

{
 "premier league": {
 "liverpool": [
 {
 "Home": "Liverpool",
 "Away": "Manchester City",
 "HS": 4,
 "AS": 3,
 "PlayedOn": "14-JAN-2018"
 },

 ...

 {
 "Home": "Liverpool",
 "Away": "Tottenham Hotspur",
 "HS": 2,
 "AS": 2,
 "PlayedOn": "03-FEB-2018"
 }
],
 "Manchester City": [
 {
 "Home": "Manchester City",
 "Away": "Liverpool",
 "HS": "five",
 "AS": "zero",
 "PlayedOn": "09-SEP-2017"
 },

 ...

 {
 "Home": "Manchester City",
 "Away": "Tottenham Hotspur",
 "HS": "four",

Reference for language elements
Version 4.1

2373

 "AS": "one",
 "PlayedOn": "16-DEC-2017"
 }
]
 }
}

JSON procedure reference
Describes the syntax and options for PROC JSON and its contained statements.

PROC JSON ... 2373
Enables data to be output in JavaScript Object Notation (JSON).

EXPORT ..2377
Enables the output of a WPS dataset.

WRITE ... 2381
Enables the creation of free-form output from JSON structures.

PROC JSON

Enables data to be output in JavaScript Object Notation (JSON).

PROC JSON out- f ile

json- opt ions

;

The PROC JSON statement is used to specify the file in which JSON-format data is output. You cannot
append data to an existing JSON-format data file. If out-file exists, it is overwritten by the procedure.

The PROC JSON statement does not output any data. Datasets are output using the EXPORT statement;
custom JSON-format data is output using the WRITE statement.

Options specified on the PROC JSON statement apply to all contained statements in the procedure and
can be used to specify the general behaviour when outputting data. Where the same option exists on
either the EXPORT or WRITE statements, you can change the behavior for that statement.

For example, you can specify that in general output numeric values are unformatted:

PROC JSON 'C:temp\json\output.json' NOFMTNUMERIC;

And for one output dataset, specify that numeric values are formatted:

EXPORT DATA='myDATASET' / FMTNUMERIC;

out-file
Specifies the location of the output file to contain the JSON-format data.

Reference for language elements
Version 4.1

2374

OUT = " f ilepath "

f ileref

The location can be specified as either a relative or a full path to the file or by using file reference.

filepath
A string, in quotation marks, containing the relative or absolute location of the JSON output
file.

fileref
A file reference created using the FILENAME global statement.

PROC JSON options
The following options are available with the PROC JSON statement.

FMTCHARACTER
Specifies that formatted strings are output from character variables that have a format applied.

FMTCHARACTER

To output the raw character values rather than formatted character variables, specify
NOFMTCHARACTER.

FMTDATETIME
Specifies that formatted strings are output from numeric variables that have a date, datetime or
time format applied. This is the default.

FMTDATETIME

To output the raw numeric values rather than formatted date and time variables, specify
NOFMTDATETIME.

FMTNUMERIC
Specifies that formatted values are output from numeric variables that have a format applied.

FMTNUMERIC

The output JSON type is determined by the SAS language format applied. For example the W.D.
format produces numeric values; the WORDS. format produces character values. To output the
raw values rather than formatted numeric variables, specify NOFMTNUMERIC.

The FMTNUMERIC option does not affect numeric variables with date and time formats applied.

KEYS
Specifies that the dataset label and variable names in an exported dataset are output. This is the
default.

Reference for language elements
Version 4.1

2375

KEYS

When specified, datasets are output as a name–value pair in an object. The name is the dataset
label, the value is an array of objects, where each object is an observation from the dataset.

NOFMTCHARACTER
Specifies that raw values are output from character variables that have a format applied. This is
the default.

NOFMTCHARACTER

To output character variables with applied formats, specify FMTCHARACTER.

NOFMTDATETIME
Specifies that raw values are output from numeric variables that have a date, datetime or time
format applied.

NOFMTDATETIME

To output numeric variables with applied formats, specify FMTDATETIME.

NOFMTNUMERIC
Specifies that the raw values are output from numeric variables that have a format applied. This
is the default.

NOFMTNUMERIC

To output numeric variables with date and time formats applied are as formatted strings, specify
FMTDATETIME.

The NOFMTNUMERIC option does not affect numeric variables with date and time formats applied

NOKEYS
Specifies that only the variable values in an exported dataset are output.

NOKEYS

When specified, datasets are output as a name–value pairs in an object. The name is the dataset
label, the value is an array of arrays, where each nested array contains a list of variable values
for one observation in the dataset.

NOPRETTY
Specifies that the JSON-format data is output to the out-file in an unformatted, compressed form.
This is the default.

NOPRETTY

Reference for language elements
Version 4.1

2376

When specified, a valid JSON structure is output to out-file that might be smaller in size than
similar output using the PRETTY option. Subsequent processing of the out-file might therefore be
faster because of a smaller file size.

NOSASTAGS
Specifies that export metadata and dataset variable labels are not output.

NOSASTAGS

NOSCAN
Specifies character variables are not processed to convert special characters to their escape
sequence before the variable is output.

NOSCAN

If the character variable is not correctly formatted before output, an invalid JSON-format file might
be created.

To convert special characters to their escape sequence before output to the out-file, specify
SCAN.

NOTRIMBLANKS
Specifies that leading and trailing blank spaces are not removed from values output.

NOTRIMBLANKS

When specified the size of out-file on disk might increase because of lengths or formats defined
for character variables in the exported dataset.

PRETTY
Specifies that the out-file file is formatted to make the JSON content easier to read and
understand.

PRETTY

When specified, the file content has the following formatting applied:

• The start ({) and end (}) markers of an array are output on separate lines.
• The start ([) and end (]) markers of a list are output on separate lines.
• Each entry in an array or list is indented to indicate the format hierarchy.
• Each name–value pair in an array is output on a separate line.
• Each value in a list is output on a separate line.

Using the PRETTY option might increase the size of the specified out-file on disk because the
formatting includes formatting.

Reference for language elements
Version 4.1

2377

SASTAGS
Specifies that metadata for the datasets is output. This is the default.

SASTAGS

Exported metadata is a list of options specified on the PROC JSON statement and the EXPORT
statement used to output a dataset. The SASTAGS option also controls the output of the dataset
label name.

This metadata is output into a variable named WPSJSONExport. There is one export metadata
value for each dataset output.

SCAN
Specifies that special characters in a string value are converted to their escape sequence and
output. This is the default.

SCAN

To stop an escape sequence being created, for example if the value has been correctly formatted
before being output to the out-file, specify NOSCAN.

TRIMBLANKS
Specifies that leading and trailing blank spaces are removed from string values before being
output. This is the default.

TRIMBLANKS

EXPORT

Enables the output of a WPS dataset.

EXPORT

EX

dataset

/ export- opt ions

;

A dataset is, by default, output as an array of objects. Each object represents an observation in the
dataset, and contains a name–value pair, for each variable name and variable value in the observation.

An observation can be output as a list of values by specifying the NOKEYS option. The default label for
the dataset is the name specified in dataset, which can be changed using the TABLENAME option.

Multiple EXPORT statements can be used in a JSON procedure. Metadata is created for each EXPORT
statement, but the identifying Name in the name–value pair is same each time metadata is output. If
multiple statements are used, specify NOSASTAGS on the PROC JSON statement, or each EXPORT
statement after the first to prevent output of multiple metadata information.

Reference for language elements
Version 4.1

2378

dataset
Specifies the dataset to be output to out-file specified on the PROC JSON statement.

EXPORT options
The following options are available with the EXPORT statement.

FMTCHARACTER
Specifies that formatted strings are output from character variables in dataset that have a format
applied.

FMTCHARACTER

To output the raw character values rather than formatted character variables, specify
NOFMTCHARACTER.

FMTDATETIME
Specifies that formatted strings are output from numeric variables in dataset that have a date,
datetime or time format applied.

FMTDATETIME

To output the raw numeric values rather than formatted date and time variables, specify
NOFMTDATETIME.

FMTNUMERIC
Specifies that formatted values are output from numeric variables in dataset that have a format
applied.

FMTNUMERIC

The output JSON type is determined by the SAS language format applied. For example the W.D.
format produces numeric values; the WORDS. format produces character values. To output the
raw values rather than formatted numeric variables, specify NOFMTNUMERIC.

The FMTNUMERIC option does not affect numeric variables with date and time formats applied.

KEYS
Specifies that the dataset label and variable names in an exported dataset are output.

KEYS

When specified, datasets are output as a name–value pair in an object. The name is the dataset
label, the value is an array of objects, where each object is an observation from the dataset.

NOFMTCHARACTER
Specifies that raw values are output from character variables in dataset that have a format
applied. This is the default

Reference for language elements
Version 4.1

2379

NOFMTCHARACTER

To output character variables with applied formats, specify FMTCHARACTER.

NOFMTDATETIME
Specifies that raw values are output from numeric variables in dataset that have a date, datetime
or time format applied.

NOFMTDATETIME

To output numeric variables with applied formats, specify FMTDATETIME.

NOFMTNUMERIC
Specifies that the raw values are output from numeric variables in dataset that have a format
applied.

NOFMTNUMERIC

To output numeric variables with applied formats, specify FMTNUMERIC.

NOKEYS
Specifies that only the variable value in an exported dataset is output.

NOKEYS

When specified, the dataset is output as a name–value pair in an object. The name is the dataset
label or TABLENAME. The value is an array of arrays, where each nested array contains a list of
variable values for one observation in the dataset.

NOSASTAGS
Specifies that metadata for dataset is not output.

NOSASTAGS

If specified, the dataset name or any alternative label specified using the TABLENAME keyword is
not output. If this would result in invalid JSON-format, the dataset is not output.

NOSCAN
Specifies character variables in dataset are not processed to convert special characters to their
escape sequence before the variable is output.

NOSCAN

If the character variable is not correctly formatted before output, an invalid JSON-format file might
be created.

To convert special characters to their escape sequence before output to the out-file, specify
SCAN.

Reference for language elements
Version 4.1

2380

NOTRIMBLANKS
Specifies that leading and trailing blank spaces are not removed from character variables in
dataset when output.

NOTRIMBLANKS

When specified the size of out-file on disk might increase because of lengths or formats defined
for character variables in the exported dataset.

SASTAGS
Specifies that metadata for dataset is output.

SASTAGS

Exported metadata is a list of options specified on the PROC JSON statement and options
specified on the EXPORT statement. Metadata is output into a variable named WPSJSONExport.

The SASTAGS option also controls the output of the dataset label name specified using the
TABLENAME option.

SCAN
Specifies that special characters in character variables in dataset are converted to their escape
sequence and output.

SCAN

To stop an escape sequence being created, for example if the value has been correctly formatted
in the dataset, specify NOSCAN.

TABLENAME
Specifies a different name for specified dataset.

TABLENAME = label

The specified label is not output if NOSASTAGS is specified. The label must be entered in
quotation marks if it contains spaces, and must be formatted to replace any special characters
with the JSON escape sequence.

TRIMBLANKS
Specifies that leading and trailing blank spaces are removed from character variables in dataset
before being output.

TRIMBLANKS

Reference for language elements
Version 4.1

2381

WRITE

Enables the creation of free-form output from JSON structures.

WRITE

W

write- opt ions ;

WRITE statements are used in a JSON procedure to create a required output structure and content.
WRITE provides more control over output than is available using the EXPORT statement.

WRITE statements are used to create the structure of arrays and objects using the OPEN option. Values
are output in the created structure using the VALUES option.

Multiple WRITE OPEN statements can be combined to create a structure of nested objects to create a
hierarchy in which data can be output. WRITE CLOSE enables data to be grouped in the output.

When using the WRITE OPEN statements, you should ensure the output structure is correct, for
example that arrays and objects are not output as the name in a name–value pair.

If the procedure step only contains WRITE VALUES statements, the output is name–value pairs in a
JSON object.

WRITE options
The following options are available with the WRITE statement.

OPEN
Specifies that a JSON structure is created. Values can be written into the structure using the
WRITE VALUES statement. Nested structures are created using the OPEN ARRAY or OPEN
OBJECT options.

OPEN

O

ARRAY

OBJECT

ARRAY
Creates an array – an ordered collection of values or objects.

OBJECT
Creates an object – an unordered collection of name–value pairs.

VALUES
Specifies the output values written to an object or array in the JSON file.

VALUES

V

output- value

/ NOSCAN

NOTRIMBLANKS

SCAN

TRIMBLANKS

Reference for language elements
Version 4.1

2382

Multiple values can be specified using the same WRITE VALUES statement.

If the values are output to an array each value is output as a separate entry, for example:

PROC JSON OUT = 'json/array.json';
 WRITE OPEN ARRAY;
 WRITE VALUES 'hello' 'world';
 WRITE CLOSE;
RUN;

Outputs the following JSON-structure to the specified file:

["hello","world"]

If the values are output to an object, values are treated as name–value pairs in the order they are
encountered.

PROC JSON OUT = 'json/object.json';
 WRITE OPEN OBJECT;
 WRITE VALUES 'hello' 'world' 'how' 'boiled';
 WRITE CLOSE;
RUN;

The output JSON file contains the following object structure:

{"hello":"world", "how":"boiled"}

output-value
Specifies one or more values output to a JSON structure.

FALSE

F

NULL

N

TRUE

T

number- value

string- value

variable- name

FALSE
Outputs the value false. Cannot be used as the name in a name–value pair of an
object.

NULL
Outputs the value null. Cannot be used as the name in a name–value pair of an
object.

TRUE
Outputs the value true. Cannot be used as the name in a name–value pair of an
object.

Reference for language elements
Version 4.1

2383

number-value
Outputs a numeric value.

string-value
Outputs a string value. Strings in JSON-format data are output in quotation marks.
If string-value contains any special characters they should be converted to the
equivalent escape sequence before output.

string-value must be in quotation marks if the value contains spaces or special
characters. If string-value is not entered in quotation marks, values are delimited by
spaces, for example,

PROC JOSN OUT='json/outfile.json';
 WRITE OPEN ARRAY;
 WRITE VALUES HELLO WORLD;
RUN;

This creates two entries in the array list: "HELLO" and "WORLD".

If quotation marks are used, values can be entered in either single or double
quotation marks. When using single quotes, in addition to replacing special
characters with the equivalent escape sequence, apostrophes in text must be
preceded by an apostrophe as an escape character.

variable-name
Outputs the content of the specified variable name.

NOSCAN
Specifies that character variables are not processed to convert special characters to their
escape sequence before the variable is output.

NOTRIMBLANKS
Specifies that leading and trailing blank spaces are not removed from values before being
output.

SCAN
Specifies that special characters in a string value are converted to their escape sequence
and output.

TRIMBLANKS
Specifies that leading and trailing blank spaces are removed from string values before
being output.

CLOSE
Specifies the current array or object is closed.

CLOSE

C

Reference for language elements
Version 4.1

2384

If not specified, all open objects and arrays are automatically closed at the end of the JSON
procedure step. Specifying CLOSE enables a nested structure of arrays and objects to be created
in the JSON output.

Example – manually create a JSON-structure
The following example shows how to create a JSON structure using the WRITE statement. The top
structure is an object in which defined name–value pairs are output. The first pair consists of a name
that is the dataset label, Dates, and an array to contain the dataset.

Each observation in the dataset is an object and name–value pairs output before the object is closed.
The array containing the observations is then closed as the end of the procedure step.

PROC JSON OUT = 'json/output.json' PRETTY;
 WRITE OPEN OBJECT;
 WRITE VALUE 'Dates';
 WRITE OPEN ARRAY;
 WRITE OPEN OBJECT;
 WRITE VALUES 'Date' '2019-01-01';
 WRITE VALUES 'Label' 'New Year''s Day';
 WRITE CLOSE;
 WRITE OPEN OBJECT;
 WRITE VALUES 'Date' '2019-01-02';
 WRITE VALUES 'Label' 'Second of January';
 WRITE CLOSE;
 WRITE CLOSE;
RUN;

Which outputs the following structure.

{
 "Dates": [
 {
 "Date": "2019-01-01",
 "Label": "New Year's Day"
 },
 {
 "Date": "2019-01-02",
 "Label": "Second of January"
 }
]
}

JAVAINFO procedure
Provides information about the Java virtual machine used by WPS.

How to use the JAVAINFO procedure ... 2385
JAVAINFO procedure reference ... 2386

Provides information about the Java virtual machine used by WPS.

Reference for language elements
Version 4.1

2385

How to use the JAVAINFO procedure
In this example, all Java information is requested. The result is written to the log.

PROC JAVAINFO;
RUN;

This produces the following output:

java.version = 1.8.0_51
java.vendor = Oracle Corporation
java.vendor.url = http://java.oracle.com/
java.home = C:\Program Files\World Programming\WPS\4\jre
java.ext.dirs = C:\Program Files\World Programming\WPS\4\jre\lib\ext;C:\WINDOWS\Sun
\Java\lib\ext
java.security.policy = <no value>
javaplugin.version = <no value>
java.vm.specification.version = 1.8
java.vm.specification.vendor = Oracle Corporation
java.vm.specification.name = Java Virtual Machine Specification
java.vm.version = 25.51-b03
java.vm.vendor = Oracle Corporation
java.vm.name = Java HotSpot(TM) 64-Bit Server VM
java.specification.version = 1.8
java.specification.vendor = Oracle Corporation
java.specification.name = Java Platform API Specification
java.class.version = 52.0
java.class.path = C:\Program Files\World Programming\WPS\4\jars\wps.jar;C:\Program
 Files\World
Programming\WPS\4\jars\wpsssh.jar;C:\Program Files\World
Programming\WPS\4/jars/poi-3.13-20150929.jar;C:\Program Files\World
Programming\WPS\4/jars/poi-ooxml-3.13-20150929.jar;C:\Program Files\World
Programming\WPS\4/jars/poi-ooxml-schemas-3.13-20150929.jar;C:\Program Files\World
Programming\WPS\4/jars/xmlbeans-2.6.0.jar
JREOPTIONS = ('-Djavax.security.auth.useSubjectCredsOnly=false'
'-Djava.class.path=!wpshome\jars\wps.jar;!wpshome\jars\wpsssh.jar;!wpshome/jars/
poi-3.13-2015092
9.jar;!wpshome/jars/poi-ooxml-3.13-20150929.jar;!wpshome/jars/poi-ooxml-
schemas-3.13-20150929.ja
r;!wpshome/jars/xmlbeans-2.6.0.jar' '-Dwps.jre.libjvm=!wpshome\\jre\\bin\\server\
\jvm.dll'
'-Djava.security.auth.login.config=!wpshome\jars\jaas.config')
os.name = Windows NT (unknown)
os.version = 10.0
os.arch = amd64
file.separator = \
path.separator = ;
line.separator =

user.name = david.jones
user.home = C:\Users\david.jones
user.dir = C:\Users\david.jones\Documents\WPS Workspaces\Workspace1\Samples
\Java_info

Reference for language elements
Version 4.1

2386

JAVAINFO procedure reference
Provides information about the Java virtual machine used by WPS.

PROC JAVAINFO ... 2386
Provides information about the Java virtual machine used by WPS.

PROC JAVAINFO

Provides information about the Java virtual machine used by WPS.

PROC JAVAINFO

options

;

Options
The following options are available with the PROC JAVAINFO statement

ALL

ALL

Type: Keyword

Specifies comprehensive Java information by activating all the other valid options with the
exception of HELP. This is also the default setting. The results are written to the log.

CLASSPATHS

CLASSPATHS

Type: Keyword

Specifies the Java Virtual Machine or Java compiler environment variable that identifies the
paths of user-defined classes and packages. The result is written to the log.

HELP

HELP

Type: Keyword

Specifies all valid options. The result is written to the log.

Reference for language elements
Version 4.1

2387

JREOPTIONS

JREOPTIONS

Type: Keyword

Specifies options for the Java runtime environment. The result is written to the log.

OS

OS

Type: Keyword

Specifies information about the operating system that Java is running on. The result is written to
the log.

VERSION

VERSION

Type: Keyword

Specifies comprehensive information about the Java version used.

In this example, Java version information is requested. The result is written to the log.

PROC JAVAINFO VERSION;
RUN;

This produces the following output:

java.version = 1.8.0_51
java.vendor = Oracle Corporation
java.vendor.url = http://java.oracle.com/
java.home = C:\Program Files\World Programming\WPS\4\jre
java.ext.dirs = C:\Program Files\World Programming\WPS\4\jre\lib\ext;
C:\WINDOWS\Sun\Java\lib\ext
java.security.policy = <no value>
javaplugin.version = <no value>
java.vm.specification.version = 1.8
java.vm.specification.vendor = Oracle Corporation
java.vm.specification.name = Java Virtual Machine Specification
java.vm.version = 25.51-b03
java.vm.vendor = Oracle Corporation
java.vm.name = Java HotSpot(TM) 64-Bit Server VM
java.specification.version = 1.8
java.specification.vendor = Oracle Corporation
java.specification.name = Java Platform API Specification
java.class.version = 52.0

Reference for language elements
Version 4.1

2388

MEANS procedure

Supported statements
• PROC MEANS (page 2390)
• BY (page 2392)
• CLASS (page 2392)
• FREQ (page 2392)
• ID (page 2393)
• OUTPUT (page 2393)
• TYPES (page 2394)
• VAR (page 2394)
• WAYS (page 2394)
• WEIGHT (page 2395)
• WHERE (page 2395)

Statistic keywords
The following keywords are used within several statements of this procedure.

Reference for language elements
Version 4.1

2389

CSS

CLM

CV

KURTOSIS

LCLM

MAX

MEAN

MIN

N

NMISS

P1

P5

P10

P20

P30

P40

P60

P70

P80

P25

Q1

P50

MEDIAN

P75

Q3

P90

P95

P99

PROBT

PRT

QRANGE

RANGE

SKEW

STD

STDEV

STDERR

SUM

SUMWGT

T

UCLM

USS

VAR

Reference for language elements
Version 4.1

2390

PROC MEANS
Calculates elementary statistics for a dataset.

PROC MEANS

option
statistic- keyword

i

;

i See Statistic keywords (page 2388).

Reference for language elements
Version 4.1

2391

option

ALPHA = value

CHARTYPE

COMPLETETYPES

DATA = data- set
i i

EXCLNPWGTS

FW = width

IDMIN

MAXDEC = decimals

MISSING

NONOBS

NWAY

ORDER = DATA

EXTERNAL

FORMATTED

FMT

FREQ

INTERNAL

UNFORMATTED

UNFMT

PCTLDEF

PRINT

NOPRINT

PRINTALL

PRINTALLTYPES

QMARKERS = marker count

QMETHOD = OS

P2

HIST

QNTLDEF = 1

2

3

4

5

SUMSIZE = memory amount

THREADS

NOTHREADS

VARDEF = DF

N

WDF

WEIGHT

WGT

Reference for language elements
Version 4.1

2392

ii See Input dataset (page 16).

BY
Groups the observation using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS
Specifies variables (within a BY group), by which observations are to be grouped.

CLASS variable- name

/ option

/ option

;

option

ASCENDING

DESCENDING

GROUPINTERNAL

MISSING

MLF

ORDER = DATA

FORMATTED

FREQ

UNFORMATTED

PREFLOADFMT

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

Reference for language elements
Version 4.1

2393

ID
Identifies the relevant observations in the output by using one or more specified variable names.

ID variable- name ;

OUTPUT
Creates an output dataset containing data given by one or more statistic keyword specifications.

OUTPUT

OUT = output- data- set
i output- statistic- specification

/

option

;

i See Output dataset (page 16).

output-statistic-specification

statistic- keyword
i i

(input- variable- name)

=

output- name

ii See Statistic keywords (page 2388).

option

AUTOLABEL

AUTONAME

KEEPLEN

LEVELS

NOINHERIT

WAYS

Reference for language elements
Version 4.1

2394

TYPES
Restricts output to subsets of CLASS variables.

TYPES type- list ;

type-list

*

type- factor

type-factor

variable

(type- list)

VAR
Specifies variables for which to calculate statistics.

VAR variable- name

/ WEIGHT = variable- name

;

WAYS
Restricts the number of outputs, for example, a one-dimensional table, a two-dimensional table, or
both.

WAYS ways- item

,
ways- item

;

ways-item

integer

integer TO integer

BY integer

Reference for language elements
Version 4.1

2395

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

OPTIONS procedure
Returns the values of all system options, or of a specified system option.

The system options are described in detail in the section System options (page 42).

The procedure also returns information about environment variables. The output is grouped into host
system options, portable system options, and environment variables.

Host system options apply only to the system on which the system is running; portable options apply to
any system. For example, some system options are specific to z/OS; if any of these were set for a WPS
session on z/OS, these would be host options, while any options not specific to z/OS would be portable
options.

Examples ...2395
Examples of using the procedure.

OPTIONS procedure reference .. 2397
Describes the syntax and options for PROC OPTIONS.

Examples
Examples of using the procedure.

Basic example ...2396
In this example, concise information about system options is returned. The result is written to the
log.

Example – getting information for a specified option ... 2396
In this example, information is returned for a specified system option. The result is written to the
log.

Reference for language elements
Version 4.1

2396

Basic example

In this example, concise information about system options is returned. The result is written to the log.

proc options short;

This produces the following output:

Portable Options:

ALTLOG= NOAUTOSIGNON BASEENGINE=WPD NOBATCHWPDLOCKING BOMFILE BUFNO=1
BUFSIZE=0 BUFSIZECMULT=6 BUFSIZEUMULT=1 BYERR BYLINE NOCAPS CARDIMAGE
CENTER NOCHARCODE CLEANUP CMPLIB= COMAMID=TCP COMPRESS=NO
CONFIG=('C:\Program Files\World Programming\WPS\4\wps.cfg') NOCONFIGFONT
CONNECTPERSIST CONNECTREMOTE= CONNECTWAIT NOCONSIDERXLSXCOLWIDTHS CPORTVER=SAS92

DATASTMTCHK=COREKEYWORDS DATE DATESTYLE=DMY DBSLICEPARM=(THREADED_APPS, 2)
.
.
.

Host Options:

AUTOEXEC= BOTTOMMARGIN=1CM CPUCOUNT=8 NODLCREATEDIR NODMS
EBCDICFMTINFMTBEHAVIOUR=DEFAULT EMAILAUTHDOMAIN= EMAILAUTHPROTOCOL=NONE
EMAILHOST=localhost EMAILID= EMAILMASQUERADEHOST=EMAILPORT=25 EMAILPW=********
EMAILSTARTTLS=AUTO EMAILSYS=MAPI ENCODING=WLATIN1
.
.
.

Environment Variables:

 SASAUTOS=('!wpshome\sasmacro')

The output contains three sections, for host and portable system options, and for environment
variables. The output shown in the example has been abbreviated to save space.

Example – getting information for a specified option

In this example, information is returned for a specified system option. The result is written to the log.

PROC OPTIONS OPTION=ERRORS SHORT;

This produces the following output:

ERRORS=20

Reference for language elements
Version 4.1

2397

OPTIONS procedure reference
Describes the syntax and options for PROC OPTIONS.

PROC OPTIONS ...2397
Enables you to specify the level of detail of the information returned, and to specify a system
option for which you want information returned.

PROC OPTIONS

Enables you to specify the level of detail of the information returned, and to specify a system option for
which you want information returned.

PROC OPTIONS

options

;

You can specify that the information returned is detailed, a summary, concise and so on. You can return
information about all system options, or for a specified system option. Some options return information
that is grouped into host and portable system options.

PROC OPTIONS with no options is the same as PROC OPTIONS LONG.

If OPTION is not specified, information for all system options is returned. If OPTION is specified,
information for the specified system option is returned.

If the DEFINE option is not specified, the information returned includes the name of the system option,
the current setting, and a description of the system option. This is the format returned by the LONG
option, and is the default. See LONG for more information.

Options
The following options are available with the PROC OPTIONS statement

DEFINE

Returns detailed information about system options.

DEFINE

Type: Keyword

The detailed information includes the name of the system option, the current setting, the group to
which it belongs, information about the group, a description of it, and so on.

If OPTION is not specified, lists detailed information for all system options, including the current
setting and a description of the system option.

Reference for language elements
Version 4.1

2398

If OPTION is specified, lists detailed information about, and the current setting of the specified
system option.

The information returned is split into two groups, host system options and portable system
options. For each system option, the following information is provided:

• The name of the system option and its current setting.
• The name of the group to which the system option belongs.
• A description of the group.
• A description of the system option.
• The type of system option, this can be:

‣ STRING

This provides the following additional information:

⁃ The maximum number of characters
⁃ Whether the case of the system option's value is retained
⁃ Whether quotation marks have been removed
⁃ Whether the value of the system option required parentheses

‣ LONG

This also provides the range of the values allowed.
‣ INTMAX

This also provides the range of the values allowed.
‣ BOOLEAN

• Where the system option can be set. Some system options are limited in where they can be
set. For example, AUTOEXEC can only be set in a configuration file or on the command line;
CENTER can be set using the OPTIONS global statement, in a configuration file, or on the
command line.

• Whether the system option can be restricted.
• Whether the system option is currently restricted.

A system option can be restricted to prevent it being changed during a WPS session. A system
option can be restricted in various ways. See Restricting system options (page 42) in
System options for more information.

EXPAND

Returns expanded symbolic references.

EXPAND

Type: Keyword

Reference for language elements
Version 4.1

2399

For example, the JREOPTION system option can be used to specify options for the Java Runtime
Environment (JRE) , including class paths, such as:

C:\Program Files\World Programming\WPS\4\jars\wps.jar

These paths can be specified using a symbolic reference:

!wpshome\jars\wps.jar

Where !wpshome is a symbolic reference for the path C:\Program Files\World
Programming\WPS\4\.

If you specify this option, symbolic references are expanded.

GROUP
Returns a list of the system options associated with a group, and their settings.

GROUP = group- name

Type: String

System options belong to one or more groups. You can display the group names using the
LISTGROUPS option. You can then use the group name to list the system option in that group.
You can only display groups that are applicable to your operating system.

You can specify more than one group to this option; for example:

PROC OPTIONS GROUP ENVDISPLY MACRO

This option must be the last option specified, otherwise subsequent options are assumed to be
group names.

For example, the group SORT contains all the system options associated with sorting. To see all
of the system options in this group, you would specify the group name to this option:

PROC OPTIONS GROUP=SORT;

HEXVALUE
Character values for options are displayed as hexadecimal values.

HEXVALUE

Type: Keyword

For example, PROC OPTIONS OPTION=SORTPGM; returns the name of the current sort
program. By default this is WPS, and by default this is returned as a character value. If you
specify this option the name of the sort program is instead returned as a hexadecimal value. For
example:

proc options option=sortpgm hexadecimal;

Reference for language elements
Version 4.1

2400

This returns 575053, where 57 is the hexadecimal representation of the character W, 50 is the
hexadecimal representation of the character P, and 53 is the hexadecimal representation of the
character S.

HOST
Returns information only for host system options.

HOST

Type: Keyword

System options are of two general types, host and portable. By specifying this option, only
information about host options is returned. The information is provided in the same format as the
EXPAND option.

Environment variables are also returned.

LISTGROUPS

Returns a list of groups.

LISTGROUPS

Type: Keyword

System options belong to groups. This option enables you to list all of the group names. You
can then use the group name to list all of the system options in that group by specifying it to the
GROUP option. The list only contains groups applicable to your operating system.

LISTINSERTAPPEND
Returns a list of system options and environment variables that can be specified with INSERT
and APPEND operations.

LISTINSERTAPPEND

Type: Keyword

The information returned is split into three groups, host and portable options, and environment
variables.

You can also specify the:

• HOSToption, which displays only those system options in the host group.
• NOHOSToption, which displays only those system options in the portable group.

Environment variables are always returned.

LOGNUMBERFORMAT

Specifies that for options that return decimal numbers, the integer part and decimal part of the
numbers are separated by a comma (,) rather than a period (.).

Reference for language elements
Version 4.1

2401

LOGNUMBERFORMAT

Type: Keyword

LONG

Specifies that the information returned includes the name of the system option, the current
setting, and a description of the system option. This is the default level of detail returned.

LONG

Type: Keyword

The format of the information returned is one of the following ways, depending on the system
option, and how it was set:

• option-name description
• NOoption-name description
• option-name=value description

option-name is the name of a system option, value is the value assigned to a system option and
description is text that describes what the system option does.

NOEXPAND
Symbolic references are not expanded.

NOEXPAND

Type: Keyword

See EXPANDfor more information on symbolic references.

NOHOST

Returns information only for portable system options.

NOHOST

Type: Keyword

System options are of two general types, host and portable. By specifying this option, only
information about portable system options is returned. The information is provided in the same
format as the EXPAND option.

NOLOGNUMBERFORMAT

Specifies that for options that return decimal numbers, the integer part and decimal part of the
numbers are separated by a period (.) rather than a comma (,).

NOLOGNUMBERFORMAT

Reference for language elements
Version 4.1

2402

Type: Keyword

OPTION

Specifies the name of a system option for which you want information.

OPTION = opt ion- name

Type: String

option-name is the name of a system option for which information is returned. You can specify
more than one system option, but information is returned only for the last specified system option
name.

If this option is used with DEFINE, EXPAND, LONG, SHORT or VALUE, information about
option-name is returned in the same format as that option provides. By default, the option returns
the same level of information as provided with LONG.

This option is ignored if used with LISTGROUPS and GROUP.

RESTRICT

Returns information about system options that are set as restricted. If a system option has been
set as restricted, its value cannot be changed during the WPS session. System options can be
restricted using the SETINIT file, configuration files, or the OPTIONS statement.

This option cannot be used with the OPTION option.

RESTRICT

Type: Keyword

If no system options have been restricted, the following message is returned:

The Site Administrator has not restricted any system options

For each system option that has been restricted, information is returned about the value of the
option and how it was set. The same information as provided by VALUE is returned. For example,
the following program restricts the system option XWAIT.

OPTIONS RESTRICT=XWAIT;
PROC OPTIONS RESTRICT;

The OPTIONS procedure in the second line writes the following to the log:

Option value information for option XWAIT
 Option Value: XWAIT
 How option value set: Options statement

SHORT

Returns only a list of system options and their current values.

Reference for language elements
Version 4.1

2403

SHORT

Type: Keyword

The system options are grouped by host and portable options, and environment variables.

The format of the information returned is one of the following ways, depending on the system
option, and how it was set:

• option-name
• NOoption-name
• option=value

For example:

NOAUTOSIGNON
BOMFILE
BUFSIZE=0

If used with OPTION, only information for the specified system option is returned. For example:

PROC OPTIONS OPTION=YEARCUTOFF SHORT;

returns the following:

YEARCUTOFF=1920

VALUE

Returns information on the value of system options and how they are set.

VALUE

Type: Keyword

The information returned is in the format:

Option value information for option option-name
 Option Value: value
 How option value set: setting

where option-name is the name of a system option, and value is the value of the system option.
System options can be set in various ways (as the default value, in a configuration file, from the
command line, and so on). How the value is set is described by setting; this can be:

• Built-in default – the value is the default set when WPS was installed.
• SETINIT SITEOPTIONS statement – the value was set using SITEOPTIONS in a

SETINIT file.
• Config file – the value was set in a configuration file.
• Restricted config file – the value was set in a restricted configuration file.
• Command line – the value was set through a command on the command line.
• Internal – the system option is internal to WPS and the value cannot be changed.

Reference for language elements
Version 4.1

2404

• Options statement – the value was set using the OPTIONS statement.
• Optload – the value was set using PROC OPTLOAD.

OPTLOAD procedure
Loads values for system options from a dataset.

You can use this procedure to set the system options for the current session. You might want to do this
if you want to use saved system options, or if you want to run a program using the same system options
on different servers.

You can create a dataset containing all system options and their corresponding values using the
OPTSAVE (page 2406) procedure.

The dataset created by the OPTSAVE procedure contains two variables:

• OPTNAME, the name of a system option
• OPTVALUE, the value of the system option

Some system options might not be compatible with your version of WPS. Incompatible options are not
loaded, and an error message is displayed in the log for each incompatible option. All other system
options are, however, loaded. System options might be incompatible if they were specified using a later
version of WPS, or using WPS on a different operating system.

Example – loading system options ...2404
In this example, the procedure is used to load the values of system options.

OPTLOAD procedure reference ... 2405
Loads values for system options from a dataset.

Example – loading system options
In this example, the procedure is used to load the values of system options.

The values are retrieved from a dataset in which they were previously saved using the OPTSAVE
procedure.

libname opts 'c:\temp';
proc optload data = opts.options;

The system options in the dataset options in the folder c:\temp are loaded for the current WPS
session.

Reference for language elements
Version 4.1

2405

OPTLOAD procedure reference
Loads values for system options from a dataset.

PROC OPTLOAD ..2405
Invokes the OPTLOAD procedure.

PROC OPTLOAD

Invokes the OPTLOAD procedure.

PROC OPTLOAD

options

;

Options
The following options are available with the PROC OPTLOAD statement

DATA

DATA = dataset- name

Type: String

The name of the dataset that contains the system options and their corresponding values.

The dataset name cannot be specified as an operating system pathname. It must be specified
using a library name. The dataset can, therefore, be read from any file that can be accessed
using a data engine. For example, the system options could be read from a Microsoft Excel
spreadsheet or a database table.

If you specify more than one DATA option, only the final one is acted on.

An error occurs if:

• You do not specify this option
• You do not specify dataset-name
• The library reference or filename reference specifies a path that does not exist

Reference for language elements
Version 4.1

2406

OPTSAVE procedure
Saves the values of the current system options to a specified dataset.

You can use this procedure to save the system options for the current session. You might want to
do this to save system options for later use, or to run a program using the same system options on
different servers.

The dataset created by the OPTSAVE procedure contains two variables:

• OPTNAME, the name of a system option
• OPTVALUE, the value of the system option

You can load previously saved system options and their corresponding values using the OPTLOAD
(page 2404) procedure.

Example – Saving system options in current session .. 2406
In this example, the procedure is used to save the current values of system options to the
specified dataset.

OPTSAVE procedure reference ..2406
Describes the syntax and options for PROC OPTSAVE.

Example – Saving system options in current session
In this example, the procedure is used to save the current values of system options to the specified
dataset.

LIBNAME opts 'c:\temp';
PROC OPTSAVE OUT = opts.options;

The system options and values are saved in the dataset options in the folder c:\temp.

OPTSAVE procedure reference
Describes the syntax and options for PROC OPTSAVE.

PROC OPTSAVE ..2407
Invokes the OPTSAVE procedure.

Reference for language elements
Version 4.1

2407

PROC OPTSAVE

Invokes the OPTSAVE procedure.

PROC OPTSAVE

options

;

Options
The following options are available with the PROC OPTIONS statement

OUT

OUT = dataset- name

Type: String

Specifies the name of the dataset to which system options and their values are written. This
option is mandatory.

dateset-name cannot be specified as an operating system pathname, such as c\temp
\optout.txt. It must be specified using a library reference or filename reference. The dataset
can, therefore, be written to any file that can be accessed using a data engine. For example, the
system options could be written to a Microsoft Excel spreadsheet or database table.

If you specify more than one OUT option, only the final one is acted on.

An error occurs if:

• You do not specify this option
• You do not specify dataset-name
• The library reference or filename reference specifies a path that does not exist

PDS procedure

Supported statements
• PROC PDS (page 2408)
• DELETE (page 2408)
• CHANGE (page 2408)
• EXCHANGE (page 2408)

Reference for language elements
Version 4.1

2408

PROC PDS
Manages Partitioned Data Set Extended (PDS(E)) on Z/OS.

PROC PDS

option

;

option

DDNAME = DDName

NOLIST

KILL

REFRESH

NOREFRESH

STRICT

DELETE
Removes a member of a PDS(E).

DELETE name
:

;

CHANGE
Changes a member of a PDS(E).

CHANGE name
:

= name
:

;

EXCHANGE
Exchanges names of pairs of a PDS(E) member.

EXCHANGE name
:

= name
:

;

Reference for language elements
Version 4.1

2409

PDSCOPY procedure

Supported statements
• PROC PDSCOPY (page 2409)
• DELETE (page 2409)
• SELECT (page 2409)
• EXCLUDE (page 2410)

PROC PDSCOPY
Copies a partitioned dataset.

PROC PDSCOPY

option

;

option

INDD = DDName

OUTDD = DDName

DELETE
Unsupported.

DELETE name
:

;

SELECT
Selects one or more names within a partitioned dataset, that may be copied. The colon (":") character
is a wildcard.

SELECT name
: -

name
:

;

Reference for language elements
Version 4.1

2410

EXCLUDE
Excludes one or more names within a partitioned dataset, from being copied. The colon (":") character
is a wildcard.

EXCLUDE name
: -

name
:

;

PLOT procedure

Supported statements
• PROC PLOT (page 2410)
• PLOT (page 2411)
• BY (page 2411)
• WHERE (page 2412)

PROC PLOT
Generates textual plots from datasets.

PROC PLOT

DATA = input- data- set- with- options
i NOLEGEND

;

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2411

PLOT
Defines the plots to be written to the log or a file.

PLOT

y- var

(y- var)

* x- var

(x- var)

= z- var

"char- value"

/ options

;

options

HAXIS = value

a to b

by c

HREF = value

a to b

by c

OVERLAY

VAXIS = value

a to b

by c

VREF = value

a to b

by c

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2412

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

PRINT procedure

Supported statements
• PROC PRINT (page 2412)
• ID (page 2414)
• PAGEBY (page 2414)
• SUM (page 2415)
• SUMBY (page 2415)
• VAR (page 2415)
• BY (page 2415)
• WHERE (page 2415)

PROC PRINT
Prints observations from a given dataset to the ODS system.

PROC PRINT

option

;

Reference for language elements
Version 4.1

2413

option

DATA = input- data- set- with- options
i

DOUBLE

HEADING = "horizontal"

"vertical"

LABEL

L

LABELANDNAME

LN

N

= "subtotal label"

, "total label"

NOOBS

OBS = "obs"

ROUND

ROWS = "page"

SPLIT

S

= "split "

SUMLABEL

UNIFORM

U

WIDTH = "UNIFORM"

"UNIFORMBY"

"FULL"

"MINIMUM"

style

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2414

style

STYLE

(BYLABEL

DATA

GRANDTOTAL

HEADER

N

OBS

OBSHEADER

TABLE

TOTAL

)

=

element- name

{

style- attribute- name = valid- value

"valid-string"

}

ID
Specifies one or more variables that identify the relevant observations in the output.

ID variable

/ style

;

PAGEBY
Specifies a BY variable. When the BY variable changes (for example, A to B) a new page is created.

PAGEBY by- variable ;

Reference for language elements
Version 4.1

2415

SUM
Sums one or more variables.

SUM variable

/ style

;

SUMBY
Sum all instances of the by-variable.

SUMBY by- variable ;

VAR
Specifies variables for which to calculate statistics to be printed.

VAR variable

/ style

;

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

2416

PRINTTO procedure

Supported statements
• PROC PRINTTO (page 2416)

PROC PRINTTO
Redirects ODS listing or log output.

PROC PRINTTO

options

;

Options
LOG

LOG = log- f ile

NEW

NEW

Type: Keyword

PRINT

PRINT

FILE

NAME

= output- f ile

UNIT

UNIT = units

Reference for language elements
Version 4.1

2417

PWENCODE procedure
Encodes a password.

The password can be encoded using {sas001} (the default) or {sas003} encryption methods. The
encoded password can be written to the log or to a file.

Example ...2417
In this example, the procedure is used to encode the specified password.

PWENCODE procedure reference ... 2417
Describes the syntax and options for PROC PWENCODE.

Example
In this example, the procedure is used to encode the specified password.

The procedure is used twice, first to write the encoded password to the log, then to write it to a specified
file.

PROC PWENCODE IN = "wombles" METHOD = SAS003;
PROC PWENCODE IN = "wombles" OUT='c:\temp\pw1.txt';

This produces the following output:

{sas003}d29tYmxlcw==

The second use of the procedure writes {sas001}d29tYmxlcw== to the file pw1.txt in the folder c:
\temp.

PWENCODE procedure reference
Describes the syntax and options for PROC PWENCODE.

PROC PWENCODE ..2418
Creates an encoded password and stores it in a file if required.

Reference for language elements
Version 4.1

2418

PROC PWENCODE

Creates an encoded password and stores it in a file if required.

PROC PWENCODE

options

;

Options
The following options are available with the PROC PWENCODE statement

IN

IN = user- passwd

Type: String

The password to be encoded. You do not have to enclose the password in quotation marks,
unless the password contains special characters such as spaces, in which case you must
enclose it in quotation marks. This option is mandatory.

METHOD

METHOD = SAS001

SAS003

The method used to encode the password. This can be:

SAS001
Use the SAS001 encryption method. This is the default.

SAS003
Use the SAS003 encryption method.

OUT

OUT = output_file

Type: String

A file to which the encoded password is written. This is optional. If you do not specify a
pathname, the file is written to the current working folder. If you are using Workbench, the
working folder is the current project folder.

If you do not specify the OUT option, the encoded password is written to the log. If you do specify
OUT, the filename overwrites any existing file with the same name. The procedure cannot append
encrypted passwords to an existing file. Each file created by this procedure contains only one encrypted
password.

Reference for language elements
Version 4.1

2419

The encoded password is prefixed with the encryption method, for example:

{sas001}dHdvIHdvbWJsZXM=

If you specify an option more than once, only the last instance of the option is used.

If you want to create the file in a location other than the current working or project folder, that folder
must already exist.

PYTHON procedure
The PYTHON procedure enables WPS programs written in the SAS language to include code written in
the Python language.

Combining the Python language and the SAS language enables the bulk of a data processing and
analytics solution to be written in the industrial strength and high-performing SAS language, while also
exploiting features present in the Python language.

Introduction ..2419
The Python procedure enables SAS language programs to include code written in the Python
language.

Setup and configuration ..2420
Setting the Python environment for WPS.

Using Python with WPS ..2421
Using Python in a SAS language program enables you to make use of specialist Python
packages such as Scikit-learn or Tensorflow.

Example ...2426
Demonstrates how to use a SAS language dataset in PROC PYTHON to create a scatter plot
diagram.

Python procedure reference ... 2428
Describes the syntax and options for PROC PYTHON and its contained statements.

Introduction
The Python procedure enables SAS language programs to include code written in the Python language.

By combining Python and the SAS language you can:

• Use the SAS language to bulk process and prepare data, and pass the processed data to Python.
• Use Python packages you have previously developed for data analysis.
• Use Python data analysis packages or solutions that may not be available in the SAS language.

Reference for language elements
Version 4.1

2420

Data is passed between the SAS language and Python language environments using the EXPORT
statement. Once data has been transferred, that data is made available as a pandas DataFrame to a
Python program. On completion of the Python program data can, if required, be returned to the SAS
language environment using the IMPORT statement.

Setup and configuration
Setting the Python environment for WPS.

When using Python with WPS:

• The 32-bit Python interpreter is required for the 32-bit version of WPS, and the 64-bit Python
interpreter is required for the 64-bit version of WPS.

• The pandas package must be installed with the Python interpreter. This can be checked using the
pip utility by running pip list on the command line.

The WPS distribution does not include either the Python interpreter or pandas package. If you do not
have Python installed, you can obtain a copy of the Python interpreter from https://www.python.org or
install a packaged Python environment that includes the necessary modules.

The PYTHON procedure can be used with Python version 3.5.0 and later, and is currently supported on
Microsoft Windows, Linux-based systems, and macOS.

The procedure is not currently supported on IBM mainframe.

Python environment variables
You must set the PYTHONHOME environment variable for WPS to locate and use the Python
interpreter. This variable must reference the folder where the main Python library is located – for
example, python3.dll on Microsoft Windows.

Standard output and error streams
The Python standard output stream (sys.stdout) and standard error stream (sys.stderr) are
redirected to WPS output when the procedure is run:

• sys.stderr is redirected to the WPS log file.
• sys.stdout is redirected to the WPS listing file when WPS is run on the command line, or to all

specified ODS output destinations when Workbench is used.

If you use the Python print() function to put output to the WPS listing file, the number of characters
appearing in the listing output is determined by the WPS LINESIZE system option. The LINESIZE
option can be used to print strings of up to 256 characters; the use of the print() function should
therefore be for limited information such as log statements.

If you want to return large volumes of Python-generated content to WPS, create a DataFrame
containing the required content and import the DataFrame into WPS using the IMPORT statement.

https://www.python.org

Reference for language elements
Version 4.1

2421

The following example creates a list of functions available in the Python pandas package. The list is
printed using print (fnList) and also converted to a DataFrame and imported into WPS.

PROC PYTHON;
SUBMIT;
import inspect
fnPandas = inspect.getmembers(pandas, inspect.isfunction)
fnList = [fn[0] for fn in fnPandas]
print (fnList)
fnTable = pandas.DataFrame({'function': fnList})
ENDSUBMIT;
IMPORT DATA=PANDAFN PYTHON=fnTable;
RUN;

The printed output truncates the list of functions:

['Expr', 'Term', 'bdate_range', 'concat', 'crosstab',
 'cut', 'date_range', 'eval', 'factorize',

When converted to a DataFrame and imported as a WPS dataset, all available functions are listed.

Using Python with WPS
Using Python in a SAS language program enables you to make use of specialist Python packages such
as Scikit-learn or Tensorflow.

The first time the Python procedure is invoked in a SAS language program, WPS automatically
imports the pandas and numpy packages. You can access the functionality in the pandas and numpy
packages in an in-line Python language program – written between the SUBMIT and ENDSUBMIT
statements – by referencing the fully-qualified package, class or function name, for example:

PROC PYTHON;
 SUBMIT;
content = pandas.read_csv('file:///C:/project/sourcedata/wps.csv')
...
 ENDSUBMIT;
 RUN;

Alternatively, you can use the import ... as ... statement to alias either the pandas or numpy
package name, for example:

PROC PYTHON;
 SUBMIT;
import pandas as pd
content = pd.read_csv('file:///C:/project/sourcedata/wps.csv')
...
 ENDSUBMIT;
 RUN;

Reference for language elements
Version 4.1

2422

Other Python packages can be imported and used within the in-line Python code, for example:

PROC PYTHON;
 EXPORT DATA=source;
 SUBMIT;
import statsmodels.formula.api as lm
result = lm.ols(formula='x ~ y + z', data=source).fit()
...
 ENDSUBMIT;
RUN;

Each subsequent use of the PYTHON procedure in a SAS language program can use the same Python
environment. This means any global variables or imported packages used in a PYTHON procedure
invocation are available to all subsequent PYTHON procedure invocations.

Each PYTHON procedure invocation can include multiple blocks of in-line Python language code, and
use a combination of in-line Python language code, and Python programs run using the EXECUTE
statement.

Data type conversion

Describes the correspondence between SAS language formats and pandas data types.

This section describes the correspondence between WPS formats and Python pandas data types.
WPS has many formats that affect the output and display of data. When you write data to a pandas
DataFrame using the Python procedure EXPORT statement, formatted data is converted to an
equivalent and pandas or numpy data type.

Many formats only affect the layout of data output, such as adding currency symbols or comma
separators, and these formats have no effect when writing data.

SAS language unformatted data to Python
Unformatted data is converted to a pandas DataFrame type as follows:

WPS format Python data type Notes

Unformatted number float64

Unformatted string object The maximum object length for
a variable is not known as part
of the dataset metadata.

SAS language formatted data to Python – numbers
The core numeric formats are converted to a pandas DataFrame type as follows:

Reference for language elements
Version 4.1

2423

WPS format Python data type Notes

w.d Float64

BEST. and BESTw. float64

FLOATw.d float64

SAS language formatted data to Python – strings
The core character formats are converted to a pandas DataFrame type as follows:

WPS format Python data type Notes

$w. $CHARw. $Fw. object The maximum object length for a
variable is not known as part of the
dataset metadata.

SAS language formatted data to Python – dates and times
Date, datetime and time formats are converted to a pandas DataFrame type as follows:

WPS format Python data type Notes

DATEw. datetime64[ns] Numpy datetime type.
DDMMYYw. and all variants (such
as DDMMYYBw., MMDDYYSw.,
and YYMMw.)

datetime64[ns] Numpy datetime type.

DTDATEw. and all variants
(such as DTMONYYw. and
DTWKDATXw.

datetime64[ns] Numpy datetime type.

TIMEw., HOURw., HHMMw. and
all similar time formats.

float64

JULIANw. and all similar date
formats.

datetime64[ns] Numpy datetime type.

Python pandas data types to SAS language dataset
SAS language datasets only contain numeric and character data. Formats might be applied to the data
in the dataset to more closely represent the source data from Python. Importing a pandas DataFrame
using the IMPORT statement converts data as follows:

Pandas data type WPS format Notes

Object Character The maximum object length is
calculated before importing.

int64 Numeric
bool Numeric True is converted to 1; False is

converted to zero (0).

Reference for language elements
Version 4.1

2424

Pandas data type WPS format Notes

Float64 Numeric
datetime64[ns] Numeric Formatted as DATETIME19.

Some values in Python cannot be represented in the same manner is a SAS language datasets. The
following table shows how these values are converted:

Pandas data value WPS value Notes

null string ('') ' ' Missing character value.
True 1 Numeric value
False 0 (zero) Numeric value
NaN

Defined with float('nan')
. Missing numeric value

Infinity
Defined with float('inf')
Defined with float('-inf')

. Missing numeric value

Import custom Python modules

How to use your own packages and modules in Python.

To use custom packages, they must be accessible to Python. The paths to locations containing custom
packages are specified by the Python sys.path variable. The sys.path variable constructs a list of
locations to search using the PYTHONHOME and PYTHONPATH environment variables, or the
locations can be specified by modifying the value of the variable during the execution of a program.

• sys.path contains a list of folders searched for packages. The variable is constructed from the
values in PYTHONHOME and PYTHONPATH.

• PYTHONHOME specifies the location of the Python interpreter and standard libraries, including
packages installed into site-packages using a package manager such as PIP. The variable must be
specified for WPS to interact with Python.

• PYTHONPATH specifies a list of folders to search for packages. This list is prepended to the search
list defined in sys.path.

The first item in sys.path is either the directory containing the python program or an empty string,
interpreted by Python as the current directory. When run from WPS, sys.path[0] contains the first
search path specified in either PYTHONPATH or PYTHONHOME. If you program references packages
in the current directory, you must modify sys.path when PROC PYTHON is running. See Modifying the
sys.path variable (page 2425)

Set PYTHONPATH before running WPS
The PYTHONPATH variable can be defined as a system variable, and used by all applications on your
device that run Python.

Reference for language elements
Version 4.1

2425

If you have multiple installations of Python, for example Python 2 and Python 3, setting PYTHONPATH
using a system variable might cause your program to attempt to import the incorrect version of a
package. In these circumstances, you should set the variable as part of the SAS language program you
run in WPS.

Set PYTHONPATH in a SAS language program
The PYTHONPATH can be set in a SAS language program using the SET system option. For example,
to use packages stored in C:\temp\python folder, the following can be added to a program before
the PROC PYTHON statement:

OPTIONS SET = PYTHONPATH 'C:\temp\python';

If PYTHONHOME is specified as C:\python3, the content of the Python sys.path variable is:

['C:\\temp\\python', 'C:\\python3\\python37.zip',
 'C:\\python3\\DLLs', 'C:\\python3\\lib', 'C:\\python3',
 'C:\\python3\\lib\\site-packages']

Modifying the sys.path variable
The Python sys.path variable can be modified programmatically by adding the following to a Python
language program:

import os, sys
sys.path.append(os.getcwd())

If a Python language program run using the EXECUTE statement includes other Python files, add the
above as an in-line program before the executed program to enable WPS to locate the included files:

PROC PYTHON;
 SUBMIT;
import os, sys
sys.path.append(os.getcwd())
 ENDSUBMIT;
 EXECUTE 'programs/dataCollect.py';
RUN;

Reference for language elements
Version 4.1

2426

Using graphics created by Python

Any graphics generated using functionality in Python are captured and can be included in the WPS
session's standard ODS output.

WPS creates a temporary variable, wpsgloc pointing to a temporary folder that is used to store graphics
for inclusion in ODS output. The variable must be added to the name of image file every time you create
an image. This can be done using, for example, the os.path.join() Python function:

PROC PYTHON;
SUBMIT;
import os
import matplotlib.pyplot as plt
...
plt.savefig(os.path.join(wpsgloc, 'my_image.png'))
ENDSUBMIT;
RUN;

The wpsgloc variable cannot be modified in the SAS language program, and is either:

• The WORK location when run in Workbench, for example:

C:\Users\user-id\AppData\Local\Temp\WPS Temporary Data

• The working directory when WPS Analytics in run on the command line.

ODS PDF FILE='scatter_plot.pdf';
PROC PYTHON;
 EXPORT DATA=STATS PYTHON=df;
 SUBMIT;
import os
import matplotlib.pyplot as plt
df.plot(kind='scatter', x='i', y='j')
plt.savefig(os.path.join(wpsgloc, 'scatter.png'))
 ENDSUBMIT;
RUN;
ODS PDF CLOSE;

wpsgloc is a temporary location for graphics images used in Workbench.

When run on the command line, the graphics are created in the current directory. The graphics are
referenced in HTML output and copied into PDF output.

Example
Demonstrates how to use a SAS language dataset in PROC PYTHON to create a scatter plot diagram.

The following example creates a dataset in a SAS language DATA step, and then uses the
EXPORT statement to pass that dataset to the Python environment. The dataset is converted to a
pandas DataFrame as part of the export, and the DataFrame is used to create a scatter plot using
Matplotlib.

Reference for language elements
Version 4.1

2427

An output PDF file destination is created using the SAS language Output Delivery System (ODS).
Adding PDF to the output destinations includes the returned scatter plot image file in the PDF output.
The PDF is saved and the output can be viewed in a PDF viewer.

This example requires the following Python packages:

• SciPy

• Matplotlib

ODS PDF FILE='scatter_plot.pdf';
DATA stats (drop = count);
 DO count=1 TO 10;
 DO numCount=1 TO 10;
 numVal = (numCount*numCount)+(count*count);
 OUTPUT;
 END;
 END;
RUN;

PROC PYTHON;
 EXPORT DATA=STATS PYTHON=df;
 SUBMIT;
import os
import matplotlib.pyplot as plt
df.plot(kind='scatter', x='numCount', y='numVal')
plt.savefig(os.path.join(wpsgloc, 'scatter.png'))
 ENDSUBMIT;
RUN;
ODS PDF CLOSE;

This creates the following scatter plot in the ODS PDF output:

Reference for language elements
Version 4.1

2428

Python procedure reference
Describes the syntax and options for PROC PYTHON and its contained statements.

PROC PYTHON ..2429
Invokes the Python environment that enables the execution of in-line or external Python language
programs.

EXECUTE ..2430
Runs a Python program stored in a separate file.

EXPORT ..2432
Converts a SAS language dataset to a pandas DataFrame.

IMPORT ...2433
Enables a pandas DataFrame to be converted to a SAS language dataset and referenced in a
SAS language program.

SUBMIT ... 2434
Specifies the start of an in-line Python language program.

Reference for language elements
Version 4.1

2429

ENDSUBMIT ... 2434
Specifies the end of an in-line Python language program.

PROC PYTHON

Invokes the Python environment that enables the execution of in-line or external Python language
programs.

PROC PYTHON

opt ions

;

Datasets created in WPS can be made available to the Python program using the EXPORT statement,
and a dataset imported from the Python program into WPS using the IMPORT statement.

A Python program can be either written in-line in the PYTHON procedure, or run from a separate file:

• To run an in-line Python program, use the SUBMIT and ENDSUBMIT statements.
• To run a Python program stored in an external file use the EXECUTE statement.

The Python environment is exited using a RUN statement.

When the Python environment is invoked, the pandas and numpy packages are automatically
loaded. These packages can be used either by quoting the full package name in code, or by using the
import ... as ... statement to alias the package name.

Options
The following options are available with the PROC R statement.

KEEP
Specifies that the current Python environment is not terminated when the procedure exits.

KEEP

When specified, the current Python environment is kept active when the current procedure exits,
and the environment is used in the next invocation of the Python procedure in the same program.
If that invocation does not specify KEEP, the environment is terminated when the procedure exits.

The default behaviour is to terminate the Python environment at the end of the procedure.
Specifying KEEP keeps the current Python environment, including any modules loaded during
the execution of a Python program, to be used in the next invocation of PROC PYTHON.

You can specify the PYTHONKEEP system option to use the same Python environment for the
duration of the execution of the SAS language program.

LIB
Specifies the default library location for the procedure step. The default location is the WORK
library.

Reference for language elements
Version 4.1

2430

LIB = l ibrary- reference

The LIB location is used when libname is not specified as part of the path for the DATA option of
either the EXPORT or IMPORT statements.

TERMINATE
Specifies that the Python environment is terminated when the procedure exits.

TERMINATE

TERM

Specifying TERMINATE stops the current Python environment even if the PYTHONKEEP system
option has been specified. A subsequent invocation of PROC PYTHON in the same program only
has the default pandas and numpy packages loaded.

Example
The following example shows how to invoke the PYTHON procedure to print hello world to ODS
output.

PROC PYTHON;
SUBMIT;
print ('Hello World')
ENDSUBMIT;
RUN;

EXECUTE

Runs a Python program stored in a separate file.

EXECUTE " f ilename "

cmd- argument

;

The EXECUTE statement is an alternative to using the SUBMIT statement. It enables Python code
placed in a separate file to be run WPS Analytics.

Execute options
The following options are available with the EXECUTE statement.

filename
A string, in quotation marks, containing the path of the Python program file. filename can be
either an absolute pathname or a relative pathname.

Reference for language elements
Version 4.1

2431

In Workbench, the path for relative file pathnames is the Workspace. For example, to run a
file named myProgram.py from a project named python, the relative path is /python/
myProgram.py.

cmd-argument
Specifies a command line argument passed to the Python program. Arguments are accessed in
the programing from sys.argv.

All command line arguments are passed to the Python program as strings. Numeric arguments
must be in quotation marks, and the Python program must convert the arguments to the required
numeric type.

Basic example
In this example, a Python program stored in an external file is executed in the PYTHON procedure. The
file is referenced using the absolute path:

PROC PYTHON;
 EXECUTE 'C:\temp\printDS.py';
RUN;

Example – pass an argument to a Python program
In this example, an external Python program multiple.py is executed that returns the square of a
specified value. The value is specified in a variable.

import sys

def multiply (value):
 return value*value

print(multiply(int(sys.argv[0])))

multiple.py is executed from the PYTHON procedure in a SAS language program, and the required
value to multiply is passed to the Python program as an argument to the EXECUTE statement. The
numeric argument 6 is passed as a string. The Python program uses the built-in int() function to
return an integer before calculating the square.

PROC PYTHON;
 EXECUTE 'C:/temp/multiple.py' '6';
RUN;

This produces the following in ODS output:

36

Reference for language elements
Version 4.1

2432

EXPORT

Converts a SAS language dataset to a pandas DataFrame.

EXPORT

SEND

DATA =

l ibname .

dataset

PYTHON = dataframe- name

;

Dataset preparation should be completed before exporting the data to Python. This enables you to use
the dataset processing capability of the SAS language to create an export dataset containing only the
required data for the Python language program.

Export options
The following options are available with the EXPORT statement.

DATA
Specifies the dataset location and name of the SAS language dataset to be converted.
The library location can be specified using either libname in the DATA option, or the LIB option of
the PROC PYTHON statement.

• If libname is specified, that location is always used.
• If the LIB option of the PROC PYTHON statement is specified and libname is not specified, the

location in the LIB option is used.
• If neither libname nor the LIB option on the PROC PYTHON statement are specified, the WORK

location is used.

PYTHON
Specifies the name of the pandas DataFrame as used in the Python language program.

The pandas DataFrame name in Python language code is case sensitive, and the
dataframe-name specified must match the case used of the Python variable name.

If this option is not specified, the dataframe-name default is the dataset name specified in the
DATA option. If you use the default dataset name in an in-line Python language program, the
variable name must match the case used in the DATA option.

Reference for language elements
Version 4.1

2433

Example – export a SAS language dataset to a pandas DataFrame
The following example creates a dataset in a SAS language DATA step. The dataset is then exported to
a pandas DataFrame and the column types printed out.

DATA TESTDATA;
INFILE CARDS DLM='#';
INPUT num char $;
CARDS;
1 # Hello
2 # World
;
RUN;

PROC PYTHON;
EXPORT DATA=TESTDATA PYTHON=dframe;
SUBMIT;
print (dframe)
ENDSUBMIT;
RUN;

Which writes the following to ODS output:

 num char
0 1.0 Hello
1 2.0 World

IMPORT

Enables a pandas DataFrame to be converted to a SAS language dataset and referenced in a SAS
language program.

IMPORT

RECV

PYTHON = dataframe- name

DATA =

l ibname .

dataset ;

Import options
The following options are available with the IMPORT statement.

DATA
Specifies the dataset location and name as used in the WPS Analytics SAS language
environment.
The library location can be specified using either libname in the DATA option, or the LIB option of
the PROC PYTHON statement.

• If libname is specified, that location is always used.

Reference for language elements
Version 4.1

2434

• If the LIB option of the PROC PYTHON statement is specified and libname is not specified, the
location in the LIB option is used.

• If neither libname nor the LIB option on the PROC PYTHON statement are specified, the WORK
location is used.

PYTHON
Specifies the name of the pandas DataFrame as used in the Python environment. Must be
specified.
dataframe-name is case sensitive and must match the case used for the imported pandas
DataFrame in the Python program.

SUBMIT

Specifies the start of an in-line Python language program.

SUBMIT ;

An in-line program is defined as part of the PYTHON procedure in a SAS language program. The
SUBMIT statement marks the start of the program, and the ENDSUBMIT statement marks the end.

The Python language program must start on a new line after the SUBMIT statement, and the
ENDSUBMIT statement must appear at the beginning of a line on its own. The first line of the Python
program code must not start with any white space and any subsequent statements must follow the
normal Python requirements for indentation, for example:

PROC PYTHON;
 SUBMIT;
fruits = ['apple', 'banana', 'cherry', 'damson', 'elderberry', 'fig']
for fruit in fruits:
 print(fruit)
 ENDSUBMIT;
RUN;

Multiple in-line Python language programs can exist in a single PYTHON procedure. Each Python
language program is executed as it is encountered. Variables defined in one in-line language program
can be used in subsequent in-line programs in the same Python procedure.

ENDSUBMIT

Specifies the end of an in-line Python language program.

ENDSUBMIT ;

Reference for language elements
Version 4.1

2435

The ENDSUBMIT statement must be entered at the start of a new line after the Python language
program.

R Procedure
The R procedure enables WPS programs written in the SAS language to include code written in the R
language.

Combing the R language and the SAS language enables the bulk of a data processing and analytics
solution to be written in the industrial strength and high-performing SAS language, while also exploiting
features present in the R language.

The following image shows how a SAS language program using the R procedure is processed.

Introduction ..2436
The R procedure enables SAS language programs to include code written in the R language.

Setup and configuration ..2436
Setting the R environment for WPS.

Using R with WPS .. 2438
Using R in a SAS language program enables you to use features that might not be available in
WPS.

Example ...2442
Demonstrates how to use a SAS language dataset in the R procedure to create a scatter plot
diagram.

Reference for language elements
Version 4.1

2436

R procedure reference ..2443
Describes the syntax and options for PROC R and its contained statements.

Introduction
The R procedure enables SAS language programs to include code written in the R language.

By combining R and the SAS language you can:

• Use the SAS language to bulk process and prepare data, and pass the processed data to R.
• Use R packages you have previously developed for data analysis.
• Use R data analysis packages or solutions that may not be available in the SAS language.

We recommend that programs are mainly coded in the language of SAS, using R where specialist
statistics are required.

Data is passed between the SAS language and R language environments using the EXPORT statement.
Once data has been transferred, that data is made available as a data.frame object to an R program.
On completion of the R program data can, if required, be returned to the SAS language environment
using the IMPORT statement.

Setup and configuration
Setting the R environment for WPS.

When using R with WPS:

• The 32-bit R interpreter is required for the 32-bit version of WPS, and the 64-bit R interpreter is
required for the 64-bit version of WPS.

• You do not have to install extra modules, and there are no special licensing requirements to use the
R procedure.

The R procedure can be used with R version 2.15.x and later, and is currently supported on Microsoft
Windows, Linux-based systems, and macOS.

WPS software is not shipped with a copy of R. To use the R procedure, you need a separate installation
of R.

Following R installation, set the R_HOME environment variable to point to the folder containing either
libr.dll on Windows platforms or libr.so on UNIX or Linux platforms.

Reference for language elements
Version 4.1

2437

Installing the R interpreter

Windows platforms
The Windows installer package can be downloaded from http://www.r-project.org/ and includes both
32-bit and 64-bit versions of R. The same installer can be used for both 32-bit and 64-bit versions of the
WPS software.

By default, the R installation saves the installation location in the Windows registry which is where WPS
looks to identify the currently installed version. This is the version of R most recently installed, and no
special configuration of WPS is required for WPS to locate it.

UNIX or Linux platforms
WPS requires the shared R library libr.so to interact with the R interpreter. This library is not
included with the R binary distribution for UNIX platforms by default. On UNIX or Linux platforms, you
need to either build R from source to include the required shared library, or install R using your systems
package management system.

To build from source code:

1. You require a minimal set of pre-installed libraries before you can build R from source code. These
are equivalent to the build-essentialspackage plus a JDK on Ubuntu.

2. Download the R source code from http://www.r-project.org/ and follow the instructions included
with the download. Ensure you use the -re-establishment option when running configure to
build the libr.so shared library, for example:

./configure --enable-R-shlib --prefix=$HOME/R

For more information, see the R documentation at http://www.r-project.org/ .

macOS platforms
The binary distribution of R can be installed directly from the R project website.

To use R with WPS, the R_HOME variable must to be set to point to the installation directory
containing the libr.so shared library. The default setting is: /Library/Frameworks/Framework/
Resources. Because of the way applications are launched on macOS, it is not possible to set
R_HOME in a shell profile script.

To use a specific version of R, you can modify the setting appropriately, for example: /Library/
Frameworks/Framework/Versions/3.0/Resources

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/

Reference for language elements
Version 4.1

2438

Setting the R_HOME environment variable

To locate the installed version of R, the R_HOME environment variable must be set.

On Windows platforms, the R_HOME environment variable must point to the folder containing the
libr.dll file. On UNIX or Linux platforms, the R_HOME environment variable must point to the folder
containing the libr.so file.

If you are running WPS with R on a Unix or Linux platform, set the R_HOME variable to point to the
folder containing libr.so.

If you have multiple installations of R, set R_HOME variable as part of the SAS language program you
run in WPS.

Set R_HOME before running WPS
The R_HOME variable can be defined as a system variable, and used by all applications on your device
that run R. It is not necessary to set the variable on the Windows platform if the default R installation
location is used.

Set R_HOME in a SAS language program
The R_HOME variable can be set in a SAS language program using the SET system option, for
example:

OPTIONS SET = R_HOME 'C:\Program Files\R\R-3.5.0';

This will set the R_HOME environment variable for duration of the execution of the SAS language
program.

Using R with WPS
Using R in a SAS language program enables you to use features that might not be available in WPS.

Installed R packages can be imported and used within the in-line R code using the library statement, for
example:

PROC R;
 SUBMIT;
 library(datasets)
 data(iris)
 summary(iris)
 plot(iris)
 ENDSUBMIT;
RUN;

Each subsequent use of the R procedure in a SAS language program can use the same R
environment. This means any global variables or imported packages used in an R procedure invocation
are available to all subsequent R procedure invocations.

Reference for language elements
Version 4.1

2439

Each R procedure invocation can include multiple blocks of in-line R language code, and use a
combination of in-line R language code, and R programs run using the EXECUTE statement.

Data type conversion

Describes the correspondence between SAS language formats and R data types.

When you write data to a data.frame using the R procedure EXPORT statement, formatted data is
converted to an equivalent R data type. WPS has many formats that affect the output and display of
data. Formats that only affect the layout of data output, such as adding currency symbols or comma
separators, have no effect when writing data.

A data.frame is imported using the R procedure IMPORT statement. Any object that can be coerced
into a data.frame using the as.data.frame R function is imported into the WPS dataset.

Logical values

Logical values are converted into numeric values in the WPS dataset. The values of vectors of
type logical are converted as follows:

R Value WPS Value

TRUE 1

FALSE 0

Integer values
The R language value NA, which is represented as the minimum integer value (-2147483648) is
converted to a SAS language missing value.

Real values
There are three special real numeric values in the R language:

• NA (Not Available). Represents an absent value.
• NaN (Not a Number). Represents an undefined value, or a value that cannot be displayed, for

example the result of zero divided by zero.
• Inf (Infinity). Represent positive and negative infinite values. For example the result of trying

to divide any value by zero.

These values are converted from the R language representation to the SAS language
representation as follows:

R Value WPS Value

NA . (missing value)

NaN . (missing value)

+Inf .I

-Inf .M

Reference for language elements
Version 4.1

2440

Date values
Integer or real variables in the R language that have a Date class are formatted as DATE9.
when imported into WPS.

R language Date values represent a count of days from the Unix epoch of 1 January 1970 UTC.
Imported variables are adjusted to take account of the SAS language epoch of 1 January 1960.

Datetime values
Real variables in the R language that have a POSIXct class are formatted as DATETIME19.
when imported into WPS.

R language POSIXct values represent a count of seconds from the Unix epoch of 1 January
1970 UTC. Imported variables are adjusted to take account of the SAS language epoch of
1 January 1960 and also use the value specified in the GMTOFFSET option of the PROC R
statement.

Real variables in the R language that have a times class are formatted as TIME8. when
imported into WPS.

Character values
On import, WPS scans a character variable and assigns a format that is the length of the longest
string Individual values in a character variable that are NA (Not Available) are converted to the
SAS language missing character value ('').

Factor values
An R language factor is a form of integer variable, where the values index a list of categorical
variables (the list is known as a level in the R language). When imported into WPS these are
converted into character variables in the dataset. The variable is given a length equal to the
longest string in the levels list.

Using R graphics

When launching an R session, WPS configures R so that any graphics generated with the default
graphics device are captured and included in the WPS session's standard ODS HTML output.

The following program extends the previous example to include simple linear regression analysis and
graphics.

Reference for language elements
Version 4.1

2441

1. Create a new program file, paste the following code, and save the file:

data source;
 do x=1 to 10;
 y=ranuni(-1);
 output;
 end;

PROC R;
 export data=source;
 submit;
 model <- lm(source$y ~ source$x)
 print(model)
 par(mfrow=c(2, 2))
 plot(model)
endsubmit;
run;

2. Run the program by clicking on the toolbar Run icon, and examine the HTML output.

The output includes the printed R results together with a single graphic generated within the R
session and routed into the WPS output.

Call:
lm(formula = source$y ~ source$x)
Coefficients:
(Intercept) source$x
 0.5344 0.0241

Using additional R packages

To use additional packages that are not included in your R installation, we recommend you install and
check the basic operation of these packages in the interactive R environment. Installed packages can
be used in an R program using the library() function.

An R environment launched by WPS inherits the environment variables from the WPS process. If
third-party software is installed for use in R that requires, for example, additional entries in the PATH
environment variable, Workbench must be restarted to register the changes.

SAS language macro processing

Using SAS language macros with in-line R programs.

When an in-line R program is run, the code between the SUBMIT and ENDSUBMIT statements is
passed verbatim to the R interpreter. Macro processing is, therefore, suspended between the SUBMIT
and ENDSUBMIT statements because:

• The R language uses the & and % characters as part of its syntax. Attempting to macro process
the R source code might result in valid R syntax being misinterpreted as SAS language macro
statements.

Reference for language elements
Version 4.1

2442

• The R language allows line-end style comments. The contents might contain, for example,
unmatched apostrophes; tokenising of the R syntax using the regular SAS language parsing rules
could not then occur.

Example
Demonstrates how to use a SAS language dataset in the R procedure to create a scatter plot diagram.

The following example creates a dataset in a SAS language DATA step, and then uses the EXPORT
statement to pass that dataset to the R environment. The dataset is converted to a data.frame as
part of the export, and the data.frame is used to create plots in a grid two plots wide and two plots deep.

An output PDF file destination is created using the SAS language Output Delivery System (ODS).
Adding PDF to the output destinations includes the printed data.fram content and returned plot image
file in the PDF output. The PDF is saved and the output can be viewed in a PDF viewer.

ODS PDF FILE='scatter_plot.pdf';
DATA SOURCE;
 DO X=1 TO 10;
 Y=RANUNI(-1);
 OUTPUT;
 END;
RUN;

PROC R;
 EXPORT DATA=source;
 SUBMIT;
 str(source)
 print(source)
 model <- lm(source$Y ~ source$X)
 print(model)
 par(mfrow=c(2, 2))
 plot(model)
 x <- (1:10)
 ENDSUBMIT;
 IMPORT R=x;
RUN;
ODS PDF CLOSE;

This creates the following plot in the ODS PDF output:

Reference for language elements
Version 4.1

2443

R procedure reference
Describes the syntax and options for PROC R and its contained statements.

PROC R .. 2444
Invokes the R environment that enables the execution of in-line or external R language programs.

ASSIGN ... 2446
The ASSIGN statement can be used to assign SAS language variable values to an R vector.

ENDSUBMIT ... 2447
Specifies the end of an in-line R language program.

EXECUTE ..2448
Runs an R program stored in a separate file.

EXPORT ..2449
Enables a SAS language dataset to be converted to an R data.frame and referenced in an R
program.

Reference for language elements
Version 4.1

2444

IMPORT ...2450
Enables an R language data.frame to be converted to a SAS language dataset and referenced
in a SAS language program.

LOAD ...2451
The LOAD statement deserialises an R object stored in a SAS language catalog.

SAVE ... 2452
Enables R objects to be serialised and stored in aSAS language catalog.

SUBMIT ... 2454
Specifies the start of an in-line R language program.

PROC R

Invokes the R environment that enables the execution of in-line or external R language programs.

PROC R

R options

;

Datasets created in WPS can be made available to the R program using the EXPORT statement, and a
dataset imported from the R program into WPS using the IMPORT statement.

An R program can be either written in-line in the R procedure, or run from a separate file:

• To run an in-line R program, use the SUBMIT and ENDSUBMIT statements.
• To run an R program stored in an external file use the EXECUTE statement.

The R environment is exited using a RUN statement.

Options
The following options are available.

GMTOFFSET
Specifies the offset to UTC applied when moving datasets between the SAS language and R
language environments to take account the current time zone.

GMTOFFSET = "+ / - HH:MM"

Date and time values in the R language are represented in UTC (Coordinated Universal Time)
with an associated time zone. In the SAS language date and time values have no implied
time zone. The specified GMTOFFSET is applied when using the ASSIGN, EXPORT, or IMPORT
statements.

KEEP
Specifies that the current R environment is not terminated when the procedure exits.

Reference for language elements
Version 4.1

2445

KEEP

When specified, the current R environment is kept active when the current procedure exits, and
the environment is used in the next invocation of the R procedure in the same program. If that
invocation does not specify KEEP, the environment is terminated when the procedure exits.

The default behaviour is to terminate the R environment at the end of the procedure. Specifying
KEEP keeps the current R environment, including any modules loaded during the execution of a
R program, to be used in the next invocation of PROC R.

You can specify the RKEEP system option to use the same R environment for the duration of the
execution of the SAS language program.

LIB
Specifies the default library location for the procedure step. The default location is the WORK
library.

LIB = default- library

The LIB location is used:

• When exporting a dataset, and libname is not specified as part of the path for the DATA option
of the EXPORT statement.

• When importing a dataset, and libname is not specified as part of the path for the DATA option
of the IMPORT statement.

• When saving an R object to a SAS language catalog, and libname is not specified as part of
the path for the CATALOG option of the SAVE statement.

• When loading an R object to a SAS language catalog, and libname is not specified as part of
the path for the CATALOG option of the LOAD statement.

TERMINATE
Specifies that the R environment is terminated when the procedure exits.

TERMINATE

TERM

Specifying TERMINATE stops the current R environment even if the RKEEP system option has
been specified.

TIMESASCHRON
Specifies whether time values are represented in R using the chron class.

TIMESASCHRON

By default, time values are stored in the R POSIXct type, representing a count of seconds from
midnight. When TIMESASCHRON is specified, time values are stored in R as chron.times
types.

Reference for language elements
Version 4.1

2446

To use the TIMESASCHRON option, you must include the chron package in your R environment
using the R library() statement.

Example
The following example shows how to use PROC R to find the version of the R interpreter used with
WPS. Version information is written to ODS output.

PROC R;
 SUBMIT;
 print(R.version)
 ENDSUBMIT;
RUN;

ASSIGN

The ASSIGN statement can be used to assign SAS language variable values to an R vector.

ASSIGN robject- name = variable- value

(

,

variable- value)

;

The ASSIGN statement is used to pass parameters to an R program, and the specified robject-name
can be used in an in-line program or a program run using the EXECUTE command. robject-name is case
sensitive and, unlike SAS language variables, must be referred to in the R program using the same
case as in the ASSIGN definition.

Variables can be generated using SAS language macro variable expansion or execution. This enables
you to preprocess variables using the SAS language and pass the result to an R program.

robject-name
Specifies one or more variable values to pass to an R program. The robject-name specifies the
variable name by which the variable-value is referenced in the R program.

The robject-name can be defined using a SAS language name literal ('robject.name'N) to
create an R object that would not be valid in the SAS language. For example, to assign a value
Peter to an R object employee.firstname, the ASSIGN statement would be:

ASSIGN 'employee.firstname'N = 'Peter';

Multiple variable-values can be assigned to a single R language object. In this case, all values
must be of the same type and in a comma-separated list in parenthesis.

Reference for language elements
Version 4.1

2447

Passing multiple variables to R
In this example, multiple vector variables are passed from a SAS language program to an R program
that converts the vectors into a data frame.

PROC R;
 ASSIGN Nu = (1, 2, 3, 4, 5);
 ASSIGN Ch = ('Cyan', 'Magenta', 'Yellow', 'Black', 'Green');
 SUBMIT;
 DFrame <- data.frame(Nu, Ch)
 print (DFrame)
 ENDSUBMIT;
RUN;

This produces the following output:

 Nu Ch
 1 Cyan
 2 Magenta
 3 Yellow
 4 Black
 5 Green

Assigning a SAS language macro variable to an R object
In this example, the SAS language macro variable PARM is passed to an R program to determine the
sample size in a randomly-generated sample.

%LET PARM=15;
PROC R;
 ASSIGN parm=&PARM;
 SUBMIT;
 x<-sample(1:3, parm, replace=TRUE)
 print(x);
 ENDSUBMIT;
RUN;

This produces the following output:

[1] 1 1 3 3 3 2 1 1 3 1 1 3 3 1 1

ENDSUBMIT

Specifies the end of an in-line R language program.

ENDSUBMIT ;

The ENDSUBMIT statement must be entered at the start of a new line after the R language program.

Reference for language elements
Version 4.1

2448

EXECUTE

Runs an R program stored in a separate file.

EXECUTE " f ilename "

cmd- argument

;

The EXECUTE statement is an alternative to using the SUBMIT statement. It allows the R code to be
placed in a separate file and enables you to run the same program in both WPS and an interactive R
environment.

filename

A quoted string containing the path of the R program file. filename can be either an absolute path
or a relative path.

When using Workbench to run an R language program, if a relative path is specified the root
of the path is the Workspace. For example, to run a file named math.r from a project named
calculate, the relative path is calculate/math.r.

cmd-argument
Specifies a command line argument passed to the R program.

An example of executing an R program stored in a file
In this example, an R program stored in an external file model.r is executed in the R procedure. The
contents of model.r source file:

 model <- lm(source$Y ~ source$X)
 print(model)
 par(mfrow=c(2, 2))
 plot(model)

The following program creates a dataset. The dataset is passed to the R program using the EXPORT
statement before the program is run using the model.r file:

DATA SOURCE;
 DO X=1 TO 10;
 Y=RANUNI(-1);
 OUTPUT;
 END;

PROC R;
 EXPORT DATA=source;
 EXECUTE "model.r";
RUN;

Reference for language elements
Version 4.1

2449

EXPORT

Enables a SAS language dataset to be converted to an R data.frame and referenced in an R
program.

EXPORT EXPORT option ;

Export options
The following options are available with the EXPORT statement.

DATA
Specifies the name of the WPS dataset.

DATA =

l ibname .

dataset

The library location can be specified using either libname in the DATA option, or the LIB option of
the PROC R statement:

• If libname is specified, that location is always used.
• If the LIB option of the PROC R statement is specified and libname is not specified, the

location in the LIB option is used.
• If neither libname or the LIB option on the PROC R statement are specified, the WORK location

is used.

R
Specifies the name of the data.frame as used in the R environment.

R = r- dataframe

If this option is not specified, the r-dataframe default is the dataset name specified in the DATA
option. If you use the default dataset name in an in-line R language program, the variable name
must match the case used in the DATA option.

Reference for language elements
Version 4.1

2450

An example of exporting data from WPS to R
The following example creates a dataset containing two numeric columns. The dataset is exported to
the R environment and the content of the data.frame printed to ODS output.

DATA SOURCE;
 DO X=1 TO 10;
 Y=RANUNI(-1);
 OUTPUT;
 END;

PROC R;
 EXPORT DATA=SOURCE;
 SUBMIT;
 str(source)
 ENDSUBMIT;
RUN;

This produces the following output:

'data.frame': 10 obs. of 2 variables:
 $ x: num 1 2 3 4 5 6 7 8 9 10
 $ y: num 0.371 0.924 0.59 0.434 0.962 ...

IMPORT

Enables an R language data.frame to be converted to a SAS language dataset and referenced in a
SAS language program.

IMPORT IMPORT option ;

Import options
The following options are available with the IMPORT statement.

DATA
Specifies the dataset location and name as used in the WPS Analytics SAS language
environment.

DATA =

l ibname .

dataset

The library location can be specified using either libname in the DATA option, or the LIB option of
the PROC R statement:

• If libname is specified, that location is always used.
• If the LIB option of the PROC R statement is specified and libname is not specified, the

location in the LIB option is used.

Reference for language elements
Version 4.1

2451

• If neither libname nor the LIB option on the PROC R statement are specified, the WORK
location is used.

If this option is not specified, the dataset default is the r-dataframe name specified in the R option.

R
Specifies the name of the data.frame as used in the R environment. Must be specified

R = r- dataframe

r-dataframe is case sensitive and must match the case used for the imported data.frame in the
R program.

LOAD

The LOAD statement deserialises an R object stored in a SAS language catalog.

LOAD LOAD option ;

The SAVE and LOAD and statements enable an R object to be serialised and stored in a SAS language
catalog and later deserialised in a WPS session. The SAVE statement serialises an R object and stores
it in an entry in a catalog. The LOAD statement deserialises an R object from a catalog.

Load options
The following options are available with the LOAD statement.

CATALOG
Specifies the catalog from which the stored R object is loaded.

CATALOG

CAT

C

=

l ibname .

catalog . entry

A SAS language catalog is defined using:

libname
Specifies the name of the library in which the catalog is stored. The library location can be
specified using either libname or the LIB option of the PROC R statement.

• If libname is specified, that location is always used.
• If the LIB option of the PROC R statement is specified and libname is not specified, the

location in the LIB option is used.
• If neither libname nor the LIB option on the PROC R statement are specified, the WORK

location is used.

Reference for language elements
Version 4.1

2452

catalog
Specifies the name of the catalog.

entry
Specifies the name of the R object in the catalog.

R
Specifies the variable name for the loaded R object as used in the R language program.

R = robject- name

Because R is case-sensitive, robject-name must match the case used of the R variable name.
The name can be specified using name literal syntax (for example "r.object.name"N) if the
name of the R object does not follow the normal rules for identifiers in the SAS language.

An example of using the LOAD statement
proc r;
 load cat=catalog.entry r='target.object'n;
run;

SAVE

Enables R objects to be serialised and stored in aSAS language catalog.

SAVE SAVE option ;

The SAVE and LOAD and statements enable an R object to be serialised and stored a SAS language
catalog and later deserialised in a WPS session. The SAVE statement serialises an R object and stores
it in an entry in a catalog. The LOAD statement deserialises an R object from a catalog.

Save options
The following options are available with the SAVE statement.

CATALOG
Species the location in which the R object will be saved.

CATALOG

CAT

C

=

l ibname .

catalog . entry

The library location can be specified using either libname or the LIB option of the PROC R
statement:

Reference for language elements
Version 4.1

2453

libname
Specifies the name of the library in which the catalog is stored. The library location can be
specified using either libname or the LIB option of the PROC R statement.

• If libname is specified, that location is always used.
• If the LIB option of the PROC R statement is specified and libname is not specified, the

location in the LIB option is used.
• If neither libname nor the LIB option on the PROC R statement are specified, the WORK

location is used.

catalog
Specifies the name of the catalog.

entry
Specifies the name of the R object in the catalog.

R
Specifies the name of the R object to save to the catalog. Must be specified.

R = robject- name

Because R is case-sensitive, the case of robject-name must match the object name
in the R program. The name can be specified using name literal syntax (for example
"r.object.name"N) if the name of the R object does not follow the normal rules for identifiers
in the SAS language.

DESCRIPTION
Specifies a description string saved with the catalog entry.

DESCRIPTION = "Catalog entry descript ion"

The description is displayed in the output from the PROC CATALOG statement.

The catalog entry will have a type of ROBJECT.

An example of saving an R object to a WPS catalog
proc r;
 save cat=catalog.entry r=’source.object’n;
run;

Reference for language elements
Version 4.1

2454

SUBMIT

Specifies the start of an in-line R language program.

SUBMIT

SUBMIT option

;

An in-line R language program is defined as part of the R procedure in a SAS language program. The
SUBMIT statement marks the start of the program, and the ENDSUBMIT statement marks the end.

An R language program must start on a new line after the SUBMIT statement, and the ENDSUBMIT
statement must appear at the beginning of a line on its own.

Multiple in-line R language programs can exist in a single R procedure environment. Each R language
program is executed as it is encountered. Variables defined in one R language program can be used in
subsequent in-line programs in the same R procedure environment.

SUBMIT options
The following option can be used with the SUBMIT statement.

r-symbol
Enables the replacement of a symbol in the R program with a string.

r- symbol = 'subst itut ion- value'

Before being passed to the R environment, an in-line R program is pre-processed to replace any
r-symbol defined in the program with the content of the substitution-value. If the substitution-value
is a string, it must be surrounded by quotation marks. If substitution-value is a SAS language
macro variable, it must be prepended by an ampersand (&), but quotation marks are not
required.

The r-symbol name is case sensitive and must be referred to in the R program using the same
case as in the SUBMIT statement definition.

PROC R;
SUBMIT greeting = 'Hello World';
r.welcome <- "&greeting."
print (r.welcome)
ENDSUBMIT;
RUN;

The syntax for replacing a defined r-symbol is the same as that used for SAS language macro
variable substitution, the name of the defined r-symbol is prepended by an ampersand (&) in the
inline code.

Reference for language elements
Version 4.1

2455

SUBMIT statement – basic example
The following example shows how to incorporate an R-language program into a SAS language
program:

PROC R;
SUBMIT;
x <- (1:10)
print(x)
ENDSUBMIT;
RUN;

Which outputs the following:

 [1] 1 2 3 4 5 6 7 8 9 10

SUBMIT statement – using a macro variable in an R program
The following example shows how to pass a variable from a SAS language program to an R language
program. The variable welcome is defined using the SAS language %LET macro. The specified macro
variable is assigned to the r-symbol of the SUBMIT statement. The r-symbol is then referenced in the
inline R language program:

%LET welcome = 'Hello World';
PROC R;
SUBMIT greeting = &welcome;
r.welcome <- "&greeting"
print (toupper(r.welcome))
ENDSUBMIT;
RUN;

Which outputs the following:

[1] "HELLO WORLD"

RANK procedure

Supported statements
• PROC RANK (page 2456)
• BY (page 2457)
• RANKS (page 2457)
• VAR (page 2457)
• WHERE (page 2457)

Reference for language elements
Version 4.1

2456

PROC RANK
Assigns a rank that replaces the original value to every observation of one or more specified variables
in a dataset.

PROC RANK

option

;

option

DATA = dataset
i

DESCENDING

DESC

FRACTION

F

GROUPS = group count

NORMAL = BLOM

TUKEY

VW

NPLUS1

FN1

N1

OUT = dataset
i i

PERCENT

P

SAVAGE

TIES = DENSE

HIGH

LOW

MEAN

i See Input dataset (page 16).

ii See Output dataset (page 16).

Reference for language elements
Version 4.1

2457

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

RANKS
Specifies new variables which contain the ranks of the variables in the VAR statement.

RANKS variable- name ;

VAR
Specifies the variables to be ranked.

VAR variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

RELEASE procedure

Supported statements
• PROC RELEASE (page 2458)

Reference for language elements
Version 4.1

2458

PROC RELEASE
Releases unused space in a Z/OS dataset, if possible.

PROC RELEASE

options

;

Options
BOUNDARY

BOUNDARY

TYPE

= ALLOC

CYL

CYLINDER

CYLINDERS

CYLS

DATASET

DD

DSCB

JCL

TRACK

TRACKS

TRK

ALLOC

CYL

CYLINDER

CYLINDERS

CYLS

DATASET

DD

DSCB

JCL

TRACK

TRACKS

Reference for language elements
Version 4.1

2459

TRK

DDNAME

DDNAME

DD

= DDname

TRACE

TRACE

Type: Keyword

REPORT procedure

Supported statements
• PROC REPORT (page 2459)
• BREAK (page 2461)
• BY (page 2462)
• COLUMN (page 2462)
• COMPUTE (page 2464)
• DEFINE (page 2464)
• FREQ (page 2466)
• RBREAK (page 2467)
• WEIGHT (page 2467)

PROC REPORT
Produces statistical reports with options on formatting and outputting the dataset.

PROC REPORT

option

;

Reference for language elements
Version 4.1

2460

option

BOX

CENTER

COLWIDTH = column width

COMPLETECOLS

COMPLETEROWS

DATA = data- set
i

EXCLNPWGT

FORMCHAR

(character posit ions)

= "formatt ing characters"

HEADLINE

HEADSKIP

LIST

LS = l ine size

MISSING

NAMED

NOCENTER

NOCOMPLETECOLS

NOCOMPLETEROWS

NOEXEC

NOHEADER

NOTHREADS

NOWINDOWS

NOWD

OUT = output- data- set- with- options
i i

OUTREPT = catalog- entry

PS = page size

QMARKERS = number

QMETHOD = os

p2

hist

QNTLDEF = number

REPORT = catalog- entry

REPLACE

SHOWALL

SPACING = number

SPLIT = " character "

THREADS

VARDEF = DF

N

WDF

WEIGHT

WGT

style

Reference for language elements
Version 4.1

2461

i See Input dataset (page 16).

ii See Output dataset (page 16).

style

STYLE

(CALLDEF

COLUMN

HEADER

LINES

REPORT

SUMMARY

)

=

element- name

{

style- attribute- name = valid- value

"valid-string"

}

BREAK
Summarises information to be displayed before or after specific data has been reported.

BREAK

BEFORE

AFTER

variable name

/ DOL

DUL

OL

PAGE

SKIP

SUMMARIZE

SUPPRESS

STYLE

UL

;

Reference for language elements
Version 4.1

2462

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

COLUMN
Determines the columns and headings in a report.

COLUMN column- item ;

column-item
,

report- item

report-item

variable- name

statistic = alias- name

(

header- tex t

column- item)

Reference for language elements
Version 4.1

2463

statistic

CSS

CV

MAX

MEAN

MEDIAN

MIN

MODE

N

NMISS

P1

P5

P10

P25

P50

P75

P90

P95

P99

PROBT

PRT

Q1

Q3

QRANGE

RANGE

STD

STDDEV

STDERR

SUM

SUMWGT

T

USS

VAR

Reference for language elements
Version 4.1

2464

COMPUTE
Calculates statistics for each row before or after a given variable.

COMPUTE

BEFORE variable- name

AFTER variable- name

variable- name

/ CHAR

LENGTH = number

CALL DEFINE

STYLE

;

valid- data- step- statements ENDCOMPUTE;

DEFINE
Defines the appearance of columns and variables used in the COLUMN statement.

DEFINE variable

/

statistic option "Heading"

;

Reference for language elements
Version 4.1

2465

statistic

CSS

CV

MAX

MEAN

MEDIAN

MIN

MODE

N

NMISS

P1

P5

P10

P25

P50

P75

P90

P95

P99

PROBT

PRT

Q1

Q3

QRANGE

RANGE

STD

STDDEV

STDERR

SUM

SUMWGT

T

USS

VAR

Reference for language elements
Version 4.1

2466

option

ACROSS

ANALYSIS

CENTER

CENTRE

COMPUTED

DESCENDING

DISPLAY

EXCLUSIVE

FLOW

FORMAT = format

GROUP

ID

ORDER = DATA

EXTERNAL

FORMATTED

FREQ

INTERNAL

LEFT

MISSING

NOPRINT

NOZERO

PAGE

PCTN

PCTSUM

PRELOADFMT

RIGHT

SPACING = number

STYLE

WEIGHT = variable- name

WIDTH = number

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

Reference for language elements
Version 4.1

2467

RBREAK
Summarises information to be displayed from the whole report.

RBREAK

BEFORE

AFTER
/ DOL

DUL

OL

PAGE

SKIP

STYLE

SUMMARIZE

UL

;

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

SOAP procedure

Supported statements
• PROC SOAP (page 2467)

PROC SOAP
Exchanges structured information with web services, by a protocol.

PROC SOAP

options

;

Reference for language elements
Version 4.1

2468

Options
ENVELOPE

ENVELOPE

Type: Keyword

IN

IN = f ileref

Type: String

MUSTUNDERSTAND

MUSTUNDERSTAND

Type: Keyword

OUT

OUT = f ileref

Type: String

PROXYHOST

PROXYHOST = proxy- host

Type: String

PROXYPASSWORD

PROXYPASSWORD = proxy- passwd

Type: String

PROXYPORT

PROXYPORT = unknown- argument

Type: Numeric

Reference for language elements
Version 4.1

2469

PROXYUSERNAME

PROXYUSERNAME = proxy- username

Type: String

SOAPACTION

SOAPACTION = act ion

Type: String

URL

URL = remote- id

Type: String

WEBDOMAIN

WEBDOMAIN = nt lm- auth- domain

Type: String

WEBPASSWORD

WEBPASSWORD = http- auth- passwd

Type: String

WEBUSERNAME

WEBUSERNAME = http- auth- username

Type: String

WSSPASSWORD

WSSPASSWORD = wss- passwd

Type: String

Reference for language elements
Version 4.1

2470

WSSUSERNAME

WSSUSERNAME = wss- username

Type: String

SORT procedure

Supported statements
• PROC SORT (page 2470)
• BY (page 2472)
• WHERE (page 2472)

PROC SORT
Sorts an input dataset and writes to an output dataset.

PROC SORT

option

;

Reference for language elements
Version 4.1

2471

option

DATA = input- data- set- with- options
i

ASCII

DANISH

EBCDIC

EQUALS

EQ

NOEQUALS

NOEQ

FINNISH

FORCE

ITALIAN

NATIONAL

NODUPKEY

NODUPKEYS

NODUP

NODUPS

NODUPREC

NODUPRECS

NODUPLICATES

NORWEGIAN

OUT = output- data- set- with- options
i i

DUPOUT = output- data- set- with- options
i i i

REVERSE

SORTSIZE = integer

integer K

integer M

integer G

SORTSEQ = ascii

danish

ebcdic

finnish

italian

national

norwegian

reverse

spanish

swedish

user- sortseq

SPANISH

SWEDISH

TAGSORT

THREADS

NOTHREADS

Reference for language elements
Version 4.1

2472

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Output dataset (page 16).

BY
Specifies the variable to sort by, and specifies the sorting order.

BY

DESCENDING

variable ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

SOURCE procedure

Supported statements
• PROC SOURCE (page 2473)
• SELECT (page 2473)
• EXCLUDE (page 2473)
• FIRST (page 2474)
• LAST (page 2474)
• AFTER (page 2474)
• BEFORE (page 2474)

Reference for language elements
Version 4.1

2473

PROC SOURCE
Transforms items in a partitioned dataset into a stream of sequential records.

PROC SOURCE

option

;

option

DIRDD = DDName

INDD = DDName

OUTDD = DDName

NOALIAS

NODATA

PRINT

NOPRINT

NOSUMMARY

NOTSORTED

PAGE

SELECT
Selects one or more names within a partitioned dataset, that may be processed. The colon (" : ")
character is a wildcard.

SELECT name
: -

name
:

;

EXCLUDE
Excludes one or more names within a partitioned dataset, from being processed. The colon (" : ")
character is a wildcard.

EXCLUDE name
: -

name
:

;

Reference for language elements
Version 4.1

2474

FIRST
Outputs specified text before any records.

FIRST string- literal ;

LAST
Outputs specified text after all records.

LAST string- literal ;

AFTER
Outputs specified text after this record.

AFTER string- literal

ALIAS

integer

NOBLANK

RIGHT

;

BEFORE
Outputs specified text before this record.

BEFORE string- literal

ALIAS

integer

NOBLANK

RIGHT

;

Reference for language elements
Version 4.1

2475

SQL Procedure

PROC SQL
Enables the use of SQL statements in SAS language programs.

PROC SQL

options
i

;

i See PROC SQL options (page 2481).

ALTER
Updates data held in a dataset or database table, or modifies the dataset or database table definition.

ALTER TABLE table- name command ;

command

ADD

,

column definition
i

DROP

,

column name
i i

MODIFY

,

column definition
i i i

i See Column Definition (page 2492).

ii See Column Name (page 2493).

iii See Column Definition (page 2492).

Reference for language elements
Version 4.1

2476

CONNECT
Creates a connection to a database server.

CONNECT TO dbms- name

AS dbms- alias (dbms- opt ions)

;

CREATE INDEX
Creates an index from the specified columns in a dataset or database table to improve searching or
data sorting.

CREATE

UNIQUE

INDEX index- name ON table- name

(

,

column name
i

) ;

i See Column Name (page 2493).

CREATE TABLE
Creates a new dataset or table in a database, defining each column label and type.

CREATE TABLE table- name command ;

command

(

,

column definition
i

)

LIKE table- name2

AS query expression
i i

ORDER BY expression
i i i

i See Column Definition (page 2492).

ii See Query expression (page 2489).

iii See ORDER BY expression (page 2486).

Reference for language elements
Version 4.1

2477

CREATE VIEW
Creates a view, which defines a query against one or more datasets or database tables. The query is
run whenever the view is used.

CREATE VIEW proc- sql- view AS query expression
i

ORDER BY expression
i i

USING

,

l ibname

;

i See Query expression (page 2489).

ii See ORDER BY expression (page 2486).

DELETE
Deletes the specified rows from a dataset or database table.

DELETE FROM table- name

AS alias WHERE SQL expression
i

;

i See SQL expression (page 2489).

DESCRIBE
Shows the structure of a dataset, database table, or the query used to define a view.

DESCRIBE TABLE

,

table- name

VIEW

,

view- name

;

Reference for language elements
Version 4.1

2478

DISCONNECT
Closes the connection to a database server.

DISCONNECT FROM dbms- name

dbms- alias

;

DROP
Deletes a dataset or database table, an index created for a dataset or database table, or the query
used to create a view.

DROP TABLE

,

table- name

VIEW

,

view- name

INDEX

,

index- name FROM table- name

;

EXECUTE
Passes an SQL statement to a database server to be run directly on the server rather than in WPS.
This statement can only be used when a CONNECT-TO connection has been created.

EXECUTE (sql- command- string) BY dbms- name

dbms- alias

;

INSERT
Inserts data into a dataset a database table, or into an updateable view.

INSERT INTO table- or- view- name

(

,

column name
i

)

command ;

i See Column Name (page 2493).

Reference for language elements
Version 4.1

2479

command

SET

,

column name
i i
= SQL expression

i i i

VALUES (

,

constant- value)

query expression
iv

ii See Column Name (page 2493).

iii See SQL expression (page 2489).

iv See Query expression (page 2489).

RESET
Provides reset options as part of executing a SQL script.

RESET

proc- sql- options
i

;

i See PROC SQL options (page 2481).

SELECT
Retrieves information from a dataset, database table, or view.

SELECT

DISTINCT

SELECT expression
i

FROM expression
i i

INTO expression
i i i

WHERE SQL expression
iv

GROUP BY expression
v

HAVING SQL expression
vi

ORDER BY expression
vii

;

Reference for language elements
Version 4.1

2480

i See SELECT expression (page 2484).

ii See FROM expression (page 2485).

iii See INTO expression (page 2486).

iv See SQL expression (page 2489).

v See GROUP BY expression (page 2486).

vi See SQL expression (page 2489).

vii See ORDER BY expression (page 2486).

UPDATE
Updates a dataset, a database table, or an updateable view.

UPDATE table- or- view- name

AS table- alias

SET

,

set- expression

WHERE SQL expression
i

;

i See SQL expression (page 2489).

set-expression

column name
i i

= SQL expression
i i i

ii See Column Name (page 2493).

iii See SQL expression (page 2489).

VALIDATE
Checks that the SQL query is syntactically correct without running the statement.

VALIDATE query expression
i

i See Query expression (page 2489).

Reference for language elements
Version 4.1

2481

Component Dictionary

PROC SQL options

BUFFERSIZE = n

nK

nM

nG

CONSTDATETIME

NOCONSTDATETIME

DOUBLE

NODOUBLE

ERRORSTOP

NOERRORSTOP

EXEC

NOEXEC

FEEDBACK

NOFEEDBACK

INOBS = n

IPASSTHRU

NOIPASSTHRU

LOOPS = n

NUMBER

NONUMBER

OUTOBS = n

PRINT

NOPRINT

REMERGE

NOREMERGE

SORTMSG

NOSORTMSG

SORTSEQ = "ascii"

"ebcdic"

"danish"

"finnish"

"italian"

"norwegian"

"spanish"

"swedish"

"national"

"reverse"

STIMER

NOSTIMER

THREADS

NOTHREADS

Reference for language elements
Version 4.1

2482

Conditions

ALL condition

SQL expression
i

relational expression
i i

ALL (query expression
i i i

)

i See SQL expression (page 2489).

ii See Relational expression (page 2487).

iii See Query expression (page 2489).

ANY condition

SQL expression
i

relational expression
i i

ANY (query expression
i i i

)

i See SQL expression (page 2489).

ii See Relational expression (page 2487).

iii See Query expression (page 2489).

BETWEEN condition

NOT

BETWEEN SQL expression
i

AND SQL expression
i i

i See SQL expression (page 2489).

ii See SQL expression (page 2489).

BTRIM condition

(LEADING

TRAILING

BOTH

single- char- value

FROM SQL expression
i

)

Reference for language elements
Version 4.1

2483

i See SQL expression (page 2489).

CALCULATED condition

CALCULATED SQL expression
i

i See SQL expression (page 2489).

CONTAINS condition

SQL expression
i

NOT

CONTAINS SQL expression
i i

i See SQL expression (page 2489).

ii See SQL expression (page 2489).

EXISTS condition

SQL expression
i

NOT

EXISTS (query expression
i i

)

i See SQL expression (page 2489).

ii See Query expression (page 2489).

IN condition

NOT

IN (

,

constant

query expression
i

)

i See Query expression (page 2489).

Reference for language elements
Version 4.1

2484

IS condition

SQL expression
i

IS

NOT

NULL

MISSING

i See SQL expression (page 2489).

LIKE condition

SQL expression
i

NOT

LIKE SQL expression
i i

i See SQL expression (page 2489).

ii See SQL expression (page 2489).

Expressions

CASE expression

CASE

operand

WHEN SQL expression
i
THEN SQL expression

i i

ELSE SQL expression
i i i

END

i See SQL expression (page 2489).

ii See SQL expression (page 2489).

iii See SQL expression (page 2489).

SELECT expression

,

item

Reference for language elements
Version 4.1

2485

item

*

column name
i

AS alias

table- name .*

table- alias .*

view- name .*

view- alias .*

SQL expression
i i

AS alias
column modifier

i i i

CASE expression
iv

i See Column Name (page 2493).

ii See SQL expression (page 2489).

iii See Column Modifier (page 2493).

iv See CASE expression (page 2484).

FROM expression

FROM integer

column name
i

SQL expression
i i

table- name

AS alias

view- name

AS alias

(query expression
i i i

AS

alias

(

,

column)

)

joined table
iv

connection- to
v

i See Column Name (page 2493).

ii See SQL expression (page 2489).

Reference for language elements
Version 4.1

2486

iii See Query expression (page 2489).

iv See Joined Table (page 2493).

v See CONNECTION-TO (page 2494).

INTO expression

INTO

,

macro- variable- specification

macro-variable-specification

: macro- variable

SEPARATED BY "char"

NOTRIM

: macro- variable- a - : macro- variable- n

NOTRIM

GROUP BY expression

GROUP BY

,

integer

column name
i

SQL expression
i i

i See Column Name (page 2493).

ii See SQL expression (page 2489).

ORDER BY expression

ORDER BY

,

item

Reference for language elements
Version 4.1

2487

item

integer

column name
i

SQL expression
i i

ASC

DESC

i See Column Name (page 2493).

ii See SQL expression (page 2489).

Relational expression

conditional- expression <

LT

<=

LE

=

EQ

>=

GE

>

GT

¬=

NE

<>

conditional- expression

Reference for language elements
Version 4.1

2488

conditional-expression

concat- expression

NOT

BETWEEN concat- expression AND concat- expression

IS

NOT

NULL

IS

NOT

MISSING

LIKE concat- expression

?

CONTAINS

concat- expression

=* concat- expression

IN (

,

concat- expression)

concat-expression

| |

multiplicative- expression +

-

multiplicative- expression

multiplicative-expression

power- expression *

/

power- expression

power-expression

+

-

primary- expression ** power- expression

primary-expression

constant

column name
i

CALCULATED

expression- alias

(SQL expression
i i

)

Reference for language elements
Version 4.1

2489

i See Column Name (page 2493).

ii See SQL expression (page 2489).

Query expression

table expression
i

EXCEPT

INTERSECT

UNION

CORRESPONDING ALL

OUTER UNION

CORRESPONDING

table expression
i i

i See TABLE expression (page 2494).

ii See TABLE expression (page 2494).

SQL expression

^
~

not

or- expression

or-expression

and- expression |

!

OR

and- expression

and-expression

relational expression
i

&

AND

relational expression
i i

i See Relational expression (page 2487).

Reference for language elements
Version 4.1

2490

ii See Relational expression (page 2487).

Functions

LOWER function

LOWER (SQL expression
i

)

i See SQL expression (page 2489).

SUBSTRING function

SQL expression
i

SUBSTRING (SQL expression
i i

)

i See SQL expression (page 2489).

ii See SQL expression (page 2489).

Reference for language elements
Version 4.1

2491

SUMMARY function

AVG

MEAN

COUNT

FREQ

N

CSS

CV

MAX

MEDIAN

MIN

NMISS

PRT

RANGE

STD

STDERR

SUM

SUMWGT

T

USS

VAR

(

DISTINCT

ALL

SQL expression
i

)

i See SQL expression (page 2489).

UPPER function

UPPER (SQL expression
i

)

i See SQL expression (page 2489).

Reference for language elements
Version 4.1

2492

Tables

DICTIONARY tables

DICTIONARY . CATALOGS

COLUMNS

DICTIONARIES

EXTFILES

INDEXES

LIBNAMES

MACROS

MEMBERS

OPTIONS

TABLES

TITLES

VIEWS

Column Definition

column

CHARACTER

VARCHAR (column- width)

INTEGER

SMALLINT

DECIMAL

FLOAT

NUMERIC

(column- width

, number- of- decimals

)

DOUBLE PRECISION

REAL

DATE

column modifier
i

i See Column Modifier (page 2493).

Reference for language elements
Version 4.1

2493

Column Modifier

INFORMAT = informat w.d

FORMAT = format w.d

LABEL = "label"

LENGTH = length

Column Name

column

table- name.column

table- alias.column

view- name.column

view- alias.column

Joined Table

table expression
i

MATCH

SPRINGFIELD

NATURAL INNER

LEFT

RIGHT

FULL

OUTER

JOIN

table expression
i i

ON SQL expression
i i i

i See TABLE expression (page 2494).

ii See TABLE expression (page 2494).

iii See SQL expression (page 2489).

Reference for language elements
Version 4.1

2494

TABLE expression

SELECT

DISTINCT

SELECT expression
i

INTO expression
i i

FROM expression
i i i

WHERE SQL expression
iv GROUP BY expression

v

HAVING SQL expression
vi

i See SELECT expression (page 2484).

ii See INTO expression (page 2486).

iii See FROM expression (page 2485).

iv See SQL expression (page 2489).

v See GROUP BY expression (page 2486).

vi See SQL expression (page 2489).

Connections

CONNECTION-TO

CONNECTION-TO dbms- name

alias

(dbms- query)

STANDARD procedure

Supported statements
• PROC STANDARD (page 2495)
• BY (page 2495)
• FREQ (page 2496)
• VAR (page 2496)
• WEIGHT (page 2496)

Reference for language elements
Version 4.1

2495

PROC STANDARD
Standardises data in a dataset to a given mean or standard deviation.

PROC STANDARD

option

;

option

DATA = data- set
i

EXCLNPWGT

MEAN = meanvalue

NOPRINT

OUT = output- data- set- with- options
i i

PRINT

REPLACE

STD = stdvalue

VARDEF = DF

N

WDF

WEIGHT

WGT

i See Input dataset (page 16).

ii See Output dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2496

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

VAR
Specifies variables for which to calculate statistics.

VAR variable- name ;

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

SUMMARY procedure

Supported statements
• PROC SUMMARY (page 2498)
• BY (page 2500)
• CLASS (page 2500)
• FREQ (page 2501)
• ID (page 2501)
• OUTPUT (page 2501)
• TYPES (page 2502)
• VAR (page 2502)
• WAYS (page 2502)
• WEIGHT (page 2503)
• WHERE (page 2503)

Reference for language elements
Version 4.1

2497

Statistic keywords
The following keywords are used within several statements of this procedure.

CSS

CLM

CV

KURTOSIS

LCLM

MAX

MEAN

MIN

N

NMISS

P1

P5

P10

P25

Q1

P50

MEDIAN

P75

Q3

P90

P95

P99

PROBT

PRT

QRANGE

RANGE

SKEW

STD

STDEV

STDERR

SUM

SUMWGT

T

UCLM

USS

VAR

Reference for language elements
Version 4.1

2498

PROC SUMMARY
Calculates elementary statistics for a dataset.

PROC SUMMARY

option
statistic- keyword

i

;

i See Statistic keywords (page 2497).

Reference for language elements
Version 4.1

2499

option

ALPHA = value

CHARTYPE

COMPLETETYPES

DATA = data- set
i i

EXCLNPWGTS

FW = width

IDMIN

MAXDEC = decimals

MISSING

NONOBS

NWAY

ORDER = DATA

FORMATTED

FREQ

UNFORMATTED

PCTLDEF

PRINT

NOPRINT

PRINTALL

PRINTALLTYPES

QMARKERS = marker count

QMETHOD = OS

P2

HIST

QNTLDEF = 1

2

3

4

5

SUMSIZE = memory amount

THREADS

NOTHREADS

VARDEF = DF

N

WDF

WEIGHT

WGT

Reference for language elements
Version 4.1

2500

ii See Input dataset (page 16).

CLASS
Specifies variables (within a BY group), by which observations are to be grouped.

CLASS variable- name

/ option

;

option

ASCEND

ASCENDING

DESCEND

DESCENDING

EXCLUSIVE

GROUPINTERNAL

MISSING

MLF

ORDER = DATA

FORMATTED

FMT

FREQ

UNFORMATTED

PREFLOADFMT

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2501

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

ID
Identifies the relevant observations in the output by using one or more specified variable names.

ID variable- name ;

OUTPUT
Creates an output dataset containing data given by one or more statistic keyword specifications.

OUTPUT

OUT = output- data- set
i output- statistic- specification

/

option

;

i See Output dataset (page 16).

output-statistic-specification

statistic- keyword
i i

(input- variable- name)

=

output- name

ii See Statistic keywords (page 2497).

Reference for language elements
Version 4.1

2502

option

AUTOLABEL

AUTONAME

KEEPLEN

LEVELS

NOINHERIT

WAYS

TYPES
Restricts output to subsets of CLASS variables.

TYPES type- list ;

type-list

*

variable

(type- list)

VAR
Specifies variables for which to calculate statistics.

VAR variable- name

/ WEIGHT = variable- name

;

WAYS
Restricts outputs to the numbers of WAYS given. Examples can be a one dimensional table or a two
dimensional table output, or both.

WAYS ways- item

,
ways- item

;

Reference for language elements
Version 4.1

2503

ways-item

integer

integer TO integer

BY integer

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

TABLEAU procedure

Supported statements
• PROC TABLEAU (page 2503)
• UPLOAD (page 2504)

PROC TABLEAU
Exports a dataset to a Tableau Data Extract file.

To use the TABLEAU procedure, you must have the Tableau SDK installed.

PROC TABLEAU

TABLEAU options

;

Reference for language elements
Version 4.1

2504

TABLEAU options

DATA = dataset

OUTFILE = "f ilename"

REPLACE

NOREPLACE

UPLOAD
Specifies the remote host to which the dataset is exported.

UPLOAD USER = "username" PASSWORD = "password"

AUTHDOMAIN = "authdomain- name"

SITEID = "site- id"

HOSTNAME = "hostname"

PROJECT = "project"

DATASOURCE = "datasource"

/ REPLACE

NOREPLACE

;

TABULATE procedure

Supported statements
• PROC TABULATE (page 2505)
• BY (page 2507)
• CLASS (page 2508)
• CLASSLEV (page 2508)
• FREQ (page 2508)
• KEYLABEL (page 2509)
• KEYWORD (page 2509)
• TABLE (page 2509)
• VAR (page 2510)
• WEIGHT (page 2510)

Reference for language elements
Version 4.1

2505

• WHERE (page 2510)

PROC TABULATE
Creates tabulated summaries of a dataset.

PROC TABULATE

option

;

Reference for language elements
Version 4.1

2506

option

DATA = data- set
i

EXCLNPWGTS

EXCLNPWGT

FORMAT

F

= format

FORMCHAR

FC (character posit ions)

= "formatt ing characters"

MISSING

NOSEPS

ORDER = DATA

FREQ

EXTERNAL

FORMATTED

FMT

INTERNAL

UNFORMATTED

UNFMT

OUT = output- data- set
i i

QMARKERS = odd integer

QMETHOD = OS

P2

HIST

QNTLDEF

PCTLDEF

= 1

2

3

4

5

VARDEF = DF

N

WDF

WEIGHT

WGT

STYLE

S

i See Input dataset (page 16).

ii See Output dataset (page 16).

Reference for language elements
Version 4.1

2507

style - when used at the PROC TABULATE level

STYLE =

element- name

{

style- attribute- name = valid- value

"valid-string"

}

style - when used in a PROC TABULATE option

STYLE =

element- name

{

style- attribute- name =

< PARENT> valid- value

"valid-string"

}

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2508

CLASS
Specifies variables by which data in the output table are categorised.

CLASS variable- name

/ ASCENDING

DESCENDING

EXCLUSIVE

GROUPINTERNAL

MISSING

MLF

ORDER = DATA

FREQ

EXTERNAL

FORMATTED

FMT

INTERNAL

UNFORMATTED

UNFMT

PRELOADFMT

STYLE

;

CLASSLEV
Specifies a style to be associated with a class variable.

CLASSLEV variable- name

/ STYLE

;

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

Reference for language elements
Version 4.1

2509

KEYLABEL
Uses this label in place of the KEYWORD in the output table.

KEYLABEL keyword = "descript ion" ;

KEYWORD
Specifies a style to be associated with a KEYWORD.

KEYWORD variable- name

/ STYLE

;

TABLE
Defines the classes, variables and statistics that will form the rows and columns of an output table.

TABLE

page- expression

* style

,

row- expression

* style

,

column- expression

* style

/

option

;

Reference for language elements
Version 4.1

2510

option

BOX = _PAGE_

"string"

variable

* style

CONDENSE

FUZZ = tolerance

INDENT = nested- heading- indent

MISSTEXT = "tex t"

* style

STYLE

PRINTMISS

ROW = CONSTANT

CONST

RTSPACE

RTS

= space

VAR
Specifies analysis variables to be used in the table.

VAR variable

/ WEIGHT = variable STYLE

;

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

2511

TEMPLATE procedure

Supported statements
• PROC TEMPLATE (page 2511)
• DELETE (page 2511)
• EDIT (page 2512)
• LINK (page 2512)
• LIST (page 2512)
• PATH (page 2514)
• SOURCE (page 2515)
• DEFINE COLUMN (page 2516)
• DEFINE FOOTER (page 2517)
• DEFINE HEADER (page 2517)
• DEFINE STYLE (page 2517)
• DEFINE TABLE (page 2518)
• DEFINE TAGSET (page 2519)

PROC TEMPLATE
Parses table definitions and store them in an item store for later retrieval.

PROC TEMPLATE ;

DELETE
Removes a template item, or removes template from a stored device.

DELETE item

/ STORE = member.name

;

Reference for language elements
Version 4.1

2512

EDIT
Redefines an existing table, header, footer or column.

EDIT path

/ STORE = member.name

; table definition
i

header definition
i i

footer definition
i i i

column definition
iv

END ;

i See TABLE definition (page 2524).

ii See HEADER definition (page 2526).

iii See FOOTER definition (page 2528).

iv See COLUMN definition (page 2530).

LINK
Links the first item to the second, adding optional parameters.

LINK item- 1 TO item- 2

/ NOTES = "tex t"

STORE = member.name

;

LIST
Lists the templates.

LIST

path
/ sort

stats

STORE = member.name

WHERE keyword where- expression

;

Reference for language elements
Version 4.1

2513

sort

SORT = CREATED

NOTES

LINK

PATH

SIZE

TYPE

ASCENDING

DESCENDING

stats

STATS = ALL

(

,

CREATED

LINK

NOTES

SIZE

)

Reference for language elements
Version 4.1

2514

keyword

path

path

name

name

template

template

type

type

notes

label

size

created

cdate

cdate

cdatetime

cdatetime

ctime

ctime

mdate

mdate

mdatetime

mdatetime

modified

mtime

mtime

PATH
Defines a path to locate a template in an itemstore.

PATH

instruction

member.name

mode

option

;

Reference for language elements
Version 4.1

2515

instruction

(APPEND

PREPEND

REMOVE

)

mode

(READ

UPDATE

WRITE

)

option

RESET

SHOW

VERIFY

SOURCE
Generates a TEMPLATE procedure statement from a stored template.

SOURCE path

/ FILE = f ilename

NOFOLLOW

STORE = member.name

WHERE keyword where- expression

;

Reference for language elements
Version 4.1

2516

keyword

path

path

name

name

template

template

type

type

notes

label

size

created

cdate

cdate

cdatetime

cdatetime

ctime

ctime

mdate

mdate

mdatetime

mdatetime

modified

mtime

mtime

DEFINE COLUMN
Specifies the appearance of a column.

DEFINE COLUMN path

previously- declared- column / STORE = member.name

; column definition
i

END ;

i See COLUMN definition (page 2530).

Reference for language elements
Version 4.1

2517

DEFINE FOOTER
Specifies the appearance of a table footer.

DEFINE FOOTER path

previously- declared- footer / STORE member.name

;

footer definition
i

END ;

i See FOOTER definition (page 2528).

DEFINE HEADER
Specifies the appearance of table or column headers.

DEFINE HEADER path

previously- declared- header / STORE = member.name

; header definition
i

END ;

i See HEADER definition (page 2526).

DEFINE STYLE
Creates a new style template. Enables the classification, replacement, and adaption of new styles from
previous sources.

DEFINE STYLE path

/ STORE = member.name

; NOTES "tex t" ;

PARENT = path ;

class

import

replace

style

END ;

class

CLASS

,

style- element- name

"notes"
/ style- attribute

;

Reference for language elements
Version 4.1

2518

import

IMPORT f ileref

"external- f ile"

"URL"

;

replace

REPLACE style- element- name

FROM style- element- name "notes"

/ style- attribute

;

style

STYLE

,

style- element- name

FROM style- element- name

SELF

"notes"
/ style- attribute

;

style-attribute

attribute- name

"user- defined- name"

=

|

value

DEFINE TABLE
Specifies the appearance of a table.

DEFINE TABLE path

/ STORE = member.name

; table definition
i

END ;

i See TABLE definition (page 2524).

Reference for language elements
Version 4.1

2519

DEFINE TAGSET
Defines tables, headers, footers and columns.

DEFINE TAGSET path

/ STORE = member.name

;

NOTES "tex t" ; tagset- attribute- name = value

event- attribute- name = value ;

START:

FINISH:

statement

END ;

statement

BLOCK event- name

BREAK

CLOSE

CONTINUE

DELSTREAM $$varname

do- statement

EVAL indexvarname condition- where- expression

FLUSH

ITERATE tagset- indexvariable

NDENT

NEXT tagset- indexvariable

OPEN $$varname

put- statement

putl- statement

putlog- statement

putq- statement

PUTSTREAM $$varname

putvars- statement

set- statement

STOP

trigger- statement

UNBLOCK event- name

unset- statement

XDENT

/ statement- condition

;

Reference for language elements
Version 4.1

2520

do-statement

do- block

else- block

DONE ;

do-block

DO

/

!

IF

WHEN

WHERE

WHILE

condition- where- expression

; statement

else-block

ELSE

/

!

IF

WHEN

WHERE

condition- where- expression

; statement

put-statement

NL

string

datastep- funct ion

indexvarname

$$varname

Reference for language elements
Version 4.1

2521

putl-statement

NL

string

datastep- funct ion

indexvarname

$$varname

putlog-statement

string

datastep- funct ion

indexvarname

$$varname

putq-statement

NL

string

datastep- funct ion

indexvarname

$$varname

putvars-statement

PUTVARS indexvarname

EVENT

STYLE

MEM

MEMORY

STREAM

NL

string

Reference for language elements
Version 4.1

2522

set-statement

SET indexvarname string

datastep- funct ion

indexvarname

trigger-statement

EVENT event- name

START

FINISH

unset-statement

UNSET ALL

$varname

$$varname

statement-condition

!

IF

BREAKIF

WHEN

WHERE

condition- where- expression

condition-where-expression

ANY (

,

$varname)

CMP ("string"

$varname

, $varname)

CONTAINS (

,

$varname)

EXIST ($varname)

EXISTS (

,

$varname)

where- expression

Reference for language elements
Version 4.1

2523

tagset-indexvariable

$varname [integer

string

]

indexvarname

$varname

[integer

string

indexvarname

]

Components
• TABLE definition (page 2524)
• HEADER definition (page 2526)
• FOOTER definition (page 2528)
• COLUMN definition (page 2530)
• STYLE (page 2533)

Reference for language elements
Version 4.1

2524

TABLE definition

NOTES "tex t" ;

DYNAMIC varname

= number

"string- literal"

"comment"

;

MVAR varname

= "string- literal" "comment"

;

NMVAR varname

= number "comment"

;

CELLSTYLE

,

boolean- expression AS style- element ;

TRANSLATE

,

boolean- expression INTO expression ;

DEFINE HEADER path ; header definition
i
END ;

DEFINE FOOTER path ; footer definition
i i
END ;

DEFINE COLUMN path ; column definition
i i i

END ;

HEADER path

"tex t"

LABEL

;

FOOTER path

"tex t"

LABEL

;

COLUMN path

dataname

;

general table options

LISTING- only table options

i See HEADER definition (page 2526).

ii See FOOTER definition (page 2528).

iii See COLUMN definition (page 2530).

Reference for language elements
Version 4.1

2525

general table options

CLASSLEVELS Boolean value ;

DATA_FORMAT_OVERRIDE Boolean value ;

LABEL = "string"

variable

;

NEWPAGE Boolean value ;

ORDER_DATA Boolean value ;

PARENT = path ;

PRINT_FOOTERS Boolean value ;

PRINT_HEADERS Boolean value ;

STYLE = Style value
iv

;

USE_FORMAT_DEFAULTS Boolean value ;

USE_NAME Boolean value ;

iv See STYLE (page 2533).

LISTING-only table options

DOUBLE_SPACE Boolean value ;

FORMCHAR = "string"

variable

;

UNDERLINE Boolean value ;

Boolean value

= ON

OFF

variable

Reference for language elements
Version 4.1

2526

HEADER definition

NOTES "tex t" ;

DYNAMIC varname

= number

"string- literal"

"comment"

;

MVAR varname

= "string- literal" "comment"

;

NMVAR varname

= number "comment"

;

TEXT variable- name

LABEL format- name

"text"

;

general header options

general header options

END = column- name

variable

;

JUST = horizontal justification value ;

PARENT = path ;

PREFORMATTED Boolean value ;

PRINT Boolean value ;

SPLIT = "character"

variable

;

START = column- name

variable

;

STYLE = Style value
i

;

VJUST = vertical justification value ;

i See STYLE (page 2533).

Reference for language elements
Version 4.1

2527

Boolean value

= ON

OFF

variable

horizontal justification value

C

CENTER

CENTRE

L

LEFT

R

RIGHT

variable

vertical justification value

B

BOTTOM

C

CENTER

CENTRE

M

MIDDLE

T

TOP

variable

Reference for language elements
Version 4.1

2528

FOOTER definition

NOTES "tex t" ;

DYNAMIC varname

= number

"string- literal"

"comment"

;

MVAR varname

= "string- literal" "comment"

;

NMVAR varname

= number "comment"

;

TEXT variable- name

LABEL format- name

"text"

;

general footer options

general footer options

JUST = horizontal justification value ;

PARENT = path ;

PREFORMATTED Boolean value ;

PRINT Boolean value ;

SPLIT = "character"

variable

;

STYLE = Style value
i

;

VJUST = vertical justification value ;

i See STYLE (page 2533).

Boolean value

= ON

OFF

variable

Reference for language elements
Version 4.1

2529

horizontal justification value

C

CENTER

CENTRE

L

LEFT

R

RIGHT

variable

vertical justification value

B

BOTTOM

C

CENTER

CENTRE

M

MIDDLE

T

TOP

variable

Reference for language elements
Version 4.1

2530

COLUMN definition

NOTES "tex t" ;

DYNAMIC varname

= number

"string- literal"

"comment"

;

MVAR varname

= "string- literal" "comment"

;

NMVAR varname

= number "comment"

;

CELLSTYLE

,

boolean- expression AS style- element ;

COMPUTE AS expression ;

TRANSLATE

,

boolean- expression INTO expression ;

DEFINE HEADER path ; header definition
i
END ;

general column options

i See HEADER definition (page 2526).

Reference for language elements
Version 4.1

2531

general column options

BLANK_DUPS Boolean value ;

BLANK_INTERNAL_DUPS Boolean value ;

CHOOSE_FORMAT = COMPROMISE

MAX

MAX_ABS

MIN_MAX

variable

;

DATA_FORMAT_OVERRIDE Boolean value ;

DATANAME = name

variable

;

FORMAT = format- name

format- width

. format- ndec

variable

;

FORMAT_NDEC = non- negat ive integer

variable

;

FORMAT_WIDTH = posit ive integer

variable

;

FUZZ = posit ive number

variable

;

GENERIC Boolean value ;

HEADER = path

"tex t"

variable- name

LABEL

;

ID Boolean value ;

JUST = horizontal justification value ;

PARENT = path ;

PREFORMATTED Boolean value ;

PRINT Boolean value ;

PRINT_HEADERS Boolean value ;

STYLE = Style value
i i

;

TEXT_SPLIT = "character"

variable

;

VJUST = vertical justification value ;

ii See STYLE (page 2533).

Reference for language elements
Version 4.1

2532

Boolean value

= ON

OFF

variable

horizontal justification value

C

CENTER

CENTRE

L

LEFT

R

RIGHT

variable

vertical justification value

B

BOTTOM

C

CENTER

CENTRE

M

MIDDLE

T

TOP

variable

Reference for language elements
Version 4.1

2533

STYLE

style- element- name

{ style- attribute }

[style- attribute]

(style- attribute)

{ style- attribute }

[style- attribute]

(style- attribute)

style-attribute

attribute- name

"user- defined- name"

= value

TRANSPOSE procedure

Supported statements
• PROC TRANSPOSE (page 2533)
• BY (page 2534)
• COPY (page 2534)
• ID (page 2534)
• IDLABEL (page 2535)
• VAR (page 2535)
• WHERE (page 2535)

PROC TRANSPOSE
Transposes variables (colums) and observations (rows) of a dataset.

PROC TRANSPOSE

option

;

Reference for language elements
Version 4.1

2534

option

DATA = input- data- set- with- options
i

LABEL = "label"

NAME = name

OUT = output- data- set- with- options
i i

PREFIX = name

i See Input dataset (page 16).

ii See Output dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

COPY
Specifies variables copied untransposed to the output.

COPY variable ;

ID
Specifies a variable whose value creates the variable names in the output dataset.

ID variable ;

Reference for language elements
Version 4.1

2535

IDLABEL
Specifies a variable whose value creates the variable labels in the output dataset.

IDLABEL variable ;

VAR
Specifies the names of variables to be transposed.

VAR variable ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

TRANTAB procedure

Supported statements
• PROC TRANTAB (page 2536)
• CLEAR (page 2536)
• INVERSE (page 2536)
• LIST (page 2536)
• LOAD (page 2537)
• REPLACE (page 2537)
• SAVE (page 2537)
• SWAP (page 2537)

Reference for language elements
Version 4.1

2536

PROC TRANTAB
Edits translation tables that control the conversion between specific single-byte character sets.

PROC TRANTAB TABLE

TAB

= table- name

SASCCL

SASLCL

SASLCS

SASUCS

SASXPT

NLS

;

CLEAR
Clears one or both of the currently loaded translation tables.

CLEAR

ONE

TWO

BOTH

;

INVERSE
Populates table two with the inverse of the translation in table one.

INVERSE ;

LIST
Prints out table one or both of the currently loaded translation tables.

LIST

ONE

TWO

BOTH

;

Reference for language elements
Version 4.1

2537

LOAD
Loads translation tables from a catalog.

LOAD TABLE

TAB

= table- name NLS ;

REPLACE
Replaces an entry in a translation table.

REPLACE posit ion

"char- to- replace"

decimal- value

"character- string"

"hexadecimal- string"x

;

SAVE
Saves one or both translation tables to the original location, or a new location.

SAVE TABLE

TAB

= table- name

ONE

TWO

BOTH

;

SWAP
Swaps definitions of table one and table two.

SWAP ;

UNIVARIATE procedure

Supported statements
• PROC UNIVARIATE (page 2538)

Reference for language elements
Version 4.1

2538

• BY (page 2540)
• CDFPLOT (page 2540)
• CLASS (page 2546)
• FREQ (page 2546)
• HISTOGRAM (page 2547)
• ID (page 2557)
• OUTPUT (page 2557)
• PPPLOT (page 2560)
• PROBPLOT (page 2566)
• QQPLOT (page 2572)
• VAR (page 2578)
• WEIGHT (page 2578)
• WHERE (page 2578)

PROC UNIVARIATE
Generates univariate statistics and plots for variables in a dataset.

PROC UNIVARIATE

option

;

Reference for language elements
Version 4.1

2539

option

DATA = data- set
i

ALL

ALPHA = value

CIBASIC

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

CIPCTLDF

CIQUANTDF
(TYPE = LOWER

SYMMETRIC

UPPER

ALPHA = value

)

CIPCTLNORMAL

CIQUANTNORMAL
(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

EXCLNPWGT

EXCLNPWGTS

FREQ

IDOUT

LOCCOUNT

MODES

MODE

MU0

LOCATION

= value

NEXTROBS = n

NEXTRVAL = n

NOBYPLOT

NOPRINT

NORMAL

NORMALTEST

OUTTABLE = output- data- set
i i

PCTLDEF

DEF

= 1

2

3

4

5

PLOTSIZE = number

PLOT

PLOTS

ROBUSTSCALE

ROUND = value

TRIM

TRIMMED

= value

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

VARDEF = DF

N

WDF

WEIGHT

WGT

WINSOR

WINSORIZED

= value

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

Reference for language elements
Version 4.1

2540

i See Input dataset (page 16).

ii See Output dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

CDFPLOT
Plots the cumulative distribution function with options.

CDFPLOT

CDF

variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

IGAUSS distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

other- option

;

Reference for language elements
Version 4.1

2541

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2542

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

)

IGAUSS distribution

IGAUSS

(LAMBDA = EST

value

MU = EST

value

)

LOGNORMAL distribution

LOGNORMAL

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

NORMAL distribution

NORMAL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

2543

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2544

WEIBULL distribution

WEIBULL

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2545

other-option
DESCRIPTION

DES

= value

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NAME = value

NCOLS

NCOL

= value

NOCDFLEGEND

NOLEGEND

NOECDF

NOFRAME

NOHLABEL

NOHTICK

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

VSCALE = PERCENT

PROPORTION

Reference for language elements
Version 4.1

2546

CLASS
Specifies variables used to group the data in plots.

CLASS variable- name

(MISSING

ORDER = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

)

variable- name

(MISSING

ORDER = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

)

/ KEYLEVEL = class- level

(class- level1 class- level2)

NOKEYMOVE

;

FREQ
Specifies a variable in which the frequency to be associated with each observation is provided.

FREQ variable- name ;

Reference for language elements
Version 4.1

2547

HISTOGRAM
Creates a histogram.

HISTOGRAM variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

IGAUSS distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

SB distribution

SU distribution

WEIBULL distribution

KERNEL option

other- option

;

Reference for language elements
Version 4.1

2548

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2549

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

EDFNSAMPLES = value

EDFSEED = seed

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2550

IGAUSS distribution

IGAUSS

(LAMBDA = EST

value

MU = EST

value

EDFNSAMPLES = value

EDFSEED = seed

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

LOGNORMAL distribution

LOGNORMAL

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2551

NORMAL distribution

NORMAL

(MU = EST

value

SIGMA = EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2552

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2553

SB distribution

SB

(DELTA = EST

value

FITINTERVAL = value

FITMETHOD = MLE

MOMENTS

PERCENTILE

FITTOLERANCE = value

GAMMA = EST

value

SIGMA

SCALE

= EST

value

THETA

THRESHOLD

= EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2554

SU distribution

SU

(DELTA = EST

value

FITINTERVAL = value

FITMETHOD = MLE

MOMENTS

PERCENTILE

FITTOLERANCE = value

GAMMA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

2555

WEIBULL distribution

WEIBULL

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

KERNEL option

KERNEL

(C = MISE

SJPI

value

K = N

NORMAL

Q

QUADRATIC

T

TRIANGULAR

LOWER = value

NOPRINT

UPPER = value

)

Reference for language elements
Version 4.1

2556

other-option
BARLABEL = COUNT

PERCENT

PROPORTION

DESCRIPTION

DES

= value

ENDPOINTS = value

value TO value

BY value

KEY

UNIFORM

GRID

HANGING

HANG

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

MAXNBIN = value

MAXSIGMAS = value

MIDPERCENTS

MIDPOINTS = value

value TO value

BY value

KEY

UNIFORM

NAME = value

NCOLS

NCOL

= value

NENDPOINTS = n

NMIDPOINTS = n

NOBARS

NOCURVELEGEND

NOLEGEND

NOFRAME

NOHLABEL

NOHTICK

NOPLOT

NOCHART

NOPRINT

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OUTHISTOGRAM

OUTHIST

= output- data- set
i

OUTKERNEL = output- data- set
i i

RTINCLUDE

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

VSCALE = COUNT

PERCENT

PROPORTION

Reference for language elements
Version 4.1

2557

i See Output dataset (page 16).

ii See Output dataset (page 16).

ID
Identifies the relevant observations in the output by using one or more specified variable names.

ID variable- name ;

OUTPUT
Saves calculated statistics in an output dataset.

OUTPUT

OUT = output- data- set
i

Simple Statistic

Percentile Statistic

Test Statistic

Difference Statistic

;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

2558

Simple Statistic

CSS

CV

KURTOSIS

KURT

MAX

MEAN

MIN

MODE

N

NMISS

NOBS

QRANGE

RANGE

SKEWNESS

SKEW

STD

STDDEV

STDEV

STDMEAN

STDERR

STD_QRANGE

SUM

SUMWGT

USS

VAR

= name

Reference for language elements
Version 4.1

2559

Percentile Statistic

P1

P5

P10

Q1

P25

MEDIAN

Q2

P50

Q3

P75

P90

P95

P99

= name

PCTLNAME = suff ix

PCTLPRE = prefix

PCTLPTS = percent ile

TO percent ile

BY percent ile

,
percent ile

TO percent ile

BY percent ile

Test Statistic

MSIGN

NORMALTEST

PROBM

PROBN

PROBS

PROBT

PRT

SIGNRANK

T

= name

Difference Statistic

GINI

MAD

QN

SN

STD_GINI

STD_MAD

STD_QN

STD_SN

= name

Reference for language elements
Version 4.1

2560

PPPLOT
Creates probability percentage plots of datasets using one or more specified variables.

PPPLOT variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

IGAUSS distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

Reference for language elements
Version 4.1

2561

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

NOLINE

)

Reference for language elements
Version 4.1

2562

IGAUSS distribution

IGAUSS

(LAMBDA = EST

value

MU = EST

value

NOLINE

)

LOGNORMAL distribution

LOGNORMAL

LNORM

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

NORMAL distribution

NORMAL

NORM

(MU = EST

value

SIGMA = EST

value

NOLINE

)

Reference for language elements
Version 4.1

2563

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

Reference for language elements
Version 4.1

2564

WEIBULL distribution

WEIBULL

WEIB

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

Reference for language elements
Version 4.1

2565

other-option

DESCRIPTION

DES

= value

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NAME = value

NCOLS

NCOL

= value

NOFRAME

NOHLABEL

NOHTICK

NOLINE

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

SQUARE

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

Reference for language elements
Version 4.1

2566

PROBPLOT
Compares a dataset against a normal distribution using one or more specified variables.

PROBPLOT variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

WEIBULL2 distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2567

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

2568

LOGNORMAL distribution

LOGNORMAL

LNORM

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= EST

value

)

NORMAL distribution

NORMAL

NORM

(MU = EST

value

SIGMA = EST

value

)

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2569

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

WEIBULL distribution

WEIBULL

WEIB

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2570

WEIBULL2 distribution

WEIBULL2

W2

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= value

)

Reference for language elements
Version 4.1

2571

other-option
DESCRIPTION

DES

= value

GRID

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NADJ = value

NAME = value

NCOLS

NCOL

= value

NOFRAME

NOHLABEL

NOHTICK

NOLINELEGEND

NOLEGEND

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

RANKADJ = value

ROTATE

SQUARE

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

Reference for language elements
Version 4.1

2572

QQPLOT
Creates quantile-quantile plots of datasets using one or more specified variables.

QQPLOT variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

WEIBULL2 distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2573

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

2574

LOGNORMAL distribution

LOGNORMAL

LNORM

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= EST

value

)

NORMAL distribution

NORMAL

NORM

(MU = EST

value

SIGMA = EST

value

)

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2575

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

WEIBULL distribution

WEIBULL

WEIB

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

2576

WEIBULL2 distribution

WEIBULL2

W2

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= value

)

Reference for language elements
Version 4.1

2577

other-option
DESCRIPTION

DES

= value

GRID

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NADJ = value

NAME = value

NCOLS

NCOL

= value

NOFRAME

NOHLABEL

NOHTICK

NOLINELEGEND

NOLEGEND

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

PCTLAXIS

(GRID

LABEL = value

)

PCTLSCALE

RANKADJ = value

ROTATE

SQUARE

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

Reference for language elements
Version 4.1

2578

VAR
Specifies variables for which to calculate statistics and plots.

VAR

VARIABLE

VARIABLES

variable- name ;

WEIGHT
Specifies a variable giving the weight associated with each observation.

WEIGHT variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Library engines

CVP
LIBNAME name CVP physical- locat ion explicit- CVP- options

other- engine- name physical- locat ion implicit- CVP- options

;

explicit-CVP-options

cvpengine = underlying- engine- name cvpbytes = count

cvpmultiplier = mult

Reference for language elements
Version 4.1

2579

implicit-CVP-options

cvpbytes = count

cvpmultiplier = mult

JSON

LIBNAME name JSON

"physical- locat ion- or- f ileref" libname- option

;

libname-option

automap = CREATE

REPLACE

REUSE

fileref = f ileref- name

map = filename-or-fileref

ordinalcount = ALL

NONE

integer

retain

SASDASD
LIBNAME name SASDASD physical- f ilename ;

SAS7BDAT
LIBNAME name SAS7BDAT

V8

V9

physical- locat ion ;

Reference for language elements
Version 4.1

2580

SD2
LIBNAME name SD2

V6

physical- locat ion ;

SASSEQ
LIBNAME name SASSEQ physical- f ilename ;

V8SEQ
LIBNAME name V8SEQ physical- f ilename ;

V9SEQ
LIBNAME name V9SEQ physical- f ilename ;

WPDSEQ
LIBNAME name WPDSEQ physical- f ilename ;

WPD
LIBNAME name

WPD

physical- locat ion ;

Reference for language elements
Version 4.1

2581

WPD (z/OS)

LIBNAME name

WPD

physical- locat ion

option

;

option
BLKSIZE = block- size

DATACLAS = data- class

DISP = status

(status

, normal- termination- disp

, abnormal- termination- disp

)

HFS

LIKE = "model- dataset"

MGMTCLASS = management- class

SPACE = space

(space

, primary- space- allocat ion

, secondary- space- allocat ion

)

STORCLASS = storage- class

status

NEW

MOD

SHR

normal-termination-disp

KEEP

DELETE

CATLG

UNCATLG

abnormal-termination-disp

KEEP

DELETE

CATLG

UNCATLG

Reference for language elements
Version 4.1

2582

space

TRK

CYL

block- size

WPD1
LIBNAME name

WPD1

physical- locat ion ;

WPDV2
LIBNAME name

WPDV2

physical- locat ion ;

WPDV2 (z/OS)

LIBNAME name

WPDV2

physical- locat ion

option

;

option
BLKSIZE = block- size

DATACLAS = data- class

DISP = status

(status

, normal- termination- disp

, abnormal- termination- disp

)

HFS

LIKE = "model- dataset"

MGMTCLASS = management- class

SPACE = space

(space

, primary- space- allocat ion

, secondary- space- allocat ion

)

STORCLASS = storage- class

Reference for language elements
Version 4.1

2583

status

NEW

MOD

SHR

normal-termination-disp

KEEP

DELETE

CATLG

UNCATLG

abnormal-termination-disp

KEEP

DELETE

CATLG

UNCATLG

space

TRK

CYL

block- size

XML

LIBNAME name XML

"physical- locat ion" libname- option

;

Reference for language elements
Version 4.1

2584

libname-option

formatactive = YES

NO

formatnoreplace = YES

NO

indent = count

odscharset = character set

xmldataformat = ELEMENT

ATTRIBUTE

xmlconcatenate = YES

NO

xmldouble = DISPLAY

INTERNAL

xmlencoding = encoding

xmlfileref = f ileref

xmlmap = f ileref

"physical- locat ion"

xmltype = GENERIC

ORACLE

XMLMAP

CDISCODM

XPORT
LIBNAME name XPORT

SASXPORT

physical- locat ion ;

Reference for language elements
Version 4.1

2585

Macros

Automatic macro variables

SYSADDRBITS
Read only variable.

SYSCHARWIDTH
Read only variable.

SYSCC
Read-write variable.

SYSDATE
Read only variable.

SYSDATE9
Read only variable.

SYSDAY
Read only variable.

Reference for language elements
Version 4.1

2586

SYSDSN
Read-write variable.

SYSENDIAN
Read only variable.

SYSENV
Read only variable.

SYSERR
Read only variable.

SYSERRORTEXT
Read-write variable.

SYSFILRC
Read-write variable.

SYSENDIAN
Read only variable.

SYSINDEX
Read only variable.

Reference for language elements
Version 4.1

2587

SYSINFO
Read-write variable.

SYSJOBID
Read only variable.

SYSLAST
Read-write variable.

SYSLIBRC
Read-write variable.

SYSMACRONAME
Read only variable.

SYSMAXLONG
Read only variable.

SYSMENV
Read only variable.

SYSPARM
Read-write variable.

Reference for language elements
Version 4.1

2588

SYSPBUFF
Read-write variable.

SYSPROCESSID
Read only variable.

SYSPROCESSNAME
Read only variable.

SYSPROCNAME
Read only variable.

SYSRC
Read-write variable.

SYSSCP
Read-write variable.

SYSSCPL
Read-write variable.

SYSSITE
Read only variable.

Reference for language elements
Version 4.1

2589

SYSMAXLONG
Read only variable.

SYSSIZEOFPTR
Read only variable.

SYSSIZEOFUNICODE
Read only variable.

SYSUID
Read only variable.

SYSUSERID
Read only variable.

SYSVER
Read only variable.

SYSVLONG

SYS99ERR
Read-write variable.

Reference for language elements
Version 4.1

2590

SYS99INF
Read-write variable.

SYS99MSG
Read-write variable.

SYS99R15
Read-write variable.

Macro processor statements

%ABORT

%ABORT ABEND

RETURN

n ;

%* comment

%* comment tex t ;

%COPY

%COPY macro_name

/ option

;

Reference for language elements
Version 4.1

2591

option

SOURCE

SRC

LIB

LIBRARY

=

OUTFILE

OUT

= f ileref

"external- f ile"

%DO

%DO ; tex t and macro statements %END ;

%DO, Iterative

%DO index- variable = start %TO stop

%BY increment

;

tex t and macro statements %END ;

%DO %UNTIL

%DO %UNTIL (condit ion) ; tex t and macro statements %END ;

%DO %WHILE

%DO %WHILE (condit ion) ; tex t and macro statements %END ;

Reference for language elements
Version 4.1

2592

%END

%EXECUTE

%EXECUTE (%macro- name (

,

parameter)) ;

%GLOBAL

%GLOBAL macro- variable ;

%GOTO

%GOTO

%GO TO

label ;

%IF-%THEN/%ELSE

%IF condit ion %THEN tex t or macro statement ;

%ELSE tex t or macro statement ;

%INCLUDE
The %INCLUDE statement adds source lines from an external file into the program.

For more details, please refer to the %INCLUDE Global Statement.

Reference for language elements
Version 4.1

2593

%label

% label : tex t or macro statement

%LET

%LET macro- variable = value ;

%LOCAL

%LOCAL macro- variable ;

%MACRO

%MACRO macro- name

(

,

posit ional- parameter

keyword- parameter =

value

)

/ option

; tex t and macro statements %MEND

macro- name
;

option

DES = descript ion

MINDELIMITER = 'delimiter- character'

MINOPERATOR

NOMINOPERATOR

PARMBUFF

PBUFF

SOURCE

SRC

STORE

Reference for language elements
Version 4.1

2594

%MEND
Marks the end of the macro statement.

%MEND takes no arguments, but putting the macro-name after the statement can help in identifying the
extent of a macro in your SAS language program, For example:

%MACRO my_macro
…
…
%MEND my_macro

%PUT

%PUT _ALL_

AUTOMATIC

GLOBAL

LOCAL

USER

tex t

;

%RETURN

%RETURN ;

%SYSCALL

%SYSCALL call- rout ine (

,

call- rout ine- argument

) ;

%SYMDEL

%SYMDEL macro- variable

/ NOWARN

;

Reference for language elements
Version 4.1

2595

%SYSEXEC

%SYSEXEC command ;

Macro processor functions

%BQUOTE

%BQUOTE (argument)

%CMPRES

%CMPRES (argument)

%DATATYP

%DATATYP (argument)

%DS2CSV

%DS2CSV

(RUNMODE = S data options

options for RUNMODE= S

B data options

options for RUNMODE= any

)

Reference for language elements
Version 4.1

2596

data options

DATA = dataset CSVFILE = f ilename

CSVFREF = f ileref

options for RUNMODE=S

CONTTYPE = Y

N

CONTDISP = Y

N

SAVEFILE = f ilename

MIMEHDR1 = MIME/ HTTP header

MIMEHDR2 = MIME/ HTTP header

MIMEHDR3 = MIME/ HTTP header

MIMEHDR4 = MIME/ HTTP header

MIMEHDR5 = MIME/ HTTP header

options for RUNMODE=any

OPENMODE = REPLACE

APPEND

COLHEAD = Y

N

FORMATS = Y

N

LABELS = Y

N

PW = password

SEPCHAR = separator (hex)

VAR = variable

WHERE = where- expression

%EVAL

%EVAL (argument)

Reference for language elements
Version 4.1

2597

%INDEX

%INDEX (source , search)

%LEFT

%LEFT (argument)

%LENGTH

%LENGTH (argument)

%LOWCASE

%LOWCASE (argument)

%NRBQUOTE

%NRBQUOTE (argument)

%NRQUOTE

%NRQUOTE (argument)

%NRSTR

%NRSTR (argument)

Reference for language elements
Version 4.1

2598

%QCMPRES

%QCMPRES (argument)

%QLEFT

%QLEFT (argument)

%QLOWCASE

%QLOWCASE (argument)

%QSCAN

%QSCAN (source , n

, delimiters

)

%QSUBSTR

%QSUBSTR (source , pos

, length

)

%QSYSFUNC

%QSYSFUNC (funct ion- name (

,

argument

)

, format

)

Reference for language elements
Version 4.1

2599

%QTRIM

%QTRIM (argument)

%QUOTE

%QUOTE (argument)

%QUPCASE

%QUPCASE (argument)

%SCAN

%SCAN (source , n

, delimiters

)

%STR

%STR (argument)

%SUBSTR

%SUBSTR (source , posit ion

, length

)

%SUPERQ

%SUPERQ (argument)

Reference for language elements
Version 4.1

2600

%SYMEXIST

%SYMEXIST (argument)

%SYMGLOBL

%SYMGLOBL (argument)

%SYMLOCAL

%SYMLOCAL (argument)

%SYSEVALF

%SYSEVALF (argument)

%SYSFUNC

%SYSFUNC (funct ion- name (

,

argument

)

, format

)

%SYSGET

%SYSGET (argument)

%SYSPROD

%SYSPROD (product)

Reference for language elements
Version 4.1

2601

%SYSRC

%SYSRC (character- string) ;

%TRIM

%TRIM (argument)

%UNQUOTE

%UNQUOTE (argument)

%UPCASE

%UPCASE (argument)

%VERIFY

%VERIFY (source , excerpt)

Reference for language elements
Version 4.1

2602

WPS Graphing

Global statements
These statements create AXIS definitions, provides footnotes and graphic options, and specifies
legend (key), pattern, and symbol definitions.

AXIS
Creates AXIS definitions which control properties, such as colour.

AXISn

options

;

options

COLOR = h- v- color

LABEL = NONE

(label- options)

MAJOR = NONE

(major- options)

MINOR = NONE

(HEIGHT = n

units

)

ORDER = value

a to b

by c

VALUE = NONE

(value- options)

Reference for language elements
Version 4.1

2603

label-options

"label- tex t"

ANGLE = 0

90

-90

COLOR = label- color

FONT = NONE

font- name

HEIGHT = n

units

JUSTIFY = CENTER

LEFT

RIGHT

ROTATE = 0

90

major-options

COLOR = major- color

HEIGHT = n

units

NUMBER = n

value-options

ANGLE = 90

-90

COLOR = value- color

FONT = value- font

HEIGHT = n

units

JUSTIFY = CENTER

LEFT

RIGHT

Reference for language elements
Version 4.1

2604

units

CELLS

CM

IN

PCT

PT

GOPTIONS
Sets various graphic options for the current session, for example, default colours, font sizes and the
default device.

GOPTIONS

options

;

Reference for language elements
Version 4.1

2605

options

CBACK = back- color

CBY = by- color

COLORS =

(

def- color

)

CPATTERN = pattern- color

CSYMBOL = symbol- color

CTEXT = tex t- color

CTITLE = t it le- color

DEVICE = GIF

JPEG

DISPLAY

NODISPLAY

FILLBORDERPRESERVE

FBP

= LOWER

L

UPPER

U

FTEXT = font- name

FTITLE = font- name

GACCESS = GSASFILE

SASGASTD

GOUTMODE = APPEND

REPLACE

GSFNAME = output- f ileref

GUNIT = units

HBY = n

units

HPOS = n

HTEXT = n

units

HTITLE = n

units

INTERPOL = JOIN

NEEDLE

NONE

RESET = ALL

GLOBAL

GOPTIONS

global- graphics- statements

(global- graphics- statements)

VPOS = n

XPIXELS = n

YPIXELS = n

Reference for language elements
Version 4.1

2606

units

CELLS

CM

IN

PCT

PT

global-graphics-statements

AXIS

FOOTNOTE

LEGEND

PATTERN

SYMBOL

TITLE

LEGEND
Specifies legend (key) definitions, for example, appearance, parameters and location.

LEGENDn

options

;

options

CBORDER = border- color

CFRAME = area- color

FRAME

LABEL = NONE

(label- options)

SHAPE = BAR = (l

units

, h

units

)

units

LINE = (l)

units

SYMBOL = (l

units

, h

units

)

units

VALUE = NONE

(value- options)

Reference for language elements
Version 4.1

2607

label-options

"label- tex t"

COLOR = label- color

FONT = NONE

label- font

HEIGHT = n

units

value-options

"value- tex t"

COLOR = value- color

FONT = NONE

value- font

HEIGHT = n

units

JUSTIFY = CENTER

LEFT

RIGHT

units

CELLS

CM

IN

PCT

PT

Reference for language elements
Version 4.1

2608

PATTERN
Specifies pattern type and colour.

PATTERNn

COLOR = pattern- color

VALUE = EMPTY

Ln

MEMPTY

MnNd

MnXd

MSOLID

Rn

SOLID

Xn

;

SYMBOL
Specifies plot attributes, for example, marker size, marker colour and interpolation.

SYMBOLn

options

;

Reference for language elements
Version 4.1

2609

options

CI = inter- color

COLOR = plot- color

CV = symbol- color

HEIGHT = n

units

INTERPOL = JOIN

NEEDLE

R

SPLINE

STEP

NONE

LINE = n

REPEAT = n

VALUE = plot- symbols

units

CELLS

CM

IN

PCT

PT

Reference for language elements
Version 4.1

2610

plot-symbols

CIRCLE

DIAMOND

DOT

FSQUARE

HASH

NONE

PLUS

SQUARE

STAR

TRIANGLE

U

X

Y

Z

Graphing procedures
These procedures create pie, horizontal and vertical displays. They also provide annotated, replay,
header, and footer features.

GANNO procedure

Supported statements
• PROC GANNO (page 2611)

Reference for language elements
Version 4.1

2611

PROC GANNO
Creates graphical output from instructions stored in an ANNOTATE dataset.

PROC GANNO

ANNOTATE = dataset

DATASYS

DESCRIPTION = "descript ion"

GOUT = catalog_name

NAME = "entry- name"

;

GBARLINE procedure

Supported statements
• PROC GBARLINE (page 2611)
• BAR (page 2612)
• BY (page 2614)
• FORMAT (page 2614)
• LABEL (page 2614)
• PLOT (page 2614)
• WHERE (page 2616)

PROC GBARLINE
Creates a vertical bar chart using specified data. Also allows plot data to be overlaid.

PROC GBARLINE

ANNOTATE = dataset

DATA = lookup_dataset

GOUT = catalog_name

;

Reference for language elements
Version 4.1

2612

BAR
Creates vertical bar charts.

BAR bar- variable

/ options A–M

options N–W

;

options A–M

AUTOREF

AXIS = AXISn

CAUTOREF

CAXIS = axes- color

CFRAME = area- color

CFREQ

CLIPREF

COUTLINE = out line- color

CPERCENT

CREF = ref- line- color

CTEXT = tex t- color

DESCRIPTION = "barchart- descript ion"

DISCRETE

FRAME

NOFRAME

FREQ = num- variable

LAUTOREF = reference- line- type

LEGEND = LEGENDn

LREF = reference- line- type

MAXIS = AXISn

MEAN

MIDPOINTS = "char- value"

num- value

a to b

by c

MINOR = number- of- minor- t icks

MISSING

Reference for language elements
Version 4.1

2613

options N–W

NAME = "barchart- name"

NOAXIS

NOBASEREF

NOLEGEND

NOZERO

OUTSIDE = CFREQ

CPERCENT|CPCT

FREQ

MEAN

PERCENT|PCT

SUM

PATTERNID = BY

GROUP

MIDPOINT

SUBGROUP

PERCENT

RAXIS = AXISn

REF = value

SPACE = n

SUBGROUP = sub- variable

SUM

SUMVAR = num- variable

TYPE = CFREQ

CPERCENT

FREQ

MEAN

PERCENT

SUM

WAUTOREF = reference- line- width

WIDTH = n

WOUTLINE = bar- out line- width

WREF = reference- line- width

Reference for language elements
Version 4.1

2614

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable- name =

label- name

;

PLOT
Overlays a plot on the bar chart. The variables are plotted on the horizontal and right-hand side.

PLOT / options ;

Reference for language elements
Version 4.1

2615

options

AUTOREF

AXIS = AXISn

CAXIS = ax is- color

CAUTOREF = reference- line- color

CFREQ

CLIPREF

CPERCENT

CREF = reference- line- color

CTEXT = tex t- color

FREQ

LAUTOREF = reference- line- type

LEGEND = LEGENDn

LREF = reference- line- type

MEAN

MINOR = number- of- minor- t icks

NOAXIS

NOLINE

NOMARKER

PERCENT

RAXIS = AXISn

REF = value- list

SUM

SUMVAR = plot- variable

TYPE = CFREQ

CPERCENT

FREQ

MEAN

PERCENT

SUM

WAUTOREF = reference- line- width

WREF = reference- line- width

Reference for language elements
Version 4.1

2616

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

GCHART procedure

Supported statements
• PROC GCHART (page 2616)
• BY (page 2617)
• FORMAT (page 2617)
• HBAR (page 2617)
• LABEL (page 2620)
• PIE (page 2620)
• VBAR (page 2622)
• WHERE (page 2624)

PROC GCHART
Enables the creation of multiple horizontal and vertical bar charts, and pie charts.

PROC GCHART

ANNOTATE = dataset

DATA = data- set
i

GOUT = dataset

;

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2617

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

HBAR
Creates horizontal bar charts.

HBAR bar- variable

/ options A–M

options N–W

;

Reference for language elements
Version 4.1

2618

options A–M

ANNOTATE = Annotate-data-set

AUTOREF

AXIS = AXISn

CAUTOREF

CAXIS = axes- color

CFRAME = area- color

CFREQ

CFREQLABEL = column- label|NONE

CLIPREF

COUTLINE = out line- color

CPERCENT

CPERCENTLABEL = column- label|NONE

CREF = ref- line- color

CTEXT = tex t- color

DESCRIPTION = "barchart- descript ion"

DISCRETE

FRAME

NOFRAME

FREQ

FREQ = num- variable

FREQLABEL = column- label|NONE

FRONTREF

G100

GAXIS = AXISn

GROUP = group- variable

LAUTOREF = reference- line- type

LEGEND = LEGENDn

LREF = reference- line- type

MAXIS = AXISn

MEAN

MEANLABEL = column- label|NONE

MIDPOINTS = "char- value"

num- value

a to b

by c

MINOR = number- of- minor- t icks

MISSING

Reference for language elements
Version 4.1

2619

options N–W

NAME = "barchart- name"

NOAXIS

NOBASEREF

NOZERO

NOLEGEND

NOSTATS

OUTSIDE = CFREQ

CPERCENT|CPCT

FREQ

MEAN

PERCENT|PCT

SUM

PATTERNID = BY

GROUP

MIDPOINT

SUBGROUP

PERCENT

PERCENTLABEL = column- label|NONE

PERCENTSUM

RAXIS = AXISn

REF = value

SPACE = n

SUBGROUP = sub- variable

SUM

SUMLABEL = column- label|NONE

SUMVAR = num- variable

TYPE = CFREQ

CPERCENT

FREQ

MEAN

PERCENT

SUM

WAUTOREF = reference- line- width

WIDTH = n

WOUTLINE = bar- out line- width

WREF = reference- line- width

Reference for language elements
Version 4.1

2620

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable- name =

label- name

;

PIE
Creates pie charts.

PIE pie- variable

/ options

;

Reference for language elements
Version 4.1

2621

options

ANGLE = degrees

CFILL = f ill- color

CLOCKWISE

COUTLINE = out line- color

SAME

CTEXT = "char- value"

DESCRIPTION = "descript ion"

DISCRETE

EXPLODE = "char- value"

num- value

a to b

by c

FREQ = num- variable

GROUP = grp- variable

INVISIBLE = "char- value"

num- value

a to b

by c

MISSING

NAME = "piechart- name"

OTHER = n

OTHERCOLOR = color

OTHERLABEL = "label- tex t"

MIDPOINTS = "num- value"

OLD

PERCENT = NONE

OUTSIDE

SLICE = NONE

OUTSIDE

SUBGROUP = subgroup- variable

SUMVAR = num- variable

VALUE = NONE

OUTSIDE

WOUTLINE = slice- out line- width

Reference for language elements
Version 4.1

2622

VBAR
Creates vertical bar charts.

VBAR bar- variable

/ options

;

Reference for language elements
Version 4.1

2623

options
ANNOTATE = Annotate-data-set

AUTOREF

AXIS = AXISn

CAUTOREF

CAXIS = axes- color

CFRAME = area- color

CFREQ

CLIPREF

COUTLINE = out line- color

CPERCENT

CREF = ref- line- color

CTEXT = tex t- color

DESCRIPTION = "barchart- descript ion"

DISCRETE

FRAME

NOFRAME

FREQ = num- variable

FRONTREF

G100

GAXIS = AXISn

GROUP = group- variable

LAUTOREF = reference- line- type

LEGEND = LEGENDn

LREF = reference- line- type

MAXIS = AXISn

MEAN

MIDPOINTS = "char- value"

num- value

a to b

by c

MINOR = number- of- minor- t icks

MISSING

NAME = "barchart- name"

NOAXIS

NOBASEREF

NOLEGEND

NOZERO

OUTSIDE = CFREQ

CPERCENT|CPCT

FREQ

MEAN

PERCENT|PCT

SUM

PATTERNID = BY

GROUP

MIDPOINT

SUBGROUP

PERCENT

PERCENTSUM

RAXIS = AXISn

REF = value

SPACE = n

SUBGROUP = sub- variable

SUM

SUMVAR = num- variable

TYPE = CFREQ

CPERCENT

FREQ

MEAN

PERCENT

SUM

WAUTOREF = reference- line- width

WIDTH = n

WOUTLINE = bar- out line- width

WREF = reference- line- width

Reference for language elements
Version 4.1

2624

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

GINSIDE procedure

Supported statements
• PROC GINSIDE (page 2624)
• ID (page 2624)

PROC GINSIDE
Tests a point to determine whether it is inside a polygon.

PROC GINSIDE DATA = data- set
i

MAP = data- set
i i

OUT = output- dataset
i i i

INCLUDEBORDER

INSIDEONLY

;

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Output dataset (page 16).

ID
Specifies the variables in a map dataset that define map areas.

ID variable- name ;

Reference for language elements
Version 4.1

2625

GMAP procedure

Supported statements
• PROC GMAP (page 2625)
• BY (page 2626)
• CHORO (page 2626)
• FORMAT (page 2628)
• ID (page 2628)
• LABEL (page 2628)
• WHERE (page 2628)

PROC GMAP
Creates a region-coloured map from a specified dataset containing map data points.

PROC GMAP

DATA = data- set
i

ALL

ANNOTATE = dataset

DENSITY = density- value

LOW

MEDIUM

HIGH

GOUT = output- catalog

IMAGEMAP = output- dataset

MAP = map- dataset

STRETCH

UNIFORM

;

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2626

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

CHORO
Creates a region-coloured 2D map where the regions are coloured to the specified response variable.

CHORO response- variable

/ options

;

Reference for language elements
Version 4.1

2627

options

ANNOTATE = annotate- dataset

CDEFAULT = empty- area- f ill- color

CEMPTY = empty- area- out line- color

COUTLINE = out line- color

CTEXT = tex t- color

DESCRIPTION = "descript ion"

DISCRETE

HTML = variable

HTML_LEGEND = variable

LEGEND = LEGENDn

LEVELS = number- of- response- levels

ALL

MIDPOINTS = "char- value"

num- value

a to b

by c

MISSING

NAME = "name"

NOLEGEND

PERCENT

RANGE

STATFMT = format-specification

STATISTIC = FIRST

SUM

FREQUENCY

MEAN

STRETCH

UNIFORM

URL = character- variable

WOUTLINE = area- out line- width

XSIZE = map- width

YSIZE = map- height

Reference for language elements
Version 4.1

2628

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID
Specifies the variables in a map dataset that define map areas.

ID variable- name ;

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable- name =

label- name

;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

GOPTIONS procedure

Supported statements
• PROC GOPTIONS (page 2629)

Reference for language elements
Version 4.1

2629

PROC GOPTIONS
Provides the current status of graphic options and graphic-related global statements.

PROC GOPTIONS

OPTION = opt ion

SHORT

;

GPLOT procedure

Supported statements
• PROC GPLOT (page 2629)
• BUBBLE (page 2630)
• BUBBLE2 (page 2632)
• BY (page 2634)
• FORMAT (page 2634)
• LABEL (page 2634)
• PLOT (page 2634)
• PLOT2 (page 2636)
• WHERE (page 2637)

PROC GPLOT
Plots pairs of variables against each other. Various interpolation methods can be used to connect the
plot data.

PROC GPLOT

ANNOTATE = dataset

DATA = data- set
i

GOUT = dataset

;

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2630

BUBBLE
Creates one or more bubble plots where the variables are plotted on the horizontal and left-hand side
vertical axis.

BUBBLE y- var * x- var
= z- var

/ options

;

Reference for language elements
Version 4.1

2631

options

AUTOHREF

AUTOVREF

BCOLOR = bubble- color

BFILL = SOLID|GRADIENT

BFONT = font

BLABEL

BSCALE = AREA|RADIUS

BSIZE = mult iplier

CAXIS = ax is- color

CAUTOHREF = x- autoref- color

CAUTOVREF = y- autoref- color

CFRAME = area- color

CHREF = x- ref- color

CTEXT = tex t- color

CVREF = y- ref- color

DESCRIPTION = "descript ion"

FRAME

NOFRAME

FRONTREF

GRID

HAXIS = AXISn

HMINOR = n

HREF = num- value

a to b by c

HREVERSE

HZERO

LAUTOHREF = n

LAUTOVREF = n

LHREF = n

LVREF = n

NAME = graph- name

NOAXIS

VAXIS = AXISn

VMINOR = n

VREF = num- value

a to b by c

VREVERSE

VZERO

WAUTOHREF = value- list

WAUTOVREF = value- list

WHREF = value- list

WVREF = value- list

Reference for language elements
Version 4.1

2632

BUBBLE2
Creates one or more bubble plots where the variables are plotted on the horizontal and right-hand side
vertical axis.

BUBBLE2 y- var * x- var
= z- var

/ options

;

Reference for language elements
Version 4.1

2633

options

AUTOHREF

AUTOVREF

BCOLOR = bubble- color

BFILL = SOLID|GRADIENT

BFONT = font

BLABEL

BSCALE = AREA|RADIUS

BSIZE = mult iplier

CAXIS = ax is- color

CAUTOHREF = x- autoref- color

CAUTOVREF = y- autoref- color

CFRAME = area- color

CHREF = x- ref- color

CTEXT = tex t- color

CVREF = y- ref- color

DESCRIPTION = "descript ion"

FRAME

NOFRAME

FRONTREF

GRID

HAXIS = AXISn

HMINOR = n

HREF = num- value

a to b by c

HREVERSE

HZERO

LAUTOHREF = n

LAUTOVREF = n

LHREF = n

LVREF = n

NAME = graph- name

NOAXIS

VAXIS = AXISn

VMINOR = n

VREF = num- value

a to b by c

VREVERSE

VZERO

WAUTOHREF = value- list

WAUTOVREF = value- list

WHREF = value- list

WVREF = value- list

Reference for language elements
Version 4.1

2634

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable- name =

label- name

;

PLOT
Creates one or more plots. The variables are plotted on the horizontal and left-hand side vertical axis.

PLOT y- var * x- var
= z- var

/ options

;

Reference for language elements
Version 4.1

2635

options

AREAS = n

AUTOHREF

AUTOVREF

CAXIS = x- y- color

CAUTOHREF = x- autoref- color

CAUTOVREF = y- autoref- color

CFRAME = area- color

CHREF = x- ref- color

COUTLINE = out line- color

CTEXT = tex t- color

CVREF = y- ref- color

DESCRIPTION = "graph- descript ion"

FRAME

NOFRAME

FRONTREF

GRID

HAXIS = AXISn

HMINOR = n

HREF = num- value

a to b by c

HREVERSE

HZERO

LAUTOHREF = n

LAUTOVREF = n

LEGEND = LEGENDn

LHREF = n

LVREF = n

NAME = graph- name

OVERLAY

REGEQN

SKIPMISS

VAXIS = AXISn

VMINOR = n

VREF = num- value

a to b by c

VREVERSE

VZERO

WAUTOHREF = value- list

WAUTOVREF = value- list

WHREF = value- list

WVREF = value- list

Reference for language elements
Version 4.1

2636

PLOT2
Creates one or more plots. The variables are plotted on the horizontal and right-hand side vertical axis.

PLOT2 y- var * x- var
= z- var

/ options

;

options

AREAS = n

AUTOVREF

CAXIS = x- y- color

CAUTOVREF = y- autoref- color

CFRAME = area- color

COUTLINE = out line- color

CTEXT = tex t- color

CVREF = y- ref- color

FRAME

NOFRAME

FRONTREF

GRID

LAUTOVREF = n

LEGEND = LEGENDn

LVREF = n

OVERLAY

REGEQN

SKIPMISS

VAXIS = AXISn

VMINOR = n

VREF = num- value

a to b by c

VREVERSE

VZERO

WAUTOVREF = value- list

WVREF = value- list

Reference for language elements
Version 4.1

2637

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

GPROJECT procedure

Supported statements
• PROC GPROJECT (page 2637)
• ID (page 2639)
• WHERE (page 2639)

PROC GPROJECT
Transforms map coordinates to a two-dimensional projected space.

PROC GPROJECT

option

;

Reference for language elements
Version 4.1

2638

Option

DATA = data- set
i

DATELINE

DEGREES

DEG

DUPOK

ASIS

EASTLONG

EAST

LATLON

LATLONG

LATMAX = number

LATMIN = number

LONGMAX = number

LONGMIN = number

MERIDIAN = number

NODATELINE

NODUP

NOASIS

NOPARMIN

NORANGECHECK

OUT = output- dataset
i i

PARADIV = number

PARALLEL1

PARALEL1

= number

PARALLEL2

PARALEL2

= number

PARMIN

PIN

= data- set
i i i

PARMOUT

POUT

PARMOUT

POUT

= output- dataset
iv

PARMENTRY

PENTRY

= dataset

POLELAT = number

POLELONG = number

PROJECT = ADAMS

AITOFF

ALBERS

APIANUS

ARAGO

BEHRMANN

BRAUN

CYLINDRI

ECKERT1

ECKERT3

ECKERT5

EQUIRECT

GALL

GNOMON

HAMMER

KVRSKY7

LAMBERT

MARINUS

MILLER1

MILLER2

NONE

ORTHO

PARABOLI

PETERS

PUTNINS4

ROBINSON

STEREO

WINKEL2

RADIANS

NODEG

WESTLONG

WEST

Reference for language elements
Version 4.1

2639

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Input dataset (page 16).

iv See Output dataset (page 16).

ID
Specifies the variables in a map dataset that define map areas.

ID variable- name ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

GREDUCE procedure

Supported statements
• PROC GREDUCE (page 2639)
• BY (page 2640)
• ID (page 2640)

PROC GREDUCE
Creates a low-resolution map from the specified map dataset using on a priority variable added to the
output map dataset.

PROC GREDUCE

option

;

Reference for language elements
Version 4.1

2640

option

DATA = data- set
i

E1 = min- distance

E2 = min- distance

E3 = min- distance

E4 = min- distance

E5 = min- distance

N1 = max- points

N2 = max- points

N3 = max- points

N4 = max- points

N5 = max- points

NOCLEAN

OUT = output- dataset
i i

i See Input dataset (page 16).

ii See Output dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

ID
Specifies the variables in a map dataset that define map areas.

ID variable- name ;

Reference for language elements
Version 4.1

2641

GREMOVE procedure

Supported statements
• PROC GREMOVE (page 2641)
• BY (page 2641)
• ID (page 2642)

PROC GREMOVE
Appends a density variable to the map dataset. The density variable can be used in the GMAP
procedure to draw a lower-resolution version of the map.

PROC GREMOVE

option

;

option

DATA = data- set
i

FUZZ = fuzz- factor

NODECYCLE

NC

OUT = output- data- set
i i

i See Input dataset (page 16).

ii See Output dataset (page 16).

BY
Specifies the variables in a map dataset that define regions (a group of areas).

BY

DESCENDING

by- variable

NOTSORTED

;

Reference for language elements
Version 4.1

2642

ID
Specifies the variables in a map dataset that define map areas.

ID variable- name ;

GREPLAY procedure

Supported statements
• PROC GREPLAY (page 2642)
• DEVICE (page 2642)
• DELETE (page 2643)
• IGOUT (page 2643)
• LIST (page 2643)
• QUIT (page 2643)
• REPLAY (page 2644)

PROC GREPLAY
Replays graphics output entries that are stored in a WPS catalog.

PROC GREPLAY

IGOUT = dataset

NOFS

;

DEVICE
Specifies the device driver to use when using the GREPLAY procedure.

DEVICE device- name ;

Reference for language elements
Version 4.1

2643

DELETE
Removes graphic entries from the catalog.

DELETE catalog- entry- name

catalog- entry- index

ALL

;

IGOUT
Specifies the input catalog for use.

IGOUT

l ibname .

catalog ;

LIST
Lists the graphic entries that exist in the graphics catalog.

LIST IGOUT ;

QUIT
Quits the procedure.

QUIT ;

Reference for language elements
Version 4.1

2644

REPLAY
Selects and replays the graphics entries in the input catalog.

REPLAY catalog- entry- name

catalog- entry- index

FIRST

LAST

ALL

;

GSLIDE procedure

Supported statements
• PROC GSLIDE (page 2644)

PROC GSLIDE
Adds header and footer information to graphical output from an ANNOTATE dataset.

PROC GSLIDE

ANNOTATE = dataset

BORDER

CFRAME = frame- color

DESCRIPTION = "descript ion"

FRAME

GOUT = catalog_name

LFRAME = l ine- type

NAME = "entry- name"

WFRAME = n

;

Reference for language elements
Version 4.1

2645

MAPIMPORT procedure

Supported statements
• PROC MAPIMPORT (page 2645)
• ID (page 2645)
• EXCLUDE (page 2646)
• RENAME (page 2646)
• SELECT (page 2646)

PROC MAPIMPORT
Imports ESRI shapefile data into a WPS map dataset.

PROC MAPIMPORT

option

;

option

OUT = map- data- set
i

DATAFILE = "path- to- shapefile"

CONTENTS

CREATE_ID_

i See Output dataset (page 16).

ID
Specifies the variables in a map dataset that define map areas, and reorders the map areas based on
the specified variables.

ID 'f ield- ident if ier' ;

Reference for language elements
Version 4.1

2646

EXCLUDE
Specifies one or more field identifier that are excluded from the output map dataset.

EXCLUDE 'f ield- ident if ier' ;

RENAME
Renames a specified field identifier in the output map dataset.

RENAME 'f ield- ident if ier' = vairable- name ;

SELECT
Specifies one or more field identifier that are included in the output map dataset. An excluded field
identifier cannot be specified in the SELECT statement.

SELECT 'f ield- ident if ier' ;

SGPANEL procedure

Supported statements
• PROC SGPANEL (page 2647)
• BAND (page 2648)
• BUBBLE (page 2650)
• BY (page 2652)
• COLAXIS (page 2652)
• DENSITY (page 2654)
• FORMAT (page 2656)
• HBAR (page 2656)
• HBARPARM (page 2658)
• HBOX (page 2660)
• HIGHLOW (page 2663)

Reference for language elements
Version 4.1

2647

• HISTOGRAM (page 2665)
• HLINE (page 2666)
• KEYLEGEND (page 2668)
• LABEL (page 2670)
• LINEPARM (page 2670)
• LOESS (page 2671)
• NEEDLE (page 2674)
• PANELBY (page 2676)
• PBSPLINE (page 2677)
• REFLINE (page 2680)
• REG (page 2682)
• ROWAXIS (page 2685)
• SCATTER (page 2687)
• SERIES (page 2690)
• STEP (page 2693)
• VBAR (page 2696)
• VBARPARM (page 2698)
• VBOX (page 2700)
• VECTOR (page 2703)
• VLINE (page 2704)
• WHERE (page 2706)

PROC SGPANEL
Outputs multiple plots where each plot is determined by the class of data in the input dataset.

PROC SGPANEL ;

Reference for language elements
Version 4.1

2648

option

DATA = data- set
i

CYCLEATTRS

NOCYCLEATTRS

DESCRIPTION

DES

= "tex t- string"

NOAUTOLEGEND

PAD = dimension

(pad- option)

i See Input dataset (page 16).

pad-option

LEFT = dimension

RIGHT = dimension

TOP = dimension

BOTTOM = dimension

dimension

dimension

CM

IN

MM

PCT

%

PT

PX

BAND
Draws band plots.

BAND X = variable

Y = variable

UPPER = numeric- value

numeric- variable

LOWER = numeric- value

numeric- variable

/ option

;

Reference for language elements
Version 4.1

2649

option

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELLOWER = "tex t- string"

CURVELABELPOS = AUTO

END

MAX

MIN

START

CURVELABELUPPER = "tex t- string"

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MODELNAME = "plot- name"

NAME = "tex t- string"

NOEXTEND

NOMISSINGGROUP

OUTLINE

NOOUTLINE

TRANSPARENCY = value

TYPE = SERIES

STEP

Reference for language elements
Version 4.1

2650

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

BUBBLE
Draws bubble plots.

BUBBLE X = variable Y = variable SIZE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2651

option

BRADIUSMAX = numeric- value

BRADIUSMIN = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOMISSINGGROUP

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2652

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

COLAXIS
Specifies options for the column axes used in each graph.

COLAXIS option ;

Reference for language elements
Version 4.1

2653

option
ALTERNATE

DISPLAY = ALL

NONE

(NOLABEL

NOLINE

NOTICKS

NOVALUES

)

FITPOLICY = ROTATE

ROTATETHIN

STAGGER

STAGGERROTATE

STAGGERTHIN

THIN

GRID

INTEGER

INTERVAL = AUTO

SECOND

MINUTE

HOUR

DAY

WEEK

TENDAY

SEMIMONTH

MONTH

QUARTER

SEMIYEAR

YEAR

LABEL = "tex t- string"

LABELATTRS = style- element

(text- option)

(text- option)

LOGBASE = 2

10

e

LOGSTYLE = LINEAR

LOGEXPAND

LOGEXPONENT

MAX = numeric- value

MIN = numeric- value

MINOR

NOTIMESPLIT

OFFSETMAX = numeric- value

OFFSETMIN = numeric- value

REFTICKS

= (LABEL

VALUES

)

REVERSE

THRESHOLDMAX = numeric- value

THRESHOLDMIN = numeric- value

TICKVALUEFORMAT = DATA

format

TYPE = DISCRETE

LINEAR

LOG

TIME

VALUEATTRS = style- element

(text- option)

(text- option)

VALUES = values- list

VALUESHINT

Reference for language elements
Version 4.1

2654

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

values-list

value

value- 1 TO value- 2 BY increment- value

DENSITY
Draws density curves.

DENSITY response- variable

/ option

;

Reference for language elements
Version 4.1

2655

option

FREQ = numeric- variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

TRANSPARENCY = numeric- value

TYPE = NORMAL

(normal- option)

KERNEL

(kernel- option)

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

kernel-option

C = numeric- value

WEIGHT = NORMAL

QUADRATIC

TRIANGULAR

normal-option

MU = numeric- value

SIGMA = numeric- value

Reference for language elements
Version 4.1

2656

units

CM

IN

MM

PCT

%

PT

PX

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

HBAR
Draws horizontal bar charts using unsummarised data.

HBAR category- variable

/ option

;

Reference for language elements
Version 4.1

2657

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = STACK

CLUSTER

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2658

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

HBARPARM
Draws horizontal bar charts using summarised data.

HBARPARM CATEGORY = category- variable RESPONSE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2659

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = CLUSTER

STACK

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2660

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

HBOX
Draws horizontal box plots.

HBOX analysis- variable

/ option

;

Reference for language elements
Version 4.1

2661

option
BOXWIDTH = numeric- value

CAPSHAPE = BRACKET

LINE

SERIF

CATEGORY = category- variable

CLUSTERWIDTH = numeric- value

CONNECT = MEAN

MEDIAN

Q1

Q3

MIN

MAX

CONNECTATTRS = style- element

(line- option)

(line- option)

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

EXTREME

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LABELFAR

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MEANATTRS = style- element

(marker- option)

(marker- option)

MEDIANATTRS = style- element

(line- option)

(line- option)

MISSING

NAME = "tex t- string"

NOMEAN

NOMEAN

NOMEDIAN

NOOUTLIERS

NOTCHES

OUTLIERATTRS = style- element

(marker- option)

(marker- option)

PERCENTILE = 1

2

3

4

5

SPREAD

TRANSPARENCY = value

WHISKERATTRS = style- element

(line- option)

(line- option)

Reference for language elements
Version 4.1

2662

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2663

HIGHLOW
Draws high-low plots for categorised data.

HIGHLOW X = variable

Y = variable

HIGH = numeric- variable LOW = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2664

option

BARWIDTH = numeric- value

CLOSE = numeric- variable

CLUSTERWIDTH = numeric- value

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = OVERLAY

CLUSTER

GROUPORDER = ASCENDING

DESCENDDING

DATA

HIGHCAP = column

SERIF

BARBEDARROW

FILLEDARROW

OPENARROW

CLOSEDARROW

NONE

HIGHLABEL = variable

INTERVALBARWIDTH = numeric- value

LABELATTRS = style- element

(text- option)

(text- option)

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

LOWCAP = column

SERIF

BARBEDARROW

FILLEDARROW

OPENARROW

CLOSEDARROW

NONE

LOWLABEL = variable

NOMISSINGGROUP

NAME = "tex t- string"

OPEN = numeric- variable

OUTLINE

NOOUTLINE

TRANSPARENCY = value

TYPE = BAR

LINE

URL = character- variable

Reference for language elements
Version 4.1

2665

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

HISTOGRAM
Draws histograms.

HISTOGRAM response- variable

/ option

;

Reference for language elements
Version 4.1

2666

option

BINSTART = numeric- value

BINWIDTH = numeric- value

BOUNDARY = LOWER

UPPER

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

NBINS = numeric- value

OUTLINE

NOOUTLINE

SCALE = COUNT

PERCENT

PROPORTION

SHOWBINS

TRANSPARENCY = numeric- value

fill-option

COLOR = color

TRANSPARENCY = numeric- value

HLINE
Draws horizontal line plots using unsummarised data.

HLINE category- variable

/ option

;

Reference for language elements
Version 4.1

2667

option

BREAK

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FREQ = numeric- variable

GROUP = variable

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2668

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

KEYLEGEND
Specifies options for legends added to the plots.

KEYLEGEND

name
/ option

;

Reference for language elements
Version 4.1

2669

option

ACROSS = n

BORDER

NOBORDER

DOWN = n

POSITION = BOTTOM

LEFT

RIGHT

TOP

TITLE = "tex t- string

TITLEATTRS = style- element

(text- option)

(text- option)

VALUEATTRS = style- element

(text- option)

(text- option)

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2670

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable- name =

label- name

;

LINEPARM
Draws one or more straight lines each defined by a point and gradient.

LINEPARM X = numeric- value

numeric- variable

Y = numeric- value

numeric- variable

SLOPE = numeric- value

numeric- variable
/ option

;

option

CLIP

CURVELABEL

= "tex t- string"

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELPOS = AUTO

MIN

MAX

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOEXTEND

NOMISSINGGROUP

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2671

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

LOESS
Draws fitted loess curves.

LOESS X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2672

option

ALPHA = numeric- value

CLM

= "tex t- string"

CLMATTRS = style- element

(clm- option)

CLMTRANSPARENCY = numeric- value

CURVELABEL

= numeric- value

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DEGREE = 1

2

GROUP = variable

INTERPOLATION = CUBIC

LINEAR

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MAXPOINTS = n

NAME = "tex t- string"

NOLEGCLM

NOLEGFIT

NOMARKERS

REWEIGHT = n

SMOOTH = numeric- value

WEIGHT = numeric- variable

Reference for language elements
Version 4.1

2673

clm-option

CLMFILLATTRS = style- element

(fill- option)

(fill- option)

CLMLINEATTRS = style- element

(line- option)

(line- option)

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

Reference for language elements
Version 4.1

2674

units

CM

IN

MM

PCT

%

PT

PX

NEEDLE
Draws needle plots.

NEEDLE X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2675

option

BASELINE = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2676

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

PANELBY
Used to determine the classification variables and how they are displayed.

PANELBY variable

/ option

;

Reference for language elements
Version 4.1

2677

option

COLHEADERPOS = TOP

BOTTOM

BOTH

COLUMNS = n

LAYOUT = LATTICE

PANEL

COLUMNLATTICE

ROWLATTICE

MISSING

NOVARNAME

ROWHEADERPOS = LEFT

RIGHT

BOTH

ROWS = n

SPACING = n

SPARSE

START = TOPLEFT

BOTTOMLEFT

UNISCALE = COLUMN

ROW

ALL

PBSPLINE
Draws fitted, penalised B-spline curves.

PBSPLINE X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2678

option

ALPHA = numeric- value

CLI

= "tex t- string"

CLIATTRS = style- element

(cli- option)

CLM

= "tex t- string"

CLMATTRS = style- element

(clm- option)

CLMTRANSPARENCY = numeric- value

CURVELABEL

= numeric- value

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DEGREE = n

FREQ = numeric- variable

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MAXPOINTS = n

NAME = "tex t- string"

NKNOTS = n

NOLEGCLI

NOLEGCLM

NOLEGFIT

NOMARKERS

SMOOTH = numeric- value

WEIGHT = numeric- variable

Reference for language elements
Version 4.1

2679

cli-option

CLILINEATTRS = style- element

(line- option)

(line- option)

clm-option

CLMFILLATTRS = style- element

(fill- option)

(fill- option)

CLMLINEATTRS = style- element

(line- option)

(line- option)

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

Reference for language elements
Version 4.1

2680

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

REFLINE
Draws one or more horizontal or vertical reference lines.

REFLINE variable

value / option

;

Reference for language elements
Version 4.1

2681

option

AXIS = X

Y

DISCRETEOFFSET = numeric- value

LABEL

= ("tex t- string")

LABELLOC = INSIDE

OUTSIDE

LABELPOS = AUTO

MIN

MAX

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOCLIP

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2682

REG
Draws fitted regression lines or curves.

REG X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2683

option

ALPHA = numeric- value

CLI

= "tex t- string"

CLIATTRS = style- element

(cli- option)

CLM

= "tex t- string"

CLMATTRS = style- element

(clm- option)

CLMTRANSPARENCY = numeric- value

CURVELABEL

= numeric- value

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DEGREE = n

FREQ = numeric- variable

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MAXPOINTS = n

NAME = "tex t- string"

NOLEGCLI

NOLEGCLM

NOLEGFIT

NOMARKERS

WEIGHT = numeric- variable

Reference for language elements
Version 4.1

2684

cli-option

CLILINEATTRS = style- element

(line- option)

(line- option)

clm-option

CLMFILLATTRS = style- element

(fill- option)

(fill- option)

CLMLINEATTRS = style- element

(line- option)

(line- option)

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

Reference for language elements
Version 4.1

2685

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

ROWAXIS
Specifies options for the row axes used in each graph

ROWAXIS option ;

Reference for language elements
Version 4.1

2686

option
ALTERNATE

DISPLAY = ALL

NONE

(NOLABEL

NOLINE

NOTICKS

NOVALUES

)

GRID

INTEGER

INTERVAL = AUTO

SECOND

MINUTE

HOUR

DAY

WEEK

TENDAY

SEMIMONTH

MONTH

QUARTER

SEMIYEAR

YEAR

LABEL = "tex t- string"

LABELATTRS = style- element

(text- option)

(text- option)

LOGBASE = 2

10

e

LOGSTYLE = LINEAR

LOGEXPAND

LOGEXPONENT

MAX = numeric- value

MIN = numeric- value

MINOR

NOTIMESPLIT

OFFSETMAX = numeric- value

OFFSETMIN = numeric- value

REFTICKS

= (LABEL

VALUES

)

REVERSE

THRESHOLDMAX = numeric- value

THRESHOLDMIN = numeric- value

TICKVALUEFORMAT = DATA

format

TYPE = DISCRETE

LINEAR

LOG

TIME

VALUEATTRS = style- element

(text- option)

(text- option)

VALUES = values- list

VALUESHINT

Reference for language elements
Version 4.1

2687

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

values-list

value

value- 1 TO value- 2 BY increment- value

SCATTER
Draws scatter plots.

SCATTER X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2688

option

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

ERRORBARATTRS = style- element

(line- option)

(line- option)

FREQ = numeric- variable

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERCHAR = variable

MARKERCHARATTRS = style- element

(text- option)

(text- option)

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

XERRORLOWER = numeric- variable

XERRORUPPER = numeric- variable

YERRORLOWER = numeric- variable

YERRORUPPER = numeric- variable

Reference for language elements
Version 4.1

2689

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2690

SERIES
Draws series plots using unsummarised data.

SERIES X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2691

option

BREAK

CLUSTERWIDTH = numeric- value

CURVELABEL

= "tex t- string"

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

Reference for language elements
Version 4.1

2692

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2693

STEP
Draws step plots.

STEP X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2694

option

BREAK

CLUSTERWIDTH = numeric- value

CURVELABEL

= "tex t- string"

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

ERRORBARATTRS = style- element

(line- option)

(line- option)

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

JUSTIFY = LEFT

CENTER

RIGHT

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

YERRORLOWER = numeric- variable

YERRORUPPER = numeric- variable

Reference for language elements
Version 4.1

2695

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2696

VBAR
Draws vertical bar charts using unsummarised data.

VBAR category- variable

/ option

;

Reference for language elements
Version 4.1

2697

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = STACK

CLUSTER

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2698

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

VBARPARM
Draws vertical bar charts using summarised data.

VBARPARM CATEGORY = category- variable RESPONSE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2699

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = CLUSTER

STACK

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2700

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

VBOX
Draws vertical box plots.

VBOX analysis- variable

/ option

;

Reference for language elements
Version 4.1

2701

option
BOXWIDTH = numeric- value

CAPSHAPE = BRACKET

LINE

SERIF

CATEGORY = category- variable

CLUSTERWIDTH = numeric- value

CONNECT = MEAN

MEDIAN

Q1

Q3

MIN

MAX

CONNECTATTRS = style- element

(line- option)

(line- option)

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

EXTREME

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LABELFAR

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MEANATTRS = style- element

(marker- option)

(marker- option)

MEDIANATTRS = style- element

(line- option)

(line- option)

MISSING

NAME = "tex t- string"

NOCAPS

NOMEAN

NOMEDIAN

NOOUTLIERS

NOTCHES

OUTLIERATTRS = style- element

(marker- option)

(marker- option)

PERCENTILE = 1

2

3

4

5

SPREAD

TRANSPARENCY = value

WHISKERATTRS = style- element

(line- option)

(line- option)

Reference for language elements
Version 4.1

2702

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2703

VECTOR
Draws vector plots.

VECTOR X = numeric- variable Y = numeric- variable

/ option

;

option

ARROWDIRECTION = IN

OUT

BOTH

ARROWHEADSHAPE = OPEN

CLOSED

FILLED

BARBED

DATALABEL

= variable>

DATALABELATTRS = style- element

(text- option)

(text- option)

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOARROWHEADS

NOMISSINGGROUP

TRANSPARENCY = numeric- value

XORIGIN = numeric- value

numeric- variable

YORIGIN = numeric- value

numeric- variable

Reference for language elements
Version 4.1

2704

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

VLINE
Draws vertical line plots using unsummarised data.

VLINE category- variable

/ option

;

Reference for language elements
Version 4.1

2705

option

BREAK

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FREQ = numeric- variable

GROUP = variable

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2706

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

2707

SGPLOT procedure

Supported statements
• PROC SGPLOT (page 2708)
• BAND (page 2709)
• BUBBLE (page 2711)
• BY (page 2713)
• DENSITY (page 2714)
• ELLIPSE (page 2715)
• FORMAT (page 2717)
• HBAR (page 2717)
• HBARPARM (page 2719)
• HBOX (page 2721)
• HLINE (page 2727)
• HIGHLOW (page 2724)
• HISTOGRAM (page 2726)
• KEYLEGEND (page 2729)
• LABEL (page 2731)
• LINEPARM (page 2731)
• LOESS (page 2733)
• NEEDLE (page 2736)
• PBSPLINE (page 2738)
• REFLINE (page 2741)
• REG (page 2743)
• SCATTER (page 2746)
• SERIES (page 2749)
• STEP (page 2752)
• VBAR (page 2755)
• VBARPARM (page 2757)
• VBOX (page 2759)
• VECTOR (page 2762)
• VLINE (page 2763)
• WATERFALL (page 2765)
• WHERE (page 2767)

Reference for language elements
Version 4.1

2708

• XAXIS (page 2767)
• X2AXIS (page 2769)
• YAXIS (page 2771)
• Y2AXIS (page 2773)

PROC SGPLOT
Draws one or more plots on a single set of axes

PROC SGPLOT

option

;

option

DATA = data- set
i

CYCLEATTRS

NOCYCLEATTRS

DESCRIPTION

DES

= "tex t- string"

NOAUTOLEGEND

PAD = dimension

(pad- option)

i See Input dataset (page 16).

pad-option

LEFT = dimension

RIGHT = dimension

TOP = dimension

BOTTOM = dimension

Reference for language elements
Version 4.1

2709

dimension

dimension

CM

IN

MM

PCT

%

PT

PX

BAND
Draws a band plot.

BAND X = variable

Y = variable

UPPER = numeric- value

numeric- variable

LOWER = numeric- value

numeric- variable

/ option

;

Reference for language elements
Version 4.1

2710

option

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELLOWER = "tex t- string"

CURVELABELPOS = AUTO

END

MAX

MIN

START

CURVELABELUPPER = "tex t- string"

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MODELNAME = "plot- name"

NAME = "tex t- string"

NOEXTEND

NOMISSINGGROUP

OUTLINE

NOOUTLINE

TRANSPARENCY = value

TYPE = SERIES

STEP

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2711

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

BUBBLE
Draws a bubble plot.

BUBBLE X = variable Y = variable SIZE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2712

option

BRADIUSMAX = numeric- value

BRADIUSMIN = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOMISSINGGROUP

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

URL = character- variable

X2AXIS

Y2AXIS

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2713

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2714

DENSITY
Draws a density curve.

DENSITY response- variable

/ option

;

option

FREQ = numeric- variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

TRANSPARENCY = numeric- value

TYPE = NORMAL

(normal- option)

KERNEL

(kernel- option)

X2AXIS

Y2AXIS

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

kernel-option

C = numeric- value

WEIGHT = NORMAL

QUADRATIC

TRIANGULAR

Reference for language elements
Version 4.1

2715

normal-option

MU = numeric- value

SIGMA = numeric- value

units

CM

IN

MM

PCT

%

PT

PX

ELLIPSE
Draws a confidence or prediction ellipse.

ELLIPSE X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2716

option

ALPHA = numeric- value

CLIP

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

TYPE = MEAN

PREDICTED

X2AXIS

Y2AXIS

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2717

units

CM

IN

MM

PCT

%

PT

PX

FORMAT
Adds formats to one or more variables in a dataset.

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

HBAR
Draws a horizontal bar chart using unsummarised data.

HBAR category- variable

/ option

;

Reference for language elements
Version 4.1

2718

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = STACK

CLUSTER

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2719

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

HBARPARM
Draws a horizontal bar chart using summarised data.

HBARPARM CATEGORY = category- variable RESPONSE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2720

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = CLUSTER

STACK

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2721

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

HBOX
Draws a horizontal box plot.

HBOX analysis- variable

/ option

;

Reference for language elements
Version 4.1

2722

option
BOXWIDTH = numeric- value

CAPSHAPE = BRACKET

LINE

SERIF

CATEGORY = category- variable

CLUSTERWIDTH = numeric- value

CONNECT = MEAN

MEDIAN

Q1

Q3

MIN

MAX

CONNECTATTRS = style- element

(line- option)

(line- option)

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

EXTREME

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LABELFAR

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MEANATTRS = style- element

(marker- option)

(marker- option)

MEDIANATTRS = style- element

(line- option)

(line- option)

MISSING

NAME = "tex t- string"

NOMEAN

NOMEAN

NOMEDIAN

NOOUTLIERS

NOTCHES

OUTLIERATTRS = style- element

(marker- option)

(marker- option)

PERCENTILE = 1

2

3

4

5

SPREAD

TRANSPARENCY = value

WHISKERATTRS = style- element

(line- option)

(line- option)

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2723

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2724

HIGHLOW
Draws a high-low plot for categorised data.

HIGHLOW X = variable

Y = variable

HIGH = numeric- variable LOW = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2725

option

BARWIDTH = numeric- value

CLOSE = numeric- variable

CLUSTERWIDTH = numeric- value

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = OVERLAY

CLUSTER

GROUPORDER = ASCENDING

DESCENDDING

DATA

HIGHCAP = column

SERIF

BARBEDARROW

FILLEDARROW

OPENARROW

CLOSEDARROW

NONE

HIGHLABEL = variable

INTERVALBARWIDTH = numeric- value

LABELATTRS = style- element

(text- option)

(text- option)

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

LOWCAP = column

SERIF

BARBEDARROW

FILLEDARROW

OPENARROW

CLOSEDARROW

NONE

LOWLABEL = variable

NOMISSINGGROUP

NAME = "tex t- string"

OPEN = numeric- variable

OUTLINE

NOOUTLINE

TRANSPARENCY = value

TYPE = BAR

LINE

URL = character- variable

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2726

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

HISTOGRAM
Draws a histogram

HISTOGRAM response- variable

/ option

;

Reference for language elements
Version 4.1

2727

option

BINSTART = numeric- value

BINWIDTH = numeric- value

BOUNDARY = LOWER

UPPER

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

NBINS = numeric- value

OUTLINE

NOOUTLINE

SCALE = COUNT

PERCENT

PROPORTION

SHOWBINS

TRANSPARENCY = numeric- value

X2AXIS

Y2AXIS

fill-option

COLOR = color

TRANSPARENCY = numeric- value

HLINE
Draws a horizontal line plot using unsummarised data.

HLINE category- variable

/ option

;

Reference for language elements
Version 4.1

2728

option

BREAK

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FREQ = numeric- variable

GROUP = variable

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

X2AXIS

Y2AXIS

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2729

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

KEYLEGEND
Specifies a legend and adds it to a plot.

KEYLEGEND

name
/ option

;

Reference for language elements
Version 4.1

2730

option

ACROSS = n

BORDER

NOBORDER

DOWN = n

LOCATION = OUTSIDE

INSIDE

POSITION = BOTTOM

BOTTOMLEFT

BOTTOMRIGHT

LEFT

RIGHT

TOP

TOPLEFT

TOPRIGHT

TITLE = "tex t- string

TITLEATTRS = style- element

(text- option)

(text- option)

VALUEATTRS = style- element

(text- option)

(text- option)

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

Reference for language elements
Version 4.1

2731

units

CM

IN

MM

PCT

%

PT

PX

LABEL
Adds labels to one or more variables in a dataset.

LABEL variable- name =

label- name

;

LINEPARM
Draws one or more straight lines each defined by a point and gradient.

LINEPARM X = numeric- value

numeric- variable

Y = numeric- value

numeric- variable

SLOPE = numeric- value

numeric- variable
/ option

;

Reference for language elements
Version 4.1

2732

option

CLIP

CURVELABEL

= "tex t- string"

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELPOS = AUTO

MIN

MAX

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOEXTEND

NOMISSINGGROUP

TRANSPARENCY = numeric- value

X2AXIS

Y2AXIS

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2733

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

LOESS
Draws a fitted loess curve.

LOESS X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2734

option

ALPHA = numeric- value

CLM

= "tex t- string"

CLMATTRS = style- element

(clm- option)

CLMTRANSPARENCY = numeric- value

CURVELABEL

= numeric- value

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DEGREE = 1

2

GROUP = variable

INTERPOLATION = CUBIC

LINEAR

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MAXPOINTS = n

NAME = "tex t- string"

NOLEGCLM

NOLEGFIT

NOMARKERS

REWEIGHT = n

SMOOTH = numeric- value

WEIGHT = numeric- variable

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2735

clm-option

CLMFILLATTRS = style- element

(fill- option)

(fill- option)

CLMLINEATTRS = style- element

(line- option)

(line- option)

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

Reference for language elements
Version 4.1

2736

units

CM

IN

MM

PCT

%

PT

PX

NEEDLE
Draws a needle plot.

NEEDLE X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2737

option

BASELINE = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

X2AXIS

Y2AXIS

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2738

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

PBSPLINE
Draws a fitted, penalised B-spline curve.

PBSPLINE X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2739

option

ALPHA = numeric- value

CLI

= "tex t- string"

CLIATTRS = style- element

(cli- option)

CLM

= "tex t- string"

CLMATTRS = style- element

(clm- option)

CLMTRANSPARENCY = numeric- value

CURVELABEL

= numeric- value

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DEGREE = n

FREQ = numeric- variable

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MAXPOINTS = n

NAME = "tex t- string"

NKNOTS = n

NOLEGCLI

NOLEGCLM

NOLEGFIT

NOMARKERS

SMOOTH = numeric- value

WEIGHT = numeric- variable

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2740

cli-option

CLILINEATTRS = style- element

(line- option)

(line- option)

clm-option

CLMFILLATTRS = style- element

(fill- option)

(fill- option)

CLMLINEATTRS = style- element

(line- option)

(line- option)

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

Reference for language elements
Version 4.1

2741

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

REFLINE
Draws one or more horizontal or vertical reference lines.

REFLINE variable

value / option

;

Reference for language elements
Version 4.1

2742

option

AXIS = X

X2

Y

Y2

DISCRETEOFFSET = numeric- value

LABEL

= ("tex t- string")

LABELLOC = INSIDE

OUTSIDE

LABELPOS = AUTO

MIN

MAX

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOCLIP

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2743

REG
Draws a fitted regression line or curve.

REG X = numeric- variable Y = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2744

option

ALPHA = numeric- value

CLI

= "tex t- string"

CLIATTRS = style- element

(cli- option)

CLM

= "tex t- string"

CLMATTRS = style- element

(clm- option)

CLMTRANSPARENCY = numeric- value

CURVELABEL

= numeric- value

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DEGREE = n

FREQ = numeric- variable

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MAXPOINTS = n

NAME = "tex t- string"

NOLEGCLI

NOLEGCLM

NOLEGFIT

NOMARKERS

WEIGHT = numeric- variable

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2745

cli-option

CLILINEATTRS = style- element

(line- option)

(line- option)

clm-option

CLMFILLATTRS = style- element

(fill- option)

(fill- option)

CLMLINEATTRS = style- element

(line- option)

(line- option)

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

Reference for language elements
Version 4.1

2746

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

SCATTER
Draws a scatter plot.

SCATTER X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2747

option

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

ERRORBARATTRS = style- element

(line- option)

(line- option)

FREQ = numeric- variable

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERCHAR = variable

MARKERCHARATTRS = style- element

(text- option)

(text- option)

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

X2AXIS

XERRORLOWER = numeric- variable

XERRORUPPER = numeric- variable

Y2AXIS

YERRORLOWER = numeric- variable

YERRORUPPER = numeric- variable

Reference for language elements
Version 4.1

2748

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2749

SERIES
Draws a series plot using unsummarised data.

SERIES X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2750

option

BREAK

CLUSTERWIDTH = numeric- value

CURVELABEL

= "tex t- string"

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2751

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2752

STEP
Draws a step plot.

STEP X = variable Y = variable

/ option

;

Reference for language elements
Version 4.1

2753

option
BREAK

CLUSTERWIDTH = numeric- value

CURVELABEL

= "tex t- string"

CURVELABELATTRS = style- element

(text- option)

(text- option)

CURVELABELLOC = OUTSIDE

INSIDE

CURVELABELPOS = AUTO

END

MAX

MIN

START

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

ERRORBARATTRS = style- element

(line- option)

(line- option)

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

JUSTIFY = LEFT

CENTER

RIGHT

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

NOMISSINGGROUP

TRANSPARENCY = numeric- value

URL = character- variable

X2AXIS

Y2AXIS

YERRORLOWER = numeric- variable

YERRORUPPER = numeric- variable

Reference for language elements
Version 4.1

2754

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2755

VBAR
Draws a vertical bar chart using unsummarised data.

VBAR category- variable

/ option

;

Reference for language elements
Version 4.1

2756

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = STACK

CLUSTER

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2757

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

VBARPARM
Draws a vertical bar chart using summarised data.

VBARPARM CATEGORY = category- variable RESPONSE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2758

option

BARWIDTH = numeric- value

CLUSTERWIDTH = numeric- value

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

GROUP = variable

GROUPDISPLAY = CLUSTER

STACK

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

NAME = "tex t- string"

OUTLINE

NOOUTLINE

TRANSPARENCY = numeric- value

URL = character- variable

fill-option

COLOR = color

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2759

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

VBOX
Draws a vertical box plot.

VBOX analysis- variable

/ option

;

Reference for language elements
Version 4.1

2760

option
BOXWIDTH = numeric- value

CAPSHAPE = BRACKET

LINE

SERIF

CATEGORY = category- variable

CLUSTERWIDTH = numeric- value

CONNECT = MEAN

MEDIAN

Q1

Q3

MIN

MAX

CONNECTATTRS = style- element

(line- option)

(line- option)

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

DISCRETEOFFSET = numeric- value

EXTREME

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FREQ = numeric- variable

GROUP = variable

GROUPDISPLAY = CLUSTER

OVERLAY

GROUPORDER = ASCENDING

DESCENDING

DATA

LABELFAR

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MEANATTRS = style- element

(marker- option)

(marker- option)

MEDIANATTRS = style- element

(line- option)

(line- option)

MISSING

NAME = "tex t- string"

NOCAPS

NOMEAN

NOMEDIAN

NOOUTLIERS

NOTCHES

OUTLIERATTRS = style- element

(marker- option)

(marker- option)

PERCENTILE = 1

2

3

4

5

SPREAD

TRANSPARENCY = value

WHISKERATTRS = style- element

(line- option)

(line- option)

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2761

fill-option

COLOR = color

TRANSPARENCY = numeric- value

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

Reference for language elements
Version 4.1

2762

VECTOR
Draws a vector plot.

VECTOR X = numeric- variable Y = numeric- variable

/ option

;

option

ARROWDIRECTION = IN

OUT

BOTH

ARROWHEADSHAPE = OPEN

CLOSED

FILLED

BARBED

DATALABEL

= variable>

DATALABELATTRS = style- element

(text- option)

(text- option)

GROUP = variable

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

NAME = "tex t- string"

NOARROWHEADS

NOMISSINGGROUP

TRANSPARENCY = numeric- value

X2AXIS

XORIGIN = numeric- value

numeric- variable

Y2AXIS

YORIGIN = numeric- value

numeric- variable

Reference for language elements
Version 4.1

2763

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

VLINE
Draws a vertical line plot using unsummarised data.

VLINE category- variable

/ option

;

Reference for language elements
Version 4.1

2764

option

BREAK

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FREQ = numeric- variable

GROUP = variable

GROUPORDER = ASCENDING

DESCENDING

DATA

LEGENDLABEL = "tex t- string"

LINEATTRS = style- element

(line- option)

(line- option)

MARKERATTRS = style- element

(marker- option)

(marker- option)

MARKERS

NAME = "tex t- string"

RESPONSE = response- variable

STAT = FREQ

MEAN

SUM

TRANSPARENCY = numeric- value

X2AXIS

Y2AXIS

line-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2765

marker-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

WATERFALL
Draws a waterfall plot.

VLINE CATEGORY = variable RESPONSE = numeric- variable

/ option

;

Reference for language elements
Version 4.1

2766

option

BARWIDTH = numeric- value

COLORGROUP = variable

DATALABEL

= variable

DATALABELATTRS = style- element

(text- option)

(text- option)

FILL

NOFILL

FILLATTRS = style- element

(fill- option)

(fill- option)

FINALBARATTRS = style- element

(fill- option)

(fill- option)

FINALBARTICKVALUE = "tex t- string"

INITIALBARATTRS = style- element

(fill- option)

(fill- option)

INITIALBARTICKVALUE = "tex t- string"

INITIALBARVALUE = number

NAME = "tex t- strinig"

OUTLINE

NOOUTLINE

STAT = MEAN

SUM

TRANSPARENCY = numeric- value

URL = character- variable

X2AXIS

Y2AXIS

Reference for language elements
Version 4.1

2767

fill-option

COLOR = color

TRANSPARENCY = numeric- value

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

XAXIS
Specifies options for the primary X-axis

XAXIS option ;

Reference for language elements
Version 4.1

2768

option
DISPLAY = ALL

NONE

(NOLABEL

NOLINE

NOTICKS

NOVALUES

)

FITPOLICY = ROTATE

ROTATETHIN

STAGGER

STAGGERROTATE

STAGGERTHIN

THIN

GRID

INTEGER

INTERVAL = AUTO

SECOND

MINUTE

HOUR

DAY

WEEK

TENDAY

SEMIMONTH

MONTH

QUARTER

SEMIYEAR

YEAR

LABEL = "tex t- string"

LABELATTRS = style- element

(text- option)

(text- option)

LOGBASE = 2

10

e

LOGSTYLE = LINEAR

LOGEXPAND

LOGEXPONENT

MAX = numeric- value

MIN = numeric- value

MINOR

NOTIMESPLIT

OFFSETMAX = numeric- value

OFFSETMIN = numeric- value

REFTICKS

REVERSE

THRESHOLDMAX = numeric- value

THRESHOLDMIN = numeric- value

TICKVALUEFORMAT = DATA

format

TYPE = DISCRETE

LINEAR

LOG

TIME

VALUEATTRS = style- element

(text- option)

(text- option)

VALUES = values- list

VALUESHINT

Reference for language elements
Version 4.1

2769

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

values-list

value

value- 1 TO value- 2 BY increment- value

X2AXIS
Specifies options for the secondary Y-axis

X2AXIS option ;

Reference for language elements
Version 4.1

2770

option
DISPLAY = ALL

NONE

(

NOLABEL NOLINE NOTICKS NOVALUES

)

FITPOLICY = ROTATE

ROTATETHIN

STAGGER

STAGGERROTATE

STAGGERTHIN

THIN

GRID

INTEGER

INTERVAL = AUTO

SECOND

MINUTE

HOUR

DAY

WEEK

TENDAY

SEMIMONTH

MONTH

QUARTER

SEMIYEAR

YEAR

LABEL = "tex t- string"

LABELATTRS = style- element

(text- option)

(text- option)

LOGBASE = 2

10

e

LOGSTYLE = LINEAR

LOGEXPAND

LOGEXPONENT

MAX = numeric- value

MIN = numeric- value

MINOR

NOTIMESPLIT

OFFSETMAX = numeric- value

OFFSETMIN = numeric- value

REFTICKS

REVERSE

THRESHOLDMAX = numeric- value

THRESHOLDMIN = numeric- value

TICKVALUEFORMAT = DATA

format

TYPE = DISCRETE

LINEAR

LOG

TIME

VALUEATTRS = style- element

(text- option)

(text- option)

VALUES = values- list

VALUESHINT

Reference for language elements
Version 4.1

2771

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

values-list

value

value- 1 TO value- 2 BY increment- value

YAXIS
Specifies options for the primary Y-axis

YAXIS option ;

Reference for language elements
Version 4.1

2772

option

DISPLAY = ALL

NONE

(

NOLABEL NOLINE NOTICKS NOVALUES

)

GRID

INTEGER

INTERVAL = AUTO

SECOND

MINUTE

HOUR

DAY

WEEK

TENDAY

SEMIMONTH

MONTH

QUARTER

SEMIYEAR

YEAR

LABEL = "tex t- string"

LABELATTRS = style- element

(text- option)

(text- option)

LOGBASE = 2

10

e

LOGSTYLE = LINEAR

LOGEXPAND

LOGEXPONENT

MAX = numeric- value

MIN = numeric- value

MINOR

NOTIMESPLIT

OFFSETMAX = numeric- value

OFFSETMIN = numeric- value

REFTICKS

REVERSE

THRESHOLDMAX = numeric- value

THRESHOLDMIN = numeric- value

TICKVALUEFORMAT = DATA

format

TYPE = DISCRETE

LINEAR

LOG

TIME

VALUEATTRS = style- element

(text- option)

(text- option)

VALUES = values- list

VALUESHINT

Reference for language elements
Version 4.1

2773

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

values-list

value

value- 1 TO value- 2 BY increment- value

Y2AXIS
Specifies options for the secondary Y-axis

Y2AXIS option ;

Reference for language elements
Version 4.1

2774

option

DISPLAY = ALL

NONE

(

NOLABEL NOLINE NOTICKS NOVALUES

)

GRID

INTEGER

INTERVAL = AUTO

SECOND

MINUTE

HOUR

DAY

WEEK

TENDAY

SEMIMONTH

MONTH

QUARTER

SEMIYEAR

YEAR

LABEL = "tex t- string"

LABELATTRS = style- element

(text- option)

(text- option)

LOGBASE = 2

10

e

LOGSTYLE = LINEAR

LOGEXPAND

LOGEXPONENT

MAX = numeric- value

MIN = numeric- value

MINOR

NOTIMESPLIT

OFFSETMAX = numeric- value

OFFSETMIN = numeric- value

REFTICKS

REVERSE

THRESHOLDMAX = numeric- value

THRESHOLDMIN = numeric- value

TICKVALUEFORMAT = DATA

format

TYPE = DISCRETE

LINEAR

LOG

TIME

VALUEATTRS = style- element

(text- option)

(text- option)

VALUES = values- list

VALUESHINT

Reference for language elements
Version 4.1

2775

text-option

COLOR = color

FAMILY = "font- family"

SIZE = n

units

STYLE = ITALIC

NORMAL

WEIGHT = BOLD

NORMAL

units

CM

IN

MM

PCT

%

PT

PX

values-list

value

value- 1 TO value- 2 BY increment- value

SGSCATTER procedure

Supported statements
• PROC SGSCATTER (page 2776)
• BY (page 2776)
• COMPARE (page 2776)
• MATRIX (page 2780)
• PLOT (page 2782)
• WHERE (page 2786)

Reference for language elements
Version 4.1

2776

PROC SGSCATTER
Creates a grid of multiple scatter plots, where the number of plots are specified using one of the
COMPARE, MATRIX, or PLOT statements.

PROC SGSCATTER

option

;

option

DATA = data- set
i

DESCRIPTION

DES

= "tex t- string"

i See Input dataset (page 16).

BY
Groups the observations in a dataset using one or more specified variables.

BY

DESCENDING

variable- name

NOTSORTED

;

COMPARE
Creates a grid of scatter plots for the specified variables, where axes are shared for grid rows and grid
columns.

COMPARE X = variable

(variable)

Y = variable

(variable)

/ compare- option

;

Reference for language elements
Version 4.1

2777

compare-option

DATALABEL

= variable

ELLIPSE

= (ellipse- option)

GRID

GROUP = variable

JOIN

= (join- option)

LEGEND

= (legend- option)

LOESS

= (loess- option)

MARKERATTRS = style- element

(markerattrs- option)

(markerattrs- option)

NOLEGEND

PBSPLINE

= (pbspline- option)

REFTICKS

REG

= (reg- option)

SPACING = n

TRANSPARENCY = numeric- value

ellipse-option

ALPHA = numeric- value

TYPE = MEAN

PREDICTED

Reference for language elements
Version 4.1

2778

join-option

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

legend-option

ACROSS = n

DOWN = n

NOBORDER

NOTITLE

POSITION = BOTTOM

LEFT

RIGHT

TOP

TITLE = "tex t- string"

lineattrs-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

loess-option

ALPHA = numeric- value

CLM

DEGREE = 1

2

INTERPOLATION = CUBIC

LINEAR

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

NOGROUP

SMOOTH = numeric- value

Reference for language elements
Version 4.1

2779

markerattrs-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

pbspline-option

ALPHA = numeric- value

CLI

CLM

DEGREE = n

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

NKNOTS = n

NOGROUP

SMOOTH = numeric- value

reg-option

ALPHA = numeric- value

CLI

CLM

DEGREE = n

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

NOGROUP

Reference for language elements
Version 4.1

2780

units

CM

IN

MM

PCT

%

PX

MATRIX
Creates a series of scatter plots for all possible pairs of the specified variables, where each plot shows
one pair combination.

MATRIX numeric- variable

/ matrix- option

;

matrix-option

DATALABEL = variable

DIAGONAL = (HISTOGRAM

KERNEL

NORMAL

)

ELLIPSE

= (ellipse- option)

GROUP = variable

LEGEND = (legend- option)

MARKERATTRS = style- element

(markerattrs- option)

(markerattrs- option)

NOLEGEND

START = BOTTOMLEFT

TOPLEFT

TRANSPARENCY = numeric- value

Reference for language elements
Version 4.1

2781

ellipse-option

ALPHA = numeric- value

TYPE = MEAN

PREDICTED

legend-option

ACROSS = n

DOWN = n

NOBORDER

NOTITLE

POSITION = BOTTOM

LEFT

RIGHT

TOP

TITLE = "tex t- string"

markerattrs-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

units

CM

IN

MM

PCT

%

PX

Reference for language elements
Version 4.1

2782

PLOT
Creates a grid of scatter plots for the specified variables, where individual plots have their own axes.

PLOT y- variable

(y- variable)

* x- variable

(x- variable)

/ plot- option

;

Reference for language elements
Version 4.1

2783

plot-option

COLUMNS = n

DATALABEL

= variable

ELLIPSE

= (ellipse- option)

GRID

GROUP = variable

JOIN

= (join- option)

LEGEND = (legend- option)

LOESS

= (loess- option)

MARKERATTRS = style- element

(markerattrs- option)

(markerattrs- option)

NOLEGEND

PBSPLINE

= (pbspline- option)

REFTICKS

REG

= (reg- option)

ROWS = n

SPACING = n

TRANSPARENCY = numeric- value

UNISCALE = X

Y

ALL

ellipse-option

ALPHA = numeric- value

TYPE = MEAN

PREDICTED

Reference for language elements
Version 4.1

2784

join-option

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

legend-option

ACROSS = n

DOWN = n

NOBORDER

NOTITLE

POSITION = BOTTOM

LEFT

RIGHT

TOP

TITLE = "tex t- string"

LOCATION = CELL

OUTSIDE

lineattrs-option

COLOR = color

PATTERN = l ine- pattern

THICKNESS = n

units

Reference for language elements
Version 4.1

2785

loess-option

ALPHA = numeric- value

CLM

DEGREE = 1

2

INTERPOLATION = CUBIC

LINEAR

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

NOGROUP

SMOOTH = numeric- value

markerattrs-option

COLOR = color

SIZE = n

units

SYMBOL = symbol- name

pbspline-option

ALPHA = numeric- value

CLI

CLM

DEGREE = n

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

NKNOTS = n

NOGROUP

SMOOTH = numeric- value

Reference for language elements
Version 4.1

2786

reg-option

ALPHA = numeric- value

CLI

CLM

DEGREE = n

LINEATTRS = style- element

(lineattrs- option)

(lineattrs- option)

NOGROUP

units

CM

IN

MM

PCT

%

PX

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

2787

WPS Statistics

Statistics procedures

ACECLUS procedure

Supported statements
• PROC ACECLUS (page 2787)
• ATTRIB (page 2789)
• BY (page 2789)
• FORMAT (page 2789)
• FREQ (page 2789)
• INFORMAT (page 2790)
• LABEL (page 2790)
• VAR (page 2790)
• WHERE (page 2790)

PROC ACECLUS

PROC ACECLUS

option

;

Reference for language elements
Version 4.1

2788

option

ABSOLUTE

CONVERGE = c

DATA = input- dataset
i

INITIAL = DIAGONAL

D

FULL

F

IDENTITY

I

INPUT = input- dataset
i i

MAXITER = n

METHOD = COUNT

C

THRESHOLD

T

METRIC = DIAGONAL

D

FULL

F

IDENTITY

I

MPAIRS = m

N = n

NOPRINT

OUT = output- dataset
i i i

OUTSTAT = output- dataset
iv

PROPORTION

PERCENT

P

= p

PP

PREFIX = name

QQ

SHORT

SINGULAR

SING

= g

THRESHOLD

T

= t

Reference for language elements
Version 4.1

2789

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

iv See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

2790

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

ANOVA procedure

Supported statements
• PROC ANOVA (page 2791)
• ATTRIB (page 2792)
• BY (page 2792)
• CLASS (page 2792)
• FORMAT (page 2792)
• FREQ (page 2792)
• INFORMAT (page 2793)

Reference for language elements
Version 4.1

2791

• LABEL (page 2793)
• MEANS (page 2793)
• MODEL (page 2794)
• TEST (page 2795)
• WHERE (page 2795)

PROC ANOVA

PROC ANOVA

option

;

option

DATA = input- dataset
i

NAMELEN = length

NOPRINT

ORDER = DATA

FORMATTED

FREQ

INTERNAL

OUTSTAT = output- dataset
i i

PLOTS

(MAXPOINTS = NONE

number

) = NONE

i See Input dataset (page 16).

ii See Input dataset (page 16).

Reference for language elements
Version 4.1

2792

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

2793

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MEANS

MEANS effects

/ options

;

Reference for language elements
Version 4.1

2794

options

ALPHA = value

BON

CLDIFF

CLM

DUNCAN

DUNNETT

(value- list)

DUNNETTL

(value- list)

DUNNETTU

(value- list)

GABRIEL

GT2

LINES

LSD

NOSORT

REGWQ

SCHEFFE

SIDAK

SMM

SNK

T

TUKEY

WELCH

MODEL

MODEL dependents = effects

/ options

;

options

INT

INTERCEPT

Reference for language elements
Version 4.1

2795

TEST

TEST h = effect e = effect ;

WHERE

WHERE condit ion ;

ASSOCRULES procedure
The ASSOCRULES procedure performs associative rule mining or associative rule matching on WPS
datasets.

Rule mining is the default mode of operation, where ASSOCRULES takes an appropriately formatted
dataset as an input, and outputs a list of association rules to ODS tables and/or a new dataset.

Rule matching is the other mode of operation for ASSOCRULES, where existing association rules are
used from a prior invocation of the mining mode and applied to a new compatible dataset.

Overview of Association Rules ... 2796
Association rules describe co-occurrence relations between objects in a dataset.

About ASSOCRULES ... 2796
ASSOCRULES can both generate association rules datasets and also use previously generated
rules to report on matches against other datasets.

How to use ASSOCRULES .. 2799
Two examples are provided, one for each mode of operation. The first example uses
ASSOCRULES to mine association rules from a transaction dataset. The second example uses
ASSOCRULES to generate matches from existing association rules and a new dataset.

ASSOCRULES syntax .. 2803
Describes the syntax and options for ASSOCRULES and its contained statements.

Reference for language elements
Version 4.1

2796

Overview of Association Rules
Association rules describe co-occurrence relations between objects in a dataset.

For a dataset to be compatible with ASSOCRULES, it must consist of items grouped into transactions.
Such datasets are often called transaction datasets. Items and transactions are abstract variables that
can represent anything. For example, when analysing products bought in a shop, each transaction
in a dataset could contain a set of multiple items sold to a customer in a single sale. Alternatively, a
transaction dataset could contain a list of students and the subjects they have chosen to study; with
each student being a transaction, and each subject being an item within those transactions. Both of
these examples are given in How to use ASSOCRULES (page 2799).

Association rules for a transaction dataset describe co-occurrences within that dataset. For example,
a rule could state that customers buying bread and milk are also likely to buy cereal, or that a student
studying physics is also likely to study maths. The process of an algorithm discovering those rules is
called mining.

Once association rules have been mined for a transaction dataset, they can be stored in a rules
dataset, which can be matched in the future with new transaction datasets to ascertain how well that
new dataset matches those existing association rules.

About ASSOCRULES
ASSOCRULES can both generate association rules datasets and also use previously generated rules to
report on matches against other datasets.

Apriori Algorithm Implementations
ASSOCRULES can use two different implementations of the Apriori algorithm, as specified by the
procedure's options: either the open source Borgelt or a WPS implementation. The WPS algorithm is
included to enable future development of proprietary features.

Transaction datasets
ASSOCRULES requires datasets of transactions and items to only contain two types of variable: a
transaction ID and an item ID. These variables can be character or numeric.

For example, the following raw data could be collected concerning sales of products in a shop:

Transaction ID Milk Cereal Bread Eggs Crisps Jelly Sweets
1 1 1 0 0 0 0 0
2 1 0 1 1 0 0 0
3 0 0 0 0 1 1 1

Reference for language elements
Version 4.1

2797

For ASSOCRULES to process this raw data, it must be formatted into a two column dataset as follows:

Transaction ID Item ID
1 Milk
1 Cereal
2 Bread
3 Crisps
3 Jelly
2 Milk
2 Eggs
3 Sweets

Entries in the dataset do not have to be grouped by transaction, although if they are then they will
typically take less time to process.

The ordering of the individual items within a single transaction has no effect on the rules that
ASSOCRULES finds.

Dataset entries with missing values are dropped before the dataset is processed; for example, if a
Transaction ID is given without a corresponding item ID.

Rule Thresholds
To control the number of rules that are generated or used, and also to maximize their robustness and
relevance, ASSOCRULES can reject rules that fail to meet user-specified thresholds for the following
measures:

• Support: the proportion of transactions in a dataset in which an object appears. Support is
expressed as a decimal value between 0 and 1.

• Confidence: the proportion of transactions in a dataset in which a rule linking two objects has been
found to be true. Support is expressed as a decimal value between 0 and 1.

• Lift: the ratio of the observed support to that expected if the two linked objects were independent.

Use of system resources
Note:
The Apriori algorithm can use substantial system resources if the rule thresholds are set inappropriately
and/or the input dataset is large. If ASSOCRULES runs out of memory, it reports an error and terminates.
Under these circumstances, it is recommended that either the rule thresholds are changed, or the
SAMPLEPROBABILITY option is used to analyse a randomly selected subset of the data.

Reference for language elements
Version 4.1

2798

Mining of association rules from a transaction dataset

By default, ASSOCRULES mines association rules from a transaction dataset. This mode of operation is
employed if the INEST option is not specified.

Input
When mining association rules from a transaction dataset, ASSOCRULES accepts a transaction
dataset as its input.

Output
If ASSOCRULES is configured to mine association rules from a transaction dataset, the following outputs
can be specified:

• A sample of the rules generated is always written to the ODS tables. Options are available to set the
size, content and order of this sample.

• The rules generated can be saved in a non human-readable format for subsequent use with
ASSOCRULES in its other mode of operation: matching association rules to a transaction dataset.

• The rules generated can also be written to a dataset in human-readable form. The content and order
of this sample can be set.

Matching association rules to a transaction dataset

If the INEST option is specified, ASSOCRULES reports matches between a transaction dataset and
association rules it has previously generated in the rule mining mode of operation.

Input
To report on matches from association rules and a transaction dataset, ASSOCRULES requires:

• A dataset of rules previously generated by ASSOCRULES.
• A dataset of transactions in a format readable by ASSOCRULES.

Note:
The dataset of rules to be matched must have been generated from a dataset that is compatible with
the new dataset being matched against. The two datasets are viewed as compatible if they have the
same type and format of data (string or numeric) in each column.

Output
If ASSOCRULES is configured to generate matches between a previously generated dataset of rules and
a compatible dataset of transactions, you can specify the following outputs:

Reference for language elements
Version 4.1

2799

• A sample of the data on matches generated is always written to the ODS output. Options are
available to set the size, content and order of this sample.

• A full set of match data can be written to a dataset in human-readable form. The content and order
of this output can be set.

How to use ASSOCRULES
Two examples are provided, one for each mode of operation. The first example uses ASSOCRULES to
mine association rules from a transaction dataset. The second example uses ASSOCRULES to generate
matches from existing association rules and a new dataset.

Mining association rules from a transaction dataset

This example uses ASSOCRULES to mine association rules from a transaction dataset. This is the
default mode of operation if the INEST option is not specified.

This example is available as 13.0-AssocrulesMining.sas in the samples folder distributed with
WPS Analytics.

Transaction dataset
In this example, the ASSOCRULES procedure uses a simple dataset of nine transactions from a shop.
The first variable contains numerical transaction identifiers from 1 to 9. The second variable contains
items purchased. Part of the dataset is reproduced below:

Transaction Item
1 Cereal
2 Bread
2 Milk
2 Eggs

...

7 Eggs
8 Bacon
8 Sausages
9 Milk

The above dataset is stored in a WPS workspace named TransactionData1.

Example Code for the ASSOCRULES procedure
The SAS language code for the ASSOCRULES procedure in this example is:

PROC ASSOCRULES OUTEST=transoplib DATA=TransactionData1 MODE=WPL MINSUPPORT=1
 MINLIFT=4.0 RULESTOPRINT=10 SORTBY=(LIFT) PRINTCONFIDENCE PRINTLIFT;
 OUTPUT OUT=outputlib;
RUN;

Reference for language elements
Version 4.1

2800

Association rules are generated from the dataset DATA=TransactionData1 and saved to a dataset
named transoplib. Rules are generated using WPS' own implementation of the Apriori algorithm.
Rules will only be reported with a support greater than or equal to 1, and a lift greater than or equal to 4.
A maximum of 10 rules will be output to the ODS rules table. The output will include confidence and lift,
and will be sorted by lift.

Output ODS tables
The above dataset and code produces three ODS tables:

Configuration

Setting Value

Minimum support threshold 1

Lift threshold 4

Results summary

Result Value

Unique items 10

Total observations 22

Observations dropped 0

Input transactions 9

Rules 33

Association rules

Antecedent Consequent Confidence Lift

Bacon Bread Milk Eggs 1.000000 4.500000

Jelly Crisps 1.000000 4.500000

Crisps Sweets Jelly 1.000000 4.500000

Balloons Crisps Sweets Jelly 1.000000 4.500000

Balloons Jelly Crisps 1.000000 4.500000

Sweets Crisps 1.000000 4.500000

Balloons Crisps Sweets 0.500000 4.500000

Crisps Balloons 1.000000 4.500000

Balloons Jelly Sweets 0.500000 4.500000

Balloons Sweets 0.500000 4.500000

Reference for language elements
Version 4.1

2801

Output dataset
This example also produces an output dataset, outputlib. This dataset contains numbered columns
for each antecedent, followed by a column containing the consequent, and then details of: item set
support, body set support, confidence and lift.

Matching association rules to a transaction dataset

This example uses ASSOCRULES to generate matches from a previously saved association rules
dataset and a new transaction dataset. This mode of operation is invoked with the INEST option.

This example is available as 13.1-AssocrulesMatching.sas in the samples folder distributed with
WPS Analytics.

Preparation: Rule mining with a 2017 transaction dataset
This example uses a dataset of association rules produced from a simple transaction dataset of ten
students joining a college to study A levels in 2017. Part of the 2017 dataset is reproduced below:

Student Subject
John Physics
John Maths
John ComputerScience
Jane English

...

Jasper Physics
Julian Maths
Julian Physics
Julian Chemistry

The ASSOCRULES procedure is used in a similar way to the mining example 13.0-
AssocrulesMining.sas. Rules generated are stored as a dataset named alevelR.

Reference for language elements
Version 4.1

2802

Rule matching with a 2018 Transaction Dataset
The alevelR rules dataset is applied to a new transaction dataset of students and subjects from 2018,
named ALevels2018, part of which is reproduced below:

Student Subject
Simon Physics
Simon Maths
Simon ComputerScience
Sophie English

...

Steve Physics
Susan Maths
Susan Physics
Susan Chemistry

Details of the matches found are stored in the dataset AlevelM2018.

Example Code for the ASSOCRULES procedure
The SAS language code for the ASSOCRULES procedure in this example is:

PROC ASSOCRULES DATA=ALevels2018 PRINTCONFIDENCE INEST=alevelR;
 OUTPUT OUT=AlevelM2018;
RUN;

The presence of the INEST option instructs ASSOCRULES to run in rule matching mode, in this case
with a rules dataset called alevelR, matching against the transaction dataset ALevels2018. The
output includes confidence for each rule and is written to the dataset AlevelM2018.

Output ODS tables
The above dataset and code will produce two ODS tables as follows:

Configuration

Setting Value

Minimum support threshold 1

Match summary

Result Value

Rules 14

Total observations 27

Observations dropped 0

Input transactions 10

Matches reported 10

Reference for language elements
Version 4.1

2803

Output dataset
This example also produces an output dataset, AlevelM2018. This dataset contains columns for
transactions and consequents, followed by details of: item set support, body set support, confidence
and lift.

ASSOCRULES syntax
Describes the syntax and options for ASSOCRULES and its contained statements.

PROC ASSOCRULES .. 2803
Describes the options for the ASSOCRULES procedure.

OUTPUT ..2808
Describes the options for the OUTPUT statement available with the ASSOCRULES procedure.

PROC ASSOCRULES

Describes the options for the ASSOCRULES procedure.

PROC ASSOCRULES

opt ion

;

Options
The following options are available:

ANTECEDENTITEMSTOPRINT
Specifies the maximum number of antecedent items to print in the rules ODS table.

ANTECEDENTITEMSTOPRINT = number

If this option is not specified, it will default to five. Rules with more than this specified number of
items in their antecedents will have their antecedents truncated with an ellipsis at this length.
Must be greater than 1. A decimal value is truncated.

DATA
Specifies the dataset to be mined for association rules or to be matched against existing rules.

DATA = input- dataset

If the INEST option is not specified, DATA specifies the dataset to be mined for association rules.

Reference for language elements
Version 4.1

2804

If the INEST option is specified, association rules in the INEST dataset are matched to the
transactions in the DATA dataset specified with the ASSOCULES procedure. The results are
written to the OUTPUT dataset.
A DATA dataset specified with the ASSOCULES procedure must consist of two columns: the first
must contain a unique identifier for every transaction in the dataset; and the second must provide
item identifiers. Either column can be comprised of numbers or strings.

INEST
Configures ASSOCRULES to generate a dataset of matches from previously created association
rules and specifies the dataset containing those association rules. If omitted, ASSOCRULES
generates association rules from a dataset.

INEST = dataset

The rules in the specified dataset are matched to the transactions in the DATA dataset, which
must be also specified. The results can be written to a dataset specified in the OUTPUT
statement.
If you specify INEST, the input dataset specified by the DATA option must be in the same format
as the dataset used to generate the rules in the INEST rules dataset. If this is not the case, WPS
generates an error.

MAXITEMSPERRULE
Specifies the maximum number of items that can appear in a rule, or are required for matched
rules to be reported.

MAXITEMSPERRULE = number

If the INEST option is not specified, MAXITEMSPERRULE specifies the maximum number of items
that can appear in a rule.
If the INEST option is specified, MAXITEMSPERRULE specifies the maximum number of items
required for matched rules to be reported.
Must be greater than or equal to 1. A decimal value is truncated.

MINCONFIDENCE
Specifies the minimum level of confidence that a rule requires to be reported, or that is required
to report matches.

MINCONFIDENCE = number

If INEST is not specified, MINCONFIDENCE specifies the level of confidence that a rule must
have to be reported.
If INEST is specified, MINCONFIDENCE specifies the minimum confidence level required to report
matches.
If this option is not specified, the default is 0.5.
Must be between 0 (zero) and 1.

Reference for language elements
Version 4.1

2805

MINITEMSPERRULE
Specifies the minimum number of items that can appear in a rule, or that are required in a rule for
its matches to be reported.

MINITEMSPERRULE = number

If the INEST option is not specified, MINITEMSPERRULE specifies the minimum number of items
that can appear in a rule.
If the INEST option is specified, MINITEMSPERRULE specifies the minimum number of items
required in a rule for matches to be reported.
Must be greater than or equal to 1. A decimal value is truncated.

MINLIFT
Specifies the level of lift that a rule, or matches, requires to be reported.

MINLIFT = number

If the INEST option is not specified, MINLIFT specifies the level of lift that a rule must achieve to
be reported.
If the INEST option is specified, MINLIFT specifies the minimum lift required in a rule for
matches to be reported.
If this option is not specified, the default is 1.1.
Must be greater than 0 (zero).

MINSUPPORT
Specifies the support required for a rule or its matches to be reported.

MINSUPPORT = number

If INEST is not specified, MINSUPPORT is mandatory and specifies how much support a rule must
have for it to be reported.
If INEST is specified, MINSUPPORT specifies the minimum support required for a rule for matches
to be reported.
Must be greater than 0 (zero).

MODE
Specifies which rule mining implementation to use.

MODE = BORGELT

WPL

BORGELT, the default option, offers lower memory consumption and higher speed.
WPL is WPS Analytics' own algorithm, included to allow for future development of proprietary
features.

Reference for language elements
Version 4.1

2806

OUTEST
Specifies a WPS dataset to be populated with a machine readable representation of the
association rules found by the procedure.

OUTEST = dataset

The dataset can subsequently be loaded using the INEST option for rule matching against new
transaction data.
To generate a human-readable representation of the association rules, see the OUTPUT option.
The OUTEST option is not compatible with the INEST option. If the two are specified together, an
error is returned.

PRINTCONFIDENCE
Specifies that the rules table written to ODS output should include a confidence figure.

PRINTCONFIDENCE

PRINTBODYSETSUPPORT
Specifies that the rules table written to ODS output should include body set support.

PRINTBODYSETSUPPORT

PRINTITEMSETSUPPORT
Specifies that the rules table written to ODS output should include item set support.

PRINTITEMSETSUPPORT

PRINTLIFT
Specifies that the rules table written to ODS output should include lift.

PRINTLIFT

RULESTOPRINT
Specifies the maximum number of rules to print in the rules ODS table.

RULESTOPRINT = number

If this option is not specified, the default is 25.
RULESTOPRINT must be greater than or equal to 1. A decimal value is truncated.

SAMPLEPROBABILITY
Specifies the probability that each item in the input dataset is included in a subset used for data
mining. If the INEST option is present, this option has no effect.

SAMPLEPROBABILITY = number

Reference for language elements
Version 4.1

2807

If this option is not specified, the default is 1.0, which mines the entire input dataset.
Must be between 0 and 1.

SAMPLESEED
Specifies the seed used to initialize the random number generator that selects observations from
the input dataset.

SAMPLESEED = number

If the INEST option is specified, SAMPLESEED has no effect.
If this option is not specified, the random number generator is seeded with a value from the
system clock.
Must be greater than 0 and less than 1.

SORTBY
Specifies how to sort the association rules or matches in the rules table written to ODS output
and the output dataset specified by the OUTPUT statement.

SORTBY = ANTECEDENT

BODYSETSUPPORT

CONFIDENCE

CONSEQUENT

ITEMSETSUPPORT

LIFT

SUPPORT

TRANSACTION

If the INEST option is not specified, SORTBY specifies how to sort the association rules in the
rules ODS output and in the output dataset specified by the OUTPUT statement.
If the INEST option is specified, the SORTBY option specifies the fields that will be used to sort
the matches generated.

The options specify which column to sort by.
ANTECEDENT and TRANSACTION sort in lexicographic or numeric ascending order; whereas all
other options sort in descending order.
ANTECEDENT is only supported when the INEST option is not specified.
TRANSACTION is only supported when the INEST option is specified.

Reference for language elements
Version 4.1

2808

OUTPUT

Describes the options for the OUTPUT statement available with the ASSOCRULES procedure.

OUTPUT opt ion ;

Options
The following options are available:

OUT
Specifies a WPS dataset that is populated with a human-readable representation of the
association rules found. The order of the rules in the dataset can be controlled using the SORTBY
option.

OUT = output- dataset

If the INEST option is specified, the OUTPUT statement is mandatory and specifies a WPS
dataset that is populated with the matches found by matching the rules in the INEST dataset with
the transactions in the DATA dataset. The order of the matches in the dataset can be controlled
using the SORTBY option.
If INEST is not specified, the OUTPUT statement specifies a WPS dataset that will be populated
with the association rules that are found. The order of the rules in the dataset can be controlled
using the SORTBY= option.

BIN procedure

Supported statements
• PROC BIN (page 2809)
• ATTRIB (page 2809)
• BY (page 2810)
• FORMAT (page 2810)
• FREQ (page 2810)
• INFORMAT (page 2810)
• LABEL (page 2810)
• ID (page 2811)
• INPUT (page 2811)
• TARGET (page 2811)
• WHERE (page 2811)

Reference for language elements
Version 4.1

2809

PROC BIN

PROC BIN

options

;

options

BINS_META = input- dataset
i

BUCKET

QUANTILE

PSEUDO_QUANTILE

WINSOR WINSORRATE = number

COMPUTEQUANTILE

COMPUTESTATS

DATA = input- dataset
i i

NOPRINT

NUMBIN = number

OUTPUT = output- dataset
i i i

WOE

WOEADJUST = number

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2810

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2811

ID

ID variable- name ;

INPUT

INPUT variable- name

/ NUMBIN = number

;

TARGET

TARGET variable- name

/ LEVEL = BINARY

NOMINAL

ORDER = ASCENDING

DESCENDING

;

WHERE

WHERE condit ion ;

BOXPLOT procedure

Supported statements
• PROC BOXPLOT (page 2812)
• ATTRIB (page 2812)
• BY (page 2812)
• FORMAT (page 2813)
• ID (page 2813)
• INFORMAT (page 2813)
• LABEL (page 2813)

Reference for language elements
Version 4.1

2812

• PLOT (page 2813)
• WHERE (page 2815)

PROC BOXPLOT

PROC BOXPLOT DATA = input- dataset
i

BOX = boxplot- dataset
i i

HISTORY

HIST

= history- dataset
i i i

;

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2813

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

PLOT

PLOT variable- name

(variable- name)

* group- variable- name (block- variable- name)

options B- N

options O- W

;

Reference for language elements
Version 4.1

2814

options B-N

BLOCKVAR = variable- name

(variable- name)

BOXCONNECT

= MEAN

MEDIAN

MAX

MIN

Q1

Q3

BOXSTYLE = SKELETAL

SCHEMATIC

SCHEMATICID

SCHEMATICIDFAR

BOXWITHSCALE = value

CLIPFACTOR = value

CLIPLEGEND = "legend- text"

CLIPSUBCHAR = 'character'

GRID

HORIZONTAL

HREF = value

"value"

HREFLABELS = "label"

NOCHART

NOHLABEL

NOSERIFS

NOTCHES

Reference for language elements
Version 4.1

2815

options O-W

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

"foonote"

ODSFOOTNOTE2 = FOOTNOTE2

"foonote"

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

"t it le"

ODSTITLE2 = TITLE2

TITLE1

"t it le"

OUTBOX = output- dataset
i

OUTHISTORY = output- dataset
i i

OVERLAY = variable- name

(variable- name)

OVERLAYLEGLAB = "legend- text"

PCTLDEF = value

VREF = value

"value"

VREFLABELS = "label"

WHISKERPERCENTILE = value

i See Output dataset (page 16).

ii See Output dataset (page 16).

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2816

CANCORR procedure

Supported statements
• PROC CANCORR (page 2816)
• ATTRIB (page 2818)
• BY (page 2819)
• FORMAT (page 2819)
• FREQ (page 2819)
• INFORMAT (page 2819)
• LABEL (page 2819)
• PARTIAL (page 2820)
• VAR (page 2820)
• WEIGHT (page 2820)
• WHERE (page 2820)
• WITH (page 2820)

PROC CANCORR

PROC CANCORR

options A–R options S–W

;

Reference for language elements
Version 4.1

2817

options A–R

ALL

B

CLB

C

CORRB

DATA = input- dataset
i

EDF = number

INT

NCAN = number

NOINT

NOPRINT

OUT = output- dataset
i i

OUTSTAT = output- dataset
i i i

PARPREFIX

PPREFIX

= number

PCORR

PROBT

RDF = number

RED

REDUNDANCY

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

2818

options S–W

S

SIMPLE

SEB

SING

SINGULAR

= number

SMC

SPCORR

SQPCORR

SQSPCORR

STB

T

VDEP

WREG

VN

VNAME

= label

VP

VPREFIX

= name

VREG

WDEP

WP

WPREFIX

= name

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2819

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2820

PARTIAL

PARTIAL variable- name ;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

WITH

WITH variable- name ;

CANDISC procedure

Supported statements
• PROC CANDISC (page 2821)
• ATTRIB (page 2822)
• BY (page 2822)
• CLASS (page 2823)
• FORMAT (page 2823)
• FREQ (page 2823)

Reference for language elements
Version 4.1

2821

• INFORMAT (page 2823)
• LABEL (page 2823)
• VAR (page 2824)
• WEIGHT (page 2824)
• WHERE (page 2824)

PROC CANDISC

PROC CANDISC

options A–O options P–W

;

options A–O

ALL

ANOVA

BCORR

BCOV

BSSCP

DATA = input- dataset
i

DISTANCE

NCAN = n

NOPRINT

OUT = output- dataset
i i

OUTSTAT = output- dataset
i i i

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

2822

options P–W

PCORR

PCOV

PREFIX = name

PSSCP

SHORT

SIMPLE

SINGULAR = p

STDMEAN

TCORR

TCOV

TSSCP

WCORR

WCOV

WSSCP

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2823

CLASS

CLASS variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2824

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

CLUSTER procedure

Supported statements
• PROC CLUSTER (page 2825)
• ATTRIB (page 2826)
• BY (page 2826)
• COPY (page 2827)
• FORMAT (page 2827)
• FREQ (page 2827)
• ID (page 2827)
• INFORMAT (page 2827)
• LABEL (page 2827)
• RMSSTD (page 2828)
• VAR (page 2828)
• WHERE (page 2828)

Reference for language elements
Version 4.1

2825

PROC CLUSTER

PROC CLUSTER

options B–M options N–S

;

options B–M

BETA = value

CCC

DATA = input- dataset
i

DIM = value

K = value

METHOD = AVERAGE

CENTROID

COMPLETE

DENSITY

FLEXIBLE

MCQUITTY

MEDIAN

SINGLE

WARD

MODE = value

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2826

options N–S

NOEIGEN

NOID

NONORM

NOPRINT

NOSQUARE

NOTIE

OUTTREE = output- dataset
i i

P

PRINT

= number

PSEUDO

R = value

RMSSTD

RSQUARE

SIMPLE

STANDARD

STD

ii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2827

COPY

COPY variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2828

RMSSTD

RMSSTD variable ;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

CORRESP procedure

Supported statements
• PROC CORRESP (page 2829)
• ATTRIB (page 2832)
• BY (page 2832)
• FORMAT (page 2832)
• ID (page 2832)
• INFORMAT (page 2832)
• LABEL (page 2833)
• SUPPLEMENTARY (page 2833)
• TABLES (page 2833)
• VAR (page 2833)
• WEIGHT (page 2833)
• WHERE (page 2833)

Reference for language elements
Version 4.1

2829

PROC CORRESP

PROC CORRESP

options A–N options O–S

;

Reference for language elements
Version 4.1

2830

options A–N

ALL

BENZECRI

BINARY

CELLCHI2

COLUMN = B

BD

DB

DBD

DBD1/2

DBID1/2

CP

CROSS = BOTH

COLUMN

NONE

ROW

DATA = input- dataset
i

DEVIATION

DIMENS = n

EXPECTED

FREQOUT

GREENACRE

MCA

MININERTIA = n

MISSING

NOCOLUMN

= BOTH

DATA

PRINT

NOPRINT

NOROW

= BOTH

DATA

PRINT

NVARS = n

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2831

options O–S

OBSERVED

OUTC = output- dataset
i i

OUTF = output- dataset
i i i

PLOTS

(GlobalPlotOptions) PlotRequest

(PlotRequest)

PRINT = BOTH

FREQ

PERCENT

PROFILE = BOTH

COLUMN

NONE

ROW

ROW = A

AD

DA

DAD

DAD1/2

DAID1/2

RP

SHORT

SINGULAR = n

SOURCE

UNADJUSTED

ii See Input dataset (page 16).

iii See Input dataset (page 16).

GlobalPlotOptions

FLIP

PlotRequest

ALL

NONE

Reference for language elements
Version 4.1

2832

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2833

LABEL

LABEL variable- name =

label- name

;

SUPPLEMENTARY

SUPPLEMENTARY variable- name ;

TABLES

TABLES

row- variable ,

column- variable ;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2834

DISCRIM procedure

Supported statements
• PROC DISCRIM (page 2834)
• ATTRIB (page 2836)
• BY (page 2836)
• CLASS (page 2836)
• FORMAT (page 2837)
• FREQ (page 2837)
• ID (page 2837)
• INFORMAT (page 2837)
• LABEL (page 2837)
• PRIORS (page 2838)
• TESTCLASS (page 2838)
• TESTFREQ (page 2838)
• TESTID (page 2838)
• VAR (page 2838)
• WEIGHT (page 2838)
• WHERE (page 2838)

PROC DISCRIM

PROC DISCRIM

option

;

Reference for language elements
Version 4.1

2835

option
ALL

ANOVA

BCORR

BCOV

BSSCP

CANONICAL

CANPREFIX = name

CROSSLIST

CROSSLISTERR

CROSSVALIDATE

DATA = input- dataset
i

DISTANCE

K = k

KPROP = p

KERNEL = BIWEIGHT

EPANECHNIKOV

NORMAL

TRIWEIGHT

UNIFORM

LIST

LISTERR

MANOVA

METHOD = NORMAL

NPAR

METRIC = DIAGONAL

FULL

IDENTITY

NCAN = number

NOCLASSIFY

NOPRINT

OUT = output- dataset
i i

OUTCROSS = output- dataset
i i i

OUTD = output- dataset
iv

OUTSTAT = output- dataset
v

PCORR

PCOV

POOL = NO

TEST

YES

POSTERR

PSSCP

R = r

SCORES

= prefix

SHORT

SIMPLE

SINGULAR = p

SLPOOL = p

STDMEAN

TCORR

TCOV

TESTDATA = output- dataset
vi

TESTLIST

TESTLISTERR

TESTOUT = output- dataset
vii

TESTOUTD = output- dataset
viii

THREHOLD = p

TSSCP

WCORR

WCOV

WSSCP

Reference for language elements
Version 4.1

2836

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

iv See Input dataset (page 16).

v See Input dataset (page 16).

vi See Input dataset (page 16).

vii See Input dataset (page 16).

viii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable- name ;

Reference for language elements
Version 4.1

2837

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2838

PRIORS

PRIORS EQUAL

PROPORTIONAL

CLASSLEVEL = p

;

TESTCLASS

TESTCLASS variable- name ;

TESTFREQ

TESTFREQ variable- name ;

TESTID

TESTID variable- name ;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2839

DISTANCE procedure

Supported statements
• PROC DISTANCE (page 2839)
• ATTRIB (page 2842)
• BY (page 2842)
• COPY (page 2842)
• FORMAT (page 2842)
• FREQ (page 2842)
• ID (page 2843)
• INFORMAT (page 2843)
• LABEL (page 2843)
• VAR (page 2843)
• WEIGHT (page 2844)
• WHERE (page 2844)

PROC DISTANCE

PROC DISTANCE

option

;

Reference for language elements
Version 4.1

2840

option

ABSENT = value or qs

ADD = value

DATA = input- dataset
i

FUZZ = value

METHOD = method

MULT = value

NOMISS

NORM

PREFIX = name

OUT = output- dataset
i i

OUTSDZ = output- dataset
i i i

RANKSCORE = MIDRANK

INDEX

REPLACE

REPONLY

SHAPE = TRIANGLE

TRI

SQUARE

SQU

SQR

UNDEF = value

VARDEF = DF

N

WDF

WEIGHT

WGT

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

2841

method

GOWER

DGOWER

EUCLID

SQEUCLID

SIZE

SHAPE

COV

CORR

DCORR

SQCORR

DSQCORR

L

CITYBLOCK

CHEBYCHEV

POWER

SIMRATIO

DISRATIO

NONMETRIC

CANBERRA

COSINE

DOT

OVERLAP

DOVERLAP

CHISQ

CHI

PHISQ

PHI

HAMMING

MATCH

DMATCH

DSQMATCH

HAMANN

RT

SS1

SS3

DICE

RR

BLWNM

K1

JACCARD

DJACCARD

Reference for language elements
Version 4.1

2842

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

COPY

COPY variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

2843

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR ANOMINAL

NOMINAL

ORDINAL

INTERVAL

RATIO

(variable- name / opt- list) ;

Reference for language elements
Version 4.1

2844

opt-list

ABSENT = value or qs

MISSING = miss- method or value

ORDER = ASCENDING

ASC

DESENDING

DESC

ASCFORMATTED

ASCFMT

DESFORMATTED

DESFMT

DSORDER

DATA

STD = MEAN

MEDIAN

SUM

EUCLEN

USTD

STD

RANGE

MIDRANGE

MAXABS

IQR

MAD

L

WEIGHTS = value

(l ist)

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2845

FACTOR procedure

Supported statements
• PROC FACTOR (page 2845)
• ATTRIB (page 2848)
• BY (page 2849)
• FORMAT (page 2849)
• FREQ (page 2849)
• INFORMAT (page 2849)
• LABEL (page 2849)
• PRIORS (page 2850)
• VAR (page 2850)
• PARTIAL (page 2850)
• WEIGHT (page 2850)
• WHERE (page 2850)

PROC FACTOR

PROC FACTOR

option

;

Reference for language elements
Version 4.1

2846

option
ALL

CONVERGE = p

CORR

COVARIANCE

DATA = input- dataset
i

EIGENVECTORS

FLAG = p

FUZZ = p

GAMMA = p

HEYWOOD

HKPOWER = p

MAXITER = n

METHOD = ALPHA

HARRIS

IMAGE

PATTERN

PRINCIPAL

PRINIT

MINEIGEN = p

MSA

NFACTORS = n

NOBS = n

NOCORR

NOINT

NOPRINT

NOPROMAXNORM

NORM = COV

KAISER

NONE

RAW

WEIGHT

OUT = output- dataset
i i

OUTSTAT = output- dataset
i i i

PLOTS

(PlotOptions)

= PlotRequest

(PlotRequest)

POWER = n

PREROTATE = rotation

PRINT

PRIORS = ASMC

INPUT

MAX

ONE

RANDOM

SMC

PROPORTION = p

RANDOM = n

RCONVERGE = p

REORDER

RESIDUALS

RITER = n

ROTATE = rotation

ROUND

SCORE

SIMPLE

SINGULAR = p

TARGET = input- dataset
iv

TAU = p

ULTRAHEYWOOD

VARDEF = DF

N

WDF

WEIGHT

WGT

Reference for language elements
Version 4.1

2847

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

iv See Input dataset (page 16).

rotation

BIQUARTIMAX

EQUAMAX

FACTORPARSIMAX

NONE

ORTHCF (p1 , p2)

ORTHGENCF (p1 , p2 , p3 , p4)

ORTHOMAX (p)

PARSIMAX

QUARTIMAX

VARIMAX

BIQUARTIMIN

COVARIMIN

HK (p)

OBBIQUARTIMAX

OBEQUAMAX

OBFACTORPARSIMAX

OBLICF (p1 , p2)

OBLIGENCF (p1 , p2 , p3 , p4)

OBLIMIN (p)

OBPARSIMAX

OBQUARTIMAX

OBVARIMAX

QUARTIMIN

Reference for language elements
Version 4.1

2848

PlotOptions

CIRCLE

CIRCLES
= number

FLIP

NPLOTS = n

PLOTREF

UNPACK

VECTOR

PlotRequest

ALL

INITLOADINGS

(PlotOptions)

LOADINGS

(PlotOptions)

NONE

PRELOADINGS

(PlotOptions)

SCREE

(UNPACK)

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2849

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2850

PRIORS

PRIORS communality- value ;

VAR

VAR variable- name ;

PARTIAL

PARTIAL variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

FASTCLUS procedure

Supported statements
• PROC FASTCLUS (page 2851)
• ATTRIB (page 2853)
• BY (page 2853)
• FORMAT (page 2853)
• FREQ (page 2853)
• ID (page 2853)

Reference for language elements
Version 4.1

2851

• INFORMAT (page 2854)
• LABEL (page 2854)
• VAR (page 2854)
• WEIGHT (page 2854)
• WHERE (page 2854)

PROC FASTCLUS

PROC FASTCLUS

option

;

Reference for language elements
Version 4.1

2852

option

BINS = number

CLUSTER = name

CONVERGE

CONV

= value

DATA = dataset

DELETE = value

DISTANCE

DIST

DRIFT

IMPUTE

INSTAT = dataset

LEAST = p

MAX

LIST

MAXCLUSTERS

MAXC

= number

MAXITER = number

MEAN = dataset

NOMISS

NOPRINT

OUT = dataset

OUTITER

OUTSEED

OUTS

= dataset

OUTSTAT = dataset

RADIUS

R

= number

RANDOM = number

REPLACE = FULL

PART

NONE

RANDOM

SEED = dataset

SHORT

STRICT

= number

SUMMARY

VARDEF = DF

N

WDF

WEIGHT

WGT

Reference for language elements
Version 4.1

2853

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable ;

Reference for language elements
Version 4.1

2854

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

GAM procedure

Supported statements
• PROC GAM (page 2855)
• ATTRIB (page 2855)
• BY (page 2856)

Reference for language elements
Version 4.1

2855

• CLASS (page 2856)
• FORMAT (page 2856)
• FREQ (page 2857)
• INFORMAT (page 2857)
• LABEL (page 2857)
• MODEL (page 2857)
• OUTPUT (page 2859)
• SCORE (page 2859)
• WHERE (page 2859)

PROC GAM
PROC GAM

DATA = input- dataset
i

DESCENDING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PLOTS

(UNPACK)

=

(

ALL

COMPONENT

COMPONENTS
(ADDITIVE

CLM

COMMONAXES

UNPACK

)

NONE

)

;

i See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

Reference for language elements
Version 4.1

2856

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(DESCENDING

DESC

ORDER = DATA

FORMATTED

FREQ

INTERNAL

REF = "level"

FIRST

LAST

TRUNCATE = number

)

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2857

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL dependent

(DESCENDING

DESC

EVENT = "category"

FIRST

LAST

ORDER = DATA

FORMATTED

FREQ

INTERNAL

REFERENCE

REF

= "category"

FIRST

LAST

)

event / t rials

=

PARAM (effects)
smoothing options

/ options

;

Reference for language elements
Version 4.1

2858

smoothing options

SPLINE (variable

, DF = number

)

LOESS (variable

, DF = number

)

SPLINE2 (variable , variable

, DF = number

)

options

ALPHA = number

ANODEV = REFIT

NOREFIT

NONE

DIST

LINK

= GAUSSIAN

GAUS

NORM

BINOMIAL

LOGI

BIN

POISSON

POIS

LOGL

GAMMA

GAMM

IGAUSSIAN

IGAU

INVG

EPSILON = number

EPSSCORE = number

ITPRINT

MAXITER = number

MAXITERSCORE = number

METHOD = GCV

OFFSET = variable

Reference for language elements
Version 4.1

2859

OUTPUT

OUTPUT OUT = output- dataset
i

PREDICTED

P = "prefix "

LINP

= "prefix "

UCLM

= "prefix "

LCLM

= "prefix "

ADIAG

= "prefix "

RESIDUAL

R = "prefix "

STD

STDP = "prefix "

ALL

;

i See Output dataset (page 16).

SCORE

SCORE DATA = input- dataset
i

OUT = output- dataset
i i

;

i See Input dataset (page 16).

ii See Output dataset (page 16).

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2860

GENMOD procedure

Supported statements
• PROC GENMOD (page 2860)
• ATTRIB (page 2862)
• BY (page 2862)
• CLASS (page 2862)
• CODE (page 2863)
• CONTRAST (page 2864)
• ESTIMATE (page 2865)
• DEVIANCE (page 2865)
• FORMAT (page 2865)
• FWDLINK (page 2865)
• INFORMAT (page 2866)
• INVLINK (page 2866)
• FREQ (page 2866)
• LABEL (page 2866)
• MODEL (page 2866)
• OUTPUT (page 2869)
• REPEATED (page 2871)
• VARIANCE (page 2871)
• WEIGHT (page 2871)
• WHERE (page 2871)
• ZERO (page 2872)

PROC GENMOD

PROC GENMOD

option

;

Reference for language elements
Version 4.1

2861

option

DATA = dataset

DESC

DESCENDING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PLOT

PLOTS
(CLUSTERLABEL

UNPACK

)

= ALL

CLEVERAGE

CLUSTERDFIT

COOKSD

DCLS

DFBETA

DFBETAC

DFBETACS

DFBETAS

DOBS

LEVERAGE

MCLS

PREDICTED

PZERO

RESCHI

RESDEV

RESLIK

RESRAW

STDRESCHI

STDRESDEV

RORDER = DATA

FORMATTED

FREQ

INTERNAL

Reference for language elements
Version 4.1

2862

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(options)
/ options

;

Reference for language elements
Version 4.1

2863

options

DESC

DESCENDING

MISSING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PARAM = EFFECT

GLM

ORDINAL

THERMOMETER

ORTHEFFECT

ORTHORDINAL

ORTHOTHERM

ORTHPOLY

ORTHREF

POLY

POLYNOMIAL

REF

REFERENCE

REF = FIRST

LAST

"level"

CODE

CODE FILE = f ileref options ;

Reference for language elements
Version 4.1

2864

options

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE

LS

= length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

CONTRAST

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

@ZERO effect value

options

E

SINGULAR

EPSILON

= number

WALD

Reference for language elements
Version 4.1

2865

ESTIMATE

label effect value

@ZERO effect value

/ options

;

options

ALPHA = number

DIVISOR = number

E

EXP

SINGULAR

EPSILON

= number

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

DEVIANCE

variable = expression ;

FWDLINK

variable = expression ;

Reference for language elements
Version 4.1

2866

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

INVLINK

variable = expression ;

FREQ

FREQ variable- name ;

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL option1

option2 / options

;

option1

events / t rials =

effect- definition

Reference for language elements
Version 4.1

2867

option2

response =

effect- definition

effect-definition

effect- variable

*

|

effect- variable

@ number

effect-variable

effect- name

(effect- name)

Reference for language elements
Version 4.1

2868

options
AGGREGATE

AGGREGATE = (variable)

ALPHA

ALPH

A

= value

CICONV = number

CL

CODING = EFFECT

FULLRANK

CONVERGE = value

CONVH = number

CORRB

COVB

DIAGNOSTICS

DIST

D

ERROR

E

= BINOMIAL

GAMMA

GEOMETRIC

IGAUSSIAN

MULTINOMIAL

NEGBIN

NORMAL

POISSON

TWEEDIE

(INITIALP = value

P = value

EPSILON = value

OFFSET = value

)

ZINB

ZIP

DSCALE

EXPECTED

ID = variable

INFLUENCE

INITIAL = number

INTERCEPT = number

ITPRINT

LINK = CUMCLL

CCLL

CUMLOGIT

CLOGIT

CUMPROBIT

CPROBIT

CLOGLOG

CLL

IDENTITY

ID

LOG

LOGIT

PROBIT

POWER

POW

(number)

MAXITER

MAXIT

= number

LOGNB

LRCI

NOINT

NOLOGNB

NOSCALE

OBSTATS

OFFSET = variable

PREDICTED

PRED

P

PSCALE

RESIDUALS

R

SCALE = DEVIANCE

D

PEARSON

P

value

SCORING = number

SINGULAR = number

TYPE1

TYPE3

WALD

WALDCI

XVARS

Reference for language elements
Version 4.1

2869

OUTPUT

OUTPUT

OUT = output- dataset
i

option

;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

2870

option

CH

CLUSTERH

CLEVERAGE

= name

CLUSTER = name

CLUSTERCOOKD

CLUDTERCOOKSD

DCLS

= name

CLUSTERDFIT

MCLS

= name

COOKD

COOKSD

DOBS

= name

DBETA

DFBETA

= _ALL_

var- list

DBETAC

DFBETAC

= _ALL_

var- list

DBETACS

DFBETACS

= _ALL_

var- list

DBETAS

DFBETAS

= _ALL_

var- list

H

LEVERAGE

= name

HESSWGT = name

L

LOWER

= name

P

PRED

PREDICTED

PROB

= name

PZERO

RESCHI = name

RESDEV = name

RESLIK = name

RESRAW = name

STDRESCHI = name

STDRESDEV = name

STDXBETA = name

U

UPPER

= name

XBETA = name

Reference for language elements
Version 4.1

2871

REPEATED

REPEATED subject = variable

/ options

;

options

CONVERGE = number

CORRB

CORRW

COVB

ECORRB

INITIAL = number

INTERCEPT = number

MAXITER = number

MCORRB

MCOVB

RUPDATE

SORTED

WITHIN = variable

VARIANCE

variable = expression ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2872

ZERO

ZERO variable

/ LINK = CLOGLOG

CLL

LOGIT

PROBIT

;

GLM procedure

Supported statements
• PROC GLM (page 2873)
• ATTRIB (page 2875)
• BY (page 2875)
• CLASS (page 2875)
• CODE (page 2875)
• CONTRAST (page 2876)
• ESTIMATE (page 2877)
• FORMAT (page 2877)
• FREQ (page 2877)
• INFORMAT (page 2877)
• LABEL (page 2878)
• LSMEANS (page 2878)
• MEANS (page 2880)
• MODEL (page 2881)
• OUTPUT (page 2882)
• RANDOM (page 2883)
• TEST (page 2884)
• WEIGHT (page 2884)
• WHERE (page 2884)

Reference for language elements
Version 4.1

2873

PROC GLM

PROC GLM

option

;

option
ALPHA = value

DATA = input- dataset
i

MANOVA

NAMELEN = length

NOPRINT

ORDER = DATA

FORMATTED

FREQ

INTERNAL

OUTPLOTDATA = l ibrary

OUTSTAT = output- dataset
i i

PLOT

PLOTS
(MAXPOINTS = NONE

n

ONLY

UNPACK

UNPACKPANEL

)
= plot- request

(plot- request)

i See Input dataset (page 16).

ii See Input dataset (page 16).

Reference for language elements
Version 4.1

2874

plot-request

ALL

ANCOVAPLOT

(CLI

CLM

LIMITS

)

BOXPLOT

(NPANELPOS = n)

CONTOURFIT

(OBS = GRADIENT

NONE

OUTLINE

OUTLINEGRADIENT

)

CONTROLPLOT

DIAGNOSTICS

(LABEL

UNPACK

)

DIFFPLOT

(ABS

CENTER

NOABS

NOLINES

)

FITPLOT

(NOCLI

NOCLM

NOLIMITS

)

INTPLOT

(CLI

CLM

LIMITS

)

MEANPLOT

(ASCENDING

CLBAND

CONNECT

DESCENDING

)

NONE

RESIDUALS

(UNPACK)

Reference for language elements
Version 4.1

2875

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(REF = FIRST

LAST

' level '

)

/ REF = FIRST

LAST

;

CODE

CODE FILE = f ileref options ;

Reference for language elements
Version 4.1

2876

options

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE = length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

CONTRAST

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

options

E

E = effect

ETYPE = 1

2

3

SINGULAR = number

Reference for language elements
Version 4.1

2877

ESTIMATE

label effect value

/ options

;

options

DIVISOR = number

E

SINGULAR = number

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2878

LABEL

LABEL variable- name =

label- name

;

LSMEANS

LSMEANS effects

/ options

;

Reference for language elements
Version 4.1

2879

options

ADJUST = BON

DUNNETT

GT2

SCHEFFE

SIDAK

SMM

TUKEY

T

ALPHA = p

AT variable = value

(variable- list) = (value- list)

MEANS

BYLEVEL

CL

COV

E

E = effect

ETYPE = number

NOPRINT

OBSMARGINS

OM

OUT = output- dataset
i

PDIFF

= ALL

CONTROL

(value- list)

CONTROLL

(value- list)

CONTROLU

(value- list)

PLOT

PLOTS = lsmeans- plot- request

(lsmeans- plot- request)

SLICE = f ixed- effect

(f ixed- effect)

SINGULAR = value

STDERR

TDIFF

Reference for language elements
Version 4.1

2880

i See Input dataset (page 16).

lsmeans-plot-request

ALL

CONTROL

CONTROLPLOT

DIFF

DIFFOGRAM

DIFFPLOT
(ABS

CENTER

NOABS

NOLINES

)

MEANPLOT

(ASCENDING

CLBAND

CONNECT

DESCENDING

ILINK

JOIN

)

NONE

MEANS

MEANS effects

/ options

;

Reference for language elements
Version 4.1

2881

options

ALPHA = value

BON

CLDIFF

CLM

DEPONLY

DUNCAN

DUNNETT

(value- list)

DUNNETTL

(value- list)

DUNNETTU

(value- list)

GABRIEL

GT2

LINES

LSD

NOSORT

REGWQ

SCHEFFE

SIDAK

SMM

SNK

T

TUKEY

WELCH

MODEL

MODEL dependents = effects

/ options

;

Reference for language elements
Version 4.1

2882

options

ALPHA = value

CLI

CLM

CLPARM

E

E1

E2

E3

INT

INTERCEPT

I

INVERSE

NOINT

NOUNI

P

SINGULAR = value

SOLUTION

SS1

SS2

SS3

TOLERANCE

XPX

ZETA = value

OUTPUT

OUTPUT

OUT = output- dataset
i

keyword = name

/ option

;

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2883

keyword

COOKD

COVRATIO

DFFITS

H

L95

L95M

LCL

LCLM

PREDICTED

PRED

P

PRESS

RESIDUAL

R

RSTUDENT

STDI

STDP

STDR

STUDENT

U95

U95M

UCL

UCLM

option

ALPHA = value

RANDOM

RANDOM effects

/ options

;

Reference for language elements
Version 4.1

2884

options

Q

TEST

TEST

TEST

H = effect

E = effect

/ ETYPE = n

HTYPE = n

;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

GLMMOD procedure

Supported statements
• PROC GLMMOD (page 2885)
• ATTRIB (page 2886)
• BY (page 2886)
• CLASS (page 2886)
• FORMAT (page 2886)
• FREQ (page 2886)
• INFORMAT (page 2887)
• LABEL (page 2887)

Reference for language elements
Version 4.1

2885

• MODEL (page 2887)
• WEIGHT (page 2887)
• WHERE (page 2887)

PROC GLMMOD

PROC GLMMOD

option

;

option

DATA = input- dataset
i

NAMELEN = length

NOPRINT

ORDER = DATA

FORMATTED

FREQ

INTERNAL

OUTDESIGN = output- dataset
i i

OUTPARM = output- dataset
i i i

PREFIX

ZEROBASED

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

2886

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

CLASS

CLASS variable ;

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

2887

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL dependents = effects

/ NOINT

;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

GLMSELECT procedure

Supported statements
• PROC GLMSELECT (page 2888)

Reference for language elements
Version 4.1

2888

• ATTRIB (page 2891)
• BY (page 2891)
• CLASS (page 2891)
• CODE (page 2893)
• FORMAT (page 2894)
• FREQ (page 2894)
• INFORMAT (page 2894)
• LABEL (page 2895)
• MODEL (page 2895)
• OUTPUT (page 2899)
• SCORE (page 2899)
• WEIGHT (page 2900)

PROC GLMSELECT

PROC GLMSELECT

option

;

Reference for language elements
Version 4.1

2889

option

DATA = input- dataset
i

MAXMACRO = n

NOPRINT

OUTDESIGN

(ADDINPUTVARS

FULLMODEL

NAMES

PREFIX

= prefix

)

PARMLABELSTYLE

=

INTERLACED

(SEPARATOR = quoted- string)

SEPARATE

SEPARATECOMPACT

PLOTS

(global- plot- options)

= plot- request

(plot- request)

SEED = number

TESTDATA = input- dataset
i i

VALDATA = input- dataset
i i i

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

2890

global-plot-options

ENDSTEP = n

LOGPVALUE

MAXSTEPLABEL = n

MAXPARMLABEL = n

STARTSTEP = n

STEPAXIS = EFFECT

NORMB

NUMBER

UNPACK

plot-request

ALL

ASE

(STEPAXIS = EFFECT

NORMB

NUMBER

)

CANDIDATES

(LOGP

SHOW

)

COEFFICIENTS

(LABELGAP = percentage

LOGP

STEPAXIS = EFFECT

NORMB

NUMBER

UNPACK

)

CRITERIA

(STEPAXIS = EFFECT

NORMB

NUMBER

UNPACK

)

NONE

Reference for language elements
Version 4.1

2891

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(v- options)
/ options

;

Reference for language elements
Version 4.1

2892

v-options

DESC

DESCENDING

SPLIT

MISSING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PARAM = EFFECT

ORDINAL

THERMOMETER

ORTHEFFECT

ORTHORDINAL

ORTHOTHERM

ORTHPOLY

ORTHREF

POLY

POLYNOMIAL

REF

REFERENCE

REF = FIRST

LAST

"level"

Reference for language elements
Version 4.1

2893

options

DESC

DESCENDING

SHOW

SHOWCODING

DELIMITER = quoted- character

SPLIT

MISSING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PARAM = EFFECT

GLM

ORDINAL

THERMOMETER

ORTHEFFECT

ORTHORDINAL

ORTHOTHERM

ORTHPOLY

ORTHREF

POLY

POLYNOMIAL

REF

REFERENCE

REF = FIRST

LAST

"level"

CODE

CODE FILE = f ileref options ;

Reference for language elements
Version 4.1

2894

options

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE = length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2895

LABEL

LABEL variable- name =

label- name

;

MODEL

dependent = effect- definition

/ options

;

effect-definition

effect- variable

*

|

effect- variable

effect-variable

effect- name

(effect- name)

Reference for language elements
Version 4.1

2896

options
DETAILS = ALL

STEPS

(ALL

ANOVA

FITSTATISTICS

FITSTATS

FIT

PARAMETERSTIMATES

PARMEST

CANDIDATES

(SHOW = ALL

n

)

)

SUMMARY

FUZZ = value

HIERARCHY

HIER

= NONE

SINGLE

SINGLECLASS

NOINT

ORDERSELECT

SELECTION = NONE

FORWARD

BACKWARD

STEPWISE

LAR

LASSO

method options

STAT

STATS

= ALL

stats

(stats)

SHOWPVALUES

STB

Reference for language elements
Version 4.1

2897

stats

ADJRSQ

AIC

AICC

ASE

BIC

CP

FVALUE

PRESS

RSQUARE

SBC

SL

Reference for language elements
Version 4.1

2898

method options
ADAPTIVE

(GAMMA = nonnegat ive- number

INEST = input- dataset
i

)

CHOOSE = ADJRSQ

AIC

AICC

BIC

CP

PRESS

SBC

VALIDATE

DROP = BEFOREADD

COMPETITIVE

ENSCALE

INCLUDE = n

L1 = value

L1CHOICE = NORM

RATIO

VALUE

L2 = value

L2HIGH = value

L2LOW = value

L2SEARCH = GOLDEN

GRID

L2STEPS = n

LSCOEFFS

MAXSTEP = n

SELECT = ADJRSQ

AIC

AICC

BIC

CP

PRESS

RSQUARE

SBC

SL

VALIDATE

SLENTRY

SLE

= value

SLSTAY

SLS

= value

STEPS = n

STOP = n

NONE

ADJRSQ

AIC

AICC

BIC

CP

L1

PRESS

SBC

SL

VALIDATE

Reference for language elements
Version 4.1

2899

i See Input dataset (page 16).

OUTPUT

OUTPUT

OUT = output- dataset
i keyword

= name

;

i See Output dataset (page 16).

keyword

PREDICTED

PRED

P

RESIDUAL

RESID

R

SCORE

SCORE

DATA = input- dataset
i

OUT = output- dataset
i i

keyword
= name

;

i See Input dataset (page 16).

ii See Output dataset (page 16).

Reference for language elements
Version 4.1

2900

keyword

PREDICTED

PRED

P

RESIDUAL

RESID

R

WEIGHT

WEIGHT variable- name ;

ICLIFETEST procedure

Supported statements
• PROC ICLIFETEST (page 2900)
• ATTRIB (page 2904)
• BY (page 2904)
• FORMAT (page 2904)
• FREQ (page 2905)
• INFORMAT (page 2905)
• LABEL (page 2905)
• STRATA (page 2905)
• TEST (page 2906)
• TIME (page 2906)
• WHERE (page 2906)

PROC ICLIFETEST

PROC ICLIFETEST

option

;

Reference for language elements
Version 4.1

2901

option

ALPHA = number- strict ly- between- 0- and- 1

ALPHAQT = number- strict ly- between- 0- and- 1

BOOTSTRAP

BOOT (Bootstrap options)

CONFTYPE = ASINSQRT

LINEAR

LOG

LOGIT

LOGLOG

DATA = input- dataset
i

IMPUTE

IM (Impute options)

ITERINC = integer

ITHISTORY

ITERHISTORY

MAXITER

MAXIT

= integer

MAXSTRATIFIEDGROUPS = integer

MAXTIME = non- negat ive number

METHOD = EM

EMICM

ICM

TURNBULL

MISSING

NOPRINT

NOSUMMARY

OUTPLOTDATA = l ibrary- name

OUTSURV

OUTS

= output- dataset
i i

PLOTS

(Plots global options) =

(

Plots request item

)

PROBLIST = value

SHOWTI

SINGULAR = non- negat ive- number

i See Input dataset (page 16).

Reference for language elements
Version 4.1

2902

ii See Input dataset (page 16).

Bootstrap options

NBOOT = posit ive- integer

SEED = integer

TOLLIKE = value

TOLPROB = value

Impute options

NIMSE

NMISE

= posit ive- integer

NIMTEST

NMITEST

NIMCOV

NMICOV

= posit ive- integer

RESEED

SEED = integer

Plots global options

ONLY

MAXPOINTS = posit ive- integer

NONE

Reference for language elements
Version 4.1

2903

Plots hazard type

HAZARD

H

(BANDWIDTH

BW

= non- negat ive number

RANGE (number , number)

CVFOLD = posit ive- integer

CVGRID = posit ive- integer

GRIDL = number

GRIDU = number

HGRID

NGRID

= posit ive- integer

KERNEL = BIWEIGHT

BW

EPANECHNIKOV

E

UNIFORM

U

SAMPLING = LEAVEONE

RANDOM

SEED = posit ive- integer

)

Plots survival type

SURVIVAL

S
(CL

FAILURE

F

NODASH

STRATA = INDIVIDUAL

OVERLAY

PANEL

UNPACK

TEST

)

Reference for language elements
Version 4.1

2904

Plots request item

ALL

LOGLOGS

LLS

LOGSURV

LS

NONE

Plots hazard type

Plots survival type

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2905

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

STRATA

STRATA variable- name ;

Reference for language elements
Version 4.1

2906

TEST

TEST variable- name

/ ADJUST = BONFERRONI

BON

SCHEFFE

SIDAK

SMM

GTE

DIFF = ALL

CONTROL (' string ')

NOTEST

TREND

WEIGHT =

(

Test request

)

;

Test request

FAY

FINKELSTEIN

FLEMING (non- negat ive number , non- negat ive number)

NONE

SUN

TIME

TIME

* (number)

;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2907

KDE procedure

Supported statements
• PROC KDE (page 2907)
• ATTRIB (page 2907)
• BIVAR (page 2908)
• BY (page 2908)
• FORMAT (page 2908)
• FREQ (page 2909)
• INFORMAT (page 2909)
• LABEL (page 2909)
• UNIVAR (page 2909)
• WEIGHT (page 2910)
• WHERE (page 2910)

PROC KDE

PROC KDE

DATA = input- dataset
i

;

i See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2908

BIVAR

BIVAR

option

;

option

BIVSTATS

BVM = value

GRIDL = value

GRIDU = value

NGRID = count

NOPRINT

OUT = output- dataset
i

PERCENTILES

UNISTATS

i See Input dataset (page 16).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2909

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

UNIVAR

UNIVAR

option

;

Reference for language elements
Version 4.1

2910

option

BVM = value

GRIDL = value

GRIDU = value

METHOD = SJPI

SNR

SNRQ

SROT

OS

NGRID = count

NOPRINT

OUT = output- dataset
i

PERCENTILES

SJPIMAX = value

SJPIMIN = value

SJPIMIN = value

SJPINUM = value

SJPITOL = value

UNISTATS

i See Input dataset (page 16).

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2911

LIFEREG procedure

Supported statements
• PROC LIFEREG (page 2911)
• ATTRIB (page 2912)
• BY (page 2912)
• CLASS (page 2913)
• CODE (page 2913)
• ESTIMATE (page 2913)
• FORMAT (page 2915)
• INFORMAT (page 2915)
• INSET (page 2915)
• LABEL (page 2916)
• MODEL (page 2916)
• PPLOT (page 2918)
• OUTPUT (page 2917)
• WEIGHT (page 2920)
• WHERE (page 2920)

PROC LIFEREG

PROC LIFEREG

option

;

Reference for language elements
Version 4.1

2912

option

COVOUT

DATA = dataset

INEST = dataset

NAMELEN = value

NOPRINT

ORDER = DATA

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

OUTEST = dataset

PLOTS = NONE

P

PROB

PROBPLOT

XDATA

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2913

CLASS

CLASS variable-name ;

CODE

CODE FILE = f ileref options ;

options

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE

LS

= length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

ESTIMATE

label effect- vars

, effect- vars
/ options

;

Reference for language elements
Version 4.1

2914

effect-vars

effect value

[value
,

]

options

ADJUST = BON

SCHEFFE

SIDAK

SIMULATE

(ACC = value

EPS = value

NSAMP = value

SEED = value

)

T

ALPHA = value

CL

CORR

COV

DIVISOR = value

E

LOWER

LOWERTAILED

NOFILL

SEED = value

SINGULAR = value

TESTVALUE

TESTMEAN

= value

UPPER

UPPERTAILED

Reference for language elements
Version 4.1

2915

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

INSET

INSET options ;

options

CONFIDENCE

CONF

DISTRIBUTUION

DIST

INTERVAL

LEFTSINGULAR

NOBS

NMISS

RIGHT

SCALE

SHAPE

UNCENSORED

Reference for language elements
Version 4.1

2916

LABEL

LABEL variable- name =

label- name

;

MODEL

label :

MODEL option1

option2

option3

/ options

;

option1

events / t rials =

effect- definition

option2

response

* censor (number)

=

effect- definition

option3

(lower , upper) =

effect- definition

effect-definition

effect- variable

*

|

effect- variable

Reference for language elements
Version 4.1

2917

effect-variable

effect- name

(effect- name)

options

ALPHA = value

CONVERGE = value

CORRB

COVB

DISTRIBUTION = EXPONENTIAL

GAMMA

LLOGISTIC

LNORMAL

LOGISTIC

NORMAL

WEIBULL

INITIAL = value

INTERCEPT = value

ITPRINT

MAXITER = number

NOINT

NOLOG

NOSCALE

NOSHAPE1

OFFSET = variable

SCALE = variable

SHAPE1 = variable

SINGULAR = variable

OUTPUT

OUTPUT

option

;

Reference for language elements
Version 4.1

2918

option

CDF = name

CENSORED = name

CONTROL = name

CRES

CRESIDUAL

= name

OUT = dataset

P

PREDICTED

= name

Q

QUANTILE

QUANTILES

= name

RESCHI = name

SRES

RESIDUAL

= name

STD

STD_ERR

= name

XBETA = name

PPLOT

PPLOT

PROBPLOT

options ;

Reference for language elements
Version 4.1

2919

options

HCL

HLOWER = value

HUPPER = value

HREF

HUPPER = name

ITPRINTEM

MAXITEM = number

NOCENPLOT

NOCONF

NODATA

NOFIT

NOFRAME

NOGRID

NPINTERVALS = POINT

POINTWISE

SIMUL

SIMULTANEOUS

PCTLIST = value

PLOWER = value

PRINTPROBS

PUPPER = value

PPOS = EXPRANK

MEDRANK

MEDRANK1

KM

MKM

PPOUT

PROBLIST = value

ROTATE

SQUARE

TOLLIKE = value

TOLPROB = value

VAXISLABEL = name

VREF

VREFLABELS = name

Reference for language elements
Version 4.1

2920

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

LIFETEST procedure

Supported statements
• PROC LIFETEST (page 2920)
• ATTRIB (page 2923)
• BY (page 2924)
• FORMAT (page 2924)
• FREQ (page 2924)
• ID (page 2924)
• INFORMAT (page 2924)
• LABEL (page 2925)
• STRATA (page 2925)
• TEST (page 2926)
• TIME (page 2926)
• WHERE (page 2926)

PROC LIFETEST

PROC LIFETEST

option

;

Reference for language elements
Version 4.1

2921

option
AALEN ALPHA = number- strict ly- between- 0- and- 1

ALPHAQT = number- strict ly- between- 0- and- 1

ATRISK

BANDMAXTIME

BANDMAX

= non- negat ive- number

BANDMINTIME

BANDMIN

= non- negat ive- number

CONFBAND = ALL

EP

HW

CONFTYPE = ASINSQRT

LINEAR

LOG

LOGIT

LOGLOG

DATA = input- dataset
i

INTERVALS =

,

non- negat ive number

TO non- negat ive number

BY non- zero number

MAXTIME = non- negat ive number

METHOD = ACT

BRESLOW

FH

KM

LIFE

LT

PL

MISSING

NELSON

NINTERVAL = non- negat ive integer

NOCENSPLOT

NOCENS

NOLEFT

NOPRINT

NOTABLE

OUTPLOTDATA = l ibrary- name

OUTSURV

OUTS

= output- dataset
i i

OUTTEST

OUTT

= output- dataset
i i i

PLOTS

(Plots global options) =

(

Plots request item

)

REDUCEOUT

SINGULAR = non- negat ive- number

STDERR

TIMELIM = EVENT

LET

OBSERVED

LOT

number

TIMELIST = non- negat ive number

WIDTH = non- negat ive number

Reference for language elements
Version 4.1

2922

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Plots global options

ALL

ONLY

MAXPOINTS = posit ive- integer

NONE

Plots hazard type

HAZARD

H

(BANDWIDTH

BW

= non- negat ive number

RANGE (number , number)

CL

GRIDL = number

GRIDU = number

KERNEL = BIWEIGHT

BW

EPANECHNIKOV

E

UNIFORM

U

NMINGRID = integer

NGRID = posit ive- integer

)

Reference for language elements
Version 4.1

2923

Plots survival type

SURVIVAL

S
(CB = ALL

EP

HW

CL

FAILURE

F

NOCONSOR

STRATA = INDIVIDUAL

UNPACK

OVERLAY

PANEL

)

Plots request item

ALL

LOGLOGS

LLS

LOGSURV

LS

NONE

PDF

P (CL)

Plots hazard type

Plots survival type

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2924

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name

/ NOTRUNCATE

NOTRUNC

;

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2925

LABEL

LABEL variable- name =

label- name

;

STRATA

STRATA Strata variable

/ ADJUST = BONFERRONI

BON

SCHEFFE

SIDAK

SMM

GTE

DIFF = ALL

CONTROL (' string ')

GROUP = variable- name

MISSING

TREND

TEST =

(

Strata test request

)

;

Strata variable

variable- name

(

,

non- negat ive number

TO non- negat ive number

BY non- zero number

)

Reference for language elements
Version 4.1

2926

Strata test request

ALL

FLEMING (non- negat ive number , non- negat ive number)

LOGRANK

LR

MODPETO

NONE

PETO

TARONE

WILCOXON

TEST

TEST variable- name ;

TIME

TIME

* (number)

;

WHERE

WHERE condit ion ;

LOESS procedure

Supported statements
• PROC LOESS (page 2927)
• ATTRIB (page 2929)
• BY (page 2929)
• FORMAT (page 2929)

Reference for language elements
Version 4.1

2927

• ID (page 2929)
• INFORMAT (page 2929)
• LABEL (page 2930)
• MODEL (page 2931)
• OUTPUT (page 2932)
• SCORE (page 2932)
• WEIGHT (page 2933)
• WHERE (page 2933)

PROC LOESS

PROC LOESS

option

;

option

DATA = input- dataset
i

PLOTS

(globalpltopt)

=

(

pltopt

)

i See Input dataset (page 16).

globalpltopt

MAXPOINTS = NONE

number

ONLY

UNPACK

Reference for language elements
Version 4.1

2928

pltopt

ALL

CONTOURFIT

(contourpltopt)

CONTOURFITPANEL

(UNPACK

contourpltopt

)

CRITERIONPLOT

CRITERION

DIAGNOSTICSPANEL

DIAGNOSTICS (UNPACK)

FITPANEL

(UNPACK)

FITPLOT

FIT

NONE

OBSERVEDBYPREDICTED

QQPLOT

QQ

RESIDUALSBYSMOOTH

(SMOOTH

UNPACK

)

RESIDUALBYPREDICTED

RESIDUALHISTOGRAM

RESIDUALPANEL

RESIDUALS
(SMOOTH

UNPACK

)

RFPLOT

RF

SCOREPLOT

SCORE

contourpltopt

OBS = GRADIENT

NONE

OUTLINE

OUTLINEGRADIENT

Reference for language elements
Version 4.1

2929

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

Reference for language elements
Version 4.1

2930

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2931

MODEL

MODEL dependent = regressor

/ ALL

ALPHA = number

BUCKET = number

CLM

DEGREE = 1

2

DETAILS

(KDTREE

MODELSUMMARY

OUTPUTSTATISTICS

PREDATVERTICES

)

DFMETHOD = APPROX

EXACT

NONE
(QUANTILE = number

CUTOFF = number

)

DIRECT

DROPSQUARE = (variable)

INTERP = CUBIC

LINEAR

ITERATIONS = number

RESIDUAL

R

SCALE = NONE

SD

(number)

SCALEDINDEP

SELECT = AICC

AICC1

GCV

DF1

DF2

DF3

(GLOBAL

PRESEARCH

RANGE (lower , upper)

STEPS

target

)

SMOOTH = value

STD

T

TRACEL

;

Reference for language elements
Version 4.1

2932

OUTPUT

OUTPUT

LCLM

= name

OUT = output- dataset
i

PREDICTED

P = name

RESIDUAL

R = name

STD

= name

T

= name

UCLM

= name

/ ALL

ROW

ROWWISE

;

i See Output dataset (page 16).

SCORE

SCORE DATA = input- dataset
i

ID = (variable)

/ CLM

PRINT

(VAR = variable)

R

RESIDUAL

SCALEDINDEP

STEPS

;

Reference for language elements
Version 4.1

2933

i See Input dataset (page 16).

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

LOGISTIC procedure

Supported statements
• PROC LOGISTIC (page 2934)
• ATTRIB (page 2936)
• BY (page 2937)
• CLASS (page 2937)
• CODE (page 2938)
• CONTRAST (page 2938)
• ESTIMATE (page 2939)
• FORMAT (page 2940)
• INFORMAT (page 2941)
• LABEL (page 2941)
• MODEL (page 2941)
• FREQ (page 2944)
• OUTPUT (page 2944)
• ROC (page 2945)
• ROCCONTRAST (page 2946)
• SCORE (page 2947)
• TEST (page 2947)
• WEIGHT (page 2947)
• WHERE (page 2947)

Reference for language elements
Version 4.1

2934

PROC LOGISTIC

PROC LOGISTIC

option

;

Reference for language elements
Version 4.1

2935

option

ALPHA = value

COVOUT

DATA = dataset

DESCENDING

INEST = dataset

INMODEL = dataset

NAMELEN = value

NOPRINT

OUTEST = dataset

OUTDESIGN = dataset

OUTDESIGNONLY

OUTMODEL = dataset

ORDER = DATA

FORMATTED

FREQ

INTERNAL

Plots Option

ROCOPTIONS ALPHA = number

EPS = number

ID = 1MSPEC

FALPOS

FALNEG

ID

MISCLASS

NEGPRED

OBS

POSPRED

PROB

SENSIT

NODETAILS

OUT = dataset

RORDER = DATA

FORMATTED

INTERNAL

SIMPLE

Reference for language elements
Version 4.1

2936

Plots Option
PLOTS

(LABEL

MAXPOINTS = NONE

number

ONLY

UNPACK

UNPACKPANELS

)

= ALL

DFBETAS

(UNPACK)

DPC

(MAXSIZE = value

MAXVALUE = value

MINSIZE = value

TYPE = BUBBLE

GRADIENT

UNPACK

UNPACKPANELS

)

INFLUENCE

(UNPACK

UNPACKPANELS

)

LEVERAGE

(UNPACK

UNPACKPANELS

)

NONE

PHAT

(UNPACK

UNPACKPANELS

)

ROC

(id = 1MSPEC

CUTPOINT

PROB

FALPOS

FALNEG

OBS

MISCLASS

NEGPRED

POSPRED

SENSIT

)

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2937

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(options)
/ options

;

options

DESC

DESCENDING

MISSING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PARAM = EFFECT

GLM

ORDINAL

THERMOMETER

ORTHEFFECT

ORTHORDINAL

ORTHOTHERM

ORTHPOLY

ORTHREF

POLY

POLYNOMIAL

REF

REFERENCE

REF = FIRST

LAST

"level"

Reference for language elements
Version 4.1

2938

CODE

CODE FILE = f ileref options ;

options

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE = length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

CONTRAST

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

Reference for language elements
Version 4.1

2939

options

ALPHA = value

E

ESTIMATE = ALL

BOTH

EXP

PARM

PROB

EPSILON

SINGULAR

= value

ESTIMATE

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

[value
,

]

Reference for language elements
Version 4.1

2940

options

ADJUST = BON

SCHEFFE

SIDAK

SIMULATE

(ACC = value

EPS = value

NSAMP = value

SEED = value

)

T

ALPHA = value

CATEGORY = JOINT

SEPARATE

quoted- value

CL

CORR

COV

DIVISOR = value

E

EXP

ILINK

LOWER

LOWERTAILED

NOFILL

SEED = value

SINGULAR = value

TESTVALUE

TESTMEAN

= value

UPPER

UPPERTAILED

FORMAT

FORMAT variable- list
i

format

;

Reference for language elements
Version 4.1

2941

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

label :

MODEL option1

option2

;

option1

events / t rials =

effect- definition

option2

variable (response- options) =

effect- definition

/ options

Reference for language elements
Version 4.1

2942

response-options

DESCENDING

EVENT = "category"

FIRST

LAST

ORDER = DATA

FORMATTED

FREQ

INTERNAL

REF

REFERENCE

= "category"

FIRST

LAST

effect-definition

effect- name

*

|

effect- name

@ number

Reference for language elements
Version 4.1

2943

options
ABSFCONV = value

AGGREGATE

AGGREGATE = (variable)

ALPHA = value

BEST = number

BINWIDTH = number

CLODDS = BOTH

PL

WALD

CLPARM = BOTH

PL

WALD

CONVERGE = value

CORRB

COVB

CTABLE

DETAILS

EXPB

EXPEST

FAST

FCONV = value

GCONV = value

HIERARCHY

HIER

= MULTIPLE

MULTIPLECLASS

NONE

SINGLE

SINGLECLASS

INCLUDE = value

INFLUENCE

ITPRINT

LACKFIT (n)

L

LINK

= CLOGLOG

GLOGIT

LOGIT

PROBIT

MAXITER = number

MAXSTEP = number

NODUMMYPRINT

NODESIGNPRINT

NODP

NOCHECK

NOFIT

NOINT

NOODDSRATIO

NOOR

OFFSET = variable

OUTROC = dataset

PARMLABEL

PEVENT = value

(l ist)

PLCL

PLCONV = value

PPROB = value

(l ist)

RIDGEINIT = value

RIDGING = ABSOLUTE

NONE

RELATIVE

ROCEPS = value

RSQ

RSQUARE

SCALE = constant

D

DEVIANCE

N

NONE

P

PEARSON

SELECTION = NONE

B

BACKWARD

F

FORWARD

SCORE

S

STEPWISE

SEQUENTIAL

SINGULAR = value

SLENTRY = value

SLSTAY = value

START = value

STB

STOP = value

TECH

TECHNIQUE

= FISHER

NEWTON

WALDCL

CL

XCONV = value

Reference for language elements
Version 4.1

2944

FREQ

FREQ variable- name ;

OUTPUT

OUTPUT

OUT = output- dataset
i

option

;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

2945

option

ALPHA = value

C = name

CBAR = name

DFBETAS = _ALL_

var- list

DIFCHISQ = name

DIFDEV = name

H = name

L

LOWER

= name

OUT = dataset

P

PRED

PREDICTED

PROB

= name

PREDPROB

PREDPROBS

= CROSSVALIDATE

XVALIDATE

X

CUMULATIVE

C

INDIVIDUAL

I

RESCHI = name

RESDEV = name

STDXBETA = name

U

UPPER

= name

XBETA = name

ROC

ROC

'label'

effect- vars

PRED = variable / options

;

Reference for language elements
Version 4.1

2946

effect-vars

effect

options

NOOFFSET

LINK = CLOGLOG

LOGIT

NORMIT

ROCCONTRAST

ROCCONTRAST

'label' ADJACENTPAIRS

REFERENCE

(MODEL

'roc- label'

)

matrix

/ roccontrast- options

matrix

row , row

roccontrast-options

COV

E

ESTIMATE

= ALLPAIRS

ROWS

Reference for language elements
Version 4.1

2947

SCORE

SCORE

options

;

options

ALPHA = number

CLM

DATA = dataset

FITSTAT

FITSTATS

OUT = dataset

OUTROC = dataset

PRIOR = dataset

PRIOREVENT = value

ROCEPS = value

TEST

TEST equat ion,

, equat ion / PRINT

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2948

MDS procedure

Supported statements
• PROC MDS (page 2948)
• ATTRIB (page 2950)
• BY (page 2950)
• FORMAT (page 2951)
• ID (page 2951)
• INFORMAT (page 2951)
• INVAR (page 2951)
• LABEL (page 2951)
• MATRIX (page 2951)
• VAR (page 2952)
• WEIGHT (page 2952)
• WHERE (page 2952)

PROC MDS

PROC MDS

option

;

Reference for language elements
Version 4.1

2949

option
ALTERNATE = MATRIX

MAT

M

SUBJECT

SUB

S

ROW

= n

R

= n

COEF = IDENTITY

IDEN

I

DIAGONAL

DIAG

D

CONDITION = UN

U

MATRIX

MAT

M

SUBJECT

SUB

S

ROW

R

CONVERGE = p

CUTOFF = n

DATA = input- dataset
i

DECIMALS = n

DIMENSION = n

TO m

BY = i

EPSILON = n

FIT = DISTANCE

DIS

D

SQUARED

SQU

S

LOG

L

n

FORMULA = 0

OLS

O

1

USS

U

2

CSS

C

GCONVERGE = p

INAV = DATA

D

SSCP

S

INITIAL = input- dataset
i i

LEVEL = ABSOLUTE

ABS

A

RATIO

RAT

R

INTERVAL

INT

I

LOGINTERVAL

LOG

L

ORDINAL

ORD

O

MAXITER = n

MCONVERGE = p

MINCRIT = n

NEGATIVE

NONORM

NOPHIST

NOULB

OCOEF

OCONFIG

OCRIT

OITER

OTRANS

OUT = output- dataset
i i i

OUTFIT = output- dataset
iv

OUTRES = output- dataset
v

PCOEF

PCONFIG

PDATA

PFINAL

PFIT

PFITROW

PINAVDATA

PINEIGVAL

PINEIGVEC

PININ

PINIT

PITER

PLOTS

(GlobalPlotOptions)
= PlotRequest

(PlotRequest)

PTRANS

RANDOM

= seed

RIDGE = n

SHAPE = TRIANGULAR

TRIANGLE

TRI

T

SQUARE

SQU

S

SIMILAR

= max

SINGULAR = p

UNTIE

Reference for language elements
Version 4.1

2950

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Output dataset (page 16).

iv See Output dataset (page 16).

v See Output dataset (page 16).

GlobalPlotOptions

FLIP

PlotRequest

COEFFICIENTS(ONE)

NONE

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

2951

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

INVAR

INVAR variable- name ;

LABEL

LABEL variable- name =

label- name

;

MATRIX

MATRIX variable- name ;

Reference for language elements
Version 4.1

2952

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

MI procedure

Supported statements
• PROC MI (page 2953)
• ATTRIB (page 2954)
• BY (page 2954)
• CLASS (page 2954)
• EM (page 2954)
• FCS (page 2955)
• FORMAT (page 2956)
• FREQ (page 2957)
• INFORMAT (page 2957)
• LABEL (page 2957)
• MCMC (page 2957)
• MONOTONE (page 2959)
• TRANSFORM (page 2961)
• VAR (page 2961)
• WHERE (page 2961)

Reference for language elements
Version 4.1

2953

PROC MI

PROC MI

options

;

options

ALPHA = value

DATA = input- dataset
i

MAXIMUM

MAX

= value

MINIMUM

MIN

= value

MINMAXITER = number

MU0

THETA0

= value

NIMPUTE = number

NOPRINT

OUT = output- dataset
i i

ROUND = value

SEED = number

SIMPLE

SINGULAR = value

i See Input dataset (page 16).

ii See Input dataset (page 16).

Reference for language elements
Version 4.1

2954

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(REF = FIRST

LAST

' level '

)

/ REF = FIRST

LAST

;

EM

EM

options

;

Reference for language elements
Version 4.1

2955

options

CONVERGE

XCONV

= value

INITIAL = CC

AC

(R = value)

ITPRINT

MAXITER = number

OUT = output- dataset
i

OUTEM = output- dataset
i i

OUTITER

(COV

MEAN

)

= output- dataset
i i i

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

FCS

FCS

options

;

Reference for language elements
Version 4.1

2956

options
NBITER = number

OUTITER

(MEAN

STD

)

= output- dataset
i

PLOTS

(LOG) = TRACE

(MEAN

(variable)

STD

(variable

variable * variable

)

)

DISCRIM

(

imputed

= effects
/ CLASSEFFECTS = EXCLUDE

INCLUDE

DETAILS

PCOV = FIXED

POSTERIOR

PRIOR = EQUAL

JEFFREYS

= value

PROPORTIONAL

RIDGE

= value

)

LOGISTIC

(

imputed

= effects
/ DESCENDING

DETAILS

LINK = GLOGIT

LOGIT

ORDER = DATA

FORMATTED

FREQ

INTERNAL

)

REG

REGRESSION (

imputed

= effects
/ DETAILS

)

i See Input dataset (page 16).

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2957

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MCMC

MCMC

options

;

Reference for language elements
Version 4.1

2958

options

CHAIN = MULTIPLE

SINGLE

DISPLAYINIT

INEST = input- dataset
i

INITIAL = EM

(BOOTSTRAP

= value

CONVERGE

XCONV

= value

ITPRINT

MAXITER = number

)

INPUT = input- dataset
i i

IMPUTE = FULL

MONOTONE

NBITER = number

NITER = number

OUTEST = output- dataset
i i i

OUTITER

(COV

LR

LR_POST

MEAN

STD

WLF

)

= output- dataset
iv

PLOTS

(LOG) = mcmc- plot- request

(mcmc- plot- request)

PRIOR = INPUT = input- dataset
v

JEFFREYS

RIDGE = value

WLF

i See Input dataset (page 16).

ii See Input dataset (page 16).

Reference for language elements
Version 4.1

2959

iii See Input dataset (page 16).

iv See Input dataset (page 16).

v See Input dataset (page 16).

mcmc-plot-request

ACF

(COV

(variable

variable * variable

)

MEAN

(variable)

NLAG = number

WLF

)

ALL

NONE

TRACE

(COV

(variable

variable * variable

)

MEAN

(variable)

WLF

)

MONOTONE

MONOTONE

options

;

Reference for language elements
Version 4.1

2960

options
DISCRIM

(

imputed

= effects
/ CLASSEFFECTS = EXCLUDE

INCLUDE

DETAILS

PCOV = FIXED

POSTERIOR

PRIOR = EQUAL

JEFFREYS

= value

PROPORTIONAL

RIDGE

= value

)

LOGISTIC

(

imputed

= effects
/ DESCENDING

DETAILS

LINK = GLOGIT

LOGIT

ORDER = DATA

FORMATTED

FREQ

INTERNAL

)

REG

REGRESSION (

imputed

= effects
/ DETAILS

)

Reference for language elements
Version 4.1

2961

TRANSFORM

TRANSFORM

BOXCOX (variable

/ C = value

LAMBDA = value

)

EXP (variable

/ C = value

)

LOG (variable

/ C = value

)

LOGIT (variable

/ C = value

)

POWER (variable

/ C = value

LAMBDA = value

)

;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

MIANALYZE procedure

Supported statements
• PROC MIANALYZE (page 2962)
• ATTRIB (page 2963)

Reference for language elements
Version 4.1

2962

• BY (page 2963)
• CLASS (page 2963)
• FORMAT (page 2963)
• INFORMAT (page 2963)
• LABEL (page 2964)
• MODELEFFECTS (page 2964)
• STDERR (page 2964)
• TEST (page 2964)
• WHERE (page 2965)

PROC MIANALYZE

PROC MIANALYZE

PROC MIANALYSE option

;

option
ALPHA = value

BCOV

COVB

(EFFECTVAR = ROWCOL

STACKING

)

= dataset

DATA = dataset

EDF = value

MULTIVARIATE

MULT

PARMINFO = dataset

PARMS

(CLASSVAR = CLASSVAL

FULL

LEVEL

LINK = GLOGIT

LOGIT

NONE

)
(EFFECTVAR = ROWCOL

STACKING

)

= dataset

TOVB

MU0

THETA0

= value

WOVB

XPXI = dataset

Reference for language elements
Version 4.1

2963

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

Reference for language elements
Version 4.1

2964

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODELEFFECTS

MODELEFFECTS effect ;

STDERR

STDERR variable- name ;

TEST

label- name :

TEST test- equation

, test- equation

/ BCOV

MULT

TCOV

WCOV

test-equation

test- term
+

-

test- term
= +

-

test- term

Reference for language elements
Version 4.1

2965

test-term

model- parameter

value

value * model- parameter

WHERE

WHERE condit ion ;

MIXED procedure

Supported statements
• PROC MIXED (page 2966)
• ATTRIB (page 2968)
• BY (page 2968)
• CLASS (page 2968)
• CODE (page 2968)
• CONTRAST (page 2969)
• ESTIMATE (page 2970)
• FORMAT (page 2971)
• ID (page 2971)
• INFORMAT (page 2971)
• LABEL (page 2972)
• LSMEANS (page 2972)
• MODEL (page 2974)
• RANDOM (page 2976)
• REPEATED (page 2978)
• WEIGHT (page 2979)
• WHERE (page 2979)

Reference for language elements
Version 4.1

2966

PROC MIXED

PROC MIXED

options

;

Reference for language elements
Version 4.1

2967

options

ABSOLUTE

ALPHA = number

ASYCORR

ASYCOV

CL

= WALD

CONVF

= number

CONVG

= number

CONVH

= number

COVTEST

DATA = dataset

DFBW

EMPIRICAL

IC

INFO

ITDETAILS

LOGNOTE

MAXFUNC = number

MAXITER = number

METHOD = REML

ML

MIVQUE0

TYPE1

TYPE2

TYPE3

MMEQ

MMEQSOL

NOBOUND

NOCLPRINT

= number

NOINFO

NOITPRINT

NOPROFILE

ORDER = DATA

FORMATTED

FREQ

INTERNAL

RATIO

RIDGE = number

SCORING

= number

SIGITER

UPDATE

Reference for language elements
Version 4.1

2968

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(REF = FIRST

LAST

' level '

)

/ REF = FIRST

LAST

;

CODE

CODE FILE = f ileref options ;

Reference for language elements
Version 4.1

2969

options

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE = length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

CONTRAST

label

effect- vars , effect- vars
/ options

;

effect-vars

effect value

| effect value

Reference for language elements
Version 4.1

2970

options

CHISQ

DF = number

E

GROUP

GRP

coeffs

SINGULAR = number

SUBJECT

SUB

coeffs

ESTIMATE

label

effect- vars | effect- vars
/ options

;

effect-vars

effect value

Reference for language elements
Version 4.1

2971

options

ALPHA = number

CL

DF = number

DIVISOR = number

E

GROUP

GRP

coeffs

LOWER

LOWERTAILED

SINGULAR = number

SUBJECT

SUB

coeffs

UPPER

UPPERTAILED

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

Reference for language elements
Version 4.1

2972

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

LSMEANS

LSMEANS f ixed- effect

/ options

;

Reference for language elements
Version 4.1

2973

options

ADJDFE = SOURCE

ROW

ADJUST = BON

DUNNETT

GT2

SCHEFFE

SIDAK

SMM

TUKEY

ALPHA = number

AT variable = value

(variable- list) = (value- list)

MEANS

BYLEVEL

CL

CORR

COV

DF = number

DIFF

= difftype

PDIFF

= difftype

E

OM

= OM- dataset
i

OBSMARGINS

= OM- dataset
i i

SINGULAR = number

SLICE = f ixed- effect

(f ixed- effect)

i See Input dataset (page 16).

ii See Input dataset (page 16).

Reference for language elements
Version 4.1

2974

difftype

ALL

CONTROL

(value- list)

CONTROLL

(value- list)

CONTROLU

(value- list)

MODEL

MODEL dependent =

f ixed- effect / options

;

Reference for language elements
Version 4.1

2975

options

ALPHA = number

ALPHAP = number

CHISQ

CL

CONTAIN

CORRB

COVB

COVBI

DDFM = CONTAIN

BETWITHIN

RESIDUAL

SATTERTHWAITE

KENWARDROGER

(FIRSTORDER)

E

E1

E2

E3

HTYPE = value- list

INTERCEPT

LCOMPONENTS

NOCONTAIN

NOINT

NOTEST

OUTP = output- dataset
i

OUTM = output- dataset
i i

RESIDUAL

SINGCHOL = number

SINGRES = number

SINGULAR = number

SOLUTION

VCIRY

XPVIX

XPVIXI

ZETA = number

i See Output dataset (page 16).

Reference for language elements
Version 4.1

2976

ii See Output dataset (page 16).

RANDOM

RANDOM random- effect

/ options

;

Reference for language elements
Version 4.1

2977

options

ALPHA = number

CL

G

GC

GCI

GCORR

GI

GROUP = effect

SOLUTION

SUBJECT = effect

TYPE = ANTE(1)

AR(1)

ARH(1)

ARMA(1,1)

CS

CSH

FA(q)

FA0(q)

FA1(q)

HF

TOEP

TOEP(q)

TOEPH

TOEPH(q)

UN

UN(q)

UNR

UNR(q)

VC

V

= value- list

VC

= value- list

VCI

= value- list

VCORR

= value- list

VI

= value- list

Reference for language elements
Version 4.1

2978

REPEATED

REPEATED

repeated- effect / options

;

options

GROUP = effect

R

= value- list

RC

= value- list

RCI

= value- list

RCORR

= value- list

RI

= value- list

SUBJECT = effect

TYPE = ANTE(1)

AR(1)

ARH(1)

ARMA(1,1)

CS

CSH

FA(q)

FA0(q)

FA1(q)

HF

TOEP

TOEP(q)

TOEPH

TOEPH(q)

UN

UN(q)

UNR

UNR(q)

VC

Reference for language elements
Version 4.1

2979

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

MODECLUS procedure

Supported statements
• PROC MODECLUS (page 2979)
• ATTRIB (page 2981)
• BY (page 2981)
• FORMAT (page 2981)
• FREQ (page 2981)
• ID (page 2981)
• INFORMAT (page 2982)
• FORMAT (page 2981)
• VAR (page 2982)
• WHERE (page 2982)

PROC MODECLUS

PROC MODECLUS

option

;

Reference for language elements
Version 4.1

2980

option
ALL

AM

BOUNDARY

CASCADE

CASC

= number

CK = number

CLUSTER = name

CORE

CR = number

CROSS

CROSSLIST

DATA = dataset

DENSITY = name

DIMENSION

DIM

= number

DK = number

DOCK = number

DR = number

EARLY

HM

JOIN

= number

K = number

MAXCLUSTERS

MAXC

= number

METHOD

MET

M

= number

MODE = number

NEIGHBOR

NOPRINT

NOSUMMARY

OUT = dataset

OUTCLUS

OUTC

= name

OUTLENGTH

OUTL

= name

OUTSUM

OUTS

= name

POWER

PIW

= number

R = number

SHORT

S

SIMPLE

STANDARD

STD

SUM

TEST

THRESHOLD

THR

=

number

TRACE

Reference for language elements
Version 4.1

2981

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable ;

Reference for language elements
Version 4.1

2982

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

NESTED procedure

Supported statements
• PROC NESTED (page 2983)
• ATTRIB (page 2983)
• BY (page 2983)
• CLASS (page 2983)
• FORMAT (page 2984)
• INFORMAT (page 2984)
• LABEL (page 2984)

Reference for language elements
Version 4.1

2983

• VAR (page 2984)
• WHERE (page 2984)

PROC NESTED

PROC NESTED

AOV

DATA = input- dataset
i

;

i See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

/ TRUNCATE

;

Reference for language elements
Version 4.1

2984

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2985

NLIN procedure

Supported statements
• PROC NLIN (page 2985)
• ATTRIB (page 2989)
• BOUNDS (page 2990)
• BY (page 2990)
• CONTROL (page 2990)
• DER (page 2991)
• FORMAT (page 2991)
• ID (page 2991)
• INFORMAT (page 2991)
• LABEL (page 2991)
• MODEL (page 2992)
• OUTPUT (page 2992)
• PARAMETERS (page 2994)
• RETAIN (page 2994)
• VAR (page 2994)
• WEIGHT (page 2994)
• WHERE (page 2994)

PROC NLIN

PROC NLIN

option

;

Reference for language elements
Version 4.1

2986

option

ALPHA = number- between- 0- and- 1

BEST = non- negat ive- integer

BIAS

CONVERGE = non- negat ive- number

CONVERGEOBJ = non- negat ive- number

CONVERGEPARM = non- negat ive- number

DATA = input- dataset
i

G4

HOUGAARD

LIST

LISTALL

LISTCODE

LISTDEP

LISTDER

MAXITER = non- negat ive- integer

MAXSUBIT = non- negat ive- integer

METHOD = GAUSS

MARQUARDT

NEWTON

GRADIENT

NLINMEASURES

NUMERICDIFFERENTIATION

NUMERICDIFF

NOITPRINT

NOHALVE

NOPRINT

OUTPLOTDATA = l ibrary- name

OUTEST = output- dataset
i i

PLOTS

(Plots global options)

= Plots request item

(Plots request item)

RHO = number

SAVE

SIGSQ = number

SINGULAR = non- negat ive- number

SMETHOD = HALVE

GOLDEN

CUBIC

TAU = number

TOTALSS

UNCORRECTEDDF

UNCORRECTEDGF

OUTPLOTDATA = l ibrary

Reference for language elements
Version 4.1

2987

i See Input dataset (page 16).

ii See Output dataset (page 16).

Plots global options

Plots residual type

Plots stats type

UNPACK

MAXPOINTS = posit ive- integer

NONE

Plots residual type

RESIDUALTYPE = RAW

PROJ

BOTH

Plots stats type

STATS = ALL

DEFAULT

NONE

MAXINCURV

MAXPECURV

MSE

NOBS

NPARM

PVAR

RMSNINCURV

RMSINCURV

RMSPECURV

VAR

CURVCRIT

Reference for language elements
Version 4.1

2988

Plots leverage type

LEVERAGETYPE = TAN

JAC

BOTH

Plots request item

ALL

NONE

DIAGNOSTICS

(Diagnostics option)

Diagnostics option

FITPLOT

FIT
(Fit option)

Fit option

RESIDUALS

(Residual option)

Residual option

Diagnostics option

RESIDUALTYPE = Plots residual type

LEVERAGETYPE = Plots leverage type

LABELOBS

STATS = Plots stats type

UNPACK

Reference for language elements
Version 4.1

2989

Fit option

NOCLI

NOCLM

NOLIMITS

OBS = GRADIENT

NONE

OUTLINE

OUTLINEGRADIENT

CONTLEG

STATS = Plots stats type

Residual option

RESIDUALTYPE = Plots residual type

UNPACK

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2990

BOUNDS

BOUNDS Bounds inequality

,
Bounds inequality

parameter- name

number

LT

LE

GT

GE

<

<=

>

>=

parameter- name

number

Bounds inequality

parameter- name LT

LE

GT

GE

<

<=

>

>=

parameter- name

number

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CONTROL

CONTROL variable- name
= number

;

Reference for language elements
Version 4.1

2991

DER

DER . parameter- name

parameter- name . parameter- name

= expression ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

2992

MODEL

MODEL
.

dependent- name = expression ;

OUTPUT

OUTPUT

output option

;

Reference for language elements
Version 4.1

2993

output option

OUT = output- dataset
i

H = name

J = name

L95 = name

L95M = name

LCL = name

LCLM = name

PARMS = name

PREDICTED = name

P = name

PROJRES = name

PROJSTUDENT = name

RESEXPEC = name

RESIDUAL = name

R = name

SSE = name

ESS = name

STDI = name

STDP = name

STDR = name

STUDENT = name

U95 = name

U95M = name

UCL = name

UCLM = name

WEIGHT = name

/ ALPHA = name

DER

i See Output dataset (page 16).

Reference for language elements
Version 4.1

2994

PARAMETERS

PARAMETERS

PARMS

PARAMS

parameter- name
=

number

TO number

BY number

/ PDATA = input- dataset
i

;

i See Input dataset (page 16).

RETAIN

RETAIN variable- name
= number

;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

2995

NPAR1WAY procedure

Supported statements
• PROC NPAR1WAY (page 2995)
• ATTRIB (page 2997)
• BY (page 2998)
• CLASS (page 2998)
• EXACT (page 2998)
• FORMAT (page 2999)
• ID (page 2999)
• INFORMAT (page 2999)
• LABEL (page 2999)
• FREQ (page 2999)
• OUTPUT (page 3000)
• VAR (page 3000)
• WHERE (page 3000)

PROC NPAR1WAY

PROC NPAR1WAY

option

;

Reference for language elements
Version 4.1

2996

option

AB

ALPHA = p

CONOVER

CORRECT = YES

NO

D

DATA = input- dataset
i

EDF

HL

KLOTZ

MEDIAN

MISSING

MOOD

NOPRINT

NORMAL

SAVAGE

SCORES=DATA

ST

VW

WILCOXON

PLOTS

(GlobalPlotOptions)

= ALL

NONE

PlotTypeOptions

(PlotTypeOptions)

i See Input dataset (page 16).

GlobalPlotOptions

MAXPOINTS = posit ive- integer

NONE

NOSTATS

ONLY

STATS

Reference for language elements
Version 4.1

2997

PlotTypeOptions

AB

ABBOXPLOT

ANOVA

ANOVABOXPLOT

CONOVER

CONOVERBOXPLOT

DATASCORES

DATASCORESBOXPLOT

EDF

EDFPLOT

KLOTZ

KLOTZBOXPLOT

MOOD

MOODBOXPLOT

SAVAGE

SAVAGEBOXPLOT

ST

STBOXPLOT

VW

VWBOXPLOT

NORMAL

NORMALBOXPLOT

WILCOXON

WILCOXONBOXPLOT

(NOSTATS

STATS

)

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

2998

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable- name ;

EXACT

EXACT

ExactTypeOptions MC

POINT

ALPHA = number

MAXTIME = posit ive- integer

N = posit ive- integer

SEED = posit ive- integer

;

ExactTypeOptions

AB

CONOVER

EDF

HL

KLOTZ

KS

MEDIAN

MOOD

NORMAL

SAVAGE

SCORES=DATA

ST

VW

WILCOXON

Reference for language elements
Version 4.1

2999

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

3000

OUTPUT

OUTPUT

OutputTypeOptions

;

OutputTypeOptions

AB

ANOVA

CONOVER

D

EDF

HL

KLOTZ

MEDIAN

MOOD

NORMAL

OUT = output- dataset
i

SAVAGE

SCORES=DATA

ST

VW

WILCOXON

i See Input dataset (page 16).

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3001

PHREG procedure

Supported statements
• PROC PHREG (page 3001)
• ATTRIB (page 3002)
• BASELINE (page 3003)
• BY (page 3004)
• CLASS (page 3004)
• ESTIMATE (page 3005)
• FORMAT (page 3006)
• FREQ (page 3007)
• ID (page 3007)
• INFORMAT (page 3007)
• LABEL (page 3007)
• MODEL (page 3007)
• OUTPUT (page 3010)
• STRATA (page 3011)
• TEST (page 3011)
• WEIGHT (page 3011)
• WHERE (page 3011)

PROC PHREG

PROC PHREG

options

;

Reference for language elements
Version 4.1

3002

options

DATA = input- dataset
i

ALPHA = value

ATRISK

COVM

COVOUT

COVSANDWICH

COVS (AGGREGATE)

NAMELEN = number

NOPRINT

NOSUMMARY

OUTEST = output- dataset
i i

PLOTS

PLOT
(CL

= EQTAIL

HPD

OVERLAY

= BYGROUP

GROUP

INDIVIDUAL

IND

BYROW

ROW

BYSTRATUM

STRATUM

)

= CUMHAZ

SURVIVAL

NONE

(CUMHAZ

SURVIVAL

NONE

)

SIMPLE

i See Input dataset (page 16).

ii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3003

BASELINE

OUT = output- dataset
i

OUTDIFF = output- dataset
i i

COVARIATES = input- dataset
i i i

keywords

/ options

;

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

keywords

CUMHAZ = name

LOGLOGS = name

LOGSURV = name

LOWER

L

= name

LOWERCUMHAZ = name

STDCUMHAZ = name

STDERR = name

STDXBETA = name

SURVIVAL = name

UPPER

U

= name

UPPERCUMHAZ = name

XBETA = name

Reference for language elements
Version 4.1

3004

options

ALPHA = value

CLTYPE = IDENTITY

LOG

LOGLOG

NORMAL

DIRADJ

GROUP = name

METHOD = BRESLOW

CH

EMP

FH

PL

NOMEAN

ROWID

ID

ROW

= name

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(options)
/ options

;

Reference for language elements
Version 4.1

3005

options

DESC

DESCENDING

MISSING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PARAM = EFFECT

GLM

ORDINAL

THERMOMETER

ORTHEFFECT

ORTHORDINAL

ORTHOTHERM

ORTHPOLY

ORTHREF

POLY

POLYNOMIAL

REF

REFERENCE

REF = FIRST

LAST

"level"

ESTIMATE

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

[value
,

]

Reference for language elements
Version 4.1

3006

options

ADJUST = BON

SCHEFFE

SIDAK

SIMULATE

(ACC = value

EPS = value

NSAMP = value

SEED = value

)

T

ALPHA = value

CL

CORR

COV

DIVISOR = value

E

LOWER

LOWERTAILED

NOFILL

SEED = value

SINGULAR = value

TESTVALUE

TESTMEAN

= value

UPPER

UPPERTAILED

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3007

FREQ

FREQ

FREQUENCY

variable ;

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

response

(entry , response) * censor (values)

= effects

/ options

;

Reference for language elements
Version 4.1

3008

effects

effect

*

|

effect

Reference for language elements
Version 4.1

3009

options
ABSFCONV

CONVERGELIKE

= value

ALPHA = value

BEST = number

CORRB

COVB

DETAILS

ENTRYTIME

ENTRY

= variable

FCONV = value

GCONV = value

HIERARCHY

HIER

= MULTIPLE

MULTIPLECLASS

NONE

SINGLE

SINGLECLASS

INCLUDE = number

ITPRINT

MAXITER = number

MAXSTEP = number

NODUMMYPRINT

NODP

NODESIGNPRINT

NOFIT

RIDGEINIT = value

RIDGEMAX = value

RIDGING = RELATIVE

ABSOLUTE

NONE

RISKLIMITS

RL = WALD

SELECTION = BACKWARD

B

FORWARD

F

NONE

N

SCORE

STEPWISE

S

SEQUENTIAL

SINGULAR = value

SLENTRY

SLE

= value

SLSTAY

SLS

= value

START = number

STOP = number

STOPRES

SR

TIES = BRESLOW

DISCRETE

EFRON

EFRONM

XCONV

CONVERGEPARM

= value

Reference for language elements
Version 4.1

3010

OUTPUT

OUT = output- dataset
i

keywords

/ options

;

i See Input dataset (page 16).

keywords

ATRISK

NUM_LEFT

= name

DFBETA = name

LD = name

LMAX = name

LOGLOGS = name

LOGSURV = name

RESDEV = name

RESMART = name

RESSCH = name

RESSCO = name

STDXBETA = name

SURVIVAL = name

WTRESSCH = name

XBETA = name

options

METHOD = BRESLOW

CH

EMP

FH

PL

ORDER = DATA

SORTED

Reference for language elements
Version 4.1

3011

STRATA

variable

(value

value TO value

value TO value BY value

,
)

/ MISSING

TEST

TEST equat ion

, equat ion
/ AVERAGE

E

PRINT

WEIGHT

WEIGHT variable

/ NORMALIZE

NORM

;

WHERE

WHERE condit ion ;

PLAN procedure

Supported statements
• PROC PLAN (page 3012)

Reference for language elements
Version 4.1

3012

• ATTRIB (page 3012)
• FACTORS (page 3013)
• FORMAT (page 3013)
• INFORMAT (page 3013)
• LABEL (page 3014)
• OUTPUT (page 3014)
• TREATMENTS (page 3014)
• WHERE (page 3014)

PROC PLAN

PROC PLAN

options

;

options

SEED = number

ORDERED

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3013

FACTORS

FACTORS factor- selections

/NOPRINT

factor-selections

name = m

of n

COMB

ORDERED

PERM

RANDOM

CYCLIC

(initial block of m numbers from n levels) increment

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3014

LABEL

LABEL variable- name =

label- name

;

OUTPUT

OUTPUT OUT = output- dataset
i

DATA = input- dataset
i i

factor- value- settings

i See Output dataset (page 16).

ii See Input dataset (page 16).

factor-value-settings

factor-name

input-variable-name = factor-name

NVALS = (n numbers)

CVALS = (n strings)

ORDERED

RANDOM

TREATMENTS

TREATMENTS factor- selections

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3015

PLS procedure

Supported statements
• PROC PLS (page 3015)
• ATTRIB (page 3017)
• BY (page 3017)
• CLASS (page 3017)
• FORMAT (page 3017)
• ID (page 3017)
• INFORMAT (page 3018)
• LABEL (page 3018)
• MODEL (page 3018)
• OUTPUT (page 3019)
• WHERE (page 3019)

PROC PLS

PROC PLS

option

;

Reference for language elements
Version 4.1

3016

option
CENSCALE

CV = BLOCK

(number)

ONE

RANDOM

(NITER = number

NTEST = number

SEED = number

)

SPLIT

(number)

TESTSET (data set)

CVTEST

(NSAMP = number

PVAL = number

SEED = number

STAT = PRESS

T2

)

DATA = dataset

DETAILS

METHOD = PCR

PLS

(ALGORITHM = EIG

NIPALS

SVD

EPSILON = number

MAXITER = number

)

SIMPLS

RRR

MISSING = (AVG

EM

(EPSILON = number MAXITER = number)

NONE

)

NFAC = number

NOCENTER

NOCVSTDIZE

NOPRINT

NOSCALE

PLOT

PLOTS
(FLIP

ONLY

UNPACK

UNPACKPANEL

) = (ALL

CORRLOAD

(TRACE = OFF

ON

)

CVPLOT

DIAGNOSTICS

(UNPACK)

DMOD

DMODX

DMODXY

DMODY

FIT

NONE

PARMPROFILES

SCORES

(FLIP

UNPACK

)

RESIDUALS

(UNPACK)

VIP

WEIGHTS

(FLIP

UNPACK

)

XLOADINGPLOT

(FLIP

UNPACK

)

XLOADINGPROFILES

XSCORES

(FLIP

UNPACK

)

XWEIGHTPLOT

(FLIP

UNPACK

)

XWEIGHTPROFILES

XYSCORES

(UNPACK)

YSCORES

(FLIP

UNPACK

)

YWEIGHTPLOT

(FLIP

UNPACK

)

)

VARSCALE

VARSS

Reference for language elements
Version 4.1

3017

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

Reference for language elements
Version 4.1

3018

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL response =

effect- definition

/ INTERCEPT

SOLUTION

;

effect-definition

effect- variable

*

|

effect- variable

effect-variable

effect- name

(effect- name)

Reference for language elements
Version 4.1

3019

OUTPUT

OUTPUT

OUT = output- dataset
i

option

;

i See Output dataset (page 16).

option

H = name

PREDICTED = name

PRESS = name

STDX = name

STDXSSE = name

STDY = name

STDYSSE = name

TSQUARE = name

XRESIDUAL = name

XSCORE = name

YRESIDUAL = name

YSCORE = name

WHERE

WHERE condit ion ;

POWER procedure

Supported statements
• PROC POWER (page 3020)
• ATTRIB (page 3021)
• FORMAT (page 3021)

Reference for language elements
Version 4.1

3020

• INFORMAT (page 3021)
• LABEL (page 3021)
• LOGISTIC (page 3022)
• MULTREG (page 3026)
• ONECORR (page 3029)
• ONESAMPLEFREQ (page 3032)
• ONESAMPLEMEANS (page 3036)
• ONEWAYANOVA (page 3040)
• PAIREDFREQ (page 3043)
• PAIREDMEANS (page 3046)
• PLOT (page 3050)
• TWOSAMPLEFREQ (page 3054)
• TWOSAMPLEMEANS (page 3058)
• TWOSAMPLESURVIVAL (page 3063)
• TWOSAMPLEWILCOXON (page 3068)
• WHERE (page 3071)

PROC POWER

PROC POWER

option

;

option

PLOTONLY

OUTPLOTDATA = l ibrary- name

Reference for language elements
Version 4.1

3021

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

3022

LOGISTIC

LOGISTIC LOGISTIC options A–N

LOGISTIC options O–V

;

LOGISTIC options A–N

ALPHA = Power number list

CORR = Power number list

COVARIATES

COVARIATE

= Power grouped name list

COVODDSRATIOS

COVODDSRATIO

= Power grouped number list

COVREGCOEFFS

COVREGCOEFF

= Power grouped number list

DEFAULTNBINS

DEFAULTNBIN

= non- negat ive- number

DEFAULTUNITS

DEFAULTUNIT

= number

+SD

-SD

number *SD

PERCENTILES (number
,

number)

INTERCEPT = Power number list

NBINS

NBIN

= (Power name- value pair list)

NFRACTIONAL

NFRAC

NTOTAL = Power number list with missing

Reference for language elements
Version 4.1

3023

LOGISTIC options O–V
OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

RESPONSEPROB = Power number list

TEST = LRCHI

TESTODDSRATIO = Power number list

TESTPREDICTOR = Power name list

TESTREGCOEFF = Power number list

UNITS

UNIT

= (Power name- unit- change pair list)

VARDIST (' name '

" name "

) = BETA (posit ive- number , posit ive- number

, number , number

)

BINOMIAL (non- negat ive- number , posit ive- number)

EXPONENTIAL (posit ive- number)

GAMMA (posit ive- number , posit ive- number)

LAPLACE (number , posit ive- number)

LOGISTIC (number , posit ive- number)

LOGNORMAL (number , posit ive- number)

NORMAL (number , posit ive- number)

ORDINAL ((number) : (number))

POISSON (posit ive- number)

UNIFORM (number , number)

Power name-value pair list

' name '

" name "

= number

Power name-unit-change pair list

' name '

" name "

= number

+SD

-SD

number *SD

PERCENTILES (number
,

number)

Power number list

number to number

by number

number

Reference for language elements
Version 4.1

3024

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Reference for language elements
Version 4.1

3025

Power matched number list

(Power number list)

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

Reference for language elements
Version 4.1

3026

MULTREG

MULTREG MULTREG options ;

MULTREG options

ALPHA = Power number list

MODEL = CONDITIONAL

FIXED

RANDOM

UNCONDITIONAL

NFRACTIONAL

NFRAC

NFULLPREDICTORS

NFULLPRED

= Power number list

NOINT

NREDUCEDPREDICTORS

NREDUCEDPRED

NREDPRED

= Power number list

NTESTPREDICTORS

NTESTPRED

= Power number list

NTOTAL = Power number list with missing

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

PARTIALCORR

PCORR

= Power number list with missing

POWER = Power number list with missing

RSQUAREDIFF

RSQDIFF

= Power number list with missing

RSQUAREFULL

RSQFULL

= Power number list with missing

RSQUAREREDUCED

RSQREDUCED

RSQRED

= Power number list with missing

TEST = TYPE3

Reference for language elements
Version 4.1

3027

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Reference for language elements
Version 4.1

3028

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Reference for language elements
Version 4.1

3029

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

ONECORR

ONECORR ONECORR options ;

Reference for language elements
Version 4.1

3030

ONECORR options

ALPHA = Power number list

CORR = Power number list

DIST = FISHERZ

T

MODEL = CONDITIONAL

FIXED

RANDOM

UNCONDITIONAL

NFRACTIONAL

NFRAC

NPARTIALVARS

NPVARS

= Power number list

NTOTAL = Power number list with missing

NULLCORR

NULLC

NULL

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

SIDES

SIDE

= Power sides list

TEST = PEARSON

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Reference for language elements
Version 4.1

3031

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Reference for language elements
Version 4.1

3032

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

ONESAMPLEFREQ

ONESAMPLEFREQ ONESAMPLEFREQ options A–N

ONESAMPLEFREQ options O–V

;

Reference for language elements
Version 4.1

3033

ONESAMPLEFREQ options A–N

ALPHA = Power number list

CI = AC

AGRESTICOULL

AGRESTI_COULL

CP

CLOPPERPEARSON

CLOPPER_PEARSON

EXACT

JEFFREYS

SCORE

WALD

WALDCORRECT

WALD_CORRECT

WILSON

EQUIVBOUNDS = Power grouped number list

HALFWIDTH = Power number list

LOWER = Power number list

MARGIN = Power number list

METHOD = EXACT

NORMAL

NFRACTIONAL

NFRAC

NTOTAL = Power number list with missing

NULLPROPORTION

NULLP

= Power number list

Reference for language elements
Version 4.1

3034

ONESAMPLEFREQ options O–V

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

PROBWIDTH = Power number list with missing

PROPORTION

P

= Power number list

SIDES

SIDE

= Power sides list

TEST = ADJZ

EQUIVADJZ

EQUIV_ADJZ

EQUIVEXACT

EQUIV_EXACT

EQUIVZ

EQUIV_Z

EXACT

Z

UPPER = Power number list

VAREST = NULL

SAMPLE

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Reference for language elements
Version 4.1

3035

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Reference for language elements
Version 4.1

3036

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

ONESAMPLEMEANS

ONESAMPLEMEANS ONESAMPLEMEANS options A–O

ONESAMPLEMEANS options P–V

;

Reference for language elements
Version 4.1

3037

ONESAMPLEMEANS options A–O

ALPHA = Power number list with missing

CI

= T

CV = Power number list

DIST = LOGNORMAL

NORMAL

HALFWIDTH = Power number list

LOWER = Power number list

MEAN = Power number list with missing

NFRACTIONAL

NFRAC

NTOTAL = Power number list with missing

NULLMEAN

NULLM

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

ONESAMPLEMEANS options P–V

PARALLEL

POWER = Power number list with missing

PROBTYPE = Power probtype list

PROBWIDTH = Power number list with missing

SIDES

SIDE

= Power sides list

STDDEV

STD

= Power number list with missing

TEST = EQUIV

T

UPPER = Power number list

Power number list

number to number

by number

number

Reference for language elements
Version 4.1

3038

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Reference for language elements
Version 4.1

3039

Power matched number list

(Power number list)

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

Reference for language elements
Version 4.1

3040

ONEWAYANOVA

ONEWAYANOVA ONEWAYANOVA options ;

ONEWAYANOVA options

ALPHA = Power number list

CONTRAST = Power matched number list

GROUPMEANS

GMEANS

= Power grouped number list

GROUPNS

GNS

= Power grouped number list

GROUPWEIGHTS

GWEIGHTS

= Power grouped number list

NFRACTIONAL

NFRAC

NPERGROUP

NPERG

= Power number list with missing

NTOTAL = Power number list with missing

NULLCONTRAST

NULLC

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

SIDES

SIDE

= Power sides list

STDDEV

STD

= Power number list

TEST = CONTRAST

OVERALL

Power number list

number to number

by number

number

Reference for language elements
Version 4.1

3041

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Reference for language elements
Version 4.1

3042

Power matched number list

(Power number list)

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

Reference for language elements
Version 4.1

3043

PAIREDFREQ

PAIREDFREQ PAIREDFREQ options A–N

PAIREDFREQ options O–V

;

PAIREDFREQ options A–N

ALPHA = Power number list

CORR = Power number list

DISCPROPORTIONS

DISCPS

= Power grouped number list

DISCPROPDIFF

DISCPROPORTIONDIFF

DISCPDIFF

= Power number list

DISCPROPRATIO

DISCPRATIO

= Power number list

DIST = EXACT_COND

NORMAL

METHOD = CONNOR

EXACT

MIETTINEN

NFRACTIONAL

NFRAC

NPAIRS = Power number list with missing

NULLDISCPROPRATIO

NULLDISCPRATIO

NULLRATIO

NULLR

= Power number list

Reference for language elements
Version 4.1

3044

PAIREDFREQ options O–V

ODDSRATIO

OR

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PAIREDPROPORTIONS

PAIREDPS

PPROPORTIONS

PPS

= Power grouped number list

PARALLEL

POWER = Power number list with missing

PROPORTIONDIFF

PDIFF

= Power number list

REFPROPORTION

REFPROP

REFP

= Power number list

RELATIVERISK

RR

= Power number list

SIDES

SIDE

= Power sides list

TEST = MCNEMAR

TOTALPROPDISC

TOTALPDISC

PDISC

= Power number list

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Reference for language elements
Version 4.1

3045

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Reference for language elements
Version 4.1

3046

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

PAIREDMEANS

PAIREDMEANS PAIREDMEANS options A–O

PAIREDMEANS options P–V

;

Reference for language elements
Version 4.1

3047

PAIREDMEANS options A–O

ALPHA = Power number list

CI

= DIFF

CORR = Power number list

CV = Power number list

CV = LOGNORMAL

NORMAL

HALFWIDTH = Power number list

LOWER = Power number list

MEANDIFF = Power number list

MEANRATIO = Power number list

NFRACTIONAL

NFRAC

NPAIRS = Power number list with missing

NULLDIFF

NULLD

= Power number list

NULLRATIO

NULLR

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

Reference for language elements
Version 4.1

3048

PAIREDMEANS options P–V

PARALLEL

PAIREDCVS = Power grouped number list

PAIREDMEANS

PMEANS

= Power grouped number list

PAIREDSTDDEVS

PAIREDSTDS

PSTDDEVS

PSTDS

= Power grouped number list

POWER = Power number list with missing

PROBTYPE = Power probtype list

PROBWIDTH = Power number list with missing

SIDES

SIDE

= Power sides list

STDDEV

STD

= Power number list

TEST = DIFF

EQUIV_ADD

EQUIV_DIFF

EQUIV_RATIO

RATIO

UPPER = Power number list

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Reference for language elements
Version 4.1

3049

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Reference for language elements
Version 4.1

3050

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

PLOT

PLOT PLOT options A–M

PLOT options N–Y / options

;

Reference for language elements
Version 4.1

3051

PLOT options A–M

INTERPOL = JOIN

NONE

KEY = BYCURVE

NUMBERS = OFF

ON

POS = BOTTOM

INSET

BYFEATURE

POS = BOTTOM

INSET

ONCURVES

MARKERS = ANALYSIS

COMPUTED

NICE

NONE

MAX = number

DATAMAX

MIN = number

DATAMIN

PLOT options N–Y

NPOINTS

NPTS

= non- negat ive- number

STEP = number

VARY (

,

Plot feature

)

X = EFFECT

N

POWER

XOPTS = (Plot axis option)

Y = EFFECT

N

POWER

YOPTS = (Plot axis option)

Reference for language elements
Version 4.1

3052

Plot axis option

CROSSREF = NO

YES

REF = Power number list

options

DESCRIPTION

DESC

= ' string '

" string "

NAME = ' string '

" string "

Plot feature

COLOR

COLOUR

LINE

LINESTYLE

MARKER

PANEL

SYMBOL

BY name

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Reference for language elements
Version 4.1

3053

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Reference for language elements
Version 4.1

3054

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

TWOSAMPLEFREQ

TWOSAMPLEFREQ TWOSAMPLEFREQ options A–N

TWOSAMPLEFREQ options O–T

;

Reference for language elements
Version 4.1

3055

TWOSAMPLEFREQ options A–N

ALPHA = Power number list

GROUPPROPORTIONS

GPROPORTIONS

GPS

GROUPPS

= Power grouped number list with missing

GROUPNS

GNS

= Power grouped number list

GROUPWEIGHTS

GWEIGHTS

= Power grouped number list

NFRACTIONAL

NFRAC

NPERGROUP

NPERG

= Power number list with missing

NTOTAL = Power number list with missing

NULLODDSRATIO

NULLOR

= Power number list

NULLPROPORTIONDIFF

NULLPDIFF

= Power number list

NULLRELATIVERISK

NULLRR

= Power number list

Reference for language elements
Version 4.1

3056

TWOSAMPLEFREQ options O–T

ODDSRATIO

OR

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

PROPORTIONDIFF

PDIFF

= Power number list

REFPROPORTION

REFPROP

REFP

= Power number list

RELATIVERISK

RR

= Power number list

SIDES

SIDE

= Power sides list

TEST = FISHER

LRCHI

PCHI

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Reference for language elements
Version 4.1

3057

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Power crossed number list with missing

Power number list

number

.

| Power number list

number

.

Reference for language elements
Version 4.1

3058

Power matched number list with missing

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped number list with missing

Power crossed number list with missing

Power matched number list with missing

Power grouped name list

Power crossed name list

Power matched name list

TWOSAMPLEMEANS

TWOSAMPLEMEANS TWOSAMPLEMEANS options A–M

TWOSAMPLEMEANS options N–U

;

Reference for language elements
Version 4.1

3059

TWOSAMPLEMEANS options A–M

ALPHA = Power number list with missing

CI

= DIFF

CV = Power number list

DIST = LOGNORMAL

NORMAL

GROUPMEANS

GMEANS

= Power grouped number list with missing

GROUPNS

GNS

= Power grouped number list with missing

GROUPSTDDEVS

GROUPSTDS

GSTDDEVS

GSTDS

= Power grouped number list

GROUPWEIGHTS

GWEIGHTS

= Power grouped number list with missing

HALFWIDTH = Power number list

LOWER = Power number list

MEANDIFF = Power number list with missing

MEANRATIO = Power number list

Reference for language elements
Version 4.1

3060

TWOSAMPLEMEANS options N–U

NFRACTIONAL

NFRAC

NPERGROUP

NPERG

= Power number list with missing

NTOTAL = Power number list with missing

NULLDIFF

NULLD

= Power number list

NULLRATIO

NULLR

= Power number list

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

PROBTYPE = Power probtype list

PROBWIDTH = Power number list with missing

SIDES

SIDE

= Power sides list

STDDEV

STD

= Power number list with missing

TEST = DIFF

DIFF_SATT

EQUIV_ADD

EQUIV_DIFF

EQUIV_RATIO

RATIO

UPPER = Power number list

Power number list

number to number

by number

number

Reference for language elements
Version 4.1

3061

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Reference for language elements
Version 4.1

3062

Power matched number list

(Power number list)

Power crossed number list with missing

Power number list

number

.

| Power number list

number

.

Power matched number list with missing

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped number list with missing

Power crossed number list with missing

Power matched number list with missing

Reference for language elements
Version 4.1

3063

Power grouped name list

Power crossed name list

Power matched name list

TWOSAMPLESURVIVAL

TWOSAMPLESURVIVAL TWOSAMPLESURVIVAL options A–G

TWOSAMPLESURVIVAL options G–T

;

Reference for language elements
Version 4.1

3064

TWOSAMPLESURVIVAL options A–G

ACCRUALRATEPERGROUP

ACCRUALRATEPERG

ARPERG

ARPERGROUP

= Power number list

ACCRUALRATETOTAL

ARTOTAL

= Power number list

ACCRUALTIME

ACCRUALT

ACCT

ACCTIME

= Power number list

MAX

ALPHA = Power number list

CURVE (' name '

" name "

) = number : number

(number TO number

BY number

)

EVENTSTOTAL

EVENTTOTAL

EETOTAL

= Power number list with missing

FOLLOWUPTIME

FOLLOWUPT

FUT

FUTIME

= Power number list

MAX

GROUPACCRUALRATES

GACCRUALRATES

GARS

GROUPARS

= Power grouped number list

GROUPLOSS

GLOSS

= Power grouped name list

GROUPLOSSEXPHAZARDS

GLOSSEXPHAZARDS

GLOSSEXPHS

GROUPLOSSEXPHS

= Power grouped number list

GROUPMEDLOSSTIMES

GMEDLOSSTIMES

GMEDLOSSTS

GROUPMEDLOSSTS

= Power grouped number list

GROUPMEDSURVTIMES

GMEDSURVTIMES

GMEDSURVTS

GROUPMEDSURVS

= Power grouped number list

Reference for language elements
Version 4.1

3065

TWOSAMPLESURVIVAL options G–T

GROUPNS

GNS

= Power grouped number list

GROUPSURVEXPHAZARDS

GEXPHS

GROUPSURVEXPHS

GSURVEXPHAZARDS

= Power grouped number list

GROUPSURVIVAL

GROUPSURV

GSURV

GSURVIVAL

= Power grouped name list

GROUPWEIGHTS

GWEIGHTS

= Power grouped number list

HAZARDRATIO

HR

= Power number list

NFRACTIONAL

NFRAC

NPERGROUP

NPERG

= Power number list with missing

NSUBINTERVAL

NSUB

NSUBINTERVALS

NSUBS

= Power number list

NTOTAL = Power number list with missing

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

REFSURVEXPHAZARD

REFSURVEXPH

= Power number list

REFSURVIVAL

REFSURV

= Power name list

SIDES

SIDE

= Power sides list

TEST = GEHAN

LOGRANK

TARONEWARE

TOTALTIME

TOTALT

=

Power name list

MAX

Reference for language elements
Version 4.1

3066

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Reference for language elements
Version 4.1

3067

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Reference for language elements
Version 4.1

3068

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

TWOSAMPLEWILCOXON

TWOSAMPLEWILCOXON TWOSAMPLEWILCOXON options ;

Reference for language elements
Version 4.1

3069

TWOSAMPLEWILCOXON options
ALPHA = Power number list

GROUPNS

GNS

= Power grouped number list

GROUPWEIGHTS

GWEIGHTS

= Power grouped number list

NFRACTIONAL

NFRAC

NPERGROUP

NPERG

= Power number list with missing

NTOTAL = Power number list with missing

OUTPUTORDER = INTERNAL

REVERSE

SYNTAX

PARALLEL

POWER = Power number list with missing

SIDES

SIDE

= Power sides list

TEST = WMW

VARDIST (' name '

" name "

) = BETA (posit ive- number , posit ive- number

, number , number

)

BINOMIAL (non- negat ive- number , posit ive- number)

EXPONENTIAL (posit ive- number)

GAMMA (posit ive- number , posit ive- number)

LAPLACE (number , posit ive- number)

LOGISTIC (number , posit ive- number)

LOGNORMAL (number , posit ive- number)

NORMAL (number , posit ive- number)

ORDINAL ((number) : (number))

POISSON (posit ive- number)

UNIFORM (number , number)

VARIABLES

VARS

= Power grouped name list

Power number list

number to number

by number

number

Power number list with missing

number to number

by number

number
.

Reference for language elements
Version 4.1

3070

Power name list

' name '

" name "

Power name list with missing

' name '

" name "
.

Power probtype list

CONDITIONAL

GIVENVALIDITY

UNCONDITIONAL

Power sides list

1

2

L

U

LOWER

UPPER

Power crossed number list

Power number list |Power number list

Power matched number list

(Power number list)

Reference for language elements
Version 4.1

3071

Power crossed number list

Power number list

number

.

| Power number list

number

.

Power matched number list

(Power number list

number

.

)

Power crossed name list

Power name list |Power name list

Power matched name list

(Power name list)

Power grouped number list

Power crossed number list

Power matched number list

Power grouped name list

Power crossed name list

Power matched name list

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3072

PRINCOMP procedure

Supported statements
• PROC PRINCOMP (page 3072)
• ATTRIB (page 3074)
• BY (page 3075)
• FORMAT (page 3075)
• FREQ (page 3075)
• ID (page 3075)
• INFORMAT (page 3075)
• LABEL (page 3076)
• PARTIAL (page 3076)
• VAR (page 3076)
• WEIGHT (page 3076)
• WHERE (page 3076)

PROC PRINCOMP

PROC PRINCOMP

option

;

Reference for language elements
Version 4.1

3073

option

COVARIANCE

DATA = input- dataset
i

N = number

NOINT

NOPRINT

OUT = output- dataset
i i

OUTSTAT = output- dataset
i i i

PLOTS

(GlobalPlotOptions)
= PlotRequest

= (PlotRequest)

PREFIX = name

SINGULAR = value

STANDARD

VARDEF = DF

N

WDF

WEIGHT

WGT

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

GlobalPlotOptions

FLIP

NCOMP = n

ONLY

UNPACKPANEL

Reference for language elements
Version 4.1

3074

PlotRequest

ALL

SCREE

(UNPACKPANEL)

MATRIX

NONE

PATTERN

(PatternOptions)

PATTERNPROFILE

SCORE

(ScoreOptions)

PatternOptions

CIRCLES

= number list

FLIP

NCOMP = n

VECTOR

ScoreOptions

ALPHA = number list

ELLIPSE

FLIP

NCOMP = n

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3075

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3076

LABEL

LABEL variable- name =

label- name

;

PARTIAL

PARTIAL variable- name ;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

PROBIT procedure

Supported statements
• PROC PROBIT (page 3077)
• ATTRIB (page 3078)
• BY (page 3078)
• CLASS (page 3078)
• CODE (page 3079)

Reference for language elements
Version 4.1

3077

• ESTIMATE (page 3080)
• FORMAT (page 3081)
• INFORMAT (page 3082)
• LABEL (page 3082)
• MODEL (page 3082)
• OUTPUT (page 3084)
• WEIGHT (page 3085)
• WHERE (page 3085)

PROC PROBIT

PROC PROBIT

option

;

option

C = value

COVOUT

DATA = dataset

HPROB = value

INEST = dataset

INVERSECL

LACKFIT

LN

LOG

LOG10

NOPRINT

OPTC

ORDER = sort order

OUTEST = dataset

XDATA = dataset

Reference for language elements
Version 4.1

3078

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable

(options)
/ options

;

Reference for language elements
Version 4.1

3079

options

DESC

DESCENDING

MISSING

ORDER = DATA

FORMATTED

FREQ

INTERNAL

PARAM = EFFECT

GLM

ORDINAL

THERMOMETER

ORTHEFFECT

ORTHORDINAL

ORTHOTHERM

ORTHPOLY

ORTHREF

POLY

POLYNOMIAL

REF

REFERENCE

REF = FIRST

LAST

"level"

CODE

CODE FILE = f ileref options ;

Reference for language elements
Version 4.1

3080

options

ERROR

NOERROR

FORMAT = format

LINESIZE = length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

ESTIMATE

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

[value
,

]

Reference for language elements
Version 4.1

3081

options

ADJUST = BON

SCHEFFE

SIDAK

SIMULATE

(ACC = value

EPS = value

NSAMP = value

SEED = value

)

T

ALPHA = value

CL

CORR

COV

DIVISOR = value

E

LOWER

LOWERTAILED

NOFILL

SEED = value

SINGULAR = value

TESTVALUE

TESTMEAN

= value

UPPER

UPPERTAILED

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3082

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

label :

MODEL option1

option2
/ options

;

option1

events / t rials =

effect- definition

option2

variable

(response- options)

=

effect- definition

Reference for language elements
Version 4.1

3083

response-options

DESC

DESCENDING

EVENT = "category"

FIRST

LAST

ORDER = DATA

FORMATTED

FREQ

INTERNAL

REF

REFERENCE

= "category"

FIRST

LAST

effect-definition

effect- name

*

|

effect- name

@ number

Reference for language elements
Version 4.1

3084

options

AGGREGATE
=

variable (variable- list)

ALPHA = value

CONVERGE = value

CORRB

COVB

D

DIST

DISTRIBUTION

= LOGISTIC

NORMAL

EXTREME

EXTREMEVALUE

GOMPERTZ

HPROB = value

INITIAL = l ist

INTERCEPT = value

INVERSECL

(PROB = l ist)

ITPRINT

LACKFIT

MAXITER = value

MAXIT = value

NOINT

SCALE = D

DEVIANCE

P

PEARSON

SINGULAR = value

OUTPUT

OUTPUT OUT = output- dataset
i

P

PROB

= name

STD = name

XBETA = name

;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

3085

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

QUANTREG procedure

Supported statements
• PROC QUANTREG (page 3085)
• ATTRIB (page 3087)
• BY (page 3087)
• CLASS (page 3087)
• ESTIMATE (page 3088)
• FORMAT (page 3089)
• INFORMAT (page 3090)
• LABEL (page 3090)
• MODEL (page 3090)
• OUTPUT (page 3092)
• TEST (page 3092)
• WEIGHT (page 3093)
• WHERE (page 3093)

PROC QUANTREG

PROC QUANTREG

option

;

Reference for language elements
Version 4.1

3086

option

ALGORITHM = INTERIOR

(KAPPA = value

MAXIT = value

TOLERANCE = value

)

SIMPLEX

(MAXSTATIONARY = value)

SMOOTH

(RRATIO = value)

ALPHA = value

CI = NONE

RANK

SPARSITY

(BF

HS

) /IID

RESAMPLING

(NREP = value)

DATA = dataset

INEST = dataset

NAMELEN = value

NOPRINT

ORDER = DATA

FORMATTED

FREQ

INTERNAL

OUTEST = dataset

Plots Option

Reference for language elements
Version 4.1

3087

Plots Option
PLOT

PLOTS

(MAXPOINTS = NONE

number

ONLY

)

= ALL

DDPLOT

(LABEL = ALL

LEVERAGE

NONE

OUTLIER

)

FITPLOT

(NOLIMITS

SHOWLIMITS

NODATA

)

HISTOGRAM

NONE

QQPLOT

RDPLOT

(LABEL = ALL

LEVERAGE

NONE

OUTLIER

)

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable ;

Reference for language elements
Version 4.1

3088

ESTIMATE

label effect- vars

, effect- vars
/ options

;

effect-vars

effect value

[value
,

]

Reference for language elements
Version 4.1

3089

options

ADJUST = BON

SCHEFFE

SIDAK

SIMULATE

(ACC = value

EPS = value

NSAMP = value

SEED = value

)

T

ALPHA = value

CL

CORR

COV

DIVISOR = value

E

LOWER

LOWERTAILED

NOFILL

SEED = value

SINGULAR = value

TESTVALUE

TESTMEAN

= value

UPPER

UPPERTAILED

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3090

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

label :

MODEL response =

effect- definition

/ options

;

effect-definition

*

|

effect- variable

effect-variable

effect- name

(effect- name)

Reference for language elements
Version 4.1

3091

options

CORRB

COVB

CUTOFF = value

DIAGNOSTICS

(ALL)

ITPRINT

LEVERAGE

(CUTOFF = value

CUTOFFALPHA = value

H = value

)

NODIAG

NOINT

NOSUMMARY

Model Plot Options

QUANTILE

QUANTLEV

= value- list

PROCESS

SCALE = value

SEED = value

SINGULAR = value

Model Plot Options
PLOT

PLOTS

(MAXPOINTS = NONE

number

ONLY

)

= ALL

DDPLOT

(LABEL = ALL

LEVERAGE

NONE

OUTLIER

)

FITPLOT

(NOLIMITS

SHOWLIMITS

NODATA

)

HISTOGRAM

NONE

QUANTPLOT

(effect- definition) / EXTENDCI

NOLIMITS

OLS

UNPACK

QQPLOT

RDPLOT

(LABEL = ALL

LEVERAGE

NONE

OUTLIER

)

Reference for language elements
Version 4.1

3092

OUTPUT

OUTPUT

OUT = output- dataset
i

option

/ COLUMNWISE

;

i See Output dataset (page 16).

option

OUT = data- set

LEVERAGE = name

MAHADIST

MD

= name

OUTLIER = name

P

PREDICTED

= name

Q

QUANTILE

= name

RES

RESIDUAL

= name

RD

ROBDIST

= name

SR

SRESIDUAL

= name

STDP = name

TEST

label :

TEST effect

/ option

Reference for language elements
Version 4.1

3093

option

LR

QINTERACT

RANKSCORE

(NORMAL

SIGN

TAU

WILCOXON

)

WALD

WEIGHT

WEIGHT variable- name

/ NORM

NORMALIZE

;

WHERE

WHERE condit ion ;

REG procedure

Supported statements
• PROC REG (page 3094)
• ADD (page 3097)
• ATTRIB (page 3097)
• BY (page 3097)
• CODE (page 3097)
• DELETE (page 3098)
• FORMAT (page 3098)
• FREQ (page 3098)
• ID (page 3099)
• INFORMAT (page 3099)

Reference for language elements
Version 4.1

3094

• LABEL (page 3099)
• MODEL (page 3099)
• MTEST (page 3101)
• OUTPUT (page 3101)
• PRINT (page 3102)
• REFIT (page 3103)
• REWEIGHT (page 3104)
• TEST (page 3104)
• VAR (page 3104)
• WEIGHT (page 3104)
• WHERE (page 3104)

PROC REG

PROC REG

option

;

option
ALL

ALPHA = number

CORR

COVOUT

DATA = input- dataset
i

EDF

NOPRINT

OUTEST = output- dataset
i i

OUTSEB

OUTSSCP = output- dataset
i i i

PLOTS

(LABEL

MAXPOINTS = NONE

max

heat- max

MODELLABEL

ONLY

STATS = StatsOptions

UNPACK

USEALL

)

= PlotTypeOptions

(PlotTypeOptions)

RSQUARE

SIMPLE

SINGULAR = singularity criterion

TABLEOUT

USSCP

Reference for language elements
Version 4.1

3095

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Output dataset (page 16).

StatsOptions

ALL

DEFAULT

NONE

(ADJRSQ

AIC

BIC

CP

COEFFVAR

DEPMEAN

DEFAULT

EDF

GMSEP

JP

MSE

NOBS

NPARM

PC

RSQUARE

SBC

SP

SSE

)

Reference for language elements
Version 4.1

3096

PlotTypeOptions
ADJRSQ

(LABEL

LABELVARS

)

AIC

(LABEL

LABELVARS

)

ALL

BIC

(LABEL

LABELVARS

)

COOKSD

(LABEL)

CP

(LABEL

LABELVARS

)

CRITERIA

CRITERIONPANEL
(LABEL

LABELVARS

UNPACK

)

DFBETAS

(COMMONAXES

LABEL

UNPACK

)

DFFITS

(LABEL)

DIAGNOSTICS

(STATS = StatsOptions

UNPACK

)

Fit

FITPLOT
(NOCLI

NOCLM

NOLIMITS

)

OBSERVEDBYPREDICTED

(LABEL)

NONE

PARTIAL

(UNPACK)

PREDICTIONS (X = variable

(NOCLI

NOCLM

NOLIMITS

UNPACK

)

)

QQ

QQPLOT

RESIDUALBOXPLOT

BOXPLOT (LABEL)

RESIDUALBYPREDICTED

(LABEL)

RESIDUALS

(LABEL)

RESIDUALHISTOGRAM

RF

RF

RIDGE

RIDGEPANEL

RIDGEPLOT
(RIDGEAXIS = LINEAR

LOG

UNPACK

VARSPERPLOT = ALL

number

VIFAXIS = LINEAR

LOG

)

RSQUARE

(LABEL

LABELVARS

)

RSTUDENTBYLEVERAGE

(LABEL)

RSTUDENTBYPREDICTED

(LABEL)

SBC

(LABEL

LABELVARS

)

Reference for language elements
Version 4.1

3097

ADD

ADD name ;

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CODE

CODE FILE = f ileref option ;

Reference for language elements
Version 4.1

3098

option

DUMMIES

NODUMMIES

ERROR

NOERROR

FORMAT = format

LINESIZE = length

LOOKUP = AUTO

BINARY

LINEAR

SELECT

NORESIDUAL

RESIDUAL

DELETE

DELETE name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

3099

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

label :

MODEL response- variables = regressor- variables

/ option

;

Reference for language elements
Version 4.1

3100

option
ACOV

ACOVMETHOD = 0

1

2

3

ADJRSQ

AIC

ALL

ALPHA = value

BEST = value

BIC

CLB

CLI

CLM

COLLIN

COLLINOINT

CORRB

COVB

CP

DETAILS

DETAILS = name

DW

EDF

GMSEP

GROUPNAMES = name

HCC

HCCMETHOD = 0

1

2

3

I

INCLUDE = value

INFLUENCE

JP

MAXSTEP = value

MSE

NOINT

NOPRINT

OUTSEB

OUTSTB

OUTVIF

P

PARTIAL

PARTIALDATA

PARTIALR2

PC

PCOMIT = l ist

PRESS

PCORR1

PCORR2

RIDGE = l ist

R

RMSE

RSQUARE

SBC

SCORR1

SCORR2

SELECTION = NONE

BACKWARD

FORWARD

STEPWISE

ADJRSQ

CP

RSQUARE

MAXR

MINR

SEQB

SLE = value

SLENTRY = value

SLS = value

SLSTAY = value

SIGMA = value

SINGULAR = value

SP

SPEC

SS1

SS2

SSE

START = value

STB

STOP = value

TOL

VIF

XPX

Reference for language elements
Version 4.1

3101

MTEST

MTEST

equation
, / CANPRINT

DETAILS

PRINT

OUTPUT

OUTPUT

OUT = output- dataset
i

keyword = name ;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

3102

keyword

COOKD

COVRATIO

DFFITS

H

LCL

LCLM

L95

L95M

PRESS

P

PREDICTED

RESIDUAL

R

RSTUDENT

STDI

STDP

STDR

STUDENT

UCL

UCLM

U95

U95M

PRINT

PRINT option ;

Reference for language elements
Version 4.1

3103

option

ACOV

ANOVA

ALL

CLI

CLM

COLLIN

COLLINOINT

CORRB

COVB

DW

I

INFLUENCE

MODELDATA

P

PARTIAL

PARTIALDATA

PCORR1

PCORR2

R

SCORR1

SCORR2

SEQB

SPEC

SS1

SS2

TOL

VIF

XPX

REFIT

REFIT ;

Reference for language elements
Version 4.1

3104

REWEIGHT

REWEIGHT

condition

ALLOBS
/ NOLIST

RESET

WEIGHT = value

STATUS

UNDO

;

TEST

TEST equat ion,

, equat ion / PRINT

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

ROBUSTREG procedure

Supported statements
• PROC ROBUSTREG (page 3105)

Reference for language elements
Version 4.1

3105

• ATTRIB (page 3109)
• BY (page 3109)
• CLASS (page 3110)
• FORMAT (page 3110)
• MODEL (page 3110)
• ID (page 3111)
• INFORMAT (page 3112)
• LABEL (page 3112)
• OUTPUT (page 3112)
• TEST (page 3113)
• WEIGHT (page 3113)
• WHERE (page 3113)

PROC ROBUSTREG

PROC ROBUSTREG

option

;

option

COVOUT

DATA = input- dataset
i

FWLS

INEST = input- dataset
i i

ITPRINT

METHOD = MethodType

ORDER = DATA

FORMATTED

FREQ

INTERNAL

OUTEST = output- dataset
i i i

PLOTS

(GlobalPlotOptions)
= PlotRequest

(PlotRequest)

SEED = n

Reference for language elements
Version 4.1

3106

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Output dataset (page 16).

MethodType

M

(MOptions)

LTS

(LTSOptions)

S

(SOptions)

MM

(MMOptions)

MOptions

ASYMPCOV = H1

H2

H3

CONVERGENCE = COEF

RESID

WEIGHT

(EPS = value)

MAXITER = n

SCALE = value

HUBER

(D = d)

MED

TUKEY

(D = d)

WEIGHTFUNCTION = WeightFunctions

Reference for language elements
Version 4.1

3107

WeightFunctions

ANDREWS

(C = c)

BISQUARE

(C = c)

CAUCHY

(C = c)

FAIR

(C = c)

HAMPEL

(

A = a B = b C = c

)

HUBER

(C = c)

LOGISTIC

(C = c)

MEDIAN

(C = c)

TALWORTH

(C = c)

WELSCH

(C = c)

LTSOptions

CSTEP = n

H = n

IADJUST = ALL

NONE

NBEST = n

NREP = n

SUBANALYSIS

SUBGROUPSIZE = n

Reference for language elements
Version 4.1

3108

SOptions

ASYMPCOV = H1

H2

H3

H4

CHIF = TUKEY

YOHAI

EFF = value

K0 = value

MAXITER = n

NREP = n

NOREFINE

SUBSETSIZE = n

TOLERANCE = value

MMOptions

ASYMPCOV = H1

H2

H3

H4

BIASTEST

(ALPHA = number)

CHIF = TUKEY

YOHAI

CONVERGENCE = COEF

RESID

WEIGHT

(EPS = value)

EFF = value

INITEST = LTS

S

INITH = h

K0 = number

MAXITER = n

GlobalPlotOptions

ONLY

Reference for language elements
Version 4.1

3109

PlotRequest

ALL

DDPLOT

(LABEL = ALL

LEVERAGE

NONE

OUTLIER

)

FITPLOT

(NOLIMITS)

HISTOGRAM

NONE

QQPLOT

RDPLOT

(LABEL = ALL

LEVERAGE

NONE

OUTLIER

)

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

3110

CLASS

CLASS variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

MODEL

label :

MODEL response =

effect- definition

/ options

;

effect-definition

effect- variable

*

|

effect- variable

@ number

effect-variable

effect- name

(effect- name)

Reference for language elements
Version 4.1

3111

options

ALPHA = value

CORRB

COVB

CUTOFF = value

DIAGNOSTICS

(ALL)

FAILRATIO = value

ITPRINT

LEVERAGE

(leverage- options)

NOGOODFIT

NOINT

SINGULAR = value

leverage-options

CUTOFF = value

CUTOFFALPHA = value

H = n

MCDALPHA = value

MCDCUTOFF = value

MCDINFO

OPC

PROJECTIONALPHA = value

PROJECTIONCUTOFF = value

PROJECTIONTOLERANCE = value

ID

ID variable ;

Reference for language elements
Version 4.1

3112

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

OUTPUT

OUTPUT

OUT = output- dataset
i

option ;

i See Output dataset (page 16).

option

LEVERAGE = name

MD = name

OUTLIER = name

PMD = name

POD = name

PRD = name

PREDICTED = name

RD = name

RESIDUAL = name

SRESIDUAL = name

STDP = name

STDI = name

WEIGHT = name

Reference for language elements
Version 4.1

3113

TEST

label :

TEST effect- definition ;

effect-definition

effect- variable

*

|

effect- variable

@ number

effect-variable

effect- name

(effect- name)

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

RSREG procedure

Supported statements
• PROC RSREG (page 3114)
• ATTRIB (page 3116)
• BY (page 3116)
• FORMAT (page 3116)
• FREQ (page 3116)

Reference for language elements
Version 4.1

3114

• ID (page 3116)
• INFORMAT (page 3117)
• LABEL (page 3117)
• MODEL (page 3117)
• RIDGE (page 3118)
• WEIGHT (page 3119)
• WHERE (page 3119)

PROC RSREG

PROC RSREG

option

;

option

DATA = input- dataset
i

NOPRINT

OUT = output- dataset
i i

PLOTS

(global plot options)
= plot request

(plot request)

i See Input dataset (page 16).

ii See Output dataset (page 16).

global plot options

UNPACKPANELS

UNPACK

Reference for language elements
Version 4.1

3115

plot request

ALL

DIAGNOSTICS

(LABEL

UNPACK

)

FIT

(GRIDSIZE = number)

NONE

RESIDUALS

(SMOOTH

UNPACK

)

RIDGE

(UNPACK)

surface plot request

surface plot request
SURFACE

(3D

AT

MAX

MIN

MEAN

MIDRANGE

(variable = MAX

MIN

MEAN

MIDRANGE

value

value

MAX

MIN

MEAN

MIDRANGE

value

value

)

EXTEND = value

FILL = PRED

SE

NONE

GRIDSIZE = number

LINE = PRED

SE

NONE

NODESIGN

OVERLAYPAIRS

ROTATE = angle

TILT = angle

UNPACKPANELS

UNPACK

)

Reference for language elements
Version 4.1

3116

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable ;

Reference for language elements
Version 4.1

3117

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL response- name = independent- name

/ options

;

Reference for language elements
Version 4.1

3118

options

ACTUAL

BYOUT

COVAR = number

D

LACKFIT

L95

L95M

NOCODE

NOANOVA

NOAOV

NOOPTIMAL

NOOPT

NOPRINT

PREDICT

PRESS

RESIDUAL

U95

U95M

RIDGE

RIDGE

options

;

Reference for language elements
Version 4.1

3119

options

CENTER = value

, value

MAXIMUM

MAX

MINIMUM

MIN

NOPRINT

OUTR = output- dataset
i

RADIUS = radius values

, radius values

i See Output dataset (page 16).

radius values

m
, m

m TO n

m TO n BY i

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3120

SCORE procedure

Supported statements
• PROC SCORE (page 3120)
• ATTRIB (page 3121)
• BY (page 3121)
• FORMAT (page 3121)
• ID (page 3121)
• INFORMAT (page 3121)
• LABEL (page 3122)
• VAR (page 3122)
• WHERE (page 3122)

PROC SCORE

PROC SCORE

option

;

option

DATA = input- dataset
i

NOSTD

OUT = output- dataset
i i

PREDICT

RESIDUAL

SCORE = input- dataset
i i i

TYPE = type

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

3121

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

Reference for language elements
Version 4.1

3122

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

SIMNORMAL procedure

Supported statements
• PROC SIMNORMAL (page 3123)
• ATTRIB (page 3123)
• BY (page 3124)
• CONDITION (page 3124)
• FORMAT (page 3124)
• INFORMAT (page 3124)
• LABEL (page 3124)
• VAR (page 3125)
• WHERE (page 3125)

Reference for language elements
Version 4.1

3123

PROC SIMNORMAL

PROC SIMNORMAL OUT = output- dataset
i

option

;

i See Input dataset (page 16).

option

DATA = input- dataset
i i

SINGULAR1

SING1

= number

SINGULAR2

SING2

= number

NUMREAL = n

OUTSEED

OUTCOND

SEED = number

SEEDBY

ii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3124

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CONDITION

CONDITION

COND

variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

3125

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

STDIZE procedure

Supported statements
• PROC STDIZE (page 3125)
• ATTRIB (page 3127)
• BY (page 3127)
• FORMAT (page 3128)
• FREQ (page 3128)
• INFORMAT (page 3128)
• LABEL (page 3128)
• LOCATION (page 3128)
• SCALE (page 3128)
• VAR (page 3129)
• WEIGHT (page 3129)
• WHERE (page 3129)

PROC STDIZE

PROC STDIZE

option

;

Reference for language elements
Version 4.1

3126

option

ADD = value

DATA = input- dataset
i

FUZZ = value

METHOD = method

MISSING = method

value

MULT = value

NMARKERS = value

NOMISS

NORM

OUT = output- dataset
i i

OUTSTAT = output- dataset
i i i

PCTLDEF = value

PCTLMTD = ORD_STAT

ONEPASS

P2

PCTLPTS = value

(l ist)

PSTAT

REPALCE

REPONLY

UNSTD

VARDEF = DF

N

WDF

WEIGHT

WGT

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

3127

method

MEAN

MEDIAN

SUM

EUCLEN

USTD

STD

RANGE

MIDRANGE

MAXABS

IQR

MAD

L

IN

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

3128

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

LOCATION

LOCATION variable- name ;

SCALE

SCALE variable- name ;

Reference for language elements
Version 4.1

3129

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

STEPDISC procedure

Supported statements
• PROC STEPDISC (page 3130)
• ATTRIB (page 3132)
• BY (page 3132)
• CLASS (page 3132)
• FORMAT (page 3132)
• FREQ (page 3133)
• INFORMAT (page 3133)
• LABEL (page 3133)
• VAR (page 3133)
• WEIGHT (page 3133)
• WHERE (page 3133)

Reference for language elements
Version 4.1

3130

PROC STEPDISC

PROC STEPDISC

option

;

Reference for language elements
Version 4.1

3131

option

ALL

BCORR

BCOV

BSSCP

DATA = input- dataset
i

INCLUDE = n

MAXMACRO = n

MAXSTEP = n

METHOD = BACKWARD

BW

FORWARD

FW

STEPWISE

SW

PCORR

PCOV

PR2ENTRY

PR2E

= p

PR2STAY

PR2S

= p

PSSCP

SHORT

SIMPLE

SINGULAR = p

SLENTRY

SLE

= p

SLSTAY

SLS

= p

START = n

STDMEAN

STOP = n

TCORR

TCOV

TSSCP

WCORR

WCOV

WSSCP

Reference for language elements
Version 4.1

3132

i See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3133

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3134

SURVEYSELECT procedure

Supported statements
• PROC SURVEYSELECT (page 3134)
• ATTRIB (page 3136)
• CONTROL (page 3136)
• FORMAT (page 3136)
• FREQ (page 3136)
• ID (page 3136)
• INFORMAT (page 3137)
• LABEL (page 3137)
• SIZE (page 3137)
• STRATA (page 3137)
• WHERE (page 3138)

PROC SURVEYSELECT

PROC SURVEYSELECT

option

;

Reference for language elements
Version 4.1

3135

option
CERTSIZE

CERTSIZE = value

dataset

CERTSIZE = P = value

DATA = dataset

GROUPS = integer

(integer)

JTPROBS

MAXSIZE

MAXSIZE = number

dataset

METHOD = BALBOOT

BALBOOTSTRAP

BERNOULLI

POISSON

PPS

PPS_BREWER

BREWER

PPS_MURTHY

MURTHY

PPS_SAMPFORD

SAMPFORD

PPS_SEQ

SEQ

CHROMY

PPS_SYS

(DETAILS

INTERVAL = value

START = value

)

PPS_WR

SEQ_POISSON

SRS

SYS

(DETAILS

INTERVAL = value

START = value

)

URS

MINSIZE

MINSIZE = number

dataset

N = number

(

,

value)

dataset

NMAX = integer

NMIN = integer

NOPRINT

OUT = dataset

OUTALL

OUTHITS

OUTSEED

OUTSIZE

OUTSORT = dataset

RANUNI

REP = number

(REPNAME = name)

ROUND = ALTERNATE

CEILING

UP

DOWN

FLOOR

NEAREST

(HALF = DOWN)

RANDOM

SAMPRATE = number

(

,

value)

dataset

SAMPSIZE = number

(

,

value)

dataset

SEED = number

dataset

SELECTALL

SORT = method

STATS

STRATUMSEED = NONE

RESTORE

Reference for language elements
Version 4.1

3136

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

CONTROL

CONTROL variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

ID

ID variable- name ;

Reference for language elements
Version 4.1

3137

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

SIZE

SIZE variable- name ;

STRATA

STRATA variable- name

/ option

;

Reference for language elements
Version 4.1

3138

option

ALLOC = data- set

NEYMAN

OPT

OPTIMAL

PROP

PROPORTIONAL

(value)

ALLOCMIN = value

ALPHA = value

COST

= (value)

data- set

MARGIN = value

NOSAMPLE

STATS

VAR

= (value)

data- set

WHERE

WHERE condit ion ;

TPSPLINE procedure

Supported statements
• PROC TPSPLINE (page 3139)
• ATTRIB (page 3140)
• BY (page 3140)
• FORMAT (page 3140)
• ID (page 3140)
• INFORMAT (page 3140)

Reference for language elements
Version 4.1

3139

• FREQ (page 3141)
• LABEL (page 3141)
• MODEL (page 3141)
• OUTPUT (page 3142)
• SCORE (page 3142)
• WHERE (page 3142)

PROC TPSPLINE
PROC TPSPLINE

DATA = input- dataset
i

PLOTS

(ONLY

UNPACK

)

=

(

ALL

CONTOURFIT

(OBS = GRADIENT

NONE

OUTLINE

OUTLINEGRADIENT

)

CONTOURFITPANEL

(OBS = GRADIENT

NONE

OUTLINE

OUTLINEGRADIENT

UNPACK

)

CRITERIONPLOT

CRITERION (NOPATH)

DIAGNOSTICSPANEL

DIAGNOSTICS (UNPACK)

FITPANEL

(CLM

UNPACK

)

FITPLOT

FIT (CLM)

NONE

OBSERVEDBYPREDICTED

QQPLOT

QQ

RESIDUALSBYSMOOTH

(SMOOTH)

RESIDUALBYPREDICTED

RESIDUALHISTOGRAM

RESIDUALPANEL

RESIDUALS
(SMOOTH

UNPACK

)

RFPLOT

RF

SCOREPLOT

SCORE

)

;

i See Input dataset (page 16).

Reference for language elements
Version 4.1

3140

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

Reference for language elements
Version 4.1

3141

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL dependent =

regression

(smoothing)

/ ALPHA = number

DF = number

DISTANCE

D

= number

LAMBDA0 = number

LAMBDA = value

LOGNLAMBDA0

LOGNL0

= number

LOGNLAMBDA

LOGNL

= value

M = number

RANGE = (lower , upper)

;

Reference for language elements
Version 4.1

3142

OUTPUT

OUTPUT OUT = output- dataset
i

RESID

R

PRED

STD

UCLM

LCLM

ADIAG

COEF

;

i See Output dataset (page 16).

SCORE

SCORE DATA = input- dataset
i

OUT = output- dataset
i i

PRED

STD

UCLM

LCLM

;

i See Input dataset (page 16).

ii See Output dataset (page 16).

WHERE

WHERE condit ion ;

TRANSREG procedure

Supported statements
• PROC TRANSREG (page 3143)
• ATTRIB (page 3146)

Reference for language elements
Version 4.1

3143

• BY (page 3146)
• ID (page 3146)
• FORMAT (page 3146)
• FREQ (page 3146)
• INFORMAT (page 3147)
• LABEL (page 3147)
• MODEL (page 3147)
• OUTPUT (page 3151)
• WEIGHT (page 3153)
• WHERE (page 3153)

PROC TRANSREG

PROC TRANSREG

option

;

option

DATA = input- dataset
i

a- options

o- options

i See Input dataset (page 16).

Reference for language elements
Version 4.1

3144

a-options
TYPE

TYP

= tex t

name

SINGULAR

SIN

= number

SOLVE

SOL

DUMMY

DUM

NOMISS

NOM

CPREFIX

CPR

= number

number- list

LPREFIX

LPR

= number

NOINT

NOI

ORDER = DATA

FREQ

FORMATTED

INTERNAL

ORD = DAT

FRE

FOR

INT

REFERENCE = NONE

MISSING

ZERO

REF = NON

MIS

ZER

SEPARATORS=

SEP

= ' string- 1 '

' string- 2 '

ALPHA

ALP

= number

CL

NOPRINT

NOP

RSQUARE

RSQ

SHORT

SHO

SS2

TEST

TES

TSUFFIX

TSU

= number

TSTANDARD = CENTER

NOMISS

ORIGINAL

Z

TST = CEN

NOM

ORI

Z

Reference for language elements
Version 4.1

3145

o-options

CLI

CLM

REPLACE

REP

DESIGN

DES = number

DREPLACE

DRE

IREPLACE

IRE

NORESTOREMISSING

NORESTORE

NOR

PREDICTED

PRE

P

REPLACE

REP

RESIDUALS

RES

R

COEFFICIENTS

COE

MEANS

MEA

ADPREFIX

ADP = name

AIPREFIX

AIP = name

RDPREFIX

RDP = name

PPREFIX

PDPREFIX

PDP

= name

RPREFIX

RPR = name

TDPREFIX

TDP = name

TIPREFIX

TIP = name

MACRO

MAC

(keyword = name)

Reference for language elements
Version 4.1

3146

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

ID

ID variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

3147

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL

dependent transform =

independent transform

/ a- options

;

dependent transform

transform (dependents) t- options

independent transform

transform (independents) t- options

Reference for language elements
Version 4.1

3148

transform

IDENTITY

CLASS

BSPLINE

PSPLINE

Reference for language elements
Version 4.1

3149

t-options

DEGREE

DEG

= number

EVENLY

EVE = number

KNOTS

KNO

= number- list

= n To m BY p

NKNOTS

NKN = number

CPREFIX

CPR

= number

number- list

LPREFIX

LPR

= number

number- list

DEVIATIONS

DEV

EFFECTS

EFF

ORTHOGONAL

ORT

STANDORTH

STA

ORTHEFFECT

ORDER = DATA

FREQ

FORMATTED

INTERNAL

ORD = DAT

FRE

FOR

INT

ZERO = FIRST

LAST

NONE

formatted value list

ZER = FIR

LAS

NON

SEPARATORS=

SEP

= ' string- 1 '

' string- 2 '

CENTER

CEN

TSTANDARD = CENTER

NOMISS

ORIGINAL

Z

TST = CEN

NOM

ORI

Z

Reference for language elements
Version 4.1

3150

a-options
TYPE

TYP

= tex t

name

SINGULAR

SIN

= number

SOLVE

SOL

DUMMY

DUM

NOMISS

NOM

CPREFIX

CPR

= number

number- list

LPREFIX

LPR

= number

NOINT

NOI

ORDER = DATA

FREQ

FORMATTED

INTERNAL

ORD = DAT

FRE

FOR

INT

REFERENCE = NONE

MISSING

ZERO

REF = NON

MIS

ZER

SEPARATORS=

SEP

= ' string- 1 '

' string- 2 '

ALPHA

ALP

= number

CL

NOPRINT

NOP

RSQUARE

RSQ

SHORT

SHO

SS2

TEST

TES

TSUFFIX

TSU

= number

TSTANDARD = CENTER

NOMISS

ORIGINAL

Z

TST = CEN

NOM

ORI

Z

Reference for language elements
Version 4.1

3151

OUTPUT

OUTPUT

OUT = output- dataset
i o- options

;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

3152

o-options

CLI

CLM

REPLACE

REP

DESIGN

DES = number

DREPLACE

DRE

IREPLACE

IRE

NORESTOREMISSING

NORESTORE

NOR

PREDICTED

PRE

P

REPLACE

REP

RESIDUALS

RES

R

COEFFICIENTS

COE

MEANS

MEA

ADPREFIX

ADP = name

AIPREFIX

AIP = name

RDPREFIX

RDP = name

PPREFIX

PDPREFIX

PDP

= name

RPREFIX

RPR = name

TDPREFIX

TDP = name

TIPREFIX

TIP = name

MACRO

MAC

(keyword = name)

Reference for language elements
Version 4.1

3153

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

TREE procedure

Supported statements
• PROC TREE (page 3153)
• ATTRIB (page 3155)
• BY (page 3155)
• COPY (page 3155)
• FORMAT (page 3155)
• FREQ (page 3156)
• INFORMAT (page 3156)
• LABEL (page 3156)
• HEIGHT (page 3156)
• ID (page 3156)
• NAME (page 3156)
• PARENT (page 3157)
• WHERE (page 3157)

PROC TREE

PROC TREE

option

;

Reference for language elements
Version 4.1

3154

option

CFRAME = frame color

DATA = input- dataset
i

DESCENDING

DES

DESCRIPTION

DES

= "tree descript ion"

FILLCHAR

FC

= "c"

GOUT = l ibrary

catalogname

library . catalogname

HAXIS = AXISn

HEIGHT = HEIGHT

H

LENGTH

L

MODE

M

NCL

N

RSQ

R

HORIZONTAL/HOR

INC = n

JOINCHAR

JC

= "c"

LEAFCHAR

LC

= "c"

LINEPRINTER

LIST

MAAXHEIGHT

MAXH

= n

MINH

MINHEIGHT

= n

NAME = "tree name"

NCLUSTERS

NCL

N

= n

NOPRINT

NTICK = n

OUT = output- dataset
i i

PAGES = n

POS = n

ROOT = "cluster name"

n

SORT

SPACES

S

= n

TREECHAR/TC = "c"

VAXIS = AXISn

Reference for language elements
Version 4.1

3155

i See Input dataset (page 16).

ii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

COPY

COPY variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3156

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

HEIGHT

HEIGHT variable- name ;

ID

ID variable ;

NAME

NAME variable- name ;

Reference for language elements
Version 4.1

3157

PARENT

PARENT variable- name ;

WHERE

WHERE condit ion ;

TTEST procedure

Supported statements
• PROC TTEST (page 3157)
• ATTRIB (page 3159)
• BY (page 3159)
• CLASS (page 3159)
• FORMAT (page 3159)
• FREQ (page 3159)
• INFORMAT (page 3160)
• LABEL (page 3160)
• PAIRED (page 3160)
• VAR (page 3161)
• WEIGHT (page 3161)
• WHERE (page 3161)

PROC TTEST

PROC TTEST

option

;

Reference for language elements
Version 4.1

3158

option

ALPHA = value

CI = NONE

EQUAL

UMPU

CL

COCHRAN

DATA = input- dataset
i

DIST = NORMAL

LOGNORMAL

H0 = value

BYVAR

NOBYVAR

ORDER = DATA

FORMATTED

FREQ

INTERNAL

MIXED

SIDES = 2

L

U

SIDED = value

SIDE = value

TEST = DIFF

RATIO

TOST = (

lower bound ,

upper bound)

i See Input dataset (page 16).

Reference for language elements
Version 4.1

3159

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

CLASS

CLASS variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

Reference for language elements
Version 4.1

3160

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

PAIRED

PAIRED pair- definition ;

pair-definition

(pair- definition- variable- list) *

:
(pair- definition- variable- list)

variable- name *

:
variable- name

pair-definition-variable-list

variable- name

variable- name

- variable- name

Reference for language elements
Version 4.1

3161

VAR

VAR variable

/ IGNOREPERIOD

CROSSOVER = (variable- 1 , variable- 2)

;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

VARCLUS procedure

Supported statements
• PROC VARCLUS (page 3162)
• ATTRIB (page 3164)
• BY (page 3165)
• FORMAT (page 3165)
• FREQ (page 3165)
• INFORMAT (page 3165)
• LABEL (page 3165)
• PARTIAL (page 3166)
• SEED (page 3166)
• VAR (page 3166)
• WEIGHT (page 3166)
• WHERE (page 3166)

Reference for language elements
Version 4.1

3162

PROC VARCLUS

PROC VARCLUS

option

;

Reference for language elements
Version 4.1

3163

option

CENTROID

CORR

COVARIANCE

DATA = input- dataset
i

HIERARCHY

INITIAL = GROUP

INPUT

RANDOM

SEED

MAXCLUSTERS = n

MAXEIGEN = n

MAXITER = n

MAXSEARCH = n

MINCLUSTERS = n

MULTIPLEGROUP

NOINT

NOPRINT

OUTSTAT = output- dataset
i i

OUTTREE = output- dataset
i i i

PLOTS

(GlobalPlotOption)
= PlotRequest

(PlotRequest)

PROPORTION = n

RANDOM = n

SHORT

SIMPLE

SUMMARY

TRACE

VARDEF = DF

N

WDF

WEIGHT

WGT

i See Input dataset (page 16).

ii See Input dataset (page 16).

iii See Input dataset (page 16).

Reference for language elements
Version 4.1

3164

GlobalPlotOption

UNPACK

ONLY

PlotRequest

ALL

MAXPOINTS = n

DENDROGRAM

(DendrogramOption)

NONE

DendrogramOption

COMPUTEHEIGHT = a b

COMPUTEWIDTH = a b

HEIGHT = PROPORTION

NCL

VAREXP

HORIZONTAL

VERTICAL

SETHEIGHT = n

SETWIDTH = n

UNIT = PX

IN

CM

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3165

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

Reference for language elements
Version 4.1

3166

PARTIAL

PARTIAL variable- name ;

SEED

SEED variable- name ;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

VARCOMP procedure

Supported statements
• PROC VARCOMP (page 3167)
• ATTRIB (page 3167)
• BY (page 3167)
• CLASS (page 3168)
• FORMAT (page 3168)
• INFORMAT (page 3168)

Reference for language elements
Version 4.1

3167

• LABEL (page 3168)
• MODEL (page 3168)
• WHERE (page 3169)

PROC VARCOMP

PROC VARCOMP

options

;

options

DATA = dataset

EPSILON = name

MAXITER = number

METHOD = MIVQUE0

ML

REML

TYPE1

SEED = number

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

3168

CLASS

CLASS variable-name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

MODEL

MODEL dependent =

effect / FIXED = number

Reference for language elements
Version 4.1

3169

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3170

WPS Machine Learning
The WPS machine learning procedures provide access to a number of powerful data analysis and data
modelling algorithms such as classification and regression trees, mixture models and support vector
machines.

DECISIONFOREST procedure ... 3171
The DECISIONFOREST procedure enables you to build a decision forest from an input dataset.
You can then use the decision forest model to analyse other datasets.

DECISIONTREE procedure .. 3189
The DECISIONTREE procedure enables you to build a decision tree from an input dataset. You
can then use the decision tree model to analyse other datasets.

GMM procedure .. 3210
The GMM procedure enables you to build a Gaussian mixture model (GMM) from an input
dataset. You can then use the GMM to analyse other datasets.

MLP procedure ..3251
The MLP procedure enables you to build a multilayer perceptron (MLP) from an input dataset.
You can then use the MLP model to analyse other datasets.

OPTIMALBIN procedure ... 3297
The OPTIMALBIN procedure enables you to perform optimal binning on an input dataset.

SEGMENT procedure ... 3315
The SEGMENT procedure enables you to segment an input dataset to highlight similarities and
differences in the data.

SVM procedure ... 3350
The SVM procedure enables you to build a support vector machine (SVM) from an input dataset.
You can then use the SVM model to analyse other datasets.

Reference for language elements
Version 4.1

3171

DECISIONFOREST procedure
The DECISIONFOREST procedure enables you to build a decision forest from an input dataset. You
can then use the decision forest model to analyse other datasets.

About decision forests
A decision forest is a prediction model which uses a collection of decision trees to predict the value of a
target (or response) variable from the values of one or more input (or predictor) variables.

For more information about decision trees see About decision trees (page 3189).

The target variable may be discrete, in which case the decision forest is a classification forest, or it may
be continuous, in which case the decision forest is a regression forest.

Each decision tree in the decision forest is generated using a random selection of observations from the
training dataset. Each node in each tree is split using a random selection of predictor variables. Then
each observation is run through each tree to determine the value of the target variable predicted by
that tree. For each observation, the value predicted by the decision forest is a function of the predicted
values from the decision trees in the collection. The two separate sources of randomness help to
ensure that the final model does not over fit the data.

The algorithms for building classification and regression forests are based on algorithms developed by
Leo Breiman and Adele Cutler, described in:

• Breiman, L., 2001, Random Forests. In: Machine Learning, Volume 45 Issue 1, October 1 2001,
pp 5-32 and available online at https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
(accessed 30th May 2018)

• https://www.stat.berkeley.edu/~breiman/RandomForests (accessed 30th May 2018).

Building the decision trees
Each tree in the decision forest is built using the CART algorithm developed by Breiman et. al.
(Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. Classification and Regression Trees,
Wadsworth, Belmont, CA, 1984). The Gini Impurity criterion is used to determine the best variable to
use to split the observations at each node of the tree.

To build each decision tree, observations are chosen randomly from the training dataset, where
 is the total number of observations in the training dataset. The observations are sampled with

replacement, so for each tree, some observations will be used more than once, and some observations
will not be used at all. The observations that are not used to build a specific tree are referred to as the
out-of-bag (OOB) observations for that tree, and are used later to derive the OOB error estimate, an
estimate of the prediction error of the random forest.

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://www.stat.berkeley.edu/~breiman/RandomForests

Reference for language elements
Version 4.1

3172

At each node in each tree, a subset of the input variables is randomly selected from the specified input
variables. For each of these variables, the split which gives the largest decrease in Gini Impurity is
calculated. The variable which gives the largest overall decrease in Gini Impurity is selected as the
variable to use for the split.

Stopping criteria
When any one of the following occurs, a node is not split further:

• the node is pure, that is, the target value is the same for all the observations in the node
• the number of observations in the node is less than or equal to the specified minimum split size

(specified using either the MINSPLITSIZE option or the MINSPLITSIZERATIO option)
• the maximum decrease in Gini Impurity (for any of the randomly selected variables that were

considered for the split) is less than the specified minimum improvement (specified using the
MINIMPROVEMENT option).

Predicted values
When a tree has been completed, it can process new data observations to derive predicted values for
the target variable. For each observation, the predictions from each tree are combined to derive the
overall prediction from the forest.

For a regression forest, each tree predicts a single value for the target variable. The overall prediction is
simply the mean of the predictions from the individual trees.

For a classification forest, each tree predicts the probability associated with each possible class value
of the target variable. There are two ways that the predictions from each tree in the forest can be
combined to produce the overall prediction.

• If CLASSCOMB=MEANPROB is specified, the overall predicted probability for a class is the mean of the
probabilities predicted by each tree for that class.

• If CLASSCOMB=VOTE (the default) is specified, each tree casts a vote for a single class. Each tree
votes for the class for which it has calculated the highest predicted probability. If the predicted
probabilities for two or more classes are equal, a random selection is made. The overall predicted
probability for a class is the proportion of trees in the forest that voted for that class.

OOB error estimate
The OOB error estimate is calculated from the OOB observations for each tree (the observations that
were not randomly selected to build the tree).

After each tree has been built, each OOB observation for that tree is run through the tree to derive
the predicted value for that observation. When the entire forest of trees has been completed, each
observation that was OOB for one or more trees is considered. For each observation, the predicted
values from the trees where the observation was OOB are combined to produce the overall OOB

Reference for language elements
Version 4.1

3173

predicted value for that observation. As above, for regression trees, the overall predicted value is
the mean of the predictions from the individual trees. For classification trees, the predicted value for
each class is either the mean of the probabilities predicted by the individual trees for that class, or the
proportion of trees that voted for that class, depending on the CLASSCOMB option selected.

The OOB error estimate is then calculated as the percentage of OOB predicted values that are incorrect
(for classification trees), or the mean squared error (for regression trees). Since the OOB predicted
values are derived from observations that were not used to train the trees that predicted the values, the
OOB error estimate is likely to be a good indicator of the overall error when the decision forest is used
to score another dataset.

Input variable selection
The number of input variables that are randomly selected at each node is configurable using the
NUMSPLITINPUTS option of the PROC DECISIONFOREST statement.

The optimal value for NUMSPLITINPUTS is likely to be significantly less than the total number of input
variables. Lower values tend to reduce the correlation between the trees in the forest (a measure of
how similar are the predictions made by each tree). Lower values also reduce the strength of the trees
in the forest (a measure of how accurate each tree is at predicting the target variable). A forest with a
low correlation between trees is desirable, but a forest with a low strength is undesirable. Higher values
for NUMSPLITINPUTS tend to increase both the correlation (undesirable) and the strength (desirable).

To choose a suitable value for NUMSPLITINPUTS, you can run PROC DECISIONFOREST with different
values of NUMSPLITINPUTS, then use the OOB error estimate measure from each run to determine the
optimal value.

Missing data
Observations with missing data can be ignored using the EXCLUDEMISS option of the PROC
DECISIONFOREST statement. If EXCLUDEMISS is not specified, then missing data is handled as
follows:

• for categorical (discrete) variables, missing values are replaced with the mode of the non-missing
values for that variable

• for non-categorical (continuous) variables, missing values are replaced with the median of the non-
missing values for that variable.

Reference for language elements
Version 4.1

3174

Using the DECISIONFOREST procedure
This example shows how to use PROC DECISIONFOREST to build a decision forest from an input
dataset and to measure how well the decision forest can predict the target variable.

Dataset
This example uses the Titanic dataset. The Titanic dataset consists of data about the passengers on
the Titanic, and whether they survived or not. The data has been cleaned to replace some missing
values, then split into a training dataset, titanic_training.wpd, containing two-thirds of the
observations and a test dataset, titanic_test.wpd, containing one-third of the observations.
The Titanic dataset is courtesy of Encyclopedia Titanica (encyclopedia-titanica.org). Used with
permission.

Code example
In this example, a classification decision forest is built using the input variables class, sex, age,
num_sib_spouse (the number of siblings and spouses the passenger was travelling with) and
num_parent_child (the number of parents or children the passenger was travelling with) as
predictors of the target variable, survived. The algorithm builds a decision forest model of 600 trees
from the training dataset (NUMTREES=600).

The OUTPUT statement specifies that an output dataset is produced containing the input observations,
and the predicted value of the target variable for each observation. The PROBABILITY option specifies
that the output dataset includes an additional variable for each possible category that the target variable
can take. For each observation, these variables give the probability that the actual target value is in that
category.

The SCORE statement specifies that the decision forest model is used to score the test dataset. Again,
the PROBABILITY option specifies that the scored dataset includes an additional variable for each
possible category that the target variable can take, giving the probability that the actual value is in that
category.

In this example, the test dataset and the training dataset are both located in a library called TESTDATA.

PROC DECISIONFOREST
 DATA = TESTDATA.titanic_training
 NUMTREES=600;
INPUT class/LEVEL=ORDINAL;
INPUT sex/LEVEL=NOMINAL;
INPUT age/LEVEL=INTERVAL;
INPUT num_sib_spouse/LEVEL=ORDINAL;
INPUT num_parent_children/LEVEL=ORDINAL;
TARGET survived/LEVEL=BINARY;
OUTPUT out=titanic_training_scored PROBABILITY;
SCORE DATA=TESTDATA.titanic_test OUT=DF_titanic_test_scored PROBABILITY;
RUN;

http://encyclopedia-titanica.org

Reference for language elements
Version 4.1

3175

Target Summary
The Target Summary table shows the target variable that the decision forest is required to predict. In
this case, the target variable is discrete with binary (yes or no) values.

 Target Summary
 Target variable: survived
__
Name Discrete or Level type Number of Order type Descending?
 continuous? categories
__
survived DISCRETE BINARY 2 INTERNAL NO

Input Summary
The Input Summary table summarises the input variables, their types, categories and the other
properties.

 Input Summary
 Target variable: survived
__
Name Discrete or Level type Number of Order type Descending?
 continuous? categories
__
SEX DISCRETE NOMINAL 2 INTERNAL NO
CLASS DISCRETE ORDINAL 3 INTERNAL NO
NUM_SIB_SPOUSE DISCRETE ORDINAL 7 INTERNAL NO
NUM_PARENT_CHILD DISCRETE ORDINAL 8 INTERNAL NO
AGE CONTINUOUS INTERVAL . INTERNAL NO

Run Summary
The Run Summary table summarises information about the run, for example, the input dataset, the
decision forest parameters that were used, and the number of data items processed.

 Run Summary
 Target variable: survived

Attribute Value

Input dataset TESTDATA.titanic_training
Exclude missings? NO
Number of trees 600
Number of inputs per split 2
Minimum improvement 0.00000
Number of cases 873
Min split size for run 1

OOB Classification Performance
The OOB Classification Performance table shows the out-of-bag (OOB) error estimate from the
decision forest. This is the proportion of observations in the training dataset that were incorrectly
classified using OOB classification.

Reference for language elements
Version 4.1

3176

To calculate the predicted OOB classification for an observation, the observation is classified using
each tree for which the observation was out-of-bag (that is, each tree for which the observation wasn't
selected to train that tree). The most popular value is chosen as the predicted OOB classification
for that observation. The OOB error estimate is the proportion of observations which are incorrectly
classified using this algorithm.

In this example, the OOB error estimate is 21.08%, which means that 21.08% of the predicted category
values for the OOB observations are incorrect for this dataset.

OOB Classification Performance
 Target variable: survived

 OOB Performance Summary

Out-Of-Bag Error Estimate (%)

 21.08

OOB Classification Table
The OOB Classification table shows the confusion matrix for the OOB classifications (the predicted
values for each observation, as predicted by only the trees for which the observation was out-of-bag).

The rows represent the actual category values, and the columns represent the category values
predicted by the OOB classification. The table entries show how many observations of each category
value were mapped to each of the predicted category values, so the leading diagonal contains the
numbers of observations that were classified correctly, and the other entries in the table contain the
observations that were misclassified.

In this example, 468 non-survivors (actual category 'no') were correctly classified, but 61 non-survivors
were incorrectly classified as survivors. 221 survivors (actual category 'yes') were correctly classified,
but 123 survivors were incorrectly classified as non-survivors.

 OOB Classification Table
 Target variable: survived

 Predicted Category Frequencies

Actual Category | no | yes

no | 468 | 61
yes | 123 | 221

Classification Table
The Classification table shows the confusion matrix for the overall predictions from the decision
forest. As before, the rows represent the actual category values, and the columns represent the
category values predicted by the decision forest model. The leading diagonal contains the numbers of
observations that were classified correctly, and the other entries in the table contain the observations
that were misclassified. In this case, the predicted value for each observation is derived using all the
trees in the decision forest, regardless of whether the observation was used to train the tree, or was
out-of-bag for that tree.

Reference for language elements
Version 4.1

3177

In this example, 487 non-survivors (actual category 'no') were correctly classified, but 42 non-survivors
were incorrectly classified as survivors. 244 survivors (actual category 'yes') were correctly classified,
but 100 survivors were incorrectly classified as non-survivors.

 Classification Table
 Source: TESTDATA.titanic_training
 Predicted value: survived

 Predicted Category Frequencies

Actual Category | no | yes

no | 487 | 42
yes | 100 | 244

Classification Performance
The Classification Performance table shows the error estimate for the final predictions from the decision
forest. This is the proportion of observations in the training dataset that were incorrectly classified by the
decision forest model.

In this example, the error estimate is 16.27%, which means that 16.27% of the predicted category
values are incorrect for the observations in this dataset. This error estimate is lower than the OOB error
estimate of 21.08%, which is to be expected, since this value includes predictions for observations that
were used to train the forest.

 Classification Performance
Source: TESTDATA.titanic_training
 Predicted value: survived

 Performance Summary

 Error Estimate (%)

 16.27

Score Classification Table
The Score Classification table shows the confusion matrix for the test dataset that the decision forest
model is being used to score. As before, the rows represent the actual category values, and the
columns represent the category values predicted by the decision forest model. The leading diagonal
contains the numbers of observations that were classified correctly, and the other entries in the table
contain the observations that were misclassified.

Reference for language elements
Version 4.1

3178

In this example, 249 non-survivors (actual category 'no') were correctly classified, but 31 non-survivors
were incorrectly classified as survivors. 108 survivors (actual category 'yes') were correctly classified,
but 48 survivors were incorrectly classified as non-survivors.

 Score Classification Table
 Source: TESTDATA.titanic_test
 Predicted value: survived

 Predicted Category Frequencies

Actual Category | no | yes

no | 249 | 31
yes | 48 | 108

Note that if the dataset to be scored does not contain actual category values for comparison, the Score
Classification table is still produced, but it is empty.

Score Classification Performance
The Score Classification Performance table shows the error estimate for the test dataset that the
decision forest model is being used to score. This is the proportion of observations in the dataset being
scored that were incorrectly classified by the decision forest model.

In this example, the error estimate is 18.12%, which means that 18.12% of the predicted category
values are incorrect for the dataset being scored.

Score Classification Performance
 Source: TESTDATA.titanic_test
 Predicted value: survived

 Score Performance Summary

 Score Error Estimate (%)

 18.12

Note that if the dataset to be scored does not contain actual category values for comparison, the Score
Classification Performance table is still produced, but it is empty.

Changing the number of variables chosen for each split
The example above uses the default value of NUMSPLITINPUTS, which in this case is 2.

If the example is changed to set NUMSPLITINPUTS=3, the OOB error estimate increases slightly from
21.08% to 22.45% but the error estimate for the classification performance decreases from 16.27% to
12.94%. The score classification performance also increases, from 18.12% to 19.27%

If the example is changed to set NUMSPLITINPUTS=1, the OOB error estimate again increases slightly
from 21.08% to 22.45%. The error estimate for the classification performance also increases from
16.27% to 17.98% and the score classification performance also increases, from 18.12% to 19.27%

Reference for language elements
Version 4.1

3179

This illustrates the effect of choosing the optimal number of variables to select randomly at each node.
Setting NUMSPLITINPUTS=3 creates a decision forest that fits the training data slightly better, but
is slightly worse at scoring other similar datasets. Setting NUMSPLITINPUTS=1 creates a decision
forest that is a worse fit to the training data, and is also slightly worse at scoring other similar datasets.
Overall, for this dataset, the default value of NUMSPLITINPUTS=2 appears to give the best results.

DECISIONFOREST procedure reference
Describes the syntax and options for PROC DECISIONFOREST and its contained statements.

PROC DECISIONFOREST ...3179
Specifies the algorithm and options to use to create a decision forest from the input dataset.

FREQ ...3182
Specifies a variable containing the frequency associated with an observation.

INPUT ..3182
Specifies the input (predictor) variables and the options to use for each.

OUTPUT ..3184
Creates an output dataset containing the input observations and, for each, the value of the target
variable as predicted by the decision forest model.

SCORE ..3185
Uses the current decision forest model to score the data in the specified dataset.

TARGET .. 3186
Specifies the target (dependent) variable and any options that apply to the variable.

WEIGHT .. 3188
Specifies a variable in the input dataset giving the prior weight associated with each observation.

WHERE ... 3188
Restricts the observations to be processed.

PROC DECISIONFOREST
Specifies the algorithm and options to use to create a decision forest from the input dataset.

PROC DECISIONFOREST

options

;

The DECISIONFOREST procedure is a machine learning algorithm that creates multiple tree-like
decision models from the specified input dataset. Each node of each tree splits the data based on the
values of a randomly-selected subset of the input variables. Each tree uses the CART algorithm and
Gini Impurity to measure of the predictive power of the variables. The final predicted value assigned to
the target variable is based on the aggregated predictions from all the trees in the forest.

Reference for language elements
Version 4.1

3180

Options
The following options are available:

CLASSCOMB

CLASSCOMB = MEANPROB

VOTE

For a classification forest, specifies the way to combine the predicted probabilities from each tree
in the forest to obtain the overall predicted probabilities from the forest.

This value is ignored for a regression forest.

The following values are available:

MEANPROB
The predicted probability for a class is the mean of the probabilities predicted by each tree
for that class.

VOTE
The predicted probability for a class is the proportion of trees in the forest that voted for
that class (that is, predicted that class to be the most likely class). If a tree predicted that
two or more classes were equally likely, a random choice is made between these classes.
This is the default value.

DATA

DATA = dataset

Specifies the training dataset used to construct the decision forest. If neither the DATA nor the
INMODEL options are specified, the most recently-created dataset is used as the training dataset.
The DATA option cannot be specified if the INMODEL option is also specified.

EXCLUDEMISS

EXCLUDEMISS

Specifies that observations with missing values are excluded when determining the best split at a
node.
By default, observations with missing values are included. For classification forests, the missing
value is replaced with the modal category for the target variable, and for regression forests, the
missing value is replaced with the mean value of the target variable.

INMODEL

INMODEL = reference

Reference for language elements
Version 4.1

3181

Specifies the location of a previously-saved, serialised decision forest model to be used to score
another dataset. The dataset to be scored is specified using the SCORE statement.

The INMODEL option cannot be specified if the DATA option is also specified, or if any INPUT
statements are included.

reference
The serialised model name is specified as library-name.item-name, where
library-name is a library reference, and item-name is the item contained by the library. If
library-name is not specified, the default WORK library is used.

MINIMPROVEMENT

MINIMPROVEMENT = improvement

Specifies the minimum improvement (decrease) in Gini Impurity required for the node to be split.
The default MINIMPROVEMENT is 0.

MINSPLITSIZE

MINSPLITSIZE = size

Specifies the minimum number of observations a node must contain for the node to be split.
If the node contains fewer observations than the specified minimum split size, the node is not
split further. The default MINSPLITSIZE is 2 for trees in classification forests and 5 for trees in
regression forests.

MINSPLITSIZERATIO

MINSPLITSIZERATIO = rat io

Specifies the minimum number of observations a node must contain for the node to be split, as a
percentage of the observations in the dataset. If the node contains fewer observations than the
specified minimum split size ratio, the node is not split further. The default value is 1 (percent).

NOPRINT

NOPRINT

Specifies that all ODS output is suppressed.

NUMSPLITINPUTS

NUMSPLITINPUTS = value

Reference for language elements
Version 4.1

3182

Specifies the number of input variables to randomly select each time a node is split. At each node
in each tree in the decision forest, the algorithm selects this number of variables randomly from
the total number of input variables and uses the values of the selected variables to determine the
best split for that node.

For a decision forest with N input variables, the default value is (that is, floor()) for
classification trees and for regression trees.

NUMTREES

NUMTREES = value

Specifies the number of trees in the forest. The default number of trees is 500.

OUTMODEL

OUTMODEL = reference

Specifies that the decision forest model created from the training dataset is saved as a serialised
model in the specified location. This serialised model can later be used to score another dataset.

reference
The serialised model name is specified as library-name.item-name, where
library-name is a library reference, and item-name is the item contained by the library. If
library-name is not specified, the default WORK library is used.

FREQ
Specifies a variable containing the frequency associated with an observation.

FREQ

FREQUENCY

variable ;

INPUT
Specifies the input (predictor) variables and the options to use for each.

IN

INPUT

variable

/ options

;

Reference for language elements
Version 4.1

3183

Together, the input variables specified in all the INPUT statements form the group of variables from
which a random selection is made each time a node is split. If no INPUT statement is specified, all
variables in the input dataset are regarded as input variables except for those which are specified the
TARGET statement, and variables specified in the FREQUENCY and WEIGHT statements if used.

variable
A variable to which measures of predictive power are applied.

Options
The following options are available:

DESCENDING

DESCENDING

Specifies a descending sort order for the variable. This option only applies if the value specified
for the ORDER option is one of FORMATTED, INTERNAL or UNFORMATTED, as the sort order
cannot be explicitly determined from these options. If ORDER has one of these values, and the
DESCENDING option is not specified, the variable has an ascending sort order.

If the value specified for ORDER is not FORMATTED, INTERNAL or UNFORMATTED then the sort
order for the variable is determined by the ORDER option.

LEVEL

LEVEL = INTERVAL

NOMINAL

ORDINAL

Specifies the level for the input variables. The default LEVEL value is INTERVAL.

INTERVAL
Specifies a continuous input variable with an implicit category ordering.

NOMINAL
Specifies a discrete input variable with no implicit ordering. When partitioning this variable
into nodes in a decision tree, any category can be merged with any other category.

ORDINAL
Specifies a discrete input variable with an implicit category ordering. When partitioning this
variable into nodes in a decision tree, only adjacent categories can be merged together.

Reference for language elements
Version 4.1

3184

ORDER

ORDER = ASCENDING

ASCFORMATTED

DATA

DSORDER

DESCENDING

DESFORMATTED

FORMATTED

INTERNAL

UNFORMATTED

Specifies the order of the input variable. The default ORDER value is INTERNAL.

ASCENDING
The variable is sorted by ascending order of the raw value.

ASCFORMATTED
The variable is sorted by ascending order of the formatted value.

DATA
The variable is sorted by the order in which the values of the variable first occur when the
data is read.

DESCENDING
The variable is sorted by descending order of the raw value.

DESFORMATTED
The variable is sorted by descending order of the formatted value.

FORMATTED
The variable is sorted by the formatted value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

INTERNAL
The variable is sorted by the raw value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

OUTPUT
Creates an output dataset containing the input observations and, for each, the value of the target
variable as predicted by the decision forest model.

OUTPUT options ;

Reference for language elements
Version 4.1

3185

Options
The following options are available:

OUT

OUT = dataset

Specifies the name of the output dataset. The dataset contains the original data, and, for each
observation, the predicted value for the target variable.

If OUT is not specified, the procedure creates the dataset as DATAn in the WORK library, where n
is incremented for each output dataset.

PROBABILITY

PROBABILITY

P

PROB

Specifies that, for classification decision forests, the output dataset includes a variable for each
possible category that the target variable can take. For each observation, these variables give the
probability that the actual target value is in that category.
This option is ignored if the forest is not a classification forest.

SCORE
Uses the current decision forest model to score the data in the specified dataset.

SCORE options ;

The SCORE statement takes the data in the specified dataset and scores it using the decision forest
model defined in PROC DECISIONFOREST. The score results are saved in a table which can be printed
or saved in an output dataset.

For each observation in the dataset being scored, the score results table shows the component that the
observation is most likely to belong to, and the overall probability density of the distribution at that point.
The score results table includes all the data in the input dataset, including observations with missing
values. But observations with missing values for predictor variables are not scored.

Multiple SCORE statements can be specified if required.

Options
The following options are available:

Reference for language elements
Version 4.1

3186

DATA

Specifies the dataset to score. All the predictor variables specified in the INPUT statement must
be present in the dataset.

If PROC DECISIONFOREST includes a BY statement, the dataset to be scored must also contain
all the variables mentioned in the BY statement, and must be sorted in the order of those
variables.

The DATA option is mandatory.

OUT

OUT = dataset

Specifies the dataset to which the score results are output. The dataset contains the original
data, and, for each observation, the predicted value for the target variable.
If not specified, no output dataset is produced.

If PROC DECISIONFOREST specifies more than one output dataset for score results (for
example, if there is more than one SCORE statement) then each output dataset must have a
unique name.

PROBABILITY

PROBABILITY

P

PROB

Specifies that, for classification decision forests, the output dataset includes a variable for each
possible category that the target variable can take. For each observation, these variables give the
probability that the actual target value is in that category.
This option is ignored if the forest is not a classification forest.

TARGET
Specifies the target (dependent) variable and any options that apply to the variable.

TARGET variable

/ options

;

Only one TARGET statement is allowed in each PROC DECISIONFOREST statement. The TARGET
statement must contain a single variable.

variable
The dependent variable.

Reference for language elements
Version 4.1

3187

Options
The following options are available:

DESCENDING

DESCENDING

Specifies a descending sort order for the variable. This option only applies if the value specified
for the ORDER option is one of FORMATTED, INTERNAL or UNFORMATTED, as the sort order
cannot be explicitly determined from these options. If ORDER has one of these values, and the
DESCENDING option is not specified, the variable has an ascending sort order.

If the value specified for ORDER is not FORMATTED, INTERNAL or UNFORMATTED then the sort
order for the variable is determined by the ORDER option.

LEVEL

LEVEL = BINARY

INTERVAL

NOMINAL

ORDINAL

Specifies the level for the target variable. The default LEVEL value is NOMINAL.

INTERVAL
Specifies a continuous target variable containing an implicit category ordering.

NOMINAL
Specifies a discrete target variable with no implicit ordering.

ORDINAL
Specifies a discrete target variable with an implicit category ordering.

BINARY
Specifies a target variable that can take one of two values.

ORDER

ORDER = ASCENDING

ASCFORMATTED

DATA

DSORDER

DESCENDING

DESFORMATTED

FORMATTED

INTERNAL

UNFORMATTED

Reference for language elements
Version 4.1

3188

Specifies the order of target variable. The default ORDER value is INTERNAL.

ASCENDING
The variable is sorted by ascending order of the raw value.

ASCFORMATTED
The variable is sorted by ascending order of the formatted value.

DATA
The variable is sorted by the order in which the values of the variable first occur when the
data is read.

DESCENDING
The variable is sorted by descending order of the raw value.

DESFORMATTED
The variable is sorted by descending order of the formatted value.

FORMATTED
The variable is sorted by the formatted value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

INTERNAL
The variable is sorted by the raw value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

WEIGHT
Specifies a variable in the input dataset giving the prior weight associated with each observation.

WEIGHT variable ;

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

3189

DECISIONTREE procedure
The DECISIONTREE procedure enables you to build a decision tree from an input dataset. You can
then use the decision tree model to analyse other datasets.

About decision trees
A decision tree is a statistical model organised as a tree structure. It uses a succession of logic rules to
predict the value of a target (or response) variable from the values of one or more input (or predictor)
variables.

The decision tree is built from a training dataset where the values of the target variable are known. The
decision tree can then be used to predict the values of the target variable in other datasets where the
values of the target variable may not be known.

If the target variable is discrete, the tree is a classification tree. If the target variable is continuous, the
tree is a regression tree.

A decision tree consists of a series of nodes, each containing observations from the dataset. The top-
level node is the root node and contains all the observations. At each node, the tree-building algorithm
uses the observations at that node to determine the best input variable to use to split the tree further.
The input variable that gives the greatest increase in information, according to some specified criterion,
is used to split that node of the tree into two or more branches (or partitions). For a continuous input
variable, the value of the variable is compared against a threshold value. For a discrete input variable,
the value of the variable is compared against two or more subsets of possible values.

Each node can be partitioned into lower level nodes. As the depth of the tree increases, each node
contains fewer and fewer observations. Tree growth stops when some specified stopping criteria is
reached. For example, you could specify that growth stops when a further split would cause the number
of observations in a node to drop below a specified minimum, or when the tree reaches a specified
maximum node depth.

Another important concept of decision trees is pruning. When a decision tree is built from a training
dataset, the tree may over-fit that data and hence perform poorly against other test data. Pruning
allows you to build a tree which over-fits, and then to remove any lower nodes which are statistically
insignificant according to some specified test. This increases the likelihood that the decision tree will
perform well against a new dataset. The pruning options available and the way that pruning is carried
out depend upon the algorithm used to build the tree.

Tree-building algorithms
The PROC DECSIONTREE METHOD option specifies the tree building algorithm to use. PROC
DECISIONTREE supports the following algorithms:

Reference for language elements
Version 4.1

3190

• METHOD=BRT uses the Binary Response Tree (BRT) algorithm developed by WPL for predicting
binary target variables. The mechanism for creating a split uses algorithms developed by Raymond
Anderson for partitioning the values of an input variable (Anderson, R. The Credit Scoring Toolkit,
Oxford Press, 2007) and measures of predictive power developed by Mamdouh Reefat (Reefat, M.
Credit Risk Scorecards: Development and Implementation Using SAS, Lulu.com, 2016).

This algorithm applies to classification trees with binary target variables.
• METHOD=C4.5 uses the C4.5 algorithm developed by Ross Quinlan (Quinlan, J. R. C4.5: Programs

for Machine Learning. Morgan Kaufmann Publishers, 1993).

This algorithm applies to any classification trees.
• METHOD=CART uses the Classification and Regression Trees (CART) algorithm developed by

Breiman et. al. (Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. Classification and
Regression Trees, Wadsworth, Belmont, CA, 1984).

This algorithm applies to any classification or regression tree.

Node-splitting criteria
Use the PROC DECISIONTREE CRITERON option to specify the criterion to use to determine the best
split at each node of the tree. The available options depend on the METHOD option chosen.

METHOD=BRT

When METHOD=BRT, the CRITERION options are measures of predictive power. The following
CRITERION options are available:

• CRITERION=CHISQUARED uses Pearson's Chi-Squared statistic
• CRITERION=ENTROPYVAR uses Entropy Variance
• CRITERION=GINIVARIANCE uses Gini Variance
• CRITERION=INFORMATIONVALUE uses Information Value

For more details see Predictive power criteria (page 3191).

METHOD=C4.5

When METHOD=C4.5, there is no explicit CRITERION option available, because Entropy Gain Ratio is
always used as the criterion.

METHOD=CART

When METHOD=CART, the following CRITERION options are available:

• CRITERION=GINI uses Gini Variance
• CRITERION=ORDEREDTWOING uses Ordered Twoing
• CRITERION=TWOING uses Twoing
• CRITERION=LEASTSQUAREDDEVIATION uses Least Squared Deviation

Reference for language elements
Version 4.1

3191

Predictive power criteria
Predictive power is a way of measuring how well a particular input variable can predict the target
variable.

Pearson's Chi-Squared statistic
Pearson’s Chi-squared statistic is a measure of the likelihood that the value of the target variable is
related to the value of the predictor variable.

Each observation in the dataset is allocated to a cell in a contingency table, according to the values of
the predictor and target variables. Pearson’s Chi-squared statistic is calculated as the normalised sum
of the squared deviations between the actual number of observations in each cell, and the expected
number of observations in each cell if there were no relationship between the predictor and target
variables.

If a predictor variable has a high Pearson’s Chi-squared statistic, it means that the variable is a good
predictor of the target variable, and is likely to be a good candidate to use to split the data in a binning
or tree-building algorithm.

Pearson’s Chi-squared statistic for a discrete target variable is calculated as

where:

• is the total number of observations in the dataset
• is the number of distinct values of the predictor variable (these are the rows in the contingency

table)
• is the number of distinct, discrete values of the target variable (these are the columns in the

contingency table)
• is the number of observations for which the predictor variable has the th value, , and

the target variable has the th value, (these are the values in the cells of the contingency
table)

• is the total number of observations for which the predictor variable has the th value,

• is the total number of observations for which the target variable has the th value,

• is the expected value of , calculated as

Reference for language elements
Version 4.1

3192

Entropy Variance
Entropy variance is a measure of how well the value of a predictor variable can predict the value of the
target variable.

If a variable in a dataset has a high entropy variance, it means that the variable is a good predictor
of the target variable, and is likely to be a good candidate to use to split the data in a binning or tree-
building algorithm.

Entropy variance for a discrete target variable is calculated as

where:

• is the total number of observations in the dataset
• is the number of distinct values of the predictor variable,
• is the number of distinct, discrete values of the target variable,
• is the number of observations for which the predictor variable has the th value, , and

the target variable has the th value,

• is the total number of observations for which the predictor variable has the th value,

• is the total number of observations for which the target variable has the th value,

• is the entropy calculated for just the observations where the predictor variable is , calculated
as

• is the entropy calculated for all the observations, calculated as

Gini Variance
Gini variance is a measure of how well the value of a predictor variable can predict the target variable.

If a variable in a dataset has a high Gini variance, it means that the variable is a good predictor of the
target variable, and is likely to be a good candidate to use to split the data in a binning or tree-building
algorithm.

Gini variance for a discrete target variable is calculated as

Reference for language elements
Version 4.1

3193

where

• is the total number of observations in the dataset
• is the number of distinct values of the predictor variable,
• is the number of distinct, discrete values of the target variable,
• is the number of observations for which the predictor variable has the th value, , and

the target variable has the th value,

• is the total number of observations for which the predictor variable has the th value,

• is the total number of observations for which the target variable has the th value,

• is the Gini impurity calculated for just the observations where the predictor variable is ,
calculated as

• is the Gini impurity calculated for all the observations, calculated as

Information value
Information value is a measure of the likelihood that the value of the target variable is related to the
value of the predictor variable. The information value measure is only applicable for binary target
variables (that is, target variables that can take one of exactly two values).

If a predictor variable has a high information value, it means that the variable is a good predictor of the
target variable, and is likely to be a good candidate to use to split the data in a binning or tree-building
algorithm.

The information value statistic is calculated as

where:

• is the number of distinct, discrete values of the predictor variable (these are the rows in the
contingency table)

• and are the two possible values of the binary target variable

• is the number of observations for which the predictor variable has the th value, , and
the target variable has the value, (these are the values in the cells of the column in the
contingency table)

Reference for language elements
Version 4.1

3194

• is the number of observations for which the predictor variable has the th value, , and
the target variable has the value, (these are the values in the cells of the column in the
contingency table)

• is the total number of observations for which the target variable has the value,

• is the total number of observations for which the target variable has the value,

• is the weight of evidence (WOE) adjustment, a small positive number to avoid infinite values
when or

• is the WOE value for observations where the predictor variable is , calculated as

Using the DECISIONTREE procedure
This example shows how to use PROC DECISIONTREE to build a decision tree from an input dataset
and to measure how well this tree can predict the target variable.

This example uses a simple dataset containing a sample of 100 people and their age, salary, make
of car, whether they own a dog and whether they have defaulted on a loan. In this example, the
DECISIONTREE procedure is used to generate a decision tree using the C4.5 algorithm.

Dataset
This example uses the dataset loanData, which contains the following observations:

Age Salary Car Dog Loan_Default
21 21325 Ford 1 0
21 30154 Ford 0 0
21 52389 Ford 0 1
22 59703 Ford 0 0
22 34264 Ford 0 1
22 9720 . 0 0
22 43123 Ford 0 0
22 65111 Ford 0 0
23 48437 Ford 0 0
24 3748 . 0 0
24 42226 Ford 0 1
24 36632 Ford 0 1
25 48310 Ford 1 0
25 27238 Ford 1 0
26 25927 Ford 0 0
26 59457 Nissan 0 0
26 39058 Nissan 0 0
27 66886 Nissan 0 1
28 62063 Nissan 1 0
29 55120 Nissan 0 0
30 67674 Nissan 0 0
32 7598 Ford 0 0
33 15708 Ford 1 0

Reference for language elements
Version 4.1

3195

33 53192 Nissan 0 0
33 44778 Nissan 1 0
34 9123 Ford 0 0
36 93027 Volvo 0 0
36 53889 Volvo 0 0
37 106263 Volvo 0 0
41 44477 Volvo 0 1
41 34316 Nissan 1 1
42 68092 Volvo 1 0
42 59812 Volvo 0 0
42 109801 Volvo 0 1
43 67401 Volvo 0 0
43 119848 Volvo 0 0
43 29937 Ford 0 0
43 83910 Volvo 0 0
44 69805 Volvo 0 0
44 10185 Ford 0 0
44 70349 Volvo 0 1
45 108497 Volvo 1 0
45 18964 Ford 1 0
45 63852 Volvo 0 0
45 60078 Volvo 1 0
46 110470 VW 0 0
46 94727 VW 0 0
46 120335 VW 0 0
47 135657 VW 0 1
47 117581 VW 0 0
47 124175 VW 0 0
47 21844 Ford 0 1
47 23676 Ford 0 1
48 80039 VW 0 0
48 49712 Volvo 0 0
49 42996 Volvo 1 0
50 24927 Ford 0 0
50 143032 VW 1 0
50 3377 Ford 0 0
51 100965 BMW 0 1
52 109383 BMW 0 0
52 152770 BMW 1 0
52 101555 BMW 0 0
52 95710 VW 0 0
52 147672 BMW 1 1
54 52246 Volvo 0 0
54 81418 VW 0 0
54 22060 Ford 0 1
54 115577 BMW 0 0
55 59722 Volvo 0 1
56 164395 BMW 0 0
56 157190 BMW 0 1
56 17268 Ford 0 0
56 60255 Volvo 0 0
56 162720 BMW 0 0
58 163492 BMW 0 0
59 114415 BMW 0 1
59 134879 BMW 0 0
59 33462 Nissan 0 1
60 7823 Ford 0 0
60 134460 BMW 0 0
61 773 Ford 0 0
64 30254 Nissan 0 0

Reference for language elements
Version 4.1

3196

64 154860 BMW 0 0
64 58275 Volvo 0 0
64 122884 BMW 0 0
65 138848 BMW 0 0
65 123111 BMW 1 0
66 147121 BMW 0 0
66 188638 BMW 0 0
66 165768 BMW 1 0
66 89132 VW 0 1
66 144425 BMW 0 0
68 91219 VW 0 0
68 193010 BMW 0 0
68 39799 Nissan 1 0
68 41234 Volvo 0 0
69 33319 Nissan 1 1
69 180753 BMW 1 0
70 16219 Ford 1 0

Code example
The model defines age, salary, and car as input variables. age is an ordinal variable (it contains
discrete values with an implicit ordering), salary is an interval variable (it can be regarded as
continuous) and car is a nominal variable (it contains discrete values with no implicit ordering). The
target variable (the variable that the decision tree needs to predict) is loan_default. The decision
tree algorithm used is C4.5. The criterion used to split nodes in the tree is ENTROPYVAR (the predictive
power using this split is measured using Entropy Variance) which is the default criterion for METHOD
= C4.5, and in fact, the only valid criterion for this method. The output shows the successful and
unsuccessful classifications using the decision tree generated from these parameters.

PROC DECISIONTREE
 DATA = loanData
 MAXDEPTH=5
 OUTTREE = LoanDataTree
 METHOD = C4.5;
INPUT salary /LEVEL=INTERVAL;
INPUT age /LEVEL=ORDINAL;
INPUT car /LEVEL=NOMINAL;
TARGET loan_default/LEVEL=BINARY;
RUN;

Target Summary
The Target Summary table shows the target type that the decision tree is required to predict. In this
case, it's a discrete target with binary (yes or no) values.

 Target Summary
Discrete or Level type Number of Order type Descending?
continuous? categories
__
DISCRETE BINARY 2 INTERNAL NO

Reference for language elements
Version 4.1

3197

Input Summary
The Input Summary table summarises the input variables, their types, categories and the other values
that control the decision tree to build.

Run Summary
The Run Summary table summarises information about the run, for example, input dataset, the decision
tree parameters that were used, the number of data items processed, and information about the
decision tree that was generated (the number of nodes and the depth of the tree).

Classification
The Classification table shows the confusion matrix, where the rows represent the actual categories,
and the columns represent categories predicted by the decision tree. The table entries show how
many observations of each category were mapped to each of the predicted categories, so the leading
diagonal contains the numbers of observations that were predicted correctly, and the other entries in
the table contain the observations that were misclassified.

In this example, 77 non-defaulters (actual category 0) were correctly classified, but three non-defaulters
were classified as category 1 (likely to default). 11 defaulters (actual category 1) were correctly
classified as likely to default, but 10 were incorrectly classified as unlikely to default.

 Predicted Category Frequencies
__
Actual Category 0 1
__
0 77 2
1 10 11

Scoring another dataset
This decision tree could then be used on another dataset to predict classifications from the predictor
variables. To do this, use the CODE statement to save the decision tree as a code file, then specify the
code file as an %INCLUDE in a data step.

DECISIONTREE procedure reference
Describes the syntax and options for PROC DECISIONTREE and its contained statements.

PROC DECISIONTREE ..3198
Specifies the algorithm and options to use to create a decision tree from the input dataset.

CODE .. 3205
Outputs the decision tree as a file containing data step code, which can subsequently be used to
score another dataset using this decision tree.

FREQ ...3206
Specifies a variable containing the frequency associated with an observation.

Reference for language elements
Version 4.1

3198

INPUT ..3206
Specifies the input (predictor) variables and the options to use for each.

TARGET .. 3208
Specifies the target (dependent) variable and any options that apply to the variable.

WHERE ... 3210
Restricts the observations to be processed.

PROC DECISIONTREE
Specifies the algorithm and options to use to create a decision tree from the input dataset.

PROC DECISIONTREE

global- options

METHOD = BRT (brt- options)

C4.5

(c45- options)

CART (cart- options)

;

The DECISIONTREE procedure is a machine learning algorithm that creates a tree-like decision model
from the specified input dataset using the specified options. The METHOD option is mandatory and
defines the algorithm to use to construct the tree (one of BRT, C4.5 or CART). There are also some
global options that can be specified for any kind of decision tree, and some algorithm-specific options.

global-options

Specifies the global options for any kind of decision tree. See Global options (page 3198).

brt-options

Specifies the algorithm options for binary response trees. See BRT options (page 3200).

c45-options

Specifies the algorithm options for C4.5 decision trees. See C4.5 options (page 3202).

cart-options

Specifies the algorithm options for CART decision trees. See CART options (page 3203).

Global options
The following global-options are available:

Reference for language elements
Version 4.1

3199

DATA

DATA = dataset

Specifies the training dataset used to construct the decision tree. If a training dataset is not
specified, the most recently-created dataset is used.

EXCLUDEMISS

EXCLUDEMISS

Specifies that observations containing missing values are excluded when determining the best
split at a node. By default, observations with missing values are included.

MAXDEPTH

MAXDEPTH = depth

Specifies the maximum depth of the tree. By default, the tree depth is unlimited.

MINNODESIZE

MINNODESIZE = size

Specifies the minimum number of observations per decision tree node. If a proposed split would
create a node containing fewer than the specified minimum number of observations, the split
does not occur.

The default value is determined by METHOD. When METHOD = BRT is specified, the default is
200. When METHOD=C4.5 is specified, the default is 2. When METHOD=CART is specified, the
default is 1.

MINNODESIZERATIO

MINNODESIZERATIO = rat io

Specifies the minimum size of a node as a percentage of the observations in the dataset.
If a proposed split would create a node containing fewer than the specified percentage of
observations, the split does not occur. The default value is 5 (percent).

NOPRINT

NOPRINT

Specifies that all ODS output is suppressed.

Reference for language elements
Version 4.1

3200

OUTTREE

OUTTREE = dataset

Specifies that the decision tree structure is written to the specified output dataset.

PRINTTREE

PRINTTREE

Specifies that the decision tree structure is written to ODS output.

BRT options
The following brt-options are available when METHOD=BRT:

CRITERION

CRITERION = CHISQR

CHISQUARED

CHI_SQUARED

ENTROPYVAR

ENTROPYVARIANCE

ENTROPY_VARIANCE

GINIVAR

GINIVARIANCE

GINI_VARIANCE

IV

INFOVAL

INFORMATIONVALUE

INFORMATION_VALUE

Specifies the criterion used to split nodes in the decision tree.

When METHOD=BRT, this option is mandatory and must be specified. The following values are
available:

CHISQR
Specifies that Pearson's Chi-Squared statistic is used to measure the predictive power of
variables.

ENTROPYVAR
Specifies that Entropy Variance is used to measure the predictive power of variables.

GINIVAR
Specifies that Gini Variance is used to measure the predictive power of variables by
measuring the strength of association between variables.

Reference for language elements
Version 4.1

3201

IV
Specifies that Information Value is used to measure the predictive power of variables.

MAXPREDICTIVEPOWERCHANGE

MAXPREDICTIVEPOWERCHANGE

MAXPREDPWRCHANGE

= change

Specifies the maximum change allowed in the predictive power when optimally merging bins.

The default value is determined by the type of CRITERION. When CRITERION = CHISQR is
specified, the default is 0.002. When CRITERION=INFOVAL is specified, the default is 0.01. For
all other settings of CRITERION, the default is 0.001.

MERGEMISSINGBIN

MERGEMISSINGBIN

Specifies that missing values are considered a separate valid category when binning data.

MINPREDICTIVEPOWER

MINPREDICTIVEPOWER

MINPREDPWR

= power

Specifies the minimum predictive power required for a decision tree node to be split.

The default value is determined by the type of CRITERION specified: when CRITERION =
CHISQR, the default is 0.004; when CRITERION = INFOVAL, the default is 0.02; for all other
settings of CRITERION, the default is 0.002.

MINSPLITSIZE

MINSPLITSIZE = size

Specifies the minimum number of observations a decision tree node must contain in order for it to
be split further. If the node contains fewer observations than the specified minimum split size, the
node is not split. The default MINSPLITSIZE is 1000.

MINSPLITSIZERATIO

MINSPLITSIZERATIO = rat io

Specifies the minimum number of observations a decision tree node must contain for the
node to be split, as a percentage of the observations in the dataset. If the node contains fewer
observations than the percentage specified as the minimum split size, the node is not split. The
default value is 2 (percent).

Reference for language elements
Version 4.1

3202

MONOTONEWOE

MONOTONEWOE

Ensures that the weight of evidence (WoE) value for ordered input variables is either
monotonically increasing or monotonically decreasing.

NOALLOWSAMEVARSPLIT

NOALLOWSAMEVARSPLIT

Specifies that a variable cannot be used more than once to split a decision tree node.

NOOPENLEFT

NOOPENLEFT

Specifies that, for a continuous variable, the node containing the very lowest values (the node on
the far left) has a closed lower bound. Otherwise, the lower bound of the node containing the very
lowest values is (minus infinity).

NOOPENRIGHT

NOOPENRIGHT

Specifies that, for a continuous variable, the node containing the very highest values (the node
on the far right) has a closed upper bound. Otherwise, the upper bound of the node containing
the very highest values is (infinity).

WOEADJUST

WOEADJUST = adjustment

Specifies the adjustment applied in weight of evidence calculations to avoid invalid results for
pure inputs.

The default value for WOEADJUST is 1E-5.

C4.5 options
Note that C4.5 decision trees always use the Entropy Gain Ratio to split the nodes in the decision tree,
so there is no CRITERION option when METHOD=C4.5.

The following c45-options are available when METHOD=C4.5:

MERGECATEGORIES

MERGECATEGORIES

Reference for language elements
Version 4.1

3203

Specifies that discrete independent variables are grouped together to optimize the dependent
variable value used for splitting.

PRUNE

PRUNE

Specifies that the decision tree should be pruned to reduce tree complexity by removing nodes
from a tree that do not significantly improve the predictive accuracy of the model. Pruning a tree
may reduce the likelihood of overfitting the model to test data.

PRUNECONFIDENCELEVEL

PRUNECONFIDENCELEVEL = confidencelevel

Specifies the confidence level for pruning, expressed as a percentage. The default value is 25
(percent).

CART options
The following cart-options are available when METHOD=CART:

CRITERION

CRITERION = GINI

LEAST_SQUARES_DEVIATION

LSD

ORDEREDTWOING

ORDERED_TWOING

TWOING

Specifies the criterion used to split nodes in the decision tree.

When METHOD=CART, this option is mandatory and must be specified. The following values are
available:

GINI
Specifies that Gini Impurity is used to measure the predictive power of variables, by
measuring the purity of the nodes.

LEAST_SQUARES_DEVIATION
Specifies that the Least Squared Deviation is used to measure the predictive power of
variables.
This option can only be specified for regression trees (that is, when LEVEL=INTERVAL is
specified in the TARGET statement).

Reference for language elements
Version 4.1

3204

ORDEREDTWOING
Specifies that the Ordered Twoing Index is used to measure the predictive power of
variables.

TWOING
Specifies that the Twoing Index is used to measure the predictive power of variables.

MINIMPROVEMENT

MINIMPROVEMENT = improvement

Specifies the minimum improvement in impurity required for a split to occur.

PRUNE

PRUNE

Specifies that the decision tree should be pruned to reduce tree complexity by removing nodes
from a tree that do not significantly improve the predictive accuracy of the model. Pruning a tree
may reduce the likelihood of overfitting the model to test data.

RISKESTIMATION

RISKESTIMATION = CROSSVALIDATION

HOLDOUT

Specifies the risk optimization method used during pruning. This option is ignored if PRUNE is not
specified.
One of:

CROSSVALIDATION
The input dataset is divided as evenly as possible into ten randomly-selected groups. The
analysis is repeated ten times, each time with a different group as test dataset, and the
remaining groups used as training data. Risk estimates are calculated for each group and
then averaged across all groups. The averaged risk values are used to prune the final tree
built from the entire dataset.
This is the default value.

HOLDOUT
The input dataset is randomly divided into a test dataset containing one third of the dataset
and a training dataset containing the balance of the dataset. The final tree is initially
built using the training dataset, then pruned using risk estimation calculations on the test
dataset.

Reference for language elements
Version 4.1

3205

CODE
Outputs the decision tree as a file containing data step code, which can subsequently be used to score
another dataset using this decision tree.

CODE FILE = f ileref options ;

When the code file has been produced, you can write a data step that contains a SET statement to
specify the dataset to be scored, followed by a %INCLUDE statement to include the decision tree code
file. The output dataset contains the scored data.

fileref
Specifies the name of the file to contain the code.

Options
The following options are available:

FORMAT

FORMAT = format- name

Specifies the number format to use for numeric values in the code file. Use this statement to
ensure that decision tree parameters that are numeric are output at a sufficiently high resolution.

INDENT

INDENT = indent

Specifies the number of spaces to use to indent blocks in the code file.

LINESIZE

LINESIZE

LS

= length

Specifies the maximum line length before line wrapping occurs in the code file.

NOLEAFID

NOLEAFID

Specifies that the node IDs are not added to the nodes in the decision tree. If this option is not
specified, a numeric node ID is added to each node.

Reference for language elements
Version 4.1

3206

FREQ
Specifies a variable containing the frequency associated with an observation.

FREQUENCY

FREQ

variable ;

INPUT
Specifies the input (predictor) variables and the options to use for each.

IN

INPUT

variable

/ options

;

variable
A variable to which measures of predictive power are applied.

Options
The following options are available:

DESCENDING

DESCENDING

Specifies a descending sort order for the variable. This option only applies if ORDER=FORMATTED
or ORDER=INTERNAL is also specified, as the sort order cannot be explicitly determined from
these options. If not specified, the variable is assumed to be in ascending sort order.

If ORDER is not equal to FORMATTED or INTERNAL then the sort order for the variable is
determined by the ORDER option.

INITNUMBINS

INITNUMBINS = number- of- bins

For METHOD=BRT, specifies the initial number of bins to use. The default initial number of bins is
50. The initial number of bins is in the range 2–100. This option only has an effect if METHOD=BRT
is specified in the PROC DECISIONTREE statement.

Reference for language elements
Version 4.1

3207

LEVEL

LEVEL = INTERVAL

NOMINAL

ORDINAL

Specifies the level for the input variables. The default LEVEL value is INTERVAL.

INTERVAL
Specifies a continuous input variable with an implicit category ordering.

NOMINAL
Specifies a discrete input variable with no implicit ordering. When partitioning this variable
into nodes in the decision tree, any category can be merged with any other category.

ORDINAL
Specifies a discrete input variable with an implicit category ordering. When partitioning this
variable into nodes in the decision tree, only adjacent categories can be merged together.

MAXNUMOPTBINS

MAXNUMOPTBINS = number- of- bins

For METHOD=BRT, specifies the maximum number of optimal bins to use. The default maximum
number of bins is 10. The specified number must be between 2 and 100. This option only applies
if METHOD=BRT is specified in the PROC DECISIONTREE statement.

ORDER

ORDER = ASCENDING

ASCFORMATTED

DATA

DSORDER

DESCENDING

DESFORMATTED

FORMATTED

INTERNAL

UNFORMATTED

Specifies the order of the input variable. The default ORDER value is INTERNAL.

ASCENDING
The variable is sorted by ascending order of the raw value.

ASCFORMATTED
The variable is sorted by ascending order of the formatted value.

Reference for language elements
Version 4.1

3208

DATA
The variable is sorted by the order in which the values of the variable first occur when the
data is read.

DESCENDING
The variable is sorted by descending order of the raw value.

DESFORMATTED
The variable is sorted by descending order of the formatted value.

FORMATTED
The variable is sorted by the formatted value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

INTERNAL
The variable is sorted by the raw value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

TARGET
Specifies the target (dependent) variable and any options that apply to the variable.

TARGET variable

/ options

;

Only one TARGET statement is allowed in each PROC DECISIONTREE statement. The TARGET
statement must contain a single variable, and the specified variable must correspond to a classification
level.

variable
The dependent variable.

Options
The following options are available:

DESCENDING

DESCENDING

Specifies a descending sort order for the variable. This option only applies if ORDER=FORMATTED
or ORDER=INTERNAL is also specified, as the sort order cannot be explicitly determined from
these options. If not specified, the variable is assumed to be in ascending sort order.

If ORDER is not equal to FORMATTED or INTERNAL then the sort order for the variable is
determined by the ORDER option.

Reference for language elements
Version 4.1

3209

LEVEL

LEVEL = INTERVAL

NOMINAL

ORDINAL

BINARY

Specifies the level for the target variable. The default LEVEL value is NOMINAL.

INTERVAL
Specifies a continuous target variable containing an implicit category ordering.

NOMINAL
Specifies a discrete target variable with no implicit ordering.

ORDINAL
Specifies a discrete target variable with an implicit category ordering.

BINARY
Specifies a target variable that can take one of two values.

ORDER

ORDER = ASCENDING

ASCFORMATTED

DATA

DSORDER

DESCENDING

DESFORMATTED

FORMATTED

INTERNAL

UNFORMATTED

Specifies the order of target variable. The default ORDER value is INTERNAL.

ASCENDING
The variable is sorted by ascending order of the raw value.

ASCFORMATTED
The variable is sorted by ascending order of the formatted value.

DATA
The variable is sorted by the order in which the values of the variable first occur when the
data is read.

DESCENDING
The variable is sorted by descending order of the raw value.

Reference for language elements
Version 4.1

3210

DESFORMATTED
The variable is sorted by descending order of the formatted value.

FORMATTED
The variable is sorted by the formatted value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

INTERNAL
The variable is sorted by the raw value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

GMM procedure
The GMM procedure enables you to build a Gaussian mixture model (GMM) from an input dataset. You
can then use the GMM to analyse other datasets.

About Gaussian mixture models
A Gaussian mixture model (GMM) is a weighted combination of one or more Gaussian probability
densities.

Introduction to Gaussian mixture models
Gaussian mixture models are capable of accurately modelling complex univariate or multivariate data
distributions that cannot be modelled by a single distribution.

For example, a bimodal univariate distribution (shown in red in the plot below) can be modelled as a
weighted sum of two Gaussian distributions with different means and standard deviations (shown in
blue and green in the plot below). In this plot, each of the distributions contributes an equal weight to
the mixture model.

Reference for language elements
Version 4.1

3211

Figure 371. Bimodal distribution represented as a combination of two Gaussian distributions

Similarly, a skewed unimodal univariate distribution (shown in red in the plot below) can be modelled as
a weighted sum of two Gaussian distributions with different means and standard deviations. In this plot,
one distribution (shown in blue) has a lower mean and a larger standard deviation, and has a weight of
0.3, so contributes to the long tail without affecting the modal value. The second distribution (shown in
green) has a larger mean and smaller standard deviation, and has a weight of 0.7.

Reference for language elements
Version 4.1

3212

Figure 372. Skewed distribution represented as a combination of two Gaussian distributions

Complex multivariate distributions can be modelled in the same way, as a mixture of two or more
Gaussian distributions.

Gaussian mixture models have many applications. As well as modelling complex probability density
functions, Gaussian mixture models can identify clusters or categories of data, and determine which
cluster or category an individual observation is most likely to belong to.

Gaussian mixture model parameters
For a multivariate distribution with independent variables, a Gaussian mixture model is parametrised
by:

• The number of components, ; that is, the number of independent Gaussian distributions that
contribute to the probability density function

• For each of the components:

‣ a -dimensional vector containing the mean values of each of the d variables
‣ a by precision matrix, which is the inverse of the covariance matrix for that component,

and provides information about the partial correlation of each pair of variables.
‣ a weight indicating the proportion which that component contributes to the overall density value.

In general, a Gaussian mixture model is generated from a dataset by:

• choosing initial values for the number of components, their means, covariances and weights
• iteratively refining these values to improve them

Reference for language elements
Version 4.1

3213

• terminating the process when a specified tolerance is reached or a specified number of iterations
have been completed.

For more information about Gaussian mixture models and their parameters, see Mixture models
(page 3216), Gaussian mixture models (page 3217) and Posterior probabilities (page 3217).

PROC GMM provides a number of options to control the way that the Gaussian mixture model
parameters are derived.

Component initialisation
The INIT option allows you to choose various ways of deriving the initial values for the model
parameters, depending on the prior information you have about the data distribution.

• If you know the number of components, you can use the PROC GMM K option to specify it. If you
also know initial estimates for the means, covariances and weights of each component, you can
specify those too, using INIT=CUSTOM or INIT=TABLE. Alternatively, PROC GMM can calculate
initial values for each of the model parameters, either using the k-means++ algorithm (INIT=KPP),
or randomly (INIT=RAND). For more information about the k-means algorithm, see the section on k-
means ++ in Maximum likelihood and expectation maximisation (page 3218).

• If you do not know the number of components in advance, you can also use the k-means++
algorithm or a random algorithm to calculate initial values for the model parameters. In this case, you
must choose how the number of components is estimated. This process is called model selection,
and the PROC GMM SELECT option controls this.

Model selection
The SELECT option allows you to specify how the initial values for the model parameters are selected
if you do not know the number of components in the model. PROC GMM supports three different model
selection methods:

• The Akaike Information Criterion (SELECT=AIC)
• Bayesian Information Criterion (SELECT-BIC)
• Variational Bayes (SELECT=VB).

SELECT=AIC and SELECT=BIC both require that you know the maximum possible number of
components, KMAX, as both these options create multiple initial models, one for each of the possible
numbers of components, then choose the best one. For each of the KMAX models, the initial parameter
values are derived using the specified INIT method (KPP or RAND).

You can use SELECT=VB whether you know KMAX or not, although the options that need to be specified
are different in each case.

• If you know KMAX, then you simply specify KMAX, and the prior hyperparameters, A0, B0, M0, NU0
and V0 (all of which have default values if preferred). The Variational Bayes approach creates a
mixture model with KMAX components and uses the prior hyperparameters and prior probability
distributions to determine the initial component weights. Components that appear insignificant have
low weights. Initial values for the model parameters for each of the components are derived using
the specified INIT method (KPP or RAND).

Reference for language elements
Version 4.1

3214

• If you do not know KMAX, then there is an additional prior step, to derive a suitable initial value
for KMAX. In this case, you also need to specify values for PRIORITERS, PRIORRUNS, and
PRIORSAMPLES (these also have default values you can use). The Variational Bayes approach
uses these values to derive the initial number of components and the values for the prior
hyperparameters. Then, as before, the initial values for the model parameters for each of the
components are derived using the specified INIT method (KPP or RAND).

For more information about the model selection process, see Model selection (page 3219).

Component iteration
Once the initial values have been derived for the model parameters, they are iteratively refined to
improve them. The way that PROC GMM does this depends whether you specified the number of
components explicitly in the INIT option, or used the SELECT option because you didn’t know K. If you
used the SELECT option, the algorithm also depends on whether you chose the AIC, BIC or VB criteria.

• If you explicitly specified the number of components, K, the initial model parameters are
successively refined using expectation maximisation (EM) until the specified termination condition
is reached. For more information about expectation maximisation, see Maximum likelihood and
expectation maximisation (page 3218).

• If you chose SELECT=AIC or SELECT=BIC, then each of the models from 1 to KMAX components
are successively refined using EM until the specified termination condition is reached for each
model. Then the specified criterion (AIC or BIC) is used to choose the best model from the set of
models.

• If you chose SELECT=VB, the situation is slightly different. The Variational Bayes approach defines
not only how to derive the initial values for the number of components and the model parameters,
but also how to iteratively refine the estimates, until the specified termination condition is reached.

Iteration termination
The algorithm terminates when the convergence tolerance specified by CTOL is reached.

If EM is used to measure the improvement in the model at each iteration (K is known, or SELECT=AIC,
or SELECT=BIC), the algorithm terminates when the absolute value of the change in the log likelihood
function is less than the value specified in CTOL.

If the Variational Bayes approach is used to refine the model (SELECT=VB), the algorithm terminates
when the absolute value of the change in the variational lower bound function is less than the value
specified in CTOL.

Alternatively, if the specified maximum number of iterations, MAXITERS, have been completed and the
model has not yet converged, the algorithm terminates.

Note that these algorithms are sensitive to the initial values of the model parameters. Even if the
algorithm appears to converge, the final model parameters may only represent a local maximum, rather
than the overall optimal maximum.

Reference for language elements
Version 4.1

3215

Covariance matrices
The covariance matrix is a by matrix that contains the variances of each of the variables on
the leading diagonal, and the covariances between each pair of variables in the other positions. It
is symmetric about the leading diagonal. PROC GMM supports the following options for covariance
matrices:

• COVARIANCE=FULL: the covariance matrices are symmetric about the leading diagonal and any
value may be zero or non-zero.

• COVARIANCE=DIAGONAL: the off-diagonal elements of the covariance matrices are all equal to zero.
• COVARIANCE=SPHERICAL : the covariance matrices are diagonal, and additionally, every element

is the same.

PROC GMM requires that all covariance matrices are positive definite. It order to ensure this, you can
optionally use the REG sub-option to specify a regularisation value to add to the diagonal elements of
the covariance matrices to try to ensure that they are positive definite.

You can optionally use the TIED sub-option to specify that all components have the same covariance
matrix.

Outputs
By default, PROC GMM produces a Fit Summary table and a Model Parameters table using ODS
output. The Fit Summary table contains the options specified to generate the model, the number of
components in the optimal model and some values that determine how well the derived model fits
the data: the log likelihood, AIC, BIC and (if appropriate) variational lower bound values. The Model
Parameters table contains the model parameters for each component in the mixture model.

If SELECT=AIC or SELECT=BIC, you can also specify the SUMMARY option to output the details of all
the intermediate models that were considered.

Once you have generated a Gaussian mixture model, you can use the PROC GMM OUTEST option to
save the model parameters in a dataset. You can then use PROC GMM INEST to initialise the model
generation process for another model with similar distribution parameters, or to continue refining the
original model.

You can also use the PROC GMM CODE statement to save the code to define the mixture model as a
file that can be included in a data step. This can be used to score another dataset against the saved
mixture model.

Scoring models
Once you have created a Gaussian mixture model for a dataset, you can use it to score that dataset
or another dataset. The SCORE statement takes the data in the specified dataset and scores it using
the model defined in PROC GMM. The score results are saved in a table which can be printed or saved
in an output dataset. For each observation in the dataset being scored, the score results table shows
the component that the observation is most likely to belong to, and the overall probability density of the
distribution at that point.

Reference for language elements
Version 4.1

3216

You can use the SCORE PRINT option to write the score table to ODS output, and SCORE OUT to save
the score results in a dataset.

For datasets with one or two variables, you can also output ODS plots using SCORE PLOTK to output
a density plot for each component and SCORE PLOTP to output a mixture density plot for the score
dataset.

Mixture models

We are given a dataset where each is a d-dimensional vector of real numbers. It
is assumed that the points are generated in an independent and identically distributed (IID) manner
from an underlying density . We further assume that is defined as a finite mixture model with
components:

Where:

• is the jth element of a hidden, or latent, variable () that is a K-dimensional vector of ones and

zeroes (where the sum of the elements is one). If the value of the jth element is one, then this
indicates that the jth component was selected to generate the observed sample at .

• is the jth mixture component and is the density, or distribution, defined over , with
parameters θj.

• πjis a mixture parameter that represents the probability that a randomly-selected was generated

by the jth component. Note that:

• Θ is the complete set of parameters for the mixture model:

Reference for language elements
Version 4.1

3217

Gaussian mixture models

With a Gaussian mixture model, each of the K components is considered to be a multi-variate normal
density with parameters (a d-dimensional mean vector) and (a d by d precision matrix, which is
the inverse of the covariance matrix). The multi-variate normal density is defined as:

where

• is the parameter set for the jth component.

• is the determinant of the jth precision matrix.

Our Gaussian mixture model density is:

Posterior probabilities

With mixture models we can compute the posterior probability) (a sample at has been
generated by sampling from the distribution of the jth mixture component) in a straightforward manner
by using Bayes’ theorem (Bishop, 2006 [3]):

This posterior probability can be thought of as the membership weight of the sample at in
component j (given the set of model parameters, Θ). Such weights reflect our uncertainty, given the
sample at and Θ, as to which of the K components generated the sample.

We assume that only one of the K components was used to generate the sample. Clipping small
posterior probability values to zero can be a useful technique for speeding up the convergence of
algorithms such as expectation maximisation.

For example, in the PROC GMM statement, you could specify PPTOL=0.01. This states that posterior
probability values below 0.01 are clipped to zero.

Reference for language elements
Version 4.1

3218

Maximum likelihood and expectation maximisation

The expectation maximisation (EM) algorithm (Dempster, et al., 1977 [4]) starts from an initial estimate
of the parameter set, . It then proceeds to iteratively update until convergence is detected.

To estimate the parameters of the model we use maximisation of the log-likelihood:

Assuming the samples in our dataset, , are independent, identically distributed (IID) random
variables, the likelihood is defined as:

So the log-likelihood is:

Initialisation
If custom initialisation is selected, the procedure uses the supplied initial values for the component
means, covariances and weights. Otherwise, the procedure uses the covariances of the data as an
initial state for the covariances of each of the components and the inverse of the number of components
for the initial mixing weights. Component means can either be selected randomly or using the k-means+
+ algorithm.

Random
If random initialisation is chosen, initial component means are chosen at random from the observations
in the dataset.

K-means++
The k-means++ algorithm (Arthur & Vassilvitskii, 2007 [2]) is a heuristic method for choosing the initial
component means. This algorithm has the following steps:

1. Choose the first mean vector randomly from one of the samples in the dataset using a uniform
distribution:

2. For subsequent mean vectors proceed in the following way:

a. Calculate the square of the Mahalanobis distance (measured using an Euclidean distance)
between a sample and the nearest component mean that has already been chosen ().
Compute these distances for each of the samples in the dataset.

Reference for language elements
Version 4.1

3219

b. The ith sample in the dataset is chosen as the next mean vector with probability:

The expectation and maximisation steps
The expectation maximisation (EM) algorithm is iterative. It has an expectation step, and a
maximisation step.

The expectation step calculates the posterior probabilities of component membership for each of the
samples in the dataset, :

This formula is used to create an by matrix, , of the posterior probabilities, where is the
number of observations in the dataset and is the number of components in the model. Then the
values of the matrix are used to create a set of statistics for each component.

The maximisation step updates the parameters to maximise the expected value of the complete log-
likelihood with respect to the posterior probability. The statistics from the expectation step are used to
update the component parameters.

Convergence
The EM algorithm has converged when the log-likelihood function value is no longer increasing
significantly; that is, the absolute change after an iteration of the algorithm is less than a specified
tolerance.

For example, in the PROC GMM statement, you could specify LLTOL=0.01. This states that the EM
algorithm has converged when the change in the calculated log-likelihood values is less than 0.01.

Model selection
The model selection step is required when , the number of components in the model, is not known.

The model selection process can use the Akaike Information Criterion (AIC) (Akaike, 1973 [1]), the
Bayesian Information Criterion (BIC) (Schwarz, 1978 [6]) or a Variational Bayes approach. AIC and
BIC can only be used when the maximum possible number of components, , is known. The
Variational Bayes approach can be used whether is known or not.

Reference for language elements
Version 4.1

3220

AIC and BIC metrics
In order to find the most appropriate value for we try a range of values from one to . We
create a Gaussian mixture model for each value of and use the selected metric (AIC or BIC) to
determine the optimal value of . The model with the value of that gives the lowest value for the
selected metric is the model that is chosen.

The Akaike Information Criterion formula is:

The Bayesian Information Criterion formula is:

In these formulae, m* is the total number of free parameters in the model. This value depends on the
number of components, the number of predictor variables and the type of precision matrix.

For example, in the PROC GMM statement, you could specify SELECT=AIC (KMAX=10). This states
that the AIC metric is used to evaluate models and that mixture models with all numbers of components
between one and ten are evaluated.

Variational Bayes approach
In the Variational Bayes (approximate inference) approach, we give prior distributions to all unknown
parameters, which are absorbed into our set of random variables. In some cases, it is difficult to
evaluate the posterior distribution of these variables. So we use an approximation scheme, which either
uses the expectations of the distribution, or uses a number of samples drawn from the distribution. We
look to choose a variational distribution, #, from a family of distributions, such that we maximise the
variational lower bound (Bishop, 2006 [3]).

Hyperparameters
In the Variational Bayes approach, the component parameters are conditioned on prior distributions (the
Dirichlet distribution for the component weights, the multivariate normal distribution for the component
means and the Wishart distribution for the component precision matrices). The parameters of these
prior distributions are the component hyperparameters, as follows:

• α is the concentration weight and is used in the Dirichlet distribution to determine the component
mixing weight (specified as A0 in the SELECT option)

• β is the mean precision and is used in the multivariate normal distribution to determine the
component mean (specified as B0 in the SELECT option)

• is the expected mean and is used in the multivariate normal distribution to determine the
component mean (specified as M0 in the SELECT option)

• is the degrees of freedom and is used in the Wishart distribution to determine the component
precision (specified as NU0 in the SELECT option)

Reference for language elements
Version 4.1

3221

• is the scale parameter and is used in the Wishart distribution to determine the component
precision (specified as V0 in the SELECT option)

The expected values for the component parameters are:

The hyperparameters for each component partly depend on prior hyperparameters that are either
provided by the user or are derived from the data. These prior hyperparameters are denoted as
 .

For example, in the PROC GMM statement, you could select the Variational Bayes approach, and specify
the following prior hyperparameters.

PROC GMM
 SELECT = VB (
 A0 = 1.0 B0 = 1.0 KMAX = 5 M0 = (0.0 0.0) NU0 = 2.0 V0 = (1.0 0.0 0.0 1.0)
);

Responsibilities
We use the component hyperparameters to work out the responsibilities. A responsibility indicates how
responsible a component is for generating a sample. The responsibilities, in turn, are used to update
the hyperparameters (which are then used to update the component parameters).

Expectations or samples
To update the component parameters, we can either use the means of the prior distributions or draw
a number of samples from the distribution and use the average of those. To use the means of the
prior distributions (the default option), set PARMSAMPLES=0 in the SELECT option: otherwise, if
PARMSAMPLES is non-zero, that number of samples are drawn from the distribution instead.

For example, in the PROC GMM statement, you could specify SELECT=VB (KMAX=32). This states
that an expectation approach is used for finding the best model and that there are a maximum of 32
components.

To specify that sampling is used to find the best model, using five samples from the dataset for
each parameter, and that there are a maximum of ten components, use SELECT=VB (KMAX=10
PARMSAMPLES=5).

Reference for language elements
Version 4.1

3222

Convergence
The Variational Bayes algorithm has converged when the value of the variational lower bound is no
longer changing significantly from one iteration to the next.

Infinite number of components
The mixture model may have an infinite number of components (Rasmussen,2000 [5]) (Wood & Black,
2012 [7]) but only a finite number of these components have been used to generate the dataset,

 . In this case, in the Variational Bayes approach, instead of specifying the maximum number of
components, there is a prior processing stage to determine the number of components and the prior
hyperparameters. The prior processing stage is a multi-part iterative process.

• In the first part of each iteration we update the prior hyperparameters using a sampling approach
based on prior distributions, the statistics of the data and the current set of component parameters.

• In the second part, we generate new components from the new prior hyperparameters. New
components are generated by sampling from the Dirichlet, multivariate normal and Wishart
distributions using the latest set of prior hyperparameters. Then we probabilistically assign each
sample to a component. There is a probability that the sample will be assigned to a newly created
component (Rasmussen, 2000 [5]). After assigning samples we remove any components that no
longer have any samples assigned to them. In this scheme we start off with just one component.
The number of components we end up with will depend on the structure of the data in the dataset,
the evolution of the parameters and the results of the assignments at each iteration.

• Finally, we use the set of components and prior hyperparameters from the first two parts to find a set
of parameters and hyperparameters for the required components.

Once the prior processing stage is complete, and the maximum number of components and the prior
hyperparameters are known, the procedure can maximise the value variational lower bound, as above.

For example, in the PROC GMM statement, you could specify SELECT=VB (PRIORITERS=100
PRIORRUNS=1 PRIORSAMPLES=10). This states that the procedure uses the prior processing stage
to determine the maximum number of components and the set of prior hyperparameters, using a single
run with 100 iterations per run in the prior processing stage, and 10 samples whenever it updates a
prior hyperparameter.

Using the GMM procedure
This example shows how to use PROC GMM to build a Gaussian mixture model from an input dataset
and to measure how well this model represents the data.

Examples
The examples in this section illustrate two different ways that you can use PROC GMM to create a
Gaussian mixture model from a training dataset.

Reference for language elements
Version 4.1

3223

Both examples use the publicly-available Iris dataset [8]. The Iris dataset consists of measurements of
the widths and lengths of the petals and sepals of three species of Iris.

In these examples, the Iris dataset is used to derive a Gaussian mixture model for the probability
distribution of two variables, iris petal lengths, and iris petal widths, for the three different species of
iris, setosa, versicolor and virginica. Then the derived model is used to score the same dataset to see
how well the predicted probability densities match the actual clusters of different kinds of iris. These
examples only use two of the four measurements available in the dataset (sepal length and sepal width
are also available) so that meaningful output plots can be produced.

Example (custom initialisation)
This example uses custom initialisation with a known number of components (K=3) to derive the
parameters for the Gaussian mixture model. For each of these components, the INIT option supplies
initial values for the mean petal length and petal width, initial covariance matrices giving the variances
of each of the variables and the covariances between them, and the initial weights. The initial mean
values were chosen by inspecting the data and choosing likely values, the initial covariance matrices
are two by two identity matrices, and the initial mixture weights are equal.

The VAR statement specifies the predictor variables, p_length and p_width.

The SCORE statement uses the Gaussian mixture model to score the same dataset. The PRINT option
includes the (already known) value of the species variable in the score table for comparison. Since
there are only two variables in the multivariate distribution, density plots can be requested for each
component (the PLOTK option) and for the overall mixture density (the PLOTP option).

PROC GMM
 DATA = MYLIB.iris
 COVARIANCE = FULL (REG = 0.000001)
 K = 3
 INIT = CUSTOM (
 MU = (1.5 0.3 4.5 1.3 5.5 1.8)
 SIGMA = (1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0)
 WT = (1.0 1.0 1.0))
 CTOL = 0.001;
VAR p_length p_width;
SCORE DATA = MYLIB.iris /
 OUT = OUTLIB.score_init_custom
 PRINT (var = species)
 PLOTK (OBS UNPACK)
 PLOTP (LOG OBS)
 PLOTWRITELIB = OUTLIB;
run;

This example produces the following output.

Fit Summary
The Fit Summary table records the PROC GMM options selected, the number of model components in
the final model, and some information about the goodness of fit of the model to the original data.

Reference for language elements
Version 4.1

3224

In this example, you can see that the final model has three components (as specified) and that
although a maximum of 100 iterations was specified, the final model reached the specified convergence
tolerance after 43 iterations.

The log-likelihood value is the log of the product of the individual likelihoods, and gives a measure
of how well the final model fits the training data. The higher the value, the larger the product of the
individual likelihoods, and the better the derived Gaussian mixture model fits the data.

The AIC value gives a measure of how well the final model fits the data, compared with the other
models that were evaluated in the iterative process, as measured by the Akaike information criterion.

The BIC value gives a similar measure of how well the final model fits the data, compared with the other
models that were evaluated in the iterative process, but uses the Bayesian information criterion as the
measure. The two criteria are very similar, but differ in the way they penalise the number of parameters
(and hence the number of components) in a model. The metrics used are different, but in both cases,
models with fewer parameters are preferred,

As the AIC and BIC values are comparative values, they aren't that helpful for a single model. But the
AIC or BIC value for a model can be compared with the value for another model to decide which of the
models is likely to be a better fit for the observations in the population.

 Fit Summary
Attribute Value

Number Of Observations 150
Number Of Predictors 2
Number Of Components 3
Type Of Initialisation Custom
Number Of Initialisations 1
Warm Start NO
Type Of Covariance Matrix FULL
Tied Covariance Matrices NO
Convergence Tolerance 0.00100
Posterior Probability Tolerance 0.00000
Maximum Number Of Iterations 100
Random seed 12345
Iteration Count 43
Log-Likelihood -135.47410
AIC 306.94821
BIC 361.13964

Model Parameters
The Model Parameters table shows the model parameters for the final model. In this example, there are
eight rows for each component in the model.

• Weight: the weight assigned to this component.
• Means: the mean value of each of the variables (here, petal length and petal width) for this

component.
• Root Determinant: the square root of the determinant of the precision matrix.
• Precision (four values in this example): the entries in the precision matrix for this component.

Reference for language elements
Version 4.1

3225

In this example, the weights for the three components are 0.33333, 0.34517 and 0.32149, which
indicates that the probability distribution for each component contributes about equally to the overall
probability distribution predicted by the Gaussian mixture model.

 Model Parameters
Attribute Component Row Column Value
__
Weight 1 1 1 0.33333
Mean 1 1 1 1.46200
Mean 1 2 1 0.24800
RootDeterminant 1 1 1 58.90905
Precision 1 1 1 37.81544
Precision 1 1 2 -20.21066
Precision 1 2 1 -20.21066
Precision 1 2 2 102.57046
Weight 2 1 1 0.34517
Mean 2 1 1 4.29501
Mean 2 2 1 1.33984
RootDeterminant 2 1 1 16.11413
Precision 2 1 1 11.17182
Precision 2 1 2 -21.17582
Precision 2 2 1 -21.17582
Precision 2 2 2 63.38094
Weight 3 1 1 0.32149
Mean 3 1 1 5.56198
Mean 3 2 1 2.03692
RootDeterminant 3 1 1 7.08303
Precision 3 1 1 3.64371
Precision 3 1 2 -2.40393
Precision 3 2 1 -2.40393
Precision 3 2 2 15.35475

Score
The Score table (extracts below) lists each observation in the dataset being scored, and for each, the
values of the two variables that contribute to the Gaussian mixture model, the probability density as
predicted by the model at that point, and the component that contributes the largest value to the density
at that point. For the observations in this dataset, the component with the largest contribution predicts
the cluster (the iris species) that the observation is most likely to belong to. In most cases, the species
of iris predicted by the model is the same as the actual species.

The score table indicates a clear distinction between observations from the setosa species and
observations from the other two species, but there is a less clear distinction between the versicolor
and virginica observations. In the next section, you will see that the component density plots show this
clearly.

You can see that many of the setosa observations have relatively high density values, and, in each
case, component 1 has contributed the most to the density at that point. But many of the versicolor and
virginica observations have relatively low density values, and in a few cases, the largest component
contribution differs from the other observations from that iris species.

 Score
species p_length p_width Component Density
__

Reference for language elements
Version 4.1

3226

setosa 1.4 0.2 1 2.74234
setosa 1.4 0.2 1 2.74234
setosa 1.3 0.2 1 1.97840
setosa 1.5 0.2 1 2.60433
setosa 1.4 0.3 1 2.37023
setosa 1.7 0.4 1 0.68027
setosa 1.4 0.3 1 2.37023
setosa 1.5 0.2 1 2.60433
setosa 1.4 0.2 1 2.74234
setosa 1.5 0.1 1 0.88266
. . .
versicolor 3.6 1.3 2 0.10203
versicolor 4.4 1.4 2 0.85654
versicolor 4.5 1.5 2 0.64233
versicolor 4.1 1 2 0.07502
versicolor 4.5 1.5 2 0.64233
versicolor 3.9 1.1 2 0.44487
versicolor 4.8 1.8 3 0.16180
versicolor 4 1.3 2 0.66506
versicolor 4.9 1.5 2 0.43747
versicolor 4.7 1.2 2 0.05989
. . .
virginica 6 2.5 3 0.08020
virginica 5.1 1.9 3 0.26365
virginica 5.9 2.1 3 0.30140
virginica 5.6 1.8 3 0.25643
virginica 5.8 2.2 3 0.29272
virginica 6.6 2.1 3 0.05780
virginica 4.5 1.7 2 0.10072
virginica 6.3 1.8 3 0.05741
virginica 5.8 1.8 3 0.19358
virginica 6.1 2.5 3 0.07504
. . .

Component Density Plots
The component density plots are individual contour plots for each component in the mixture model,
showing the distribution of the data points and the amount which that component contributes to the
model each point.

Reference for language elements
Version 4.1

3227

Reference for language elements
Version 4.1

3228

Reference for language elements
Version 4.1

3229

Density Plot
The density plot shows the overall probability density at each point as predicted by the mixture model,
and the distribution of the data points. This example shows that the probability density function for the
derived model places most of the most of the observations in the higher density areas, as expected.

Reference for language elements
Version 4.1

3230

Example (random initialisation with AIC model selection)
Again, the Iris dataset is supplied as a training dataset to PROC GMM, then the derived Gaussian
mixture model is used to score the same dataset.

This example uses random initialisation (INIT=RAND) with an unspecified number of components to
derive the parameters for the Gaussian mixture model. Since the number of components is not known,
model selection is used to determine the most suitable number of components.

• models with one, two, three, four and five components are generated (KMAX=5)
• the Akaike Information Criterion is used to choose the best model from these five models

(SELECT=AIC)
• a summary table is produced showing the various models that were evaluated (SUMMARY)

As before, the VAR statement specifies the predictor variables, p_length and p_width.

Reference for language elements
Version 4.1

3231

Also as before, the SCORE statement uses the Gaussian mixture model to score the same dataset, and
the output includes the value of the species variable, density plots for each component and for the
overall mixture density.

PROC GMM
 DATA = MYLIB.iris
 COVARIANCE = FULL (REG = 0.000001)
 INIT = RAND
 SEED = 12345
 SELECT = AIC (KMAX = 5 SUMMARY)
 CTOL = 0.001
 MAXITER = 1000;
VAR p_length p_width;
SCORE DATA = MYLIB.iris0 /
 OUT = OUTLIB.score_init_rand1_select_aic
 PRINT (var = species)
 PLOTK (OBS UNPACK)
 PLOTP (LOG OBS)
 PLOTWRITELIB = OUTLIB;
RUN;

This example produces the following output.

Fit Summary
In this example, you can see that the final model has four components, from a maximum of the five that
were specified, and that although a maximum of 100 iterations was specified, the final model reached
the specified convergence tolerance after 33 iterations.

The log-likelihood is slightly larger than for the model derived using custom initialisation (-123.08735
instead of -135.47410) so this Gaussian mixture model fits the training data slightly better than the
custom initialisation model.

The AIC value, at 294.17469, is slightly lower than the value of 306.94821 for the custom initialisation
model, so using this criterion to assess the models, this model is the preferred model. The BIC value,
at 366.42994, although not used as a criterion for selecting this model, is slightly higher than the
custom initialisation value of 361.13964. So using that criterion, the custom initialisation model would be
preferred.

 Fit Summary
Attribute Value
__
Number Of Observations 150
Number Of Predictors 2
Number Of Components 4
Type Of Initialisation Random Means
Number Of Initialisations 1
Warm Start NO
Type Of Covariance Matrix FULL
Tied Covariance Matrices NO
Convergence Tolerance 0.00100
Posterior Probability Tolerance 0.00000
Maximum Number Of Iterations 1000
Random seed 12345
Selection Algorithm Expectation Maximisation

Reference for language elements
Version 4.1

3232

Selection Criterion AIC
Maximum Number Of Components 5
Iteration Count 33
Log-Likelihood -123.08735
AIC 294.17469
BIC 366.42994

Model Parameters
The Model Parameters table is similar to the Model Parameters table for the model derived using
custom initialisation, but this model has four components.

The parameters for the first component are almost identical to the parameters for the first component of
the custom initialisation model. The parameters for the second component are similar for each model.
The parameters for the fourth component of this model are reasonably similar to the parameters for
the third component of the custom initialisation model. But this model has an extra component, with a
weight of 0.06866.

 Model Parameters
Attribute Component Row Column Value
__
Weight 1 1 1 0.33333
Mean 1 1 1 1.46200
Mean 1 2 1 0.24800
RootDeterminant 1 1 1 58.90977
Precision 1 1 1 37.81553
Precision 1 1 2 -20.21055
Precision 1 2 1 -20.21055
Precision 1 2 2 102.57234
Weight 2 1 1 0.33503
Mean 2 1 1 4.30380
Mean 2 2 1 1.33214
RootDeterminant 2 1 1 16.33791
Precision 2 1 1 11.06313
Precision 2 1 2 -23.64359
Precision 2 2 1 -23.64359
Precision 2 2 2 74.65758
Weight 3 1 1 0.06866
Mean 3 1 1 6.29352
Mean 3 2 1 1.90749
RootDeterminant 3 1 1 28.02260
Precision 3 1 1 50.84587
Precision 3 1 2 -77.06190
Precision 3 2 1 -77.06190
Precision 3 2 2 132.23891
Weight 4 1 1 0.26298
Mean 4 1 1 5.31092
Mean 4 2 1 2.05364
RootDeterminant 4 1 1 12.43911
Precision 4 1 1 11.74204
Precision 4 1 2 -13.24572
Precision 4 2 1 -13.24572
Precision 4 2 2 28.11951

Reference for language elements
Version 4.1

3233

Model Summary
The Model Summary table is an optional output when SELECT=AIC or SELECT=BIC. It shows
the parameters for each of the KMAX models that were considered. In this case, SELECT=AIC was
specified, so the model that minimised the AIC value (the model with four components) was selected as
the optimal model. If SELECT=BIC had been specified, the model with three components would have
been selected as the optimal model.

 Model Summary
 Number of
 Number of Free
Components Parameters Log-Likelihood AIC BIC
__
 1 6 -272.86299 557.72598 575.78979
 2 12 -154.88986 333.77971 369.90734
 3 18 -134.55414 305.10828 359.29972
 4 24 -123.08735 294.17469 366.429945
 5 30 -125.95451 311.90903 402.22809

Score
As before, the score table indicates a clear distinction between observations from the setosa species
and observations from the other two species, but there is a less clear distinction between the versicolor
and virginica observations. In the next section, you will see that the component density plots show this
clearly.

 Score
species p_length p_width Component Density
__
setosa 1.4 0.2 1 2.74237
setosa 1.4 0.2 1 2.74237
setosa 1.3 0.2 1 1.97842
setosa 1.5 0.2 1 2.60436
setosa 1.4 0.3 1 2.37024
setosa 1.7 0.4 1 0.68025
setosa 1.4 0.3 1 2.37024
setosa 1.5 0.2 1 2.60436
setosa 1.4 0.2 1 2.74237
setosa 1.5 0.1 1 0.88266
...
versicolor 3.6 1.3 2 0.09255
versicolor 4.4 1.4 2 0.83942
versicolor 4.5 1.5 2 0.59213
versicolor 4.1 1 2 0.05619
versicolor 4.5 1.5 2 0.59213
versicolor 3.9 1.1 2 0.43449
versicolor 4.8 1.8 4 0.26854
versicolor 4 1.3 2 0.63725
versicolor 4.9 1.5 2 0.50682
versicolor 4.7 1.2 2 0.05733
...
virginica 6 2.5 4 0.11445
virginica 5.1 1.9 4 0.44875
virginica 5.9 2.1 4 0.09526

Reference for language elements
Version 4.1

3234

virginica 5.6 1.8 4 0.08729
virginica 5.8 2.2 4 0.24417
virginica 6.6 2.1 3 0.22887
virginica 4.5 1.7 4 0.10913
virginica 6.3 1.8 3 0.13533
virginica 5.8 1.8 3 0.04330
virginica 6.1 2.5 4 0.08680

Component Density Plots
The component density plots for the first and second components are similar to the corresponding plots
for the custom initialisation model. But the other two plots show differences in the way the model has
been calculated to fit the data.

Reference for language elements
Version 4.1

3235

Reference for language elements
Version 4.1

3236

Reference for language elements
Version 4.1

3237

Density Plot
The overall density plot is also slightly different from the custom initialisation model.

Reference for language elements
Version 4.1

3238

GMM procedure reference
Describes the syntax and options for PROC GMM and its contained statements.

PROC GMM .. 3239
Creates a Gaussian mixture model from the input dataset.

BY ..3247
Groups the observations in the input dataset using one or more specified variables.

CODE .. 3247
Outputs the Gaussian mixture model as a file containing data step code, which can subsequently
be used to score another dataset using this model.

SCORE ..3248
Uses the current GMM model to score the data in the specified dataset.

VAR ... 3250
Specifies the predictor variables for the Gaussian mixture model.

Reference for language elements
Version 4.1

3239

PROC GMM
Creates a Gaussian mixture model from the input dataset.

PROC GMM

options

;

Options
The following options are available:

COVARIANCE

COVARIANCE = DIAGONAL

FULL

SPHERICAL
(REG = number

TIED

)

Specifies the type of covariance matrices that the model uses. The covariance matrix is
symmetric about the leading diagonal. The leading diagonal contains the variance of each of the
independent variables that are being modelled, and the other positions contain the covariance of
each pair of variables.

DIAGONAL
The off-diagonal elements of the covariance matrices are equal to zero. A diagonal
covariance matrix can be represented as a -dimensional vector, where is the
number of predictor variables specified in the VAR statement.

FULL
The covariance matrices are symmetric about the leading diagonal, and any value may be
zero or non-zero. A full covariance matrix is a by matrix, where is the number of
predictor variables specified in the VAR statement.
This is the default value.

SPHERICAL
The covariance matrices are the product of a scalar and the identity matrix. A spherical
covariance matrix can be represented as a scalar.

Covariance sub-options
The following sub-options are available for any of the COVARIANCE options above.

REG
Specifies a regularisation value to add to the diagonal elements of the covariance
matrices to try to ensure that they are positive definite. If any covariance matrix is
not positive definite, the algorithm will report an error and terminate. In that case,
you should try specifying a small positive value for REG, for example, 1E-10.
The default value is 0 (zero).

Reference for language elements
Version 4.1

3240

TIED
Specifies that all components in the Gaussian mixture model use the same
covariance matrix.

CTOL

CTOL = number

Specifies the tolerance to use when checking for algorithm convergence after each iteration.
The algorithm terminates when the change in the value being tested is less than the specified
tolerance. If PROC GMM specifies an explicit K value, or if K is not specified and SELECT = AIC
or SELECT = BIC, then the value of the log likelihood is used to determine convergence. If K is
not specified and SELECT = VB, the value of the variational lower bound is used to determine
convergence.

If specified, the tolerance must be a positive real number. The default value is 0.001.

DATA

DATA = dataset

Specifies the training dataset used by PROC GMM to construct the Gaussian mixture model.

If a training dataset is not specified, the most recently-created dataset is used.

INEST

INEST = dataset

Specifies the name of a dataset that was created by the OUTEST option in a previous call of PROC
GMM and which contains saved model parameters. PROC GMM uses the parameters saved in this
dataset as the initial values for the model parameters. If either or both of the INIT or SELECT
options were specified when the dataset was created, the same options and values must be
specified this time.

INIT

INIT = CUSTOM (MU = value- list SIGMA = value- list WT = value- list)

KPP

(NINITS = value)

RAND

(NINITS = value)

TABLE (TABLE = dataset)

Specifies the type of initialisation to use for the components of the model.

Reference for language elements
Version 4.1

3241

CUSTOM
Specifies that the model uses custom initial values. In this case, values for MU, SIGMA and
WT must be supplied, and the K option must also be specified.

The following sub-options must be specified with the CUSTOM option:

MU

Specifies values for the initial means of the components. There should be
entries in value-list, where is the number of predictor variables specified in the
VAR statement and is the value specified for K.

For example, if you wanted to specify the initial means for a dataset with two
predictor variables and three components, you need to provide six values. These
correspond to the two component means of the predictor variables for the first
component in the mixture model, followed by the two component means for the
second component, followed by the two component means for the third component.

SIGMA
Specifies the initial covariance matrices of the components. The number of entries in
value-list depends on the COVARIANCE option selected:

• If COVARIANCE=FULL, value-list contains entries (one by matrix for
each component) where is the number of predictor variables specified in the
VAR statement and is the value specified for K.

• If COVARIANCE=FULL (TIED), each of the covariance matrices are the
same, so value-list contains entries, where is the number of predictor
variables specified in the VAR statement.

• If COVARIANCE=DIAGONAL, only the diagonal entries are required, so value-list
contains entries, where is the number of predictor variables specified in
the VAR statement and is the value specified for K.

• If COVARIANCE=DIAGONAL (TIED), each of the covariance matrices are
the same, so value-list contains one entry for each predictor variable in the VAR
statement.

• If COVARIANCE=SPHERICAL, each diagonal entry is the same, so value-list
contains entries, where is the value specified for K.

• If COVARIANCE=SPHERICAL (TIED), each of the covariance matrices are
the same, so value-list contains one entry.

WT
Specifies values for the initial mixture weights of the components. There should be

 entries in value-list, where is the value specified for K.

KPP
Specifies that the k-means++ algorithm is used to derive the initial component means. The
initial mixing proportions are uniform and the initial covariance matrices are derived from
the covariances of the dataset.

Reference for language elements
Version 4.1

3242

If INIT = KPP, K is optional. If K is specified, the algorithm uses the specified value for
the number of components. If K is not specified then the values in the SELECT option are
used to determine the optimal number of components and the initial values.

The following sub-options can optionally be specified:

NINITS
Specifies the number of times the algorithm is run with different initial values. If
specified, must be a positive integer. The default value is 1.

RAND
Specifies that a number of samples are selected at random for the initial component
means, where K is the value specified for K. The initial mixing proportions are uniform and
the initial covariance matrices are derived from the covariance of the dataset.
If INIT = RAND, K is optional. If K is specified, then K samples are selected initially,
where K is the value specified for K. If K is not specified, the values in the SELECT option
are used to determine the optimal number of components and the initial values.
This is the default value.

The following sub-options can optionally be specified:

NINITS
Specifies the number of times the algorithm is run with different initial values. If
specified, must be a positive integer. The default value is 1.

TABLE
Specifies that a dataset table is used to initialise the components. In this case, the K option
must also be specified, and must match the value derived from the table in the dataset.
This option is useful if you have already completed some iterations of a complex model
which terminated before convergence, and want to continue from where you left off. You
can supply the contents of the Model Parameters table from the previous run, and the
calculations will continue starting with the results from the final iteration of the previous
run.

dataset
Specifies the dataset containing the table to be used to initialise the components.
This dataset must have the same structure as the Model Parameters table that
is output when PROC GMM runs. It must also contain the number of components
specified by K.

K

K = number

A positive integer that specifies the number of components in the Gaussian mixture model.
This option is required if INIT=CUSTOM or INIT=TABLE is specified. If INIT = KPP or INIT =
RAND, it is optional.

Reference for language elements
Version 4.1

3243

If K is specified, Expectation Maximisation is used to determine the other model parameters.
If K is not specified, the model selection process is used to determine the correct number of
components and their corresponding parameters. You can use the PROC GMM SELECT option to
control the model selection process

MAXITER

MAXITER = number

Specifies the maximum number of iterations allowed when creating a Gaussian mixture model. If
specified, must be a positive integer. The default value is 100.

OUTEST

OUTEST = dataset

Specifies that the final model parameters are to be saved in a dataset. The parameters saved in
this dataset can later be used as the initial parameters for a new model.

PPTOL

PPTOL = number

Specifies the value below which posterior probabilities are clipped to 0 (zero) to try to speed up
convergence. If specified, must be a positive real number. The default value is 0.

This value is ignored unless PROC GMM also specifies K, SELECT=AIC or SELECT=BIC.

SEED

SEED = number

Specifies the seed to be used by the various random number generators in the GMM
implementation. If specified, must be a non-negative integer. The default value is 12345.

Note that the specified seed is not just to derive the initial values of components when
INIT=RAND is selected: it is used throughout the GMM implementation. The chosen seed value
may have a considerable effect on the model that is derived, as the model may converge to
different local maxima for different choices of the starting point and the incremental iteration
parameters.

Reference for language elements
Version 4.1

3244

SELECT

SELECT = AIC

BIC
(KMAX = number

SUMMARY

)

VB

(A0 = number

B0 = number

KMAX

M0 = number

NU0 = number

PARMSAMPLES = number

PRIORITERS = number

PRIORRUNS = number

PRIORSAMPLES = number

V0 = number

)

Specifies the model selection criteria that are used to select the most appropriate model from the
models being evaluated. The SELECT option is only required if the number of components in the
model is not already known. This option is ignored if PROC GMM also specifies an explicit value
for K.
If you know the maximum number of components in the mixture (KMAX), you can choose any of
the model selection criteria, AIC, BIC or VB. If you do not know the value of KMAX, you must use
VB.
If you choose VB as the model selection criteria and also know KMAX, then you must specify
the prior hyperparameters A0, B0, M0, NU0 and V0, or accept the default values. If you do not
know KMAX either, instead of the prior hyperparameters, you must also specify PRIORITERS,
PRIORRUNS and PRIORSAMPLES, or accept the default values, so that the prior hyperparameters
can also be estimated.

AIC

Specifies that the Akaike Information Criterion metric is used to evaluate models. In this
case, KMAX models are created, one with a single component, one with two components,
and so on, up until one with KMAX components. For each model, the initial model
parameters are calculated using the specified option for creating initial values (INIT=KPP
or INIT=RAND), then the parameters are refined using expectation maximisation (EM).
Finally, the Akaike Information Criterion is used to select the optimal model from the KMAX
models that were evaluated.

KMAX

Specifies the maximum number of components to use when performing model
selection.

Reference for language elements
Version 4.1

3245

If specified, must be a positive integer. The default value is 20.

SUMMARY

Specifies that a Model Summary table is output, showing the metrics for each model
that was evaluated.

BIC

Specifies that a Bayesian Information Criterion metric is used to evaluate models. This
is the default model selection method. In this case, KMAX models are created, one
with a single component, one with two components, and so on, up until one with KMAX
components. For each model, the initial model parameters are calculated using the
specified option for creating initial values (INIT=KPP or INIT=RAND), then the parameters
are refined using expectation maximisation (EM). Finally, the Bayesian Information
Criterion is used to select the optimal model from the KMAX models that were evaluated.

KMAX

Specifies the maximum number of components to use when performing model
selection. If specified, must be a positive integer. When SELECT=BIC, the default
value is 20.

SUMMARY

Specifies that the metrics for each model that was evaluated are displayed in the
ODS Model Summary table.

VB

Specifies that a variational Bayesian (approximate inference) approach is used to find the
most appropriate model.

A0

Specifies the prior hyperparameter corresponding to the concentration weight. If
specified, must be a positive real number. The default value is 1. The specified value
is only used if KMAX is also supplied.

B0
Specifies the prior hyperparameter corresponding to the mean precision. If specified,
must be a positive real number. The default value is 1. The specified value is only
used if KMAX is supplied.

KMAX

Specifies the maximum number of components to use when performing model
selection. If specified, must be a positive integer.

If specified, the PRIORITERS, PRIORRUNS and PRIORSAMPLES (if also specified)
are ignored.

Reference for language elements
Version 4.1

3246

If not specified, the procedure determines the maximum number of components
during the prior processing stage. In this case, PRIORITERS, PRIORRUNS and
PRIORSAMPLES (or their default values) are used to determine the maximum
number of components.

M0
Specifies the prior hyperparameter corresponding to the means. This is a list of
d real numbers where d is the number of predictor variables specified in the VAR
statement. If not specified, the default value for each entry is 0 (zero). The specified
value is only used if KMAX is also supplied.

NU0
Specifies the prior hyperparameter corresponding to the degrees of freedom. If
specified, must be a positive integer, greater than or equal to , where d is the
number of predictor variables specified in the VAR statement. If not specified, the
default value is d. The specified value is only used if KMAX is also supplied.

PARMSAMPLES

Specifies the number of samples to use when stochastically updating the component
parameters. If specified, must be a non-negative integer. If this value is 0, the
means of the prior distributions are used to update the component parameters. If not
specified, the default value is 0 (zero).

PRIORITERS

Specifies the number of iterations to use when determining the maximum number of
components and the prior hyperparameters. If specified, must be a positive integer.
If not specified, the default value is 100. This sub-option is ignored if the KMAX sub-
option has also been specified.

PRIORRUNS

Specifies the number of runs to use when determining the maximum number of
components and the prior hyperparameters. If specified, must be a positive integer.
If not specified, the default value is 1. This sub-option is ignored if the KMAX sub-
option has also been specified.

PRIORSAMPLES

Specifies the number of samples to use when stochastically updating the prior
hyperparameters. If specified, must be a positive integer. If not specified, the default
value is 1. This sub-option is ignored if the KMAX sub-option has also been specified.

Reference for language elements
Version 4.1

3247

V0

Specifies the scale prior hyperparameter. This is a by matrix where
is the number of predictor variables in the VAR statement. The default is the
identity matrix. If COVARIANCE=FULL, then value-list contains entries; if
COVARIANCE=DIAGONAL, then value-list contains entries (all the non-diagonal
entries are zero) and if COVARIANCE=SPHERICAL, then value-list contains a single
scalar (all the non-diagonal entries are zero, and all the diagonal entries have the
same value). The specified value is only used if KMAX is also supplied.

BY
Groups the observations in the input dataset using one or more specified variables.

BY variable ;

The specified variable or variables are used to separate the input data into groups. PROC GMM
generates a separate model from the data in each group.

If the BY statement is included, the input dataset must be pre-sorted on the specified variable or
variables. If a variable is specified as a predictor variable in the VAR statement, it cannot also be
specified in the BY statement.

CODE
Outputs the Gaussian mixture model as a file containing data step code, which can subsequently be
used to score another dataset using this model.

CODE FILE = f ileref ;

When the code file has been produced, you can write a data step that contains a SET statement to
specify the dataset to be scored, followed by a %INCLUDE statement to include the mixture model code
file. The output dataset contains the scored data.

FILE
Specifies the name of the file to contain the data step code statements.

Reference for language elements
Version 4.1

3248

SCORE
Uses the current GMM model to score the data in the specified dataset.

SCORE DATA = dataset

/ options

;

The SCORE statement takes the data in the specified dataset and scores it using the GMM model
defined in PROC GMM. The score results are saved in a table which can be printed or saved in an output
dataset.

For each observation in the dataset being scored, the score results table shows the component that the
observation is most likely to belong to, and the overall probability density of the distribution at that point.
The score results table includes all the data in the input dataset, including observations with missing
values. But observations with missing values for predictor variables are not scored.

You can specify multiple SCORE statements if required.

You can use the PRINT option to print the score results. You can also use ODS OUTPUT to save the
score results in an output dataset. If the model has one or two predictor variables, you can also produce
score plots for the mixture model and its components. Models with one predictor variable produce line
plots, and models with two predictor variables produce contour plots.

DATA

Specifies the dataset to score. All the predictor variables specified in the VAR statement must be
present in the dataset.

If PROC GMM includes a BY statement, the dataset to be scored must also contain all the
variables mentioned in the BY statement, and must be sorted in the order of those variables.

The DATA option is mandatory.

Options
The following options are available:

OUT

OUT = dataset

Specifies the dataset to which the score results are output. The dataset contains the original
data, and additional fields showing which component each observation is most likely to have
come from and the estimated probability density at that point.. If not specified, no output dataset
is produced.

If PROC GMM specifies more than one output dataset for score results (for example, if there is
more than one SCORE statement) then each output dataset must have a unique name.

Reference for language elements
Version 4.1

3249

PLOTK

PLOTK

(LOG

OBS

UNPACK

)

Specifies that a density plot is produced for each component from the score dataset.

This option is only valid for models that contain one or two predictor variables.

LOG
Specifies that the component plots use a natural logarithmic scale for the component
densities.

OBS

Specifies that observations are overlaid on top of the plot.

UNPACK
Specifies that the plots are displayed individually. By default, the plots are displayed in a
panel.

PLOTP

PLOTP

(LOG OBS)

Specifies that a mixture density plot is produced for the score dataset.

This option is only valid for models that contain one or two predictor variables.

LOG
Specifies that the mixture density plots use a natural logarithmic scale for the component
densities.

OBS

Specifies that observations are overlaid on top of the plot.

PLOTWRITELIB

PLOTWRITELIB = l ibref

Specifies a library where the plot datasets are saved.

Reference for language elements
Version 4.1

3250

PRINT

PRINT

(VAR = variable)

Specifies that the score table for the score dataset is written to ODS output. By default, each
entry in the score table contains the predictor variables, which component each observation is
most likely to have come from and the estimated probability density at that point. Optionally, you
can also include additional variables from the dataset.

VAR
Specifies additional variables from the score dataset to be included in the score table.

VAR
Specifies the predictor variables for the Gaussian mixture model.

VAR variable ;

variable
Specifies one or more predictor variables to which the specified model options apply.
Observations with missing values for any of the predictor variables are ignored.

GMM bibliography
These items are referenced in the GMM procedure section.

[1] Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In:
B. N. Petrov & F. Csaki, eds. 2nd International Symposium on Information Theory. Tsahkadsor,
Armenia, USSR: Budapest: Akademiai Klado, pp. 267–281.

[2] Arthur, D. & Vassilvitskii, S., 2007. k-means++: the advantages of careful seeding. In:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, pp. 1027–1035.

[3] Bishop, C. M., 2006. Pattern recognition and machine learning. 1st ed. New York, USA:
Springer.

[4] Dempster, A. P., Laird, N. M. & Rubin, D. B., 1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B, 39(1), pp. 1–38.

[5] Rasmussen, C. E., 2000. The Infinite Gaussian Mixture Model. Advances in Neural Information
Processing Systems, 12(1), pp. 554–560.

Reference for language elements
Version 4.1

3251

[6] Schwarz, G. E., 1978. Estimating the dimension of a model. Annals of Statistics, 6(2), pp.
461–464.

[7] Wood, F. & Black, M. J., 2012. A nonparametric Bayesian alternative to spike sorting. Journal of
Neuroscientific Methods, 173(1), pp. 1–12.

[8] Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2), pp. 179–188.

MLP procedure
The MLP procedure enables you to build a multilayer perceptron (MLP) from an input dataset. You can
then use the MLP model to analyse other datasets.

About multilayer perceptrons
Multilayer perceptron (MLP) neural networks are a powerful class of non-linear machine learning
algorithms that can be used for classification and regression.

MLPs are complex, non-linear functions, usually conceptualised as layers of simple non-linear functions
connected by layers of weights. The layers of non-linear functions are analogous to layers of neurons in
biological neural networks, and the weights are analogous to synapses.

Training algorithms can be used to find the weights that enable an MLP to approximate the
relationships between the effect variables and a response variable in a set of training data, thereby
making it possible to create a neural network model that can predict the values of unknown response
variables from known effect variables.

The following is a typical fully-connected MLP with nine input neurons, a single hidden layer containing
six neurons, and an output layer containing two neurons:

Reference for language elements
Version 4.1

3252

Every neuron in each layer is connected to every neuron in the preceding layer to produce a fully-
connected network. Information about the values of the effect variables in an observation is encoded on
the activities of the input neurons, which excite or inhibit the hidden neurons depending on the values of
the weights between them.

The hidden neurons then excite or inhibit the output neurons depending on the values of the weights
between them. The activities of the output neurons represent the network’s prediction of the value of the
encoded response variable.

In PROC MLP, there is one input neuron for each continuous effect variable. For a categorical effect
variable, the number of input neurons on the encoding used for the variable.

For a categorical response variable, there is one output neuron for each value of the response variable.
For a given set of input values on the input neurons, the value of each output neuron is an estimate of
the probability of the response variable having that value.

For a continuous response variable, there is a single output neuron. For a given set of input values
on the input neurons, the value of the output neuron is an estimate of the value of the response
variable. The way that this estimate is calculated depends on the selected error function. For example,
if ERROR=SUMOFSQUARES is specified in the MODEL statement, the network output is an estimate of
the conditional mean of the Gaussian distribution of the response variable, as a function of the effect
variables.

Reference for language elements
Version 4.1

3253

Specifying network structure
The network structure is determined by the number of neurons in the input and output layers, the
number of hidden layers, the number of neurons in each hidden layer, and the way each neuron
interacts with the neurons in the next layer.

In an MLP, the number of neurons in the input layer is determined automatically by the number, types
and encodings of the effect variables specified using the MODEL statement. The number of neurons in
the output layer is determined by the type and encoding of the response variable. In general, a non-
class variable will be represented by a single neuron and a class variable will be represented by one
neuron for each class level when it is GLM encoded and by one neuron for each non-reference level for
all other encodings.

The number of hidden layers and the number of neurons in each layer determines the range of
functions that a neural network can learn. In general, networks with more hidden neurons and more
hidden layers can learn more complex functions. These networks will, however, require more training
data and careful regularisation to avoid overfitting.

The MLP procedure supports the specification of networks with multiple hidden layers each with
arbitrarily many neurons. The practical limit to the size of a network created using the MLP procedure is
limited only by a computer’s memory. A network defined with PROC MLP requires the specification of at
least one hidden layer. Alternatively, the functional equivalent of an MLP without a hidden layer can be
created using one of the GENMOD, LOGISTIC, PROBIT or GLM procedures.

Each neuron performs a non-linear transformation that is referred to as its activation function. The
MODEL statement in the procedure supports a wide variety of different types of activation functions (for
more information see Activation functions (page 3294)).

Input neurons represent the values of effect variables and therefore normally perform no
transformations. The MLP procedure enables the specification of a different activation function for the
neurons in each hidden layer. This can be specified using the HIDDEN option of the MODEL statement.

The activation function of output layer neurons is automatically set to SOFTMAX if the response variable
is a class variable and LINEAR otherwise. Output neuron activation functions can be changed using the
OUTPUT option on the MODEL statement.

Preprocessing data
Neural networks typically require effect variables to be standardized in some way.

Standardisation can improve learning performance and help prevent effects with greater variability from
having undue influence on the trained network.

By default, PROC MLP standardizes the values of effect variables to have zero mean and unit variance.
You can use the PREPROCESS option of the MODEL statement to override this behaviour.

Reference for language elements
Version 4.1

3254

Training a network
The process of training a neural network consists of using a training algorithm to iteratively change the
network’s weights to minimize a measure of the error between the actual responses in a set of training
data and the responses predicted by the network.

The dataset containing the training data is specified by the DATA option of PROC MLP and must be
supplied for the procedure to run. The MLP procedure supports multiple training algorithms. Use the
OPTIMIZER option of the MODEL statement to select the training algorithm.

OPTIMIZER=RPROP selects a batch training algorithm, which processes the training data in a single
block and can be expected to perform well on small datasets. Several minibatch training algorithms are
also supported. Minibatch training algorithms process the training data in many small blocks and can
be expected to perform well on large datasets. For the batch training algorithm, the network weights are
updated when the whole batch has been processed. For the minibatch training algorithms the network
weights are updated after each smaller block has been processed.

A single pass through the training data is known as an epoch.

The MODEL statement enables the specification of learning rate schedules with minibatch optimisers by
using LEARNINGRATES in the OPTIMIZER option. Learning rate schedules typically reduce learning
rates over time to achieve a good trade-off between speed of convergence and numerical stability.

The MLP procedure initialises the weights of a newly created network to random values as determined
by the INITWEIGHTS option of the MODEL statement. When experimenting with different training
algorithms and regularisation schemes, it is often useful to start from the same initial weight values.
This can be achieved by specifying SEED in the INITWEIGHTS option of the MODEL statement.

Regularisation and performance assessment
To limit overfitting, a validation dataset can be specified using the VALIDATION option of PROC MLP.
In this case,the validation dataset is used to assess the performance of the network during training.
The frequency of assessment can be specified using the VALIDATIONINTERVAL option of the MODEL
statement. The result of training is the network with the best validation set performance.

You can also control overfitting with the REGULARIZE option on the MODEL statement:

• You can use REGULARIZE=LNNORM to specify L1-norm and L2-norm regularisation. Typically, you
use L1-norm regularisation for model selection, including the identification of irrelevant or redundant
inputs, and L2-norm regularisation to control overfitting.

• You can use REGULARIZE=DROPOUT to specify dropout regularisation. Typically, you use dropout
regularisation to control overfitting.

If the VALIDATION option is not specified, the result of training will be the network with the best
regularised training error.

A test dataset can be specified using the PROC MLP TEST option. In this case, the test dataset is used
to provide an unbiased estimate of generalisation performance when training terminates.

Reference for language elements
Version 4.1

3255

By default, for non-class response variables, the MLP procedure uses the squared error function to
measure the errors in the network’s predicted responses. For class response variables, the default
error function is the cross entropy function. Alternative error functions can be specified using the ERROR
option of the MODEL statement but the procedure will only run if the range of the network’s output
activation functions matches, or lies entirely within, the domain of the specified error function.

Terminating training
A variety of termination options can be specified in the MODEL statement, for example:

• the MAXTRAININGTIME option terminates training after a specific number of seconds
• the MAXTRAININGEPOCH option terminates training after the specified number of epochs
• the TERMINATEONCOMPLETESEPARATION option terminates training if the network succeeds in

completely separating the different levels of the response variable in the training dataset
• the MAXUNIMPROVEDVALIDATIONMINIBATCHES option terminates training if the error on the

validation set has not decreased for the specified number of minibatches

There are no default values for any of the termination options. If no termination options are specified,
training continues indefinitely.

For further information about network training options, see MODEL (page 3270).

Loading and saving a trained network
Once you have trained a network there are several ways you can save and reuse it.

The OUTEST option of PROC MLP is used to specify a dataset to store the best network that was found
during training. If the VALIDATION option is used, the best network will be the one with the lowest
validation set error, otherwise it will be the one with the lowest regularized training set error.

A network can be loaded using the INEST option of PROC MLP, but the network must have the
architecture specified in the MODEL statement. It must have the correct number of hidden layers and the
correct number of neurons in each layer, and all neurons must have the correct activation functions.

The INEST option of PROC MLP can also be used to load a network for additional training; if the NOFIT
option is also specified no training occurs, the network weights are not modified and only predicted
responses and non-training related statistics are calculated. The NOFIT option can therefore be used to
allow a trained network to be loaded and applied to a new dataset to generate predicted responses.

The PROC MLP CODE statement enables you to generate code that implements the trained network.
This code can be used in a data step to score another dataset.

Reference for language elements
Version 4.1

3256

Results and generated output
PROC GMM outputs can be written to the log and to ODS output.

During training, the MLP procedure regularly records the training progress in the server log. Information
includes the training error, the regularisation error (if the REGULARIZER option of the MODEL statement
is specified) and the validation error (if a validation dataset is specified using the VALIDATION option of
PROC MLP). The TRAININGHISTORYUPDATEINTERVAL option of the MODEL statement specifies how
frequently the log messages are written. By default, a log message is written after every 1000 training
epochs.

A summary of the training history can also be written to ODS output. This is configurable. As before, the
TRAININGHISTORYUPDATEINTERVAL controls how often the training history is updated, and hence
the training history entries that are available to be output. The MAXTRAININGHISTORYSIZE option
of the MODEL statement specifies how many training history entries are reported in ODS output. The
COMPACTHISTORY option of PROC MLP controls whether the output is an overall summary or a rolling
history of the most recent training.

For more details see PROC MLP (page 3263) and MODEL (page 3270)

If the OUTPUT statement is specified, at the end of training, the MLP procedure generates an output
dataset which contains the results of applying the best network found during training to the input
dataset, the validation dataset (if present) and the test dataset (if present). For more information see
OUTPUT (page 3296).

Using the MLP procedure
This example shows how to use PROC MLP to train a network from known data, then use it to predict
results from new data.

This example describes how the MLP procedure can be applied to the publicly-available Iris dataset
(Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7(2), pp. 179–188.)

The Iris dataset consists of measurements of the widths and lengths of the petals and sepals of three
species of Iris. PROC MLP is used to predict the species of iris from these measurements.

PROC MLP DATA=iris TEST=test PRINTWEIGHTS PRINTTHRESHOLDS THRESHOLDSTEPS=10
 COMPACTHISTORY;
 CLASS species;
 MODEL species=sepal_length sepal_width petal_length petal_width /
 HIDDEN=(2 LOGISTIC)
 OPTIMIZER=RPROP
 MINLEARNINGRATE=1e-6
 MAXTRAININGEPOCH=10000
 MAXTRAININGHISTORYSIZE=25
 TRAININGHISTORYUPDATEINTERVAL=1
 REGULARIZER=LNNORM(STRENGTH=0.075 POWER=2.0)
 INITWEIGHTS=(SEED=1494327418);
RUN;

Reference for language elements
Version 4.1

3257

In this example, the dataset is partitioned into a training dataset, iris, containing 120 observations
and a test dataset, test, containing 30 observations.

The PROC MLP statement includes options to control the information that is output to ODS output:

• PRINTWEIGHTS specifies that output includes the weights between the network layers
• PRINTTHRESHOLDS specifies that the output includes the threshold tables.
• THRESHOLDSTEPS=10 specifies that the threshold tables split the network output values into ten

threshold values.
• COMPACTHISTORY specifies that the training history is compacted, so a summary of the complete

history of network training is available. Otherwise, a rolling window of detailed training history is
saved for output, but the later entries overwrite the earlier ones.

The CLASS statement defines the response variable species as a categorical variable.

The MODEL statement defines sepal_length, sepal_width, petal_length and petal_width
as effect variables and species as the response variable. The MODEL statement includes the following
options:

• The HIDDEN option is mandatory, and, in this example, specifies a single hidden layer which has
two neurons that use the LOGISTIC activation function.

• The OPTIMIZER option specifies that the RPROP optimiser is used to train the network.
• The REGULARIZER option specifies that the LNNORM regulariser is used to prevent overfitting. The

optimal value for STRENGTH was derived by previously partitioning the Iris dataset into a training
dataset and a validation dataset, and repeatedly training the network with a range of different values
for STRENGTH. The value selected to train the final network (0.75) is the value that minimised the
validation set error reported in the Results table.

• The MAXTRAININGHISTORYSIZE and TRAININGHISTORYUPDATEINTERVAL options specify that
up to 25 training history entries are reported in the ODS output, and that a training history entry is
written for every epoch. The training history entry for each epoch is written to the server log, but,
because PROC MLP includes the COMPACTHISTORY option, only a summary of the training history is
written to ODS output.

• The MINLEARNINGRATE and MAXTRAININGEPOCH options specify that network training stops
either when the learning rate drops below 1E-6 or when 10000 epochs have been completed. There
are no default values for any of the termination options, so if no termination options are specified,
training continues indefinitely.

• The INITWEIGHTS option specifies a seed for the random number generator that is used to initialise
the network weights. This ensures that if the procedure is run again with the same input datasets the
same results are obtained. The other INITWEIGHTS options have the default values (no bias offset,
weights sampled from a normal distribution with mean 0.0 and variance 1.0, and Xavier scaling).

Configuration
The Configuration table contains the configuration that was specified for this execution of PROC MLP.

 Configuration
 Setting Value

Reference for language elements
Version 4.1

3258

 Stopping criteria
 Maximum epoch 10000
 Minimum learning rate 1E-6
 Training parameters
 Error function Cross entropy
 Regularizers
 Ln-norm1 0.075, 2
 Optimization algorithm RProp
 eta+ 1.2
 eta- 0.5
 maxdelta 0.1
 initialdelta 0.1
 Automate mindelta Yes
 Weight initialization method Uniform
 Weight initialization seed 1494327418
 Weight initialization min -0.1
 Weight initialization max 0.1
 Preprocessor
 Mean 0
 Variance 1

Network Architecture
The Network Architecture table contains information about the layers in the network, the number of
neurons in each layer, and the type of activation function for each layer. In this example, there is just
one hidden layer between the input and output layers. The input layer always uses a linear activation
function. The hidden layer uses the LOGISTIC activation function as specified, and the output layer
uses the SOFTMAX activation function, which is the default activation function type for categorical
response variables.

 Network Architecture
 Layer Nodes Type

 Input Layer 4 Linear
 Hidden layer 2 Logistic
 Output Layer 3 Softmax

Training Thresholds
The Training Thresholds table shows the network response levels, and for each, the range of the values
of the corresponding output neuron. For each range, the table shows the distribution of positive and
negative samples across those values for the observations in the training dataset. The information in
this table can be useful when deciding a threshold probability value to apply to the network output to
ensure accurate categorisation.

In this example, for the Iris-setosa response level, the network has output a probability of between
0.0 and 0.1 for 80 negative observations (observations that are not in the Iris-setosa category)
and a probability of between 0.9 and 1.0 for 40 positive observations (observations that are in the
Iris-setosa category). This means that any threshold value between 0.1 and 0.9 can be applied
to the network output for the Iris-setosa response level to separate the positive and negative
observations.

Reference for language elements
Version 4.1

3259

The network outputs for the other two response levels (Iris-versicolor and Iris-virginica)
cover a wider range of values. For the Iris-versicolor response level, the network has output
a probability of between 0.0 and 0.1 for 74 negative observations (observations that are not in the
Iris-versicolor category) and a probability of between 0.9 and 1.0 for 35 positive observations
(observations that are in the Iris-versicolor category). But the other six observations that are not
in the Iris-versicolor category and the other five observations that are in the Iris-versicolor
category are scattered across the other output values. In particular, the network has output a probability
between 0.3 and 0.4 for a negative observation, and for a positive observation, and also output a
probability between 0.8 and 0.9 for a negative observation, and for a positive observation. In this
case, there is no threshold value that can be applied to the network output for the Iris-versicolor
response level to completely separate the positive and negative observations.

 Training Thresholds

 Threshold Threshold
 range range Negative Positive
 Response level minimum maximum samples samples

 Iris-setosa 0 0.1 80 0
 0.1 0.2 0 0
 0.2 0.3 0 0
 0.3 0.4 0 0
 0.4 0.5 0 0
 0.5 0.6 0 0
 0.6 0.7 0 0
 0.7 0.8 0 0
 0.8 0.9 0 0
 0.9 1 0 40
 Iris-versicolor 0 0.1 74 0
 0.1 0.2 2 0
 0.2 0.3 2 0
 0.3 0.4 1 1
 0.4 0.5 0 1
 0.5 0.6 0 0
 0.6 0.7 0 1
 0.7 0.8 0 1
 0.8 0.9 1 1
 0.9 1 0 35
 Iris-virginica 0 0.1 75 0
 0.1 0.2 1 1
 0.2 0.3 1 0
 0.3 0.4 1 0
 0.4 0.5 0 0
 0.5 0.6 1 0
 0.6 0.7 1 1
 0.7 0.8 0 2
 0.8 0.9 0 2
 0.9 1 0 34

Test Thresholds
The Test Thresholds table shows the network response levels, and for each, the range of the values
of the corresponding output neuron, and the distribution of positive and negative samples across those
values for the observations in the test dataset.

Reference for language elements
Version 4.1

3260

In this example, for the test dataset, in the Iris-setosa category section of the table, the network
has classified the 20 observations that are not in the Iris-setosa category as having a probability
of between 0.0 and 0.1 of belonging to this category. The network has classified the 10 observations
that are in the Iris-setosa category as having a probability of between 0.9 to 1.0 of belonging to this
category. Again, the outputs for the other two response levels cover a wider range of probabilities. But,
in this case, for this small dataset, there are no overlaps, and it is possible to choose a threshold value
to apply to the network output for each of the response levels to completely separate the positive and
negative observations.

As with the training dataset, any threshold value between 0.1 and 0.9 could be applied to the network
output for the Iris-setosa response level to separate the positive and negative observations. Based
on this dataset, any threshold value between 0.5 and 0.9 could used for the Iris-versicolor
response level and any threshold value between 0.1 and 0.5 for the Iris-virginica response level.

 Test Thresholds

 Threshold Threshold
 range range Negative Positive
 Response level minimum maximum samples samples

 Iris-setosa 0 0.1 20 0
 0.1 0.2 0 0
 0.2 0.3 0 0
 0.3 0.4 0 0
 0.4 0.5 0 0
 0.5 0.6 0 0
 0.6 0.7 0 0
 0.7 0.8 0 0
 0.8 0.9 0 0
 0.9 1 0 10
 Iris-versicolor 0 0.1 17 0
 0.1 0.2 0 0
 0.2 0.3 1 0
 0.3 0.4 1 0
 0.4 0.5 1 0
 0.5 0.6 0 0
 0.6 0.7 0 0
 0.7 0.8 0 0
 0.8 0.9 0 0
 0.9 1 0 10
 Iris-virginica 0 0.1 20 0
 0.1 0.2 0 0
 0.2 0.3 0 0
 0.3 0.4 0 0
 0.4 0.5 0 0
 0.5 0.6 0 1
 0.6 0.7 0 2
 0.7 0.8 0 0
 0.8 0.9 0 0
 0.9 1 0 7

Reference for language elements
Version 4.1

3261

Training History
The Training History table shows how training, validation and regularisation errors change during
training.

 Training History
 Training Learning Training Regularization
 Epoch time(s) rate data error error
__
 0 0 0.1 1.1659607314 0.0002823024
 60 0 0.1 0.0750214228 0.0406435349
 120 0 0.0089561962 0.0619656677 0.0466006967
 184 0 0.0071868911 0.0619784137 0.0463739436
 240 0 0.0009979837 0.0618877388 0.0464424851
 304 0 0.002562157 0.0618779442 0.0464220304
 368 0 0.000383699 0.0618617126 0.0464357259
 416 0 0.0017706158 0.0617943858 0.0465021285
 480 0 0.0004104514 0.061788151 0.046507944
 544 0 0.0002045593 0.0617978459 0.0464981773
 608 0 0.0000848182 0.061793415 0.0465025826
 672 0 0.0000654333 0.0617906175 0.0465053712
 736 0 4.7179414E-6 0.0617910668 0.0465049205
 768 0 0.0000218068 0.0617906687 0.0465053182
 832 0 9.4033976E-7 0.061790304 0.0465056828

Network Weights
The Network Weights table gives the names and values of all the weights in the network.

The names of the weights in the table are as follows:.

• Input layer to hidden layer weights:

wih-1-<hidden_neuron>-<input_neuron>

• hidden layer to hidden layer weights:

whh-<hidden_layer>-<postsynaptic_hidden_neuron>-<presynaptic_hidden_neuron>

This example only has one hidden layer so there are no hidden layer to hidden layer weights.

Reference for language elements
Version 4.1

3262

• Hidden layer to output layer weights:

wo-<output_neuron>-<hidden_neuron>

 Network Weights

 Weight Value

 wih-1-1-b -4.915256
 wih-1-1-1 -0.472136
 wih-1-1-2 -0.698932
 wih-1-1-3 3.1853894
 wih-1-1-4 4.2123014
 wih-1-2-b 2.7363908
 wih-1-2-1 1.0886229
 wih-1-2-2 -1.114099
 wih-1-2-3 1.9501099
 wih-1-2-4 1.7968779
 wo-1-b 4.4582273
 wo-1-1 -1.381585
 wo-1-2 -5.59808
 wo-2-b -0.469427
 wo-2-1 -4.544412
 wo-2-2 4.5417894
 wo-3-b -2.007306
 wo-3-1 5.9258882
 wo-3-2 1.0562217

Results
The Results table displays the results of training.

 Results

 Result Value

 Last training set data error 0.0617903
 Last partial separation No
 Last complete separation No
 Last Ln-norm1 0.0465057
 Last total regularization error 0.0465057
 Last total training set error 0.108296
 Termination epoch 832
 Termination time (s) 0
 Test set error 0.0611409

Stopping Reason
The Stopping Reason table lists the reasons why training stopped. In this example, training stopped
when the learning rate for the epoch was below the specified MINLEARNINGRATE of 1E-6.

 Stopping Reasons

 Reasons for stopping
 __
 Learning rate was below the termination threshold.

Reference for language elements
Version 4.1

3263

MLP procedure reference
Describes the syntax and options for PROC MLP and its contained statements.

PROC MLP ... 3263
Creates a multilayer perceptron (MLP).

CLASS ...3266
Specifies the class variables, and, optionally, how they are handled.

CODE .. 3268
Outputs the MLP as a file containing data step code, which can subsequently be used to score
another dataset.

MODEL ..3270
Specifies the response and effect variables and the options that control network training.

OUTPUT ..3296
Creates an output dataset containing the input observations and the MLP outputs.

PROC MLP
Creates a multilayer perceptron (MLP).

PROC MLP options ;

Options
The following options are available:

COMPACTHISTORY

COMPACTHISTORY

Specifies that the training history is compacted when it reaches its maximum size, which allows
the entire history of network training to be represented in a fixed amount of space.
If COMPACTHISTORY is not specified, then when the training history reaches its maximum size,
the oldest entries are overwritten, and the history forms a moving window.

DATA

DATA = dataset

Specifies the dataset that is used for training.

If a training dataset is not specified, the most recently-created dataset is used.

Reference for language elements
Version 4.1

3264

INEST

INEST = dataset

Specifies a dataset that provides initial values for the network weights. The network in the dataset
must have the same input encoding, output representation and structure as the network specified
in the MODEL statement.

NOFIT

NOFIT

Specifies that PROC MLP should assess performance on the DATA, VALIDATION and TEST
datasets without training the network. This is useful when loading a trained network using the
INEST option.

NOPRINT

NOPRINT

Specifies that all ODS output is suppressed. This option takes precedence over all other print
options.

OUTEST

OUTEST = dataset

Specifies the dataset used to store the input encoding, output representation, structure and
weights of a trained network.

PRINTINPUTENCODING

PRINTINPUTENCODING

Specifies that the encoding of effect variables in terms of groups of network inputs is written to
ODS output.

PRINTINPUTLENGTHS

PRINTINPUTLENGTHS

Specifies that the L2 norms of the weight to each input neuron is written to ODS output. This can
be used with L1 regularisation to identify irrelevant inputs.

PRINTINPUTMAPPING

PRINTINPUTMAPPING

Reference for language elements
Version 4.1

3265

Specifies that the mapping of effect variable levels to individual network inputs is written to ODS
output.

PRINTINPUTSCALING

PRINTINPUTSCALING

Specifies that the scaling of network input values are written to ODS output.

PRINTINPUTWEIGHTS

PRINTINPUTWEIGHTS

Specifies that the weights between the network inputs and the first layer of hidden nodes are
written to ODS output.

PRINTTHRESHOLDS

PRINTTHRESHOLDS

Specifies that the thresholds table is written to ODS output.
The thresholds table shows the probabilities of the various values of the response variable and
the numbers of observations predicted by the network to have those probabilities and response
variable values.
The thresholds table can be used to determine a threshold value that balances the false positives
and false negatives.

PRINTWEIGHTS

PRINTWEIGHTS

Specifies that the network weights are printed are written to ODS output.

TEST

TEST = dataset

Specifies a dataset to be used as a test dataset at the end of training.

THRESHOLDSTEPS

THRESHOLDSTEPS = threshold- steps

Specifies the number of discrete steps to show for the network output values in the thresholds
table. The default value is 20.
The value must be an integer greater than 0 (zero).

Reference for language elements
Version 4.1

3266

VALIDATION

VALIDATION = dataset

Specifies a validation dataset. If a validation dataset is specified, the result of training is the
network that achieved the minimum error against this dataset.

CLASS
Specifies the class variables, and, optionally, how they are handled.

CLASS variable

(options) / options

;

A class (or categorical) variable is a variable that can take one of a limited number of values.

The options, if present, define the way the class variables are handled in the model. Options can be
specific to a single variable or can be global. Options in brackets after a variable name are specific
to that variable. Options specified after the forward slash are global options and apply to all class
variables. Variable-specific options override global options. Unless otherwise specified, all options can
be variable-specific or global.

The response variable always uses GLM encoding. Effect variables use GLM encoding unless an
alternative encoding is specified using the PARAM option. If an alternative encoding is specified for any
effect variable, all effect variables must use non-GLM encodings, but all effect variables do not need to
use the same non-GLM encoding.

If present, the CLASS statement or statements must be located before the MODEL statement.

variable

A class variable in the dataset.

Options
The following options are available. Unless otherwise stated, all options can be applied to a single
variable, or globally to all variables.

DESCENDING

DESCENDING

DESC

Specifies that the variable values are sorted in descending order. If not specified, the variable
values are sorted in ascending order. The way in which the variable values are ordered is
specified using the ORDER option.

Reference for language elements
Version 4.1

3267

MISSING

MISSING

Specifies that a level is created for missing values and that observations containing missing
values are retained. If not specified, observations with missing values are discarded.

ORDER

ORDER = DATA

FORMATTED

FREQ

INTERNAL

Specifies the ordering to use for variable values. Variable values are ordered in ascending order
unless the DESCENDING option is also specified.

For numeric variables, the default ordering is INTERNAL. For string variables, the default
ordering is FORMATTED.

DATA

The variable values are ordered in the order in which the values of the variable first occur
in the data.

FORMATTED

The variable has a user-defined format applied, and the variable values are ordered using
the variable format value.

FREQ
If the FREQ ordering is specified, it is ignored, and the default ordering of INTERNAL (for
numeric variables) or FORMATTED (for string variables) is used.

INTERNAL

The variable is unformatted, and the variable values are ordered by the raw value.

PARAM

PARAM = EFFECT

GLM

ORDINAL

REFERENCE

REF

The default encoding is GLM. If a non-GLM encoding is specified, then all effect (or predictor)
variables must use non-GLM encoding. Response variables always use GLM encoding.

Reference for language elements
Version 4.1

3268

Response variables always use GLM encoding. The default encoding for effect (or predictor)
variables is GLM encoding. If a non-GLM encoding is specified for an effect variable, then all
effect variables must use non-GLM encoding.

EFFECT

Specifies that the variable is encoded using effect encoding.

GLM

Specifies that the variable is encoded using GLM encoding.

This value can only be specified as a global option and not for an individual variable.

ORDINAL

Specifies that the variable is encoded using ordinal encoding.

REFERENCE

Specifies that the variable is encoded using reference encoding.

REF

REF = FIRST

LAST

"level"

Specifies the reference level to use for a class variable.

FIRST

The reference level is the first ordered level.

LAST

The reference level is the last ordered level. This is the default reference level.

"level"

Specifies a value to use as the reference level. The specified value must be a valid value
for the class variable.

CODE
Outputs the MLP as a file containing data step code, which can subsequently be used to score another
dataset.

CODE FILE = f ileref options ;

Reference for language elements
Version 4.1

3269

When the code file has been produced, you can write a data step that contains a SET statement to
specify the dataset to be scored, followed by a %INCLUDE statement to include the code file containing
the MLP. The output dataset contains the scored data.

FILE
Specifies the name of the file to contain the code.

Options
The following options are available:

LINESIZE

LINESIZE = length

Specifies the maximum line length in the output file.

LOOKUP

LOOKUP = AUTO

BINARY

LINEAR

SELECT

Specifies the method used to lookup and encode class variable levels.

AUTO
Specifies that PROC MLP selects the best method (BINARY, LINEAR, SELECT) to use for
the data.

BINARY
Specifies that a binary search is used.

LINEAR
Specifies that the data is searched starting at first observation and progressing through the
class levels in order until the value is located.

SELECT
Specifies that the DATA step SELECT functionality is used.

OUTPUTHIDDENACTIVITIES

OUTPUTHIDDENACTIVITIES

Specifies that the generated code outputs the activities of the hidden neurons.

OUTPUTINPUTACTIVITIES

OUTPUTINPUTACTIVITIES

Reference for language elements
Version 4.1

3270

Specifies that the generated code outputs the activities of the input neurons.

MODEL
Specifies the response and effect variables and the options that control network training.

label :

MODEL response- variable =

effect- variable- expression

*

|

effect- variable- expression

@ number

/ options

;

effect-variable-expression

effect- variable

(effect- variable)

response-variable
Specifies the response variable in the input dataset. The specified variable must also be present
in the test dataset (if used) and the validation dataset (if used).

effect-variable

Specifies a variable in the input dataset to include in the model as an effect variable, and
optionally, specifies how it is combined with other variables to derive additional effect variables to
include in the model.

The specified variable must also be present in the test dataset (if used) and the validation dataset
(if used).

The effect variables can be combined in the same way as variables in other regression
procedures:

* Include a new variable that is the product of the specified variables.

For example, var1*var2 defines an effect variable that is the product of var1 and
var2.

| Include each specified variable. Also include new variables from the products of each
possible combination of two or more of the specified variables .

Reference for language elements
Version 4.1

3271

For example, var1|var2|var3 defines the effect variables var1, var2, var3,
var1*var2, var1*var3, var2*var3 and var1*var2*var3.

@ When combining multiple variables to make a new variable, include no more than the
specified number of variables in each combination.

For example, var1|var2|var3@2 defines the effect variables var1, var2, var3,
var1*var2, var1*var3 and var2*var3, but not var1*var2*var3.

() The variable outside the brackets is nested on all possible discrete values of the
variable inside the brackets, and each nesting defines a new effect variable. The
variable inside the brackets must be a discrete variable specified in a CLASS
statement.

For example, if var2 has values A, B and C, var1(var2) defines the effect variables
var1(A), var1(B) and var1(C).

Options
The following options are available:

ERROR

ERROR = ABS

CROSSENTROPY

LOGEXPONENTIAL

LOGGEOMETRIC

LOGGOMPERTZLOCATION

LOGPOISSON

SUMOFSQUARES

Specifies the type of error function used to assess performance. The specified error function
must be compatible with the output layer activation function and the response variable type.

The range of the output layer activation function specified using the OUTPUT option of the
MODEL statement must not exceed the domain of the error function specified using the
ERROR option of the MODEL statement. For example, OUTPUT=LINEAR cannot be used with
ERROR=CROSSENTROPY because the LINEAR function can generate positive and negative
numbers, but the CROSSENTROPY function can only process positive numbers.

For classification response variables, the default value is CROSSENTROPY. For non-classification
response variables, the default value is SUMOFSQUARES.

ABS
Specifies that the absolute error function is used. This estimates the conditional median of
the data.

Reference for language elements
Version 4.1

3272

CROSSENTROPY
Specifies that the cross entropy error function is used. This estimates the probability
parameters of binomial or multinomial distributed data.

LOGEXPONENTIAL
Specifies that the log-exponential error function is used. This estimates the rate parameter
of exponentially-distributed data.

LOGGEOMETRIC
Specifies that the log-geometric error function is used. This estimates the probability
parameter of geometrically-distributed data.

LOGGOMPERTZLOCATION
Specifies that the log-Gompertz error function is used. This estimates the location
parameter of Gompertz-distributed data.

LOGPOISSON
Specifies that the log-Poisson error function is used. This estimates the rate parameter of
Poisson-distributed data.

SUMOFSQUARES
Specifies that the sum of squares error function is used. This estimates the conditional
mean of the data.

HIDDEN

HIDDEN = (number- of- neurons activation- function)

Specifies the structure of the hidden layers. There is one number-of-neurons and activation-value
pair for each hidden layer in the network. The first pair of values in the list specifies the hidden
layer immediate below the input layer and the last pair of values in the list specifies the hidden
layer immediately above the output layer.
The HIDDEN option must be specified exactly once in the MODEL statement.

number-of-neurons
Specifies the number of neurons in a hidden layer. Must be an integer, greater than or
equal to 1.

Reference for language elements
Version 4.1

3273

activation-function

ABS

ARCTAN

CUMULATIVEGAUSSIAN

CUMULATIVEGOMPERTZ

CUMULATIVELAPLACE

ELLIOTT

EXPONENTIAL

EXPONENTIALLINEAR

GAUSSIAN

GOMPERTZ

HEAVISIDE

LAPLACE

LEAKYRECTIFIEDLINEAR

LINEAR

LOGISTIC

LOGISTICPRECISE

RAMP

RECIPROCALLINEAR

RECTIFIEDLINEAR

SIN

SINC

SOFTABS

SOFTMAX

SOFTPLUS

SOFTSIGN

SOFTSTEP

SQUAREABS

SQUARE

TANH

TANHPRECISE

Specifies the activation function for a hidden layer.

For more information about the activation functions, see Activation functions (page
3294).

INITWEIGHTS

INITWEIGHTS = (initweight- options)

Reference for language elements
Version 4.1

3274

Specifies the method used to initialize network weights.

initweight-options
The following initweight-options are supported.

BIASSOFFSET

BIASSOFFSET = offset- applied- to- bias- weights

Specifies an additive offset for bias weights. This is typically set to a small positive
value when RECTIFIEDLINEAR units are used to reduce the risk of creating dead
neurons.
The default value is 0.0.

DISTRIBUTION

DISTRIBUTION = LAPLACE

NORMAL

UNIFORM

Specifies the type of distribution from which weights are sampled.

LAPLACE

NORMAL

This is the default value.

UNIFORM

MAX

MAX = max- weight- value

Specifies the maximum initial weight value for the UNIFORM distribution. The
specified value must be greater than MIN.
This option can only be specified with DISTRIBUTION=UNIFORM. The default value
is 0.1.

Reference for language elements
Version 4.1

3275

MEAN

MEAN = mean- weight- value

Specifies the mean for the NORMAL and LAPLACE distributions.
If DISTRIBUTION is not one of these values, this option is ignored.
The default value is 0.0.

MIN

MIN = min- weight- value

Specifies the minimum initial weight value for the UNIFORM distribution. The
specified value must be less than MAX.
This option can only be specified with DISTRIBUTION=UNIFORM. The default value
is -0.1.

SCALING

SCALING = NONE

XAVIER

INPUTDEVIATION

INPUTVARIATION

Specifies how the magnitudes of the initial weights are scaled to compensate for
different numbers of neurons in each layer.

INPUTDEVIATION
Scales the initial weights to control the standard deviation of the activation of
neurons.

INPUTVARIATION
Scales the initial weights to control the variance of the activation of neurons.

NONE
Weight values are not scaled.

XAVIER
Performs Xavier scaling that is appropriate for TANH activation functions.
This is the default value.

SEED

SEED = seed- value

Specifies a seed value for the random number generator that is used to initialize the
weights. This value must be an integer greater than or equal to 0 (zero).

Reference for language elements
Version 4.1

3276

The default value is a random value derived from the system clock.

VARIANCE

VARIANCE = variance- of- weight- values

Specifies the variance of the NORMAL and LAPLACE distributions. This value must
be greater than or equal to 0 (zero).
If SCALING=XAVIER is specified, the default value is 1.0. Otherwise the default
value is 0.1.

MAXFAILEDLIKELIHOODEPOCHS

MAXFAILEDLIKELIHOODEPOCHS = max- failed- likelihood- steps

Specifies that training terminates if the likelihood cannot be computed for the specified number
of successive epochs. Failures to compute likelihood can usually be eliminated by using smaller
learning rates or L2-norm regularisation. This value must be an integer greater than 0 (zero).
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXINCREASINGVALIDATIONEPOCHS

MAXINCREASINGVALIDATIONEPOCHS = max- increasing- validat ion- epochs

Specifies that training terminates if the validation error increases for the specified number of
successive epochs. This value must be an integer greater than 0 (zero).
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXINCREASINGVALIDATIONMINIBATCHES

MAXINCREASINGVALIDATIONMINIBATCHES = max- increasing- validat ion- minibatches

Specifies that training terminates if the validation error increases for the specified number of
successive minibatches. This value must be an integer greater than 0 (zero).
If a batch training algorithm is specified, this option is equivalent to
MAXINCREASINGVALIDATIONEPOCHS.
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXTRAININGEPOCH

MAXTRAININGEPOCH = max- epoch

Reference for language elements
Version 4.1

3277

Specifies that training terminates when the specified number of epochs have been completed.
This value must be an integer greater than or equal to 0 (zero).
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXTRAININGHISTORYSIZE

MAXTRAININGHISTORYSIZE = max- training- history- size

Specifies the maximum number of entries in the training history. This value must be an integer
greater than 0 (zero).

MAXTRAININGMINIBATCH

MAXTRAININGMINIBATCH = max- minibatch

Specifies that training terminates when the specified number of minibatches have been
completed. This value must be an integer greater than or equal to 0 (zero).
If a batch training algorithm is specified, this option is equivalent to MAXTRAININGEPOCH.
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXTRAININGTIME

MAXTRAININGTIME = max- training- t ime

Specifies that training terminates after the specified time in seconds. Training stops at the end
of the first epoch or minibatch at or after this time. This value must be an integer greater than 0
(zero).
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXUNIMPROVEDVALIDATIONEPOCHS

MAXUNIMPROVEDVALIDATIONEPOCHS = max- unimproved- validat ion- epochs

Specifies that training terminates if the validation error does not decrease for the specified
number of epochs. This value must be an integer greater than 0 (zero).
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MAXUNIMPROVEDVALIDATIONMINIBATCHES

MAXUNIMPROVEDVALIDATIONMINIBATCHES = max- unimproved- validat ion- minibatches

Reference for language elements
Version 4.1

3278

Specifies that training terminates if the validation error does not decrease for the specified
number of minibatches. This value must be an integer greater than 0 (zero).
If a batch training algorithm is specified, this option is equivalent to
MAXUNIMPROVEDVALIDATIONEPOCHS.
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MINABSOLUTEWEIGHTCHANGE

MINABSOLUTEWEIGHTCHANGE = min- absolute- weight- change

Specifies that training terminates if no weight has changed by more than the specified amount in
one minibatch. This value must be greater than or equal to 0 (zero). This option is ignored if the
OPTIMIZER=RPROP is specified.
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MINLEARNINGRATE

MINLEARNINGRATE = min- learning- rate

Specifies that training terminates if the learning rate or step size falls below the specified value.
This value must be greater than or equal to 0 (zero).
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MINRELATIVEWEIGHTCHANGE

MINRELATIVEWEIGHTCHANGE = min- relat ive- weight- change

Specifies that training terminates if no weight changes by more than the specified amount relative
to its previous value plus MINRELATIVEWEIGHTCHANGEEPSILON in one minibatch. This value
must be greater than or equal to 0 (zero). This option is ignored if the OPTIMIZER=RPROP is
specified.
There is no default value for this option. If none of the termination criteria options are specified,
training continues indefinitely.

MINRELATIVEWEIGHTCHANGEEPSILON

MINRELATIVEWEIGHTCHANGEEPSILON = min- relat ive- weight- change- epsilon

Specifies a value that is added to the previous absolute value of a weight when applying the
MINRELATIVEWEIGHTCHANGE criterion. If no value is specified, the default value is machine
epsilon. This value must be greater than 0 (zero).

Reference for language elements
Version 4.1

3279

OPTIMIZER

OPTIMIZER = optimizer- method

Specifies the optimization algorithm to be used to train the network.

The default optimizer-method is ADADELTA.

optimizer-method
The following optimizer-method options are supported:

• ADADELTA (page 3279). Specifies an adaptive step size minibatch learning
algorithm that reduces sensitivity to the choice of learning rate.

• ADAM (page 3281). Attempts to maximize speed of convergence by using estimates
of lower-order moments.

• NADAM (page 3283). A version of the ADAM optimiser method that incorporates
Nesterov momentum.

• RMSPROP (page 3284). An adaptive step size minibatch learning algorithm.
• RPROP (page 3286). A variant of the adaptive step size full batch learning algorithm

iRProp+.
• SGD (page 3287). A fixed step size minibatch learning algorithm that supports both

classical and Nesterov momentum.
• SMORMS3 (page 3288). An adaptive step size minibatch learning algorithm that

automatically adjusts the amount of smoothing.

ADADELTA

ADADELTA

(

EPSILON = epsilon

LEARNINGRATE = rate

LEARNINGRATES = (

,

(minibatch , rate))

MINIBATCHSIZE = minibatch- size

MINIBATCHTYPE = BOOTSTRAP

DYNAMIC

STATIC

SMOOTHINGFACTOR = factor

)

Specifies an adaptive step size minibatch learning algorithm that reduces sensitivity
to the choice of learning rate. Minibatch learning algorithms are best suited to
training networks on large or highly redundant datasets.

Reference for language elements
Version 4.1

3280

EPSILON

Specifies a value for the epsilon parameter. This value must be greater than
or equal to 0 (zero)

The default value for OPTIMIZER=ADADELTA is 1.0E-6.

LEARNINGRATE

Specifies a fixed learning rate.

This option cannot be specified with LEARNINGRATES. This value must be
greater than or equal to 0 (zero).

The default value is 0.001.

LEARNINGRATES

Specifies a learning rate schedule as a series of number pairs. Each pair
contains a minibatch number and a learning rate. The pairs must be specified
in order of increasing minibatch number. The learning rates are linearly
interpolated between adjacent number pairs.

This option cannot be specified with LEARNINGRATE. The value of each
number in the pair must be greater than or equal to 0 (zero).

MINIBATCHSIZE

Specifies the number of observations in each minibatch. This value must be
an integer greater than 0 (zero) and less than or equal to INT_MAX.

The default value is 128.

MINIBATCHTYPE

Specifies how observations are selected for minibatches.

The default selection method is DYNAMIC.

BOOTSTRAP

Specifies that observations are selected randomly with replacement.

DYNAMIC

Specifies that observations are selected randomly without replacement.

This is the default value.

STATIC

Specifies that observations are selected in the order they appear in the
input dataset.

Reference for language elements
Version 4.1

3281

SMOOTHINGFACTOR

Specifies a value for the smoothing factor. This value must be greater than or
equal to 0 (zero) and less than or equal to 1.

The default value for OPTIMIZER=ADADELTA is 0.95.

ADAM

ADAM

(

BETA1 = beta1

BETA2 = beta2

EPSILON = epsilon

LEARNINGRATE = rate

LEARNINGRATES = (

,

(minibatch , rate))

MINIBATCHSIZE = minibatch- size

MINIBATCHTYPE = BOOTSTRAP

DYNAMIC

STATIC

)

Specifies an adaptive step size minibatch learning algorithm that attempts to
maximize speed of convergence by using estimates of lower-order moments.
Minibatch learning algorithms are best suited to training networks on large or highly
redundant datasets.

BETA1

Specifies a value for the beta1 parameter. This value must be greater than or
equal to 0 (zero) and less than or equal to 1.

The default value is 0.9.

BETA2

Specifies a value for the beta2 parameter. This value must be greater than or
equal to 0 (zero) and less than or equal to 1.

The default value is 0.999.

EPSILON

Specifies a value for the epsilon parameter. This value must be greater than
or equal to 0 (zero)

The default value for OPTIMIZER=ADAM is 1.0E-8.

LEARNINGRATE

Specifies a fixed learning rate.

Reference for language elements
Version 4.1

3282

This option cannot be specified with LEARNINGRATES. This value must be
greater than or equal to 0 (zero).

The default value is 0.001.

LEARNINGRATES

Specifies a learning rate schedule as a series of number pairs. Each pair
contains a minibatch number and a learning rate. The pairs must be specified
in order of increasing minibatch number. The learning rates are linearly
interpolated between adjacent number pairs.

This option cannot be specified with LEARNINGRATE. The value of each
number in the pair must be greater than or equal to 0 (zero).

MINIBATCHSIZE

Specifies the number of observations in each minibatch. This value must be
an integer greater than 0 (zero) and less than or equal to INT_MAX.

The default value is 128.

MINIBATCHTYPE

Specifies how observations are selected for minibatches.

The default selection method is DYNAMIC.

BOOTSTRAP

Specifies that observations are selected randomly with replacement.

DYNAMIC

Specifies that observations are selected randomly without replacement.

STATIC

Specifies that observations are selected in the order they appear in the
input dataset.

Reference for language elements
Version 4.1

3283

NADAM

NADAM

(

BETA1 = beta1

BETA2 = beta2

EPSILON = epsilon

LEARNINGRATE = rate

LEARNINGRATES = (

,

(minibatch , rate))

MINIBATCHSIZE = minibatch- size

MINIBATCHTYPE = BOOTSTRAP

DYNAMIC

STATIC

)

Specifies a version of the ADAM optimiser method that incorporates Nesterov
momentum. Minibatch learning algorithms are best suited to training networks on
large or highly redundant datasets.

BETA1

Specifies a value for the beta1 parameter. This value must be greater than or
equal to 0 (zero) and less than or equal to 1.

The default value is 0.9.

BETA2

Specifies a value for the beta2 parameter. This value must be greater than or
equal to 0 (zero) and less than or equal to 1.

The default value is 0.999.

EPSILON

Specifies a value for the epsilon parameter. This value must be greater than
or equal to 0 (zero)

The default value for OPTIMIZER=NADAM is 1.0E-8.

LEARNINGRATE

Specifies a fixed learning rate.

This option cannot be specified with LEARNINGRATES. This value must be
greater than or equal to 0 (zero).

The default value is 0.001.

Reference for language elements
Version 4.1

3284

LEARNINGRATES

Specifies a learning rate schedule as a series of number pairs. Each pair
contains a minibatch number and a learning rate. The pairs must be specified
in order of increasing minibatch number. The learning rates are linearly
interpolated between adjacent number pairs.

This option cannot be specified with LEARNINGRATE. The value of each
number in the pair must be greater than or equal to 0 (zero).

MINIBATCHSIZE

Specifies the number of observations in each minibatch. This value must be
an integer greater than 0 (zero) and less than or equal to INT_MAX.

The default value is 128.

MINIBATCHTYPE

Specifies how observations are selected for minibatches.

The default selection method is DYNAMIC.

BOOTSTRAP

Specifies that observations are selected randomly with replacement.

DYNAMIC

Specifies that observations are selected randomly without replacement.

STATIC

Specifies that observations are selected in the order they appear in the
input dataset.

RMSPROP

RMSPROP

(

EPSILON = epsilon

LEARNINGRATE = rate

LEARNINGRATES = (

,

(minibatch , rate))

MINIBATCHSIZE = minibatch- size

MINIBATCHTYPE = BOOTSTRAP

DYNAMIC

STATIC

SMOOTHINGFACTOR = factor

)

Reference for language elements
Version 4.1

3285

Specifies an adaptive step size minibatch learning algorithm.

EPSILON

Specifies a value for the epsilon parameter. This value must be greater than
or equal to 0 (zero)

The default value for OPTIMIZER=RMSPROP is 1.0E-8.

LEARNINGRATE

Specifies a fixed learning rate.

This option cannot be specified with LEARNINGRATES. This value must be
greater than or equal to 0 (zero).

The default value is 0.001.

LEARNINGRATES

Specifies a learning rate schedule as a series of number pairs. Each pair
contains a minibatch number and a learning rate. The pairs must be specified
in order of increasing minibatch number. The learning rates are linearly
interpolated between adjacent number pairs.

This option cannot be specified with LEARNINGRATE. The value of each
number in the pair must be greater than or equal to 0 (zero).

MINIBATCHSIZE

Specifies the number of observations in each minibatch. This value must be
an integer greater than 0 (zero) and less than or equal to INT_MAX.

The default value is 128.

MINIBATCHTYPE

Specifies how observations are selected for minibatches.

The default selection method is DYNAMIC.

BOOTSTRAP

Specifies that observations are selected randomly with replacement.

DYNAMIC

Specifies that observations are selected randomly without replacement.

STATIC

Specifies that observations are selected in the order they appear in the
input dataset.

Reference for language elements
Version 4.1

3286

SMOOTHINGFACTOR

Specifies a value for the smoothing factor. This value must be greater than or
equal to 0 (zero) and less than or equal to 1.

The default value for OPTIMIZER=RMSPROP is 0.9.

RPROP

RPROP

(

AUTOMATEMINDELTA = TRUE

FALSE

ETAMINUS = eta- minus

ETAPLUS = eta- plus

INITIALDELTA = init ial- delta

MAXDELTA = maximum- delta

MINDELTA = minimum- delta

)

Specifies a variant of the adaptive step size full batch learning algorithm iRProp+.
Full batch learning algorithms are best suited to training networks on datasets that
are small or have very little redundancy.

AUTOMATEMINDELTA
Specifies the minimum step size. If no value is specified, the default is TRUE.

FALSE
Specifies MINDELTA as the minimum step size for all weights.

TRUE
Specifies that the minimum step size should vary with parameter size.

ETAMINUS
Specifies the factor by which the step size is reduced. This value must be
greater than or equal to 0 (zero). If no value is specified, the default of 0.5 is
used.

ETAPLUS
Specifies the factor by which the step size is increased. This value must be
greater than or equal to 0 (zero). If no value is specified, the default of 1.2 is
used.

INITIALDELTA
Specifies the initial step size. This value must be greater than or equal to 0
(zero). If no value is specified, the default of 0.1 is used.

Reference for language elements
Version 4.1

3287

MAXDELTA
Specifies the maximum step size. This value must be greater than or equal
to 0 (zero). If no value is specified, the default of 0.1 is used.

MINDELTA
Specifies the minimum step size. This value must be greater than or equal
to 0 (zero). If not specified, the value of DBL_MIN (the smallest positive
double precision floating point value) is used.

SGD

SGD

(

LEARNINGRATE = rate

LEARNINGRATES = (

,

(minibatch , rate))

MINIBATCHSIZE = size

MINIBATCHTYPE = BOOTSTRAP

DYNAMIC

STATIC

MOMENTUM = CLASSICAL

NESTEROV

(value)

)

Specifies a fixed step size minibatch learning algorithm that supports both classical
and Nesterov momentum. Minibatch learning algorithms are best suited to training
networks on large or highly redundant datasets.

LEARNINGRATE

Specifies a fixed learning rate.

This option cannot be specified with LEARNINGRATES. This value must be
greater than or equal to 0 (zero).

The default value is 0.001.

LEARNINGRATES

Specifies a learning rate schedule as a series of number pairs. Each pair
contains a minibatch number and a learning rate. The pairs must be specified
in order of increasing minibatch number. The learning rates are linearly
interpolated between adjacent number pairs.

This option cannot be specified with LEARNINGRATE. The value of each
number in the pair must be greater than or equal to 0 (zero).

Reference for language elements
Version 4.1

3288

MINIBATCHSIZE

Specifies the number of observations in each minibatch. This value must be
an integer greater than 0 (zero) and less than or equal to INT_MAX.

The default value is 128.

MINIBATCHTYPE

Specifies how observations are selected for minibatches.

The default selection method is DYNAMIC.

BOOTSTRAP

Specifies that observations are selected randomly with replacement.

DYNAMIC

Specifies that observations are selected randomly without replacement.

STATIC

Specifies that observations are selected in the order they appear in the
input dataset.

MOMENTUM
Specifies the type of momentum and the value of the momentum parameter.

SMORMS3

SMORMS3

(

EPSILON = epsilon

LEARNINGRATE = rate

LEARNINGRATES = (

,

(minibatch , rate))

MINIBATCHSIZE = minibatch- size

MINIBATCHTYPE = BOOTSTRAP

DYNAMIC

STATIC

)

Specifies an adaptive step size minibatch learning algorithm that automatically
adjusts the amount of smoothing.

EPSILON

Specifies a value for the epsilon parameter. This value must be greater than
or equal to 0 (zero)

Reference for language elements
Version 4.1

3289

LEARNINGRATE

Specifies a fixed learning rate.

This option cannot be specified with LEARNINGRATES. This value must be
greater than or equal to 0 (zero).

The default value is 0.001.

LEARNINGRATES

Specifies a learning rate schedule as a series of number pairs. Each pair
contains a minibatch number and a learning rate. The pairs must be specified
in order of increasing minibatch number. The learning rates are linearly
interpolated between adjacent number pairs.

This option cannot be specified with LEARNINGRATE. The value of each
number in the pair must be greater than or equal to 0 (zero).

MINIBATCHSIZE

Specifies the number of observations in each minibatch. This value must be
an integer greater than 0 (zero) and less than or equal to INT_MAX.

The default value is 128.

MINIBATCHTYPE

Specifies how observations are selected for minibatches.

The default selection method is DYNAMIC.

BOOTSTRAP

Specifies that observations are selected randomly with replacement.

DYNAMIC

Specifies that observations are selected randomly without replacement.

STATIC

Specifies that observations are selected in the order they appear in the
input dataset.

OUTPUT

OUTPUT = activation- function

Reference for language elements
Version 4.1

3290

activation-function

ABS

ARCTAN

CUMULATIVEGAUSSIAN

CUMULATIVEGOMPERTZ

CUMULATIVELAPLACE

ELLIOTT

EXPONENTIAL

EXPONENTIALLINEAR

GAUSSIAN

GOMPERTZ

HEAVISIDE

LAPLACE

LEAKYRECTIFIEDLINEAR

LINEAR

LOGISTIC

LOGISTICPRECISE

RAMP

RECIPROCALLINEAR

RECTIFIEDLINEAR

SIN

SINC

SOFTABS

SOFTMAX

SOFTPLUS

SOFTSIGN

SOFTSTEP

SQUAREABS

SQUARE

TANH

TANHPRECISE

Specifies the activation function for the output layer.

The range of the output layer activation function specified using the OUTPUT option of the
MODEL statement must not exceed the domain of the error function specified using the
ERROR option of the MODEL statement. For example, OUTPUT=LINEAR cannot be used
with ERROR=CROSSENTROPY because the LINEAR function can generate positive and
negative numbers, but the CROSSENTROPY function can only process positive numbers.

For classification response variables, the default value is SOFTMAX. For non-classification
response variables, the default value is LINEAR.

Reference for language elements
Version 4.1

3291

For more information about the activation functions, see Activation functions (page
3294).

PREPROCESS

PREPROCESS = preprocess- function

Specifies the preprocessing function to be applied to non-categorical effect variables.
The default function is MEANANDVARIANCE.

preprocess-function
The following preprocess-function options are supported.

MEANANDVARIANCE

MEANANDVARIANCE

(

MEAN = mean- value

VARIANCE = variance- value

)

Specifies that the values of each input variable are scaled to have the specified
MEAN and VARIANCE.

MEAN
The mean of the transformed variable values.
The default value is 0.0.

VARIANCE
The variance of the transformed variable values.
The default value is 1.0.

MINANDMAX

MINANDMAX

(

CLIP = FALSE

TRUE

MIN = minimum- value

MAX = maximum- value

)

Specifies that the values of each effect variable are linearly transformed to lie
between the specified minimum and maximum values. The minimum value of each
variable in the training dataset is scaled to MIN, the maximum value is scaled to MAX
and all other values are linearly interpolated between these two values.

Reference for language elements
Version 4.1

3292

CLIP
Specifies how new values of each input variable are transformed if they lie
below the minimum value found for the variable in the original training dataset,
or above the maximum value found for the variable in the original training
dataset. CLIP=TRUE specifies that all values below the minimum value are
scaled to MIN and all values above the maximum value are scaled to MAX.
CLIP=FALSE specifies that values outside the range found in the training
dataset are linearly extrapolated using the same scaling as originally used.
The default value is FALSE.

MAX
The maximum value for the transformed variable values.
The default value is 1.0.

MIN
The minimum value for the transformed variable values.
The default value is -1.0.

SCALEANDOFFSET

SCALEANDOFFSET

(

SCALE = scale- value

OFFSET = offset- value

)

Specifies that the values of each input variable are transformed by subtracting the
offset value from the variable value and then multiplying it by the scale value.

SCALE
The scale value to use for the transformation. This value must be greater than
or equal to -DBL_MAX and less than or equal to DBL_MAX. SCALE cannot be
equal to 0 (zero).
The default value is 1.0.

OFFSET
The offset value to use for the transformation. This value must be greater than
or equal to -DBL_MAX and less than or equal to DBL_MAX.
The default value is 0.0.

REGULARIZER

REGULARIZER = regularizer- method

Specifies the type of regularisation to be used during training. You can use multiple
REGULARIZER statements, so that more than one type of regularisation can be applied
simultaneously.

Reference for language elements
Version 4.1

3293

If this option is not specified, no regulariser is used.

DROPOUT

DROPOUT (

PROBABILITY = probability

)

Specifies that dropout regularisation should be used on all hidden layers and that neurons
will be dropped out during training with the specified probability. A seed for the dropout
process can be specified to ensure repeatability. Only one dropout regulariser can be
specified and dropout regularisation may only be used with minibatch optimizers.

PROBABILITY
Specifies the probability of neurons being dropped out during training. This value
must be greater than 0 (zero) and less than 1.
The default value is 0.5.

LNNORM

LNNORM (

STRENGTH = strength POWER = power

)

Specifies that a norm-based regulariser be applied to all non-bias weights. The STRENGTH
option specifies the strength of the regulariser and the POWER option specifies its power.
A strong L2-norm regulariser, for example, might have STRENGTH=1.0 and POWER=2.0,
while a weak L1-norm regulariser might have STRENGTH=1.0E-6 and POWER=1.0.

STRENGTH
Specifies the strength of the regulariser. This value must be greater than 0 (zero).
The default value is 0.0, which means there is no regularisation effect.

POWER
Specifies the power of the regulariser. This value must be greater than 0 (zero).
The default value is 2.0.

TERMINATEONCOMLETESEPARATION

TERMINATEONCOMLETESEPARATION = TRUE

FALSE

Specifies whether training terminates if the network is able to completely separate the different
levels of the response variable in the training dataset.
By default, training is not terminated if the network reaches the state where the training data is
completely separated.

Reference for language elements
Version 4.1

3294

TERMINATEONPARTIALSEPARATION

TERMINATEONPARTIALSEPARATION = TRUE

FALSE

Specifies whether training terminates if the network is able to partially separate the different
levels of the response variable in the training dataset (that is, the observations are either
completely separated by a threshold value, or are on the threshold value).
By default, training is not terminated if the network reaches the state where the training data is
partially separated.

TRAININGHISTORYUPDATEINTERVAL

TRAININGHISTORYUPDATEINTERVAL = t raining- history- update- interval

Specifies the interval between epochs in the training history record.
The default value is 1000.

VALIDATIONINTERVAL

VALIDATIONINTERVAL = validat ion- interval

Specifies the interval between validation set assessments. If OPTIMIZER = RPROP is selected,
the interval is interpreted as a number of epochs. For all other optimisers, the interval is
interpreted as a number of minibatches. This value must be an integer greater than 0 (zero).
The default validation interval value is 1.

Activation functions
An activation function specifies how the activity of a neuron is calculated from its post-synaptic
potential .

The following activation functions are available:

ABS

ARCTAN

CUMULATIVEGAUSSIAN

CUMULATIVEGOMPERTZ

CUMULATIVELAPLACE

Reference for language elements
Version 4.1

3295

ELLIOTT

EXPONENTIAL

EXPONENTIALLINEAR

GAUSSIAN

GOMPERTZ

HEAVISIDE

LAPLACE

LEAKYRECTIFIEDLINEAR

LINEAR

LOGISTIC

LOGISTICPRECISE

Calculated to a higher precision than the LOGISTIC
activation function.

RAMP

RECIPROCALLINEAR

RECTIFIEDLINEAR

SIN

SINC

Reference for language elements
Version 4.1

3296

SOFTABS

SOFTMAX

where is the number of network outputs.

SOFTPLUS

SOFTSIGN

SOFTSTEP

SQUAREABS

SQUARE

TANH

TANHPRECISE

Calculated to a higher precision than the TANH
activation function.

OUTPUT
Creates an output dataset containing the input observations and the MLP outputs.

OUTPUT options ;

Options
The following options are available:

OUT

OUT = dataset

Reference for language elements
Version 4.1

3297

Specifies the name of the output dataset.

If OUT is not specified, the procedure creates the dataset as DATAn in the WORK library, where n
is incremented for each output dataset.

OUTPUTHIDDENACTIVITIES

OUTPUTHIDDENACTIVITIES

Specifies that the activities of hidden neurons are included.

OUTPUTINPUTACTIVITIES

OUTPUTINPUTACTIVITIES

Specifies that the activities of input neurons are included.

OPTIMALBIN procedure
The OPTIMALBIN procedure enables you to perform optimal binning on an input dataset.

About optimal binning
Optimal binning allows you to group observations into partitions (bins) according to the value of an input
(predictor) variable in a way that the grouped values are still good predictors of the target (or response)
variable.

For a discrete variable, the partitions are subsets of the possible values. For a continuous variable, the
partitions are contiguous ranges of values.

Many data mining techniques become inefficient when one or more predictor variables have a large
number of possible values. Optimal binning enables you to partition these variables into fewer groups in
a way that maintains the predictive power of the original data.

PROC OPTIMALBIN uses algorithms developed by Raymond Anderson for partitioning the values
of an input variable (Anderson,R. The Credit Scoring Toolkit, Oxford Press, 2007) and measures of
predictive power developed by Mamdouh Reefat (Reefat, M. Credit Risk Scorecards: Development and
Implementation Using SAS, Lulu.com, 2016).

The binning process for each variable works in two phases:

1. Fine classing. In this phase, significant values are grouped together into bins which are as evenly-
sized as possible. No predictive power measure is used.

Reference for language elements
Version 4.1

3298

2. Coarse classing. In this phase, an iterative process uses the predictive power measure to determine
the best pair of bins to merge together in each iteration. The process terminates when the specified
stopping criteria apply.

PROC OPTIMALBIN allows you to specify one or more predictor variables in the input dataset, the
target variable that you want to predict and the options that control the binning strategy to use. The
optimal binning for each input variable is calculated independently of the other input variables. For
each input variable, you can specify the number of bins to create in the fine classing phase and the
maximum number of bins allowed in the coarse classing phase. You can also specify the predictive
power measure to use and the various stopping criteria values (for example, when the minimum bin
size is reached, or when the further grouping on that variable would not significantly improve the
predictive power of the data).

The output shows, among other things, the optimal partitioning for each input variable, and the
predictive power of the dataset if the observations were grouped in that way using that variable. You
can examine the results to determine the best binning strategy to use on your data.

Predictive power criteria
Predictive power is a way of measuring how well a particular input variable can predict the target
variable.

Pearson's Chi-Squared statistic
Pearson’s Chi-squared statistic is a measure of the likelihood that the value of the target variable is
related to the value of the predictor variable.

Each observation in the dataset is allocated to a cell in a contingency table, according to the values of
the predictor and target variables. Pearson’s Chi-squared statistic is calculated as the normalised sum
of the squared deviations between the actual number of observations in each cell, and the expected
number of observations in each cell if there were no relationship between the predictor and target
variables.

If a predictor variable has a high Pearson’s Chi-squared statistic, it means that the variable is a good
predictor of the target variable, and is likely to be a good candidate to use to split the data in a binning
or tree-building algorithm.

Pearson’s Chi-squared statistic for a discrete target variable is calculated as

where:

• is the total number of observations in the dataset

Reference for language elements
Version 4.1

3299

• is the number of distinct values of the predictor variable (these are the rows in the contingency
table)

• is the number of distinct, discrete values of the target variable (these are the columns in the
contingency table)

• is the number of observations for which the predictor variable has the th value, , and
the target variable has the th value, (these are the values in the cells of the contingency
table)

• is the total number of observations for which the predictor variable has the th value,

• is the total number of observations for which the target variable has the th value,

• is the expected value of , calculated as

Entropy Variance
Entropy variance is a measure of how well the value of a predictor variable can predict the value of the
target variable.

If a variable in a dataset has a high entropy variance, it means that the variable is a good predictor
of the target variable, and is likely to be a good candidate to use to split the data in a binning or tree-
building algorithm.

Entropy variance for a discrete target variable is calculated as

where:

• is the total number of observations in the dataset
• is the number of distinct values of the predictor variable,
• is the number of distinct, discrete values of the target variable,
• is the number of observations for which the predictor variable has the th value, , and

the target variable has the th value,

• is the total number of observations for which the predictor variable has the th value,

• is the total number of observations for which the target variable has the th value,

• is the entropy calculated for just the observations where the predictor variable is , calculated
as

Reference for language elements
Version 4.1

3300

• is the entropy calculated for all the observations, calculated as

Gini Variance
Gini variance is a measure of how well the value of a predictor variable can predict the target variable.

If a variable in a dataset has a high Gini variance, it means that the variable is a good predictor of the
target variable, and is likely to be a good candidate to use to split the data in a binning or tree-building
algorithm.

Gini variance for a discrete target variable is calculated as

where

• is the total number of observations in the dataset
• is the number of distinct values of the predictor variable,
• is the number of distinct, discrete values of the target variable,
• is the number of observations for which the predictor variable has the th value, , and

the target variable has the th value,

• is the total number of observations for which the predictor variable has the th value,

• is the total number of observations for which the target variable has the th value,

• is the Gini impurity calculated for just the observations where the predictor variable is ,
calculated as

• is the Gini impurity calculated for all the observations, calculated as

Information value
Information value is a measure of the likelihood that the value of the target variable is related to the
value of the predictor variable. The information value measure is only applicable for binary target
variables (that is, target variables that can take one of exactly two values).

Reference for language elements
Version 4.1

3301

If a predictor variable has a high information value, it means that the variable is a good predictor of the
target variable, and is likely to be a good candidate to use to split the data in a binning or tree-building
algorithm.

The information value statistic is calculated as

where:

• is the number of distinct, discrete values of the predictor variable (these are the rows in the
contingency table)

• and are the two possible values of the binary target variable

• is the number of observations for which the predictor variable has the th value, , and
the target variable has the value, (these are the values in the cells of the column in the
contingency table)

• is the number of observations for which the predictor variable has the th value, , and
the target variable has the value, (these are the values in the cells of the column in the
contingency table)

• is the total number of observations for which the target variable has the value,

• is the total number of observations for which the target variable has the value,

• is the weight of evidence (WOE) adjustment, a small positive number to avoid infinite values
when or

• is the WOE value for observations where the predictor variable is , calculated as

Using the OPTIMALBIN procedure
This example shows how to use PROC OPTIMALBIN to determine the optimal binning strategy for a
dataset.

This example uses a simple dataset containing a sample of 100 people and their age, salary, make of
car, whether they own a dog and whether they have defaulted on a loan. In this simple example, the
OPTIMALBIN procedure is used to determine the following information, for each of the variables, age,
salary and car:

• how effective the variable is at predicting whether that person has defaulted on a loan (the predictive
power of the variable)

• the best way to group values of that variable in the analysis to make the data simpler to handle but
ensure the best predictive power (the optimal binning strategy).

Reference for language elements
Version 4.1

3302

Dataset
This example uses the dataset loanData, which contains the following observations:

Age Salary Car Dog Loan Default
21 21325 Ford 1 0
21 30154 Ford 0 0
21 52389 Ford 0 1
22 59703 Ford 0 0
22 34264 Ford 0 1
22 9720 . 0 0
22 43123 Ford 0 0
22 65111 Ford 0 0
23 48437 Ford 0 0
24 3748 . 0 0
24 42226 Ford 0 1
24 36632 Ford 0 1
25 48310 Ford 1 0
25 27238 Ford 1 0
26 25927 Ford 0 0
26 59457 Nissan 0 0
26 39058 Nissan 0 0
27 66886 Nissan 0 1
28 62063 Nissan 1 0
29 55120 Nissan 0 0
30 67674 Nissan 0 0
32 7598 Ford 0 0
33 15708 Ford 1 0
33 53192 Nissan 0 0
33 44778 Nissan 1 0
34 9123 Ford 0 0
36 93027 Volvo 0 0
36 53889 Volvo 0 0
37 106263 Volvo 0 0
41 44477 Volvo 0 1
41 34316 Nissan 1 1
42 68092 Volvo 1 0
42 59812 Volvo 0 0
42 109801 Volvo 0 1
43 67401 Volvo 0 0
43 119848 Volvo 0 0
43 29937 Ford 0 0
43 83910 Volvo 0 0
44 69805 Volvo 0 0
44 10185 Ford 0 0
44 70349 Volvo 0 1
45 108497 Volvo 1 0
45 18964 Ford 1 0
45 63852 Volvo 0 0
45 60078 Volvo 1 0
46 110470 VW 0 0
46 94727 VW 0 0
46 120335 VW 0 0
47 135657 VW 0 1
47 117581 VW 0 0
47 124175 VW 0 0
47 21844 Ford 0 1
47 23676 Ford 0 1
48 80039 VW 0 0
48 49712 Volvo 0 0

Reference for language elements
Version 4.1

3303

49 42996 Volvo 1 0
50 24927 Ford 0 0
50 143032 VW 1 0
50 3377 Ford 0 0
51 100965 BMW 0 1
52 109383 BMW 0 0
52 152770 BMW 1 0
52 101555 BMW 0 0
52 95710 VW 0 0
52 147672 BMW 1 1
54 52246 Volvo 0 0
54 81418 VW 0 0
54 22060 Ford 0 1
54 115577 BMW 0 0
55 59722 Volvo 0 1
56 164395 BMW 0 0
56 157190 BMW 0 1
56 17268 Ford 0 0
56 60255 Volvo 0 0
56 162720 BMW 0 0
58 163492 BMW 0 0
59 114415 BMW 0 1
59 134879 BMW 0 0
59 33462 Nissan 0 1
60 7823 Ford 0 0
60 134460 BMW 0 0
61 773 Ford 0 0
64 30254 Nissan 0 0
64 154860 BMW 0 0
64 58275 Volvo 0 0
64 122884 BMW 0 0
65 138848 BMW 0 0
65 123111 BMW 1 0
66 147121 BMW 0 0
66 188638 BMW 0 0
66 165768 BMW 1 0
66 89132 VW 0 1
66 144425 BMW 0 0
68 91219 VW 0 0
68 193010 BMW 0 0
68 39799 Nissan 1 0
68 41234 Volvo 0 0
69 33319 Nissan 1 1
69 180753 BMW 1 0
70 16219 Ford 1 0

Reference for language elements
Version 4.1

3304

Code example
The model defines age, salary, and car as input variables. age is an ordinal variable (it contains
discrete values with an implicit ordering), salary is an interval variable (it can be regarded as
continuous) and car is a nominal variable (it contains discrete values with no implicit ordering). The
variable that the binning strategy needs to predict is loan_default. The binning strategy is GINIVAR
(the predictive power is measured using Gini Variance). The output shows the predictive power of each
variable and the optimal bins that should be used to group values of this variable, if required.

PROC OPTIMALBIN
 DATA = loanData
 OUTSTATS = optbinstats_loanData
 CRITERION = GINIVAR
 OUTPUT = optbinout_loanData;
 INPUT age /LEVEL=ORDINAL;
 INPUT salary /LEVEL=INTERVAL;
 INPUT car /LEVEL=NOMINAL;
 TARGET loan_default / LEVEL=BINARY;
RUN;

Target Summary
The Target Summary table shows the target type that the optimal binning strategy is required to predict.
In this case, it's a discrete target with binary (yes or no) values.

 Target Summary
Discrete or continuous? Level type Number of categories Order type
 Descending?
__
DISCRETE BINARY 2 INTERNAL NO

Input Summary
The Input Summary table summarises the input variables, their types, categories and the values that
control the number of bins to try in the optimal binning algorithm.

Run Summary
The Run Summary table summarises information about the run, for example, the input dataset, the
binning criterion chosen, and the number of data items processed.

Performance
The Performance table lists each of the predictor variables, the number of bins each should be split into
for optimal predicative power and the value of the predictive power for this split. In this example, the
variable with the highest predictive power is salary, so, if the data in this dataset is grouped, salary
is the grouped variable that is most likely to be able to predict, on its own, whether someone will default

Reference for language elements
Version 4.1

3305

on a loan. Note that this procedure does not actually group the data or derive a model to use salary to
predict the likelihood of someone defaulting of their loan: it simply indicates how the data should best be
grouped to avoid losing information, and if it were grouped, how effective any predictions made from it
are likely to be.

Output dataset
The output dataset is a table that shows the optimal bin split for each variable. For ordinal and nominal
variables (age and make of car in this example) there is an observation for each discrete value that
appears in the input dataset, and a bin number for each. For example, the optimal binning for the age
variable would use 10 bins, and put ages 21, 22, 23 and 24 in bin 1, ages 25, 26 and 27 in bin 2 and so
on. The optimal binning for the make of car variable would put undefined values, BMW, and Volvo in bin
1, Nissan in bin 2 and Ford in bin 3.

For each continuous variable, for each of the bins in the optimal split, there is an entry for the lower
bound of the bin and an entry for the upper bound. For example, if the salary variable were used for
optimal binning, the lower bound of bin 1 is minus infinity, and the upper bound is £18,964.50. The
lower bound of bin 2 is £18,964.50 (the same as the upper bound of bin 1) and the upper bound of bin 2
is £30,254.01

NAME _BINIDX_ _TYPE_ VAR1 VAR2 VAR3
AGE 1 ORDINAL 21 .
AGE 1 ORDINAL 22 .
AGE 1 ORDINAL 23 .
AGE 1 ORDINAL 24 .
AGE 2 ORDINAL 25 .
AGE 2 ORDINAL 26 .
AGE 2 ORDINAL 27 .
AGE 3 ORDINAL 28 .
AGE 3 ORDINAL 29 .
AGE 3 ORDINAL 30 .
AGE 3 ORDINAL 32 .
AGE 3 ORDINAL 33 .
AGE 3 ORDINAL 34 .
AGE 3 ORDINAL 36 .
AGE 3 ORDINAL 37 .
AGE 4 ORDINAL 41 .
AGE 4 ORDINAL 42 .
AGE 4 ORDINAL 43 .
AGE 4 ORDINAL 44 .
AGE 5 ORDINAL 45 .
AGE 5 ORDINAL 46 .
AGE 6 ORDINAL 47 .
AGE 7 ORDINAL 48 .
AGE 7 ORDINAL 49 .
AGE 7 ORDINAL 50 .
AGE 8 ORDINAL 51 .
AGE 8 ORDINAL 52 .
AGE 8 ORDINAL 54 .
AGE 9 ORDINAL 55 .
AGE 9 ORDINAL 56 .
AGE 9 ORDINAL 58 .
AGE 9 ORDINAL 59 .
AGE 10 ORDINAL 60 .

Reference for language elements
Version 4.1

3306

AGE 10 ORDINAL 61 .
AGE 10 ORDINAL 64 .
AGE 10 ORDINAL 65 .
AGE 10 ORDINAL 66 .
AGE 10 ORDINAL 68 .
AGE 10 ORDINAL 69 .
AGE 10 ORDINAL 70 .
MAKE_OF_CAR 1 NOMINAL . .
MAKE_OF_CAR 1 NOMINAL BMW .
MAKE_OF_CAR 1 NOMINAL VW .
MAKE_OF_CAR 1 NOMINAL Volvo .
MAKE_OF_CAR 2 NOMINAL Nissan .
MAKE_OF_CAR 3 NOMINAL Ford .
SALARY 1 LOWER_BOUND -infty
SALARY 1 UPPER_BOUND 18963.50
SALARY 2 LOWER_BOUND 18963.50
SALARY 2 UPPER_BOUND 30254.01
SALARY 3 LOWER_BOUND 30254.01
SALARY 3 UPPER_BOUND 44477.39
SALARY 4 LOWER_BOUND 44477.39
SALARY 4 UPPER_BOUND 52389.30
SALARY 5 LOWER_BOUND 52389.30
SALARY 5 UPPER_BOUND 59703.34
SALARY 6 LOWER_BOUND 59703.34
SALARY 6 UPPER_BOUND 115576.81
SALARY 7 LOWER_BOUND 115576.81
SALARY 7 UPPER_BOUND 134879.20
SALARY 8 LOWER_BOUND 134879.20
SALARY 8 UPPER_BOUND 162720.37
SALARY 9 LOWER_BOUND 162720.37
SALARY 9 UPPER_BOUND infty

OPTIMALBIN procedure reference
Describes the syntax and options for PROC OPTIMALBIN and its contained statements.

PROC OPTIMALBIN ... 3307
Determines the optimal way to split a dataset into groups, while retaining the predictive power of
the dataset.

BY ..3310
Groups the observations in a dataset using the specified variables.

FREQ ...3311
Specifies a variable containing the frequency associated with an observation.

INPUT ..3311
Specifies the input variables to which measures of predictive power and the optimal binning
strategy are applied.

TARGET .. 3313
Specifies the target (dependent) variable and any options that apply to the variable.

WHERE ... 3315
Restricts the observations to be processed.

Reference for language elements
Version 4.1

3307

PROC OPTIMALBIN
Determines the optimal way to split a dataset into groups, while retaining the predictive power of the
dataset.

PROC OPTIMALBIN

options

;

Options
The following options are available:

CRITERION

CRITERION = CHISQR

CHISQUARED

CHI_SQUARED

ENTROPYVAR

ENTROPYVARIANCE

ENTROPY_VARIANCE

GINIVAR

GINIVARIANCE

GINI_VARIANCE

IV

INFOVAL

INFORMATIONVALUE

INFORMATION_VALUE

Specifies the split criterion used when performing optimal binning. The CRITERION specified
determines the way that predictive power is measured which in turn is used to determine the
optimal split strategy.

This option is mandatory and must be specified.

CHISQR
Specifies that Pearson's Chi-Squared Test is used to measure the predictive power of
variables. This option cannot be used with continuous target variables (that is, the TARGET
statement must not specify /LEVEL=INTERVAL).

ENTROPYVAR
Specifies that Entropy Variance is used to measure the predictive power of variables.

GINIVAR
Specifies that Gini Variance is used to measure the predictive power of variables by
measuring the strength of association between variables.

Reference for language elements
Version 4.1

3308

IV
Specifies that Information Value is used to measure the predictive power of variables. This
option can only be used with binary target variables (the TARGET statement specifies /
LEVEL=BINARY).

DATA

DATA = dataset

Specifies the input dataset. If an input dataset is not specified, the most recently-created dataset
is used.

EXCLUDEMISS

EXCLUDEMISS

Specifies that observations containing missing values are excluded when creating bins.

INBINS

INBINS = dataset

Specifies a dataset containing pre-calculated or specified bins from which the weight of evidence
(WoE) associated with a specified target variable is calculated.

If specified, the values in this dataset override the values computed directly from the specified
input file.

MAXPREDICTIVEPOWERCHANGE

MAXPREDICTIVEPOWERCHANGE

MAXPREDPWRCHANGE

= change

Specifies the maximum change allowed in the predictive power when optimally merging bins.

MERGEMISSINGBIN

MERGEMISSINGBIN

Specifies that missing values are considered a separate valid category when binning data.

MINBINSIZE

MINBINSIZE = size

Specifies the minimum number of observations in each bin. If a proposed split would create a bin
containing fewer than the specified minimum number of observations, the split does not occur.
The default value is 2.

Reference for language elements
Version 4.1

3309

MINBINSIZERATIO

MINBINSIZERATIO = rat io

Specifies the minimum size of each bin as a proportion of the number of input observations,
expressed as a percentage. If a proposed split would create a bin containing fewer than the
specified percentage of observations, the split does not occur. The default value is 5 (percent).

MONOTONEWOE

MONOTONEWOE

Ensures that the weight of evidence (WoE) value for ordered input variables is either
monotonically increasing or monotonically decreasing.

NOOPENLEFT

NOOPENLEFT

Specifies that when binning a continuous variable, the bin containing the very lowest values (the
bin on the far left) has a closed lower bound. Otherwise, the lower bound of the bin containing the
very lowest values is (minus infinity).

NOOPENRIGHT

NOOPENRIGHT

Specifies that when binning a continuous variable, the bin containing the very highest values (the
bin on the far right) has a closed upper bound. Otherwise, the upper bound of the bin containing
the very highest values is (infinity).

NOPRINT

NOPRINT

Specifies that no ODS output is created.

OUTPUT

OUTPUT = dataset

Specifies the output dataset that contains the optimal bin split.

OUTSTATS

OUTSTATS = dataset

Reference for language elements
Version 4.1

3310

Specifies the dataset that contains the output the summary statistics (the measures of predicted
power).

OUTSTATSONLY

OUTSTATSONLY

Specifies that only the measures of predicted power are calculated. No optimal binning of the
input variables takes place.

WOE

WOE

Specifies that the weight of evidence (WoE) table is calculated and added to the printed output.
This table contains the weight of evidence and information values associated with each of the
generated bins for the target variable. This option is ignored if OUTPUTSTATSONLY is specified.

WOEADJUST

WOEADJUST = adjustment

Specifies the adjustment applied in weight of evidence calculations to avoid invalid results for
pure inputs. This option is only valid if CRITERION=IV.

The default value of WOEADJUST is 1E-5.

BY
Groups the observations in a dataset using the specified variables.

BY variable ;

The specified variable or variables are used to separate the input data into groups. PROC OPTIMALBIN
generates a separate model from the data in each group.

If the BY statement is included, the input dataset must be presorted on the specified variable or
variables. If a variable is specified as an input variable in the INPUT statement, or as a target variable in
TARGET statement, it cannot also be specified in the BY statement.

Reference for language elements
Version 4.1

3311

FREQ
Specifies a variable containing the frequency associated with an observation.

FREQ

FREQUENCY

variable ;

INPUT
Specifies the input variables to which measures of predictive power and the optimal binning strategy are
applied.

IN

INPUT

variable

/ options

;

variable
A variable to which measures of predictive power and optimal binning are applied.

Options
The following options are available:

DESCENDING

DESCENDING

Specifies a descending sort order for the variable. This option only applies if ORDER=FORMATTED
or ORDER=INTERNAL is also specified, as the sort order cannot be explicitly determined from
these options. If not specified, the variable is assumed to be in ascending sort order.

If ORDER is not equal to FORMATTED or INTERNAL then the sort order for the variable is
determined by the ORDER option.

INITNUMBINS

INITNUMBINS = number- of- bins

Specifies the initial number of bins to use. The default initial number of bins is 50. The initial
number of bins must be between 2 and 1000.

Reference for language elements
Version 4.1

3312

LEVEL

LEVEL = INTERVAL

NOMINAL

ORDINAL

Specifies the level for the input variables. The default LEVEL value is INTERVAL.

INTERVAL
Specifies a continuous input variable with an implicit category ordering.

NOMINAL
Specifies a discrete input variable with no implicit ordering. When defining the optimal bins,
any categories can be merged together to generate the strategy.

ORDINAL
Specifies a discrete input variable with an implicit category ordering. When optimally
binning, only adjacent categories can be merged together to generate the strategy.

MAXNUMOPTBINS

MAXNUMOPTBINS = number- of- bins

Specifies the maximum number of optimal bins to use. The default maximum number of bins is
10. The specified number must be between 2 and 100.

ORDER

ORDER = ASCENDING

ASCFORMATTED

DATA

DSORDER

DESCENDING

DESFORMATTED

FORMATTED

INTERNAL

UNFORMATTED

Specifies the order of input variables. The default ORDER value is ASCENDING.

ASCENDING
The variable is sorted by ascending order of the raw value.

ASCFORMATTED
The variable is sorted by ascending order of the formatted value.

Reference for language elements
Version 4.1

3313

DATA
The variable is sorted by the order in which the values of the variable first occur when the
data is read.

DESCENDING
The variable is sorted by descending order of the raw value.

DESFORMATTED
The variable is sorted by descending order of the formatted value.

FORMATTED
The variable is sorted by the formatted value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

INTERNAL
The variable is sorted by the raw value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

TARGET
Specifies the target (dependent) variable and any options that apply to the variable.

TARGET variable

/ options

;

Only one TARGET statement is allowed in each PROC OPTIMALBIN statement. The TARGET statement
must contain a single variable.

Options
The following options are available:

DESCENDING

DESCENDING

Specifies a descending sort order for the variable. This option only applies if ORDER=FORMATTED
or ORDER=INTERNAL is also specified, as the sort order cannot be explicitly determined from
these options. If not specified, the variable is assumed to be in ascending sort order.

If ORDER is not equal to FORMATTED or INTERNAL then the sort order for the variable is
determined by the ORDER option.

Reference for language elements
Version 4.1

3314

LEVEL

LEVEL = INTERVAL

NOMINAL

ORDINAL

BINARY

Specifies the level for the target variable. The default LEVEL value is INTERVAL.

INTERVAL
Specifies a continuous target variable containing an implicit category ordering.

NOMINAL
Specifies a discrete target variable with no implicit ordering.

ORDINAL
Specifies a discrete target variable with an implicit category ordering.

BINARY
Specifies a target variable that can take one of two values.

ORDER

ORDER = ASCENDING

ASCFORMATTED

DATA

DESCENDING

DESFORMATTED

FORMATTED

INTERNAL

Specifies the order of the target variable. The default ORDER value is INTERNAL.

ASCENDING
The variable is sorted by ascending order of the raw value.

ASCFORMATTED
The variable is sorted by ascending order of the formatted value.

DATA
The variable is sorted by the order in which the values of the variable first occur when the
data is read.

DESCENDING
The variable is sorted by descending order of the raw value.

DESFORMATTED
The variable is sorted by descending order of the formatted value.

Reference for language elements
Version 4.1

3315

FORMATTED
The variable is sorted by the formatted value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

INTERNAL
The variable is sorted by the raw value. If the (separate) DESCENDING option is also
specified, the sort order is descending, otherwise, the sort order is ascending.

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

SEGMENT procedure
The SEGMENT procedure enables you to segment an input dataset to highlight similarities and
differences in the data.

About segmentation
Segmentation is a way of separating the observations in a dataset into a number of groups (or
segments) where the observations in each group tend to have similar characteristics and observations
in different groups tend to have different characteristics.

Segmentation allows you to visualise the common characteristics of the observations in each segment,
and see how they differ from the observations in the other segments.

The method is derived indirectly from a voting system proposed in the seventeenth century by a French
mathematician Condorcet. He suggested that voters should order all candidates by preference. These
orderings, he suggested, should then be converted to a series of pairs of the form: candidate x is
preferred to candidate y. The elected candidate would be the one who is preferred by the majority of
such pairings aggregated over all voters. It was not a very practical voting method before the age of
computers, but more recently, Pierre Michaud used the principle to segment literary texts according
to various properties of the texts. The method described here is based on that described by Michaud
(Michaud, 1995 [1])).

Reference for language elements
Version 4.1

3316

Although the method does not have a strong underlying statistical foundation, the results are intuitively
appealing to marketeers. It can be applied, for example, to subdivide large customer databases into
smaller groups with similar characteristics so products and marketing literature can be targeted at
particular market segments. The method has also found a useful niche for characterising groups who
have a high propensity to take particular actions, such as lapsing insurance policies.

In a perfect segmentation:

• all observations in the same segment have the same value for all variables specified for the
segmentation

• two observations in different segments have different values for each variable specified in the
segmentation.

This can be achieved for a segmentation on a single variable by creating one segment for each
possible value of that variable. But in practice, a segmentation will be based on more than one variable.
Then, if one variable is segmented perfectly, another variable is likely to have different values in the
same segment and the same value in different segments. For example, if all observations where
sex=male are in one segment and all observations where sex=female are in another segment, some
observations in the male segment may have eyes=blue and some may have eyes=brown. You
could separate the observations into further segments based on eye colour (for example, sex=male,
eyes=blue in one segment, and sex=male, eyes=brown in another) but now all observations where
sex=male are no longer in the same segment.

PROC SEGMENT attempts to maximise the similarities between observations in a segment and
maximise the differences between observations in different segments. For each variable in each
pair of observations, PROC SEGMENT calculates the degree of similarity between the two values of
the variable, then uses an iterative process to optimally allocate observations to segments. Initially,
observations are assigned to segments speculatively, then iteratively refined until there is no further
improvement in the similarity and difference scores.

Segmentation calculations
The segmentation calculations maximise the similarity between the observations in a segment and
maximise the differences between observations in different segments.

Suppose there are observations, to , with variables, where observation has values
 and observation has values .

The optimal segmentation allocates the observations to G segments, to for some value of G to
be determined, such that the similarity is maximised between values of variables in observations in the
same segment, and the difference is maximised between values of variables in different segments. The
function to maximise is calculated as:

where

Reference for language elements
Version 4.1

3317

• is a weighting factor for the kth variable, calculated for and . This value is

a combination of a variable-specific weighting constant for the kth variable and a value weighting
function that specifies the importance to attach to a particular pair of values, relative to other pairs of
values of values. For more information see Weighting factor (page 3321).

• is an indicator function with the value 1 if both observation and observation are
in segment and value 0 (zero) otherwise.

• is an indicator function with the value 1 if observation is in segment and
observation is not in segment and value 0 (zero) otherwise.

• is the value of the difference function for kth variable, calculated for the values
and . This function returns a value between 0 and 1 to indicate how different two values of a
variable are. A value of 0 (zero) indicates that the values are considered completely similar, and a
value of 1 indicates that the values are considered completely different. For more information about
the difference functions see Difference functions (page 3317).

The function above maximises the similarity, , for observations in the same segment

(when) and maximises the differences, , for observations in different

segments (when).

Difference functions
Difference functions measure the degree of difference or similarity between two values of a variable.

Comparing variable values
PROC SEGMENT provides several difference functions for comparing values of variables. The COMPARE
option on the INPUT statement determines the difference function that is used.

The COMPARE option also affects whether values of the variable are regarded as being from a discrete
set or a continuous range.

Depending on the COMPARE option chosen, the measure of the degree of difference may be binary (the
only possible values are 0 or 1), discrete (there are multiple possible distinct values between 0 and 1)
or continuous (any value between 0 and 1 is possible). A value of 0 (zero) indicates that the difference
function considers two values to be identical, and a value of 1 indicates that the difference function
considers two values to be completely different.

PROC SEGMENT supports the following COMPARE options for discrete variables:

• NOMINAL, for discrete variables that have no explicit ordering (for example, marital status). See
NOMINAL comparisons (page 3319).

• ORDINAL, for discrete variables that have an explicit ordering (for example, number of siblings). See
ORDINAL comparisons (page 3319).

Reference for language elements
Version 4.1

3318

• BANDED, for variables that have been grouped into a number of discrete, ordered bands (for
example, age ranges). See BANDED comparisons (page 3318).

PROC SEGMENT supports the following COMPARE options for continuous variables:

• ABSOLUTE. See ABSOLUTE comparisons (page 3318).
• RANK. See RANK comparisons (page 3319).
• RELATIVE. See RELATIVE comparisons (page 3320).

ABSOLUTE comparisons
The COMPARE=ABSOLUTE (low-difference, high-difference) option specifies that the
variable is treated as a continuous variable.

The difference between two values is a function of the absolute difference between the two values.
low-difference specifies the absolute difference below which two values are considered identical,
with a difference value of 0 (zero). high-difference specifies the absolute difference above which two
values are considered completely different, with a difference value of 1. Pairs of values with absolute
differences between low-difference and high-difference have difference values calculated linearly
between 0 and 1.

The difference function is:

where

• is the specified low-difference
• is the specified high-difference.

BANDED comparisons
The COMPARE=BANDED option specifies that the variable is treated as a discrete variable.

The difference between two values is measured by the estimated proportion of the population between
the two values. Two values in the same band have a difference value of slightly greater than 0. Two
values, where one is in the lowest band and the other is in the highest band, have a difference value
of slightly less than 1. This reflects that fact that the underlying values are likely to be slightly different,
although they are in the same band.

The difference function is:

Reference for language elements
Version 4.1

3319

where:

• is the proportion of the population with value

• is the proportion of the population with value

• .

NOMINAL comparisons
The COMPARE=NOMINAL option specifies that the variable is treated as a discrete variable with no
implicit ordering.

Two values are considered identical, with a difference value of 0 (zero), if they are identical. Otherwise
they are considered completely different, with a difference value of 1.

The difference function is:

ORDINAL comparisons
The COMPARE=ORDINAL option specifies that the variable is treated as a discrete variable with an
implicit ordering.

Two values are considered identical, with a difference value if 0 (zero), if they are identical. Two values
are considered completely different, with a difference value of 1, if one is in the lowest category and
one is in the highest category. Otherwise the difference is measured by the fraction of the number of
categories between them.

The difference function is:

where:

• m is the number of different values of the variable X
• is the position of the value of in the ordered list of categories

• is the position of the value of in the ordered list of categories.

RANK comparisons
The COMPARE=RANK (low-difference, high-difference) option specifies that the variable is
treated as a continuous variable.

Reference for language elements
Version 4.1

3320

The difference between two values is measured by the proportion of the population between the two
values. low-difference specifies the proportion of the population below which two values are considered
identical, with a difference value of 0 (zero). high-difference specifies the proportion of the population
above which two values are considered completely different, with a difference value of 1. Pairs of
values with differences between low-difference and high-difference have difference values calculated
linearly between 0 and 1.

The difference function is:

where:

• is the proportion of the population less than

• is the proportion of the population less than

• is the specified low-difference
• is the specified high-difference.

RELATIVE comparisons
The COMPARE=RELATIVE(base-value, epsilon) option specifies that the variable is treated as a
continuous variable.

The difference between two values is determined by comparing their absolute difference with a value
based on the root mean square of the two values. If the absolute difference is less than the root mean
square value, the two values are considered identical, with a difference value of value of 0 (zero). If
the absolute difference is equal to the root mean square value, the difference value is 0.5. Otherwise,
the two values are considered completely different with a difference value of 1. base-value specifies
an offset to apply to each value before calculating the root mean square, and epsilon specifies a scale
factor to apply to the calculated root mean square value before comparing it with the absolute value.

The difference function is:

where is the specified epsilon and is the specified base-value.

Reference for language elements
Version 4.1

3321

Weighting factor
The weighting factor specifies the importance to attach to similarities and differences between values of
a variable in pairs of observations.

The weighting factor is the product of a variable-specific weighting constant for the kth

variable and a value weighting function evaluated for and . That is:

where:

• is the variable-specific weight constant for the kth variable

• and are the values of the ith and jth variables respectively in the kth observation

• is the value of the value weighting function for the values and .

Variable-specific weight constant
The variable-specific weight constant is specified by the WEIGHT option of the INPUT statement. The
specified value is a numeric value that applies to a single variable. It specifies the degree of importance
to attach to similarities and differences in the value of that variable in the overall segmentation.

Similarities and differences between values of a variable with a lower weight constant contribute less
to the overall measure of similarity and difference than similarities and differences between values of a
variable with a higher weight constant.

Value weighting function
The value weighting function is specified by the WEIGHTING option of the PROC SEGMENT statement. It
specifies the degree of importance to attach to the similarity in or difference between a particular pair of
values of a variable, relative to other pairs of values of that variable.

For example, if a particular value of a variable is very common, it may be appropriate to give a lower
weight to the fact that it is the same in two observations. Whereas, if a particular value of a variable is
rare, the fact that the variable has the same value in two observations may be more significant.

PROC SEGMENT supports the following value weighting functions:

• CONSTANT weighting, where all agreements between variable values in pairs of observations
contribute an equal weight to the segmentation calculation.

• LOG weighting, where agreements between variable values in pairs of observations contribute a
weight to the segmentation calculation that is proportional to the negative logarithm of the probability
of that pairing occurring.

• PROBABILITY weighting, where agreements between variable values in pairs of observations
contribute a weight to the segmentation calculation that is inversely proportional to the probability of
that pairing occurring.

Reference for language elements
Version 4.1

3322

The LOG weighting option and the PROBABILITY weighting option are experimental.

CONSTANT weighting
All agreements between variable values in pairs of observations contribute an equal weight to the
segmentation calculation. This means that overall, common pairings contribute more weight to the
segmentation than uncommon pairings, because there are more of them.

The weighting function is 1 for all and .

LOG weighting
The values in all pairs of observations contribute a weight to the segmentation that is proportional to the
negative logarithm of the probability of that pairing occurring. This means that the effect of pairings of
values of a variable is proportional to the amount of information in that pairing.

The weighting function is:

where

• and are the values of the ith and jth variables respectively in the kth observation

• is the probability of the pair of values and occurring in the two randomly
chosen observations from the dataset

If the number of observations, , in the dataset is large enough, so that the difference between and
 can be ignored, can be calculated as:

where is the number of observations in the dataset with the value , and is the number of
observations in the dataset with the value .

PROBABILITY weighting
The values of the variables in all pairs of observations contribute a weight to the segmentation that
is inversely proportional to the probability of that pairing occurring. This means that rare pairings of
values of a variable have relatively more effect on the segmentation than common pairings, so overall,
every pairing of variables contributes an equal amount. Each instance of an uncommon pair of values
contributes more weight, but there are fewer of them. Similarly, each instance of a common pair of
values contributes less weight, but there are more of them.

The weighting function is:

where

Reference for language elements
Version 4.1

3323

• and are the values of the ith and jth variables respectively in the kth observation

• is the probability of the pair of values and occurring in the two randomly
chosen observations from the dataset.

If the number of observations, , in the dataset is large enough, so that the difference between and
 can be ignored, can be calculated as:

where is the number of observations in the dataset with the value , and is the number of
observations in the dataset with the value .

ODS Outputs
PROC SEGMENT ODS outputs include tables and plots.

By default, PROC SEGMENT produces a number of tables in ODS output which contain the
segmentation options, the segmentation completion status and a summary of the final segmentation.

There are options to output additional tables such as the distribution of the values of each variable
in each segment (option DISTRIBUTIONS) or the relative entropy of each variable in each segment
(option ENTROPY).

The output includes a set of summary plots for each segment. By default, the plots show the proportion
of the observations in the segment, the most significant variables in the segment, and the distribution of
those variables for the observations in the segment, compared with the distribution of those variables in
the population as a whole.

The most significant variables in a segment are those where the distribution of the values of the
variable in the segment is most dissimilar to the distribution of the values of the variable in the overall
population.

Scoring datasets
Once you have created a segmentation for a dataset, you can use it to score that dataset or another
dataset.

The SCORE statement takes the data in the specified dataset and scores it using the segmentation
defined in PROC SEGMENT. The score results are saved in a table which can be printed or saved in an
output dataset. For each observation in the dataset being scored, the score results show the segment
that the observation matches most closely, and the score (a measure of how similar that observation is
to the other observations in the segment).

Reference for language elements
Version 4.1

3324

Saving and reusing segmentation models
Once you have produced a segmentation there are several ways you can save and reuse it.

You can use PROC SEGMENT OUTMODEL to save the segmentation together with its controlling
parameters in a dataset. You can then use PROC SEGMENT INMODEL to score another dataset using
the saved segmentation.

You can also use PROC SEGMENT OUTEST to save the segmentation without the controlling
parameters in a dataset. You can then use PROC SEGMENT INEST to initialise the segmentation
process for another similar dataset, or to continue refining the original segmentation.

The OUTEST option differs from the OUTMODEL option in that OUTMODEL saves the segmentation
parameters, the distribution of the data used to create the segmentation and the segmentation of that
data, whereas OUTEST saves the distribution of the data used to create the segmentation and the
segmentation of that data, but not the segmentation parameters.

The saved output from OUTMODEL can be used directly to segment another dataset. When the
saved output is used in a new segmentation, the INPUT statement options are read from the saved
parameters.

When a dataset saved using OUTEST is used in a new segmentation, the INPUT statement options
are derived from the current INPUT statements and not from the INPUT statement options that were
specified when the OUTEST dataset was created. It is recommended that you specify the same INPUT
statements, although you do not have to.

Using the SEGMENT procedure
This example shows how to use PROC SEGMENT segment a dataset.

Example
This example describes how the SEGMENT procedure can be applied to the publicly-available Iris
dataset (Fisher, 1936 [4]).

The Iris dataset consists of measurements of the widths and lengths of the petals and sepals of three
species of Iris. PROC SEGMENT is used to separate the observations into segments with similar
sepal and petal widths and lengths. The output plots show how the distribution of measurements
for the observations in each segment compare with the overall population distribution and how the
observations from each species are allocated to each segments.

PROC SEGMENT DATA=iris DETAILS DIFFERENCES ENTROPY;
INPUT sepal_length sepal_width petal_length petal_width/COMPARE=RANK BINS=8;
INPUT species/REPORTONLY;
OUTPUT OUT= iris_segment SEGMENT=segment_out SCORE=score_value;
RUN;;

In this example:

Reference for language elements
Version 4.1

3325

• the four measurements, sepal_length, sepal_width, petal_length and petal_width are
specified as continuous input variables, each of which are split into eight bins and are compared
using RANK comparison

• the Iris species, species, is specified with the REPORTONLY option, which means that the variable
is not included in the segmentation optimisation calculations, but is shown in the segmentation plots

• as well as the default output tables, options DIFFERENCES, DETAILS, and ENTROPY specify that the
Differences, Details and Entropy tables are output

• the observations, the allocated segments and the score values are written to an output dataset,
iris_segment, in the WORK library.

Segment Information
The Segment Information table records the dataset being segmented, and the general weighting
option used.

In this example, no explicit WEIGHTING option was specified, so the default CONSTANT weighting was
used.

 Segmentation Information

 Description Value

 Data Set iris
 Weighting Constant

Segment Variable Information
The Segment Variable Information table lists the variables used in the segmentation, their types
and the comparison methods chosen. In this example, the species variable has been included in the
segmentation but is not active in the segmentation calculations.

 Segment Variable Information
 Equality
 Variable Active Type Rule
 __
 sepal_length Yes Continuous Rank
 sepal_width Yes Continuous Rank
 petal_length Yes Continuous Rank
 petal_width Yes Continuous Rank
 species Discrete Nominal

Differences
The Differences tables show, for each input variable, the calculated differences between values
of that variable in pairs of observations. There is a Differences table for each active input variable. In
this example, all the input variables are continuous and each is split into eight bins. So the Differences
tables show the calculated differences between values in each of the eight bins.

The Differences table for petal_length is shown here. The other Differences tables are
similar.

Reference for language elements
Version 4.1

3326

In this Differences table:

• Pairs of observations with petal_length values in the same bin have a difference value of 0
(zero).

• Pairs of values in bins that are far apart have a difference value of 1. For example, a value in bin
2.5-< 3.25 and a value in bin 5.5-< 6.25 have a difference value of 1.

• Pairs of values in bins that are closer together have difference values between 0 and 1. For
example, a value in bin 3.25-< 4 and a value in bin 4-< 4.75 have a difference value of 0.288.

The Differences tables are only shown if the DIFFERENCES option is specified.

 Differences for petal_length

 1-< 1.75-< 2.5-< 3.25-< 4-< 4.75-< 5.5-< 6.25-<
petal_length 1.75 2.5 3.25 4 4.75 5.5 6.25 7
__
 1-< 1.75 0 0.335 0.366 0.442 0.73 1 1 1
 1.75-< 2.5 0.335 0 0.032 0.107 0.395 0.805 1 1
 2.5-< 3.25 0.366 0.032 0 0.075 0.364 0.774 1 1
 3.25-< 4 0.442 0.107 0.075 0 0.288 0.698 1 1
 4-< 4.75 0.73 0.395 0.364 0.288 0 0.41 0.738 0.918
 4.75-< 5.5 1 0.805 0.774 0.698 0.41 0 0.328 0.508
 5.5-< 6.25 1 1 1 1 0.738 0.328 0 0.18
 6.25-< 7 1 1 1 1 0.918 0.508 0.18 0

Segmentation Building Summary
The Segmentation Building Summary table shows the number of iterations in the segmentation
process and the segmentation status after each iteration. The Estimated total score is a
measure of the overall segmentation strength.

The Segmentation Building Summary table is only shown if the DETAILS option is specified.

 Segmentation Building Summary

 Estimated
 total
 Iteration Segments Movements score

 1 6 6 .
 2 3 147 0.6981
 3 4 5 0.6987
 4 3 6 0.7025
 5 3 0 0.7034

Reference for language elements
Version 4.1

3327

Segmentation Summary
The Segmentation Summary table shows the final distribution of observations in each segment. The
Strength value is a measure of the segmentation strength in each segment.

 Segmentation Summary

 Segment Members Strength
__
 1 63 0.643
 2 54 0.709
 3 33 0.726

Relative Entropy by Segment and Variable
The Relative Entropy by Segment and Variable table shows the relative entropy for each
variable in each segment. The values shown are measures of the difference between the distribution
of values for that variable in the segment and in the dataset as a whole. The larger the value for a
variable, the greater the difference between the values of that variable in the segment and the values
of that variable in the distribution as a whole. The calculated value is the Kullback–Leibler divergence
described by Kullback (Kullback, 1959 [3]).

 Relative Entropy by Segment and Variable

Segment sepal_length sepal_width petal_length petal_width species
__
 1 0.587 0.428 0.95 0.92 0.744
 2 1.138 0.562 1.365 1.359 1.204
 3 1.427 0.266 1.722 1.682 1.585

Segment Plots
There is a segment plot for each segment. Each plot shows the proportion of observations in that
segment, followed by a bar chart for each variable in the segmentation. Each bar chart shows the
distribution of values of that variable in that segment as a coloured bar and the distribution of values of
that variable in the population as a whole as a grey bar.

The bar charts are shown in order of significance of the variable in the segment. The most significant
variable in a segment is the one where the distribution of the values of the variable in the segment is
most dissimilar to the distribution of the values of the variable in the overall population.

In this example, the first segment contains 42% of the overall observations, the second segment
contains 36% of the observations and the third segment contains 22%.

The most significant variable in the first segment is petal_length (the Relative Entropy by
Segment and Variable table above shows that in segment 1, petal_length has a relative
entropy of 0.95, which is the highest value for that segment). Looking at the fifth bar of this histogram
(corresponding to bin 4-< 4.75, according to the Differences for petal_length table) you
can see that around 50% of the observations in this segment have a petal length in that range, whereas
only around 20% of observations in the overall population have that value. And, looking at the first bar
of this histogram, (bin 1-< 1.75) you can see that no observations in this segment have a petal length
in that range, but around 30% of observations in the overall population have that value.

Reference for language elements
Version 4.1

3328

In this example, you can see how the segmentation has split the observations into similar groups.
For example, the first segment has more mid-range values for petal_length, petal_width and
sepal_length than in the overall population, and more high values for sepal_width than in the
overall population. The second segment has more high values for petal_length, petal_width
and sepal_length than in the overall population, and more low values for sepal_width than in the
overall population. The third segment has more low values for petal_length, petal_width and
sepal_length than in the overall population, and more mid-range values for sepal_width than in
the overall population.

The final bar chart in each segment shows the distribution of values of the species variable in the
segment. This variable was specified as REPORTONLY, so was not considered in the segmentation
calculations. Here, you can see that, in the first segment, there are no Iris-setosa observations,
but around 75% of the observations are Iris-versicolor and around 25% of the observations are
Iris-virginica. In the second segment, almost all the observations are Iris-setosa, and in the
third segment, all the observations are Iris-virginica.

Reference for language elements
Version 4.1

3329

Reference for language elements
Version 4.1

3330

SEGMENT procedure reference
Describes the syntax and options for PROC SEGMENT and its contained statements.

PROC SEGMENT ... 3330
Determines the optimal way to segment a dataset and reports the similarities and differences
between the observations in each segment.

BY ..3340
Groups the observations in the input dataset using one or more specified variables.

FREQ ...3340
Specifies a variable containing the frequency associated with an observation.

INPUT ..3340
Specifies the variables to be included in the segmentation and the options that apply to the
variables.

OUTPUT ..3346
Outputs a dataset containing the data that was processed and the segmentation that was
applied.

SCORE ..3347
Uses the current segmentation to score the data in the specified dataset.

SELECT ...3349
Specifies a SAS language expression to select the observations from the dataset to be
segmented.

WHERE ... 3349
Restricts the observations to be processed.

PROC SEGMENT
Determines the optimal way to segment a dataset and reports the similarities and differences between
the observations in each segment.

PROC SEGMENT

options

;

SEGMENT options
The following options are available:

DATA

DATA = dataset

Specifies the dataset to be segmented.

Reference for language elements
Version 4.1

3331

The DATA option cannot be specified if the INMODEL option is also specified. If neither the DATA
nor the INMODEL options are specified, the most recently-created dataset is used as the training
dataset.

If PROC SEGMENT includes a BY statement, the dataset to be segmented must contain all the
variables specified in the BY statement, and must be sorted in order of those variables.

DETAILS

DETAILS

Specifies that the ODS output includes the Segmentation Building Summary table, which
shows the segment modifications and the segmentation strength after each iteration of the
segmentation.
By default, the Segmentation Building Summary table is not included in the ODS output.

DIFFERENCES

DIFFERENCES

Specifies that the ODS output includes the Differences tables, which show, for each input
variable, the calculated difference between each pair of values of a discrete variable or the
bins of a continuous variable. These are the values that are used in the segmentation process
to maximise the similarities between observations in a segment and maximise the differences
between observations in different segments. The table is not printed for variables with large
numbers of values (those exceeding MAXSUMMARYBARS).
By default, the Differences tables are not included in the ODS output.

DISTRIBUTIONS

DISTRIBUTIONS

Specifies that the ODS output includes the Profile by Segment tables, which show, for each
input variable, the distribution of values across each segment.
By default, the Profile by Segment tables are not included in the ODS output.

ENTROPY

ENTROPY

Specifies that the ODS output includes the Relative Entropy by Segment and Variable
table. This table shows the relative entropy of each variable in each segment. The relative
entropy of a variable is a measure of the difference between the distribution of values for
that variable in the segment and in the dataset as a whole. The calculated value is the
Kullback–Leibler divergence described by Kullback (Kullback, 1959 [3]).
By default, the Relative Entropy by Segment and Variable table is not included in the
ODS output.

Reference for language elements
Version 4.1

3332

FAST

FAST

Specifies that the segmentation process is optimised for speed. For a large dataset, this
option improves performance, but may produce less accurate results. For example, one of the
optimisations is that, for a continuous variable, the calculations assume that all the observations
in a bin have the same value as the value of the variable at the centre of the range of the bin.
By default, the segmentation process is optimised for accuracy not speed.

INEST

INEST = dataset

Specifies a dataset saved by the OUTEST option in a previous call of PROC SEGMENT containing
a saved segmentation. The segmentation specified in this dataset can be used as the initial
definition for segmentation or scoring.
The dataset saved by the OUTEST option does not include the segmentation parameters, so
you should use the INPUT statement to specify these. It is recommended that you use the
same options that were used when the saved segmentation was created, although you can use
different options.
If the DATA option is also specified, PROC SEGMENT uses the data in the dataset specified
by the DATA option to refine the segmentation. If both the DATA option and the NOFIT option
are specified the observations in the dataset specified by the DATA option are ignored in the
segmentation calculations, but can be scored or output.

INMODEL

INMODEL = dataset

Specifies a dataset saved by the OUTMODEL option in a previous call of PROC SEGMENT. The
segmentation and controlling parameters saved in this dataset can be used to score another
dataset.
If any INPUT statements are specified they are ignored, since all required parameters are defined
in the INMODEL dataset.
The INMODEL option cannot be specified if DATA is also specified.

MAXITER

MAXITER = integer

Specifies the maximum number of iterations to use during the segmentation calculations. The
specified value must be a positive integer. The default value is 25.

This option is ignored if INMODEL is also specified.

Reference for language elements
Version 4.1

3333

MAXSEG

MAXSEG

MAXSEGMENTS

= integer

Specifies the maximum number of segments that can be created in an iteration during the
segmentation calculations. If the specified number of segments is reached, no further segments
are created and any remaining observations are assigned to the closest existing segment.

The default value is 100.

This option is ignored if INMODEL is also specified.

MAXSUMMARYBARS

MAXSUMMARYBARS = integer

Specifies the maximum number of bars to show for a variable in the summary plot histograms for
each segment.
If a discrete variable has more distinct values than the specified MAXSUMMARYBARS, the data for
the least significant bars are combined. For each segment, the bars that are combined are the
bars corresponding to the values where the distribution of the variable values in the segment and
the distribution of the variable values in the overall population are the most similar. The combined
bars are labelled with the label specified in the OTHERLABEL option, or are labelled Other, if the
OTHERLABEL option is not specified.
The default value is MAXSUMMARYBARS is 20.

MAXSUMMARYPLOTS

MAXSUMMARYPLOTS = integer

Specifies the maximum number of graphs to show for each segment in the ODS output.
If the number of variables in the segmentation is more than MAXSUMMARYPLOTS, the graphs
for the least significant variables in each segment are omitted. For each segment, the least
significant variables are those where the distribution of the variable values in the segment and
the distribution of the variable values in the overall population are the most similar.
The default value of MAXSUMMARYPLOTS is 12.

MINMEM

MINMEM

MINMEMBERS

= integer

Specifies the minimum number of members in a segment in order for the segment to be shown in
the ODS output. Segments with fewer than the specified number of members are discarded.

The default value is 1.

Reference for language elements
Version 4.1

3334

This option is ignored if INMODEL is also specified.

MINPERCENT

MINPERCENT = integer

Specifies the minimum number of members in a segment in order for the segment to be shown
in the ODS output, as a percentage of the observations in the dataset. Segments with fewer than
the specified percentage of members are discarded.
The default value is 5 (percent).
This option is ignored if INMODEL is also specified.

NOFIT

NOFIT

Specifies that the segmentation of the data is not created from the dataset specified in the DATA
option. You can use this option in conjunction with the INEST option to specify that the saved
segmentation is used instead. The dataset specified in the DATA option is not used to create a
segmentation, but can be scored or used to create an output dataset.
By default, the initial segmentation of the data is created from the data in the input dataset.
NOFIT cannot be specified with OUTMODEL. If NOFIT is specified with INMODEL, NOFIT is
ignored.

NOPRINT

NOPRINT

Suppresses all printed output from PROC SEGMENT. By default the printed output includes
information about each of the variables and other options specified for the segmentation,
information about the segmentation, and a number of plots showing the way that observations
have been allocated to segments.
NOPRINT overrides the other print options (DETAILS, DIFFERENCES, DISTRIBUTIONS,
ENTROPY, PROFILES, SIMILARITIES) and the PLOT option.

OTHERLABEL

OTHERLABEL = label

Specifies the label to use for the 'other' category for discrete variables in a segmentation plot .
This value is overridden if a variable-specific label is specified in the OTHERLABEL option of the
INPUT statement.
The default label for the 'other' category is Other.

Reference for language elements
Version 4.1

3335

OUTEST

OUTEST = dataset

Specifies that the segmentation definition is saved in a dataset. The saved information includes
the distribution of the data used to create the segmentation, and the segmentation of that data.
The definition can later be used as the initial definition to segment another dataset.

If the NOFIT option is also specified, the saved information just includes the distribution of the
data but not the segmentation.

OUTMODEL

OUTMODEL = dataset

Specifies that the segmentation model is saved in a dataset. The saved information includes
the segmentation parameters, the distribution of the data used to create the segmentation, and
the segmentation of that data. The information in this dataset can later be used to score another
dataset.

The NOFIT option cannot be specified with OUTMODEL.

P2

P2

Specifies that a variant of the P2 algorithm (Jain and Chlamtac, 1985 [2]) is used to estimate the
order statistics for variable values. This option allows you to override the default behaviour if the
number of observations is likely to be large but is not known at the outset.

If P2 is not explicitly specified, the method used to derive the order statistics for the variable
values depends on the number of observations in the dataset being segmented:

• If the number of observations is not known at the outset (for example, if the observations are
being selected from a database) or if the number of observations is known and is less than
P2THRESHOLD, the order statistics are derived by storing and ordering all the observations.

• If the number of observations is known and greater than P2THRESHOLD, the order statistics
are estimated using the P2 algorithm.

This option is ignored if INMODEL is also specified.

P2THRESHOLD

P2THRESHOLD = integer

Reference for language elements
Version 4.1

3336

Specifies the threshold number of observations above which a variant of the P2 algorithm (Jain
and Chlamtac, 1985 [2]) is used to estimate the order statistics for variable values. This avoids
memory problems when processing very large datasets. If the number of observations in the
dataset is less than the specified threshold value, the order statistics are derived by storing and
ordering all the observations.

The default value is 100,000.

This option is ignored if P2 is also specified.

This option is ignored if INMODEL or INEST is also specified.

PLOT

PLOT = plot- option

(plot- option)

plot-option

ALL

NONE

SIZEPIE

SUMMARY

Specifies the segmentation plots that are produced through the ODS graphics framework.
If the segmentation is derived from an input dataset, the default is PLOT=SUMMARY. If a
previously generated segmentation is loaded using the INMODEL option, the default is
PLOT=NONE.

ALL
All segmentation plots are produced.
ALL overrides SIZEPIE and SUMMARY if also specified.

NONE
No segmentation plots are produced.
NONE overrides ALL, SIZEPIE and SUMMARY if also specified.

SIZEPIE
A single pie chart is produced showing the proportion of observations in each segment.

SUMMARY
A series of plots are produced for each segment showing the distribution of the values of
each variable in the segment and, for comparison, the distribution of the values of each
variable in the whole population.

Reference for language elements
Version 4.1

3337

PRINT

PRINT = print- option

(print- option)

print-option

DETAILS

DIFFERENCES

DISTRIBUTIONS

ENTROPY

PROFILES

PROFILES

SIMILARITIES

Specifies the optional segmentation tables to include in the ODS output.
By default, none of the optional segmentation tables are included.

DETAILS
Specifies that the ODS output includes the Segmentation Building Summary table,
which shows the segment modifications and the segmentation strength after each iteration
of the segmentation.
PRINT=DETAILS is an alias of DETAILS.

DIFFERENCES
Specifies that the ODS output includes the Differences tables, which show, for
each input variable, the calculated difference between each pair of values of a discrete
variable or the bins of a continuous variable. These are the values that are used in the
segmentation process to maximise the similarities between observations in a segment and
maximise the differences between observations in different segments. The table is not
printed for variables with large numbers of values (those exceeding MAXSUMMARYBARS).
PRINT=DIFFERENCES is an alias of DIFFERENCES.

DISTRIBUTIONS
Specifies that the ODS output includes the Profile by Segment tables, which show,
for each input variable, the distribution of values across each segment.
PRINT=DISTRIBUTIONS is an alias of DISTRIBUTIONS.

ENTROPY
Specifies that the ODS output includes the Relative Entropy by Segment and
Variable table. This table shows the relative entropy of each variable in each segment.
The relative entropy of a variable is a measure of the difference between the distribution of
values for that variable in the segment and in the dataset as a whole. The calculated value
is the Kullback–Leibler divergence described by Kullback (Kullback, 1959 [3]).

Reference for language elements
Version 4.1

3338

PRINT=ENTROPY is an alias of ENTROPY.

PROFILES
Specifies that the ODS output includes the Variable Profile tables, which show, for
each input variable, the percentage frequency of the values of the variable in the data. The
frequencies are derived from the input dataset, or from the INEST or INMODEL datasets,
as applicable.
PRINT=PROFILES is an alias of PROFILES.

SIMILARITIES
Specifies that the ODS output includes the Approximate Segment Similarity
table. This shows the overall similarity value between the observations in each pair of
segments. The leading diagonal of this table contains the similarity values for observations
in the same segment. These values are the same as the segmentation strength values
in the Segmentation Summary table. The off-diagonal entries are the similarity values
between observations in different segments. The overall score is derived from these
similarity values and is the value that the segmentation attempts to optimise.
PRINT=SIMILARITIES is an alias of SIMILARITIES.

PROFILES

PROFILES

Specifies that the ODS output includes the Variable Profile tables, which show, for each
input variable, the percentage frequency of the values of the variable in the data. The frequencies
are derived from the input dataset, or from the INEST or INMODEL datasets, as applicable.
By default, the Variable Profile tables are not included in the ODS output.

SEGMENTFORMAT

SEGMENTFORMAT = format

Specifies a format to be associated with the segment number in the output data and in ODS
output. This can be used in conjunction with PROC FORMAT to give meaningful labels to the
segments.
The specified format must be a numeric format.
By default, the segment number is displayed using the default numeric format.

SIMILARITIES

SIMILARITIES

Reference for language elements
Version 4.1

3339

Specifies that the ODS output includes the Approximate Segment Similarity table.
This shows the overall similarity value between the observations in each pair of segments.
The leading diagonal of this table contains the similarity values for observations in the same
segment. These values are the same as the segmentation strength values in the Segmentation
Summary table. The off-diagonal entries are the similarity values between observations in
different segments. The overall score is derived from these similarity values and is the value that
the segmentation attempts to optimise.
By default, the Approximate Segment Similarity table is not included in the ODS output.

WEIGHTING

WEIGHTING = CONSTANT

LOG

PROB

PROBABILITY

Specifies the general weighting function to apply to pairs of observations when a variable has the
same value in both observations. The weighting determines the degree of importance to attach
to similarities and differences between common and rarer values of a variable when assigning
observations to segments.
The default weighting is CONSTANT.
This option is ignored if INMODEL is also specified.

CONSTANT

All agreements between variable values in pairs of observations contribute an equal weight
to the segmentation calculation. This means that overall, common pairings contribute more
weight to the segmentation than uncommon pairings, because there are more of them. For
more information, see CONSTANT weighting (page 3322).

LOG

The values in all pairs of observations contribute a weight to the segmentation that is
proportional to the negative logarithm of the probability of that pairing occurring. This
means that the effect of pairings of values of a variable is proportional to the amount of
information in that pairing. For more information, see LOG weighting (page 3322).

Note:
This option is experimental.

PROB

The values of the variables in all pairs of observations contribute a weight to the
segmentation that is inversely proportional to the probability of that pairing occurring.
This means that rare pairings of values of a variable have relatively more effect on the
segmentation than common pairings, so overall, every pairing of variables contributes an

Reference for language elements
Version 4.1

3340

equal amount. Each instance of an uncommon pair of values contributes more weight, but
there are fewer of them. Similarly, each instance of a common pair of values contributes
less weight, but there are more of them. For more information, see PROBABILITY
weighting (page 3322).

Note:
This option is experimental.

BY
Groups the observations in the input dataset using one or more specified variables.

BY variable ;

The specified variable or variables are used to separate the input data into groups. PROC SEGMENT
generates a separate segmentation model from the data in each group.

If the BY statement is included, the input dataset must be pre-sorted on the specified variable or
variables.

FREQ
Specifies a variable containing the frequency associated with an observation.

FREQUENCY

FREQ

variable ;

INPUT
Specifies the variables to be included in the segmentation and the options that apply to the variables.

INPUT variable

(options) / options

;

Options can be specific to a single variable or can be global. Options in brackets after a variable name
are specific to that variable. Options specified after the forward slash are global options and apply to
all input variables in the INPUT statement. Variable-specific options override global options. Unless
otherwise specified, all options can be variable-specific or global.

Reference for language elements
Version 4.1

3341

Some options are applicable to any input variable; others are only applicable to discrete input variables
and still others are only applicable to continuous input variables. By default, all numeric variables are
regarded as continuous and all character variables are regarded as discrete unless the COMPARE option
specifies something different.

More than one INPUT statement can be present.

If no INPUT statement is present, all variables in the dataset are included in the segmentation.

variable
Specifies a variable to include in the segmentation.

Options
The following options are available:

BINS

BINS = integer

For a continuous variable, specifies the number of bins into which to divide the range. A larger
number of bins can give a more accurate segmentation.
The default value is 10 and the minimum value is 2. This option is ignored for discrete variables.

COMPARE

COMPARE =

ABSOLUTE

(low- dif ference

, high- dif ference

)

BANDED

NOMINAL

ORDINAL

RANK

(low- dif ference

, high- dif ference

)

RELATIVE

(base- value

, epsilon

)

Specifies the kind of variable and the method used to compare values of the variable when
determining the segmentation.

ABSOLUTE, RANK and RELATIVE specify that the variable is treated as continuous and BANDED,
NOMINAL and ORDINAL specify that the variable is treated as discrete.

For numeric variables, the default value is RANK(0,0.5) and for character variables, the default
value is NOMINAL.

Reference for language elements
Version 4.1

3342

ABSOLUTE

The variable is a continuous variable.

The difference between two values is a function of the absolute difference between the
two values. low-difference specifies the absolute difference below which two values are
considered identical, with a difference value of 0 (zero). high-difference specifies the
absolute difference above which two values are considered completely different, with a
difference value of 1. Pairs of values with absolute differences between low-difference and
high-difference have difference values calculated linearly between 0 and 1.

For more information, see ABSOLUTE comparisons (page 3318).

If only low-difference is specified, then high-difference is the same as low-difference. If
the absolute difference between two values is less than low-difference, the two values are
considered identical, with a difference value of 0 (zero). If the absolute difference between
two values is greater than low-difference, the two values are considered completely
different, with a difference value of 1. If the absolute difference between two values is
equal to low-difference, the difference value is 0.5.

If neither low-difference or high-difference are specified, then low-difference and
high-difference both default to the standard deviation of the variable. The standard
deviation is calculated from the original values of the variable, before any adjustments
specified by the MIN, MAX or WINSOR options have been made to extreme values.

BANDED
The variable is discrete and grouped into a number of ordered bands.

The difference between two values is measured by the estimated proportion of the
population between the two values. Two values in the same band have a difference value
of slightly greater than 0. Two values, where one is in the lowest band and the other is in
the highest band, have a difference value of slightly less than 1. This reflects that fact that
the underlying values are likely to be slightly different, although they are in the same band.

For more information, see BANDED comparisons (page 3318).

NOMINAL

The variable is a discrete variable with no explicit ordering.

Two values are considered identical, with a difference value of 0 (zero), if they are
identical. Otherwise they are considered completely different, with a difference value of 1.

For more information, see NOMINAL comparisons (page 3319).

The external (formatted) values are compared unless ORDER=INTERNAL is also specified.

ORDINAL

The variable is a discrete variable with an explicit ordering.

Reference for language elements
Version 4.1

3343

Two values are considered identical, with a difference value if 0 (zero), if they are identical.
Two values are considered completely different, with a difference value of 1, if one is in the
lowest category and one is in the highest category. Otherwise the difference is measured
by the fraction of the number of categories between them.

For more information, see ORDINAL comparisons (page 3319).

The internal (unformatted) values are compared unless ORDER=EXTERNAL is also
specified.

RANK

The variable is a continuous variable.

The difference between two values is measured by the proportion of the population
between the two values. low-difference specifies the proportion of the population
below which two values are considered identical, with a difference value of 0 (zero).
high-difference specifies the proportion of the population above which two values
are considered completely different, with a difference value of 1. Pairs of values with
differences between low-difference and high-difference have difference values calculated
linearly between 0 and 1.

For more information, see RANK comparisons (page 3319).

If neither low-difference or high-difference are specified, then low-difference defaults to 0,
and high-difference defaults to 0.5.

If only low-difference is specified, then high-difference is the same as low-difference. If
the proportion of the population between two values is less than low-difference, the two
values are considered identical, with a difference value of 0 (zero). If the proportion of
the population between two values is greater than low-difference, the two values are
considered completely different, with a difference value of 1. If the proportion of the
population between two values is equal to low-difference, the difference value is 0.5.

RELATIVE

The variable is a continuous variable.

The difference between two values is determined by comparing their absolute difference
with a value based on the root mean square of the two values. If the absolute difference
is less than the root mean square value, the two values are considered identical, with a
difference value of value of 0 (zero). If the absolute difference is equal to the root mean
square value, the difference value is 0.5. Otherwise, the two values are considered
completely different with a difference value of 1. base-value specifies an offset to apply to
each value before calculating the root mean square, and epsilon specifies a scale factor
to apply to the calculated root mean square value before comparing it with the absolute
value.

For more information, see RELATIVE comparisons (page 3320).

The default epsilon is 1 and the default base-value is 0.

Reference for language elements
Version 4.1

3344

DESCENDING

DESCENDING

DESC

For a discrete variable, specifies that the sort order is reversed.
This option is ignored for continuous variables.

MAX

MAX

TO

= maximum- value

For a continuous variable, specifies the highest value of the variable to retain for the
segmentation calculations. Observations with values higher than the specified maximum value
have the value of the variable replaced with the specified maximum value.
If MAX is specified, the specified value overrides the upper limit derived from winsorization.
If not specified, the default value is the value determined by the winsorization parameter specified
in the WINSOR option, or if the WINSOR option is not specified, the value determined by the
default winsorization parameter value of 0.9.
This option is ignored for discrete variables.

MIN

MIN

FROM

= minimum- value

For a continuous variable, specifies the lowest value of the variable to retain for the segmentation
calculations. Observations with values lower than the specified minimum value have the value of
the variable replaced with the specified minimum value.
If MIN is specified, the specified value overrides the lower limit derived from winsorization.
If not specified, the default value is the value determined by the winsorization parameter specified
in the WINSOR option, or if the WINSOR option is not specified, the value determined by the
default winsorization parameter value of 0.9.
This option is ignored for discrete variables.

MISSING

MISSING

For a discrete variable, specifies that missing values are treated as valid values.
If not specified, missing values are ignored in the segmentation calculations. Other variables in
the observation with non-missing values are used as normal in the segmentation calculations.

Reference for language elements
Version 4.1

3345

This option is ignored for continuous variables. Any observation with a missing value for a
continuous variable is always ignored in the segmentation calculation for that variable.

ORDER

ORDER = EXTERNAL

FMT

FORMATTED

INTERNAL

UNFMT

UNFORMATTED

For a discrete variable, specifies the sort order to use.
The default value is EXTERNAL. This option is ignored for continuous variables.

EXTERNAL
The variable is ordered by the external (formatted) values using alphanumeric ordering. If
the DESCENDING option is also specified, the sort order is descending, otherwise the sort
order is ascending.

INTERNAL
The variable is ordered by the internal (unformatted) values using alphanumeric ordering.
If the DESCENDING option is also specified, the sort order is descending, otherwise the sort
order is ascending.

OTHERLABEL

OTHERLABEL = label

For a discrete variable, specifies the label to use for the 'other' category in the segmentation plots
for that variable. This value overrides any general label specified in the OTHERLABEL option of
PROC SEGMENT.
This option is ignored for continuous variables.

REPORTONLY

REPORTONLY

Specifies that the variable is omitted from the segmentation calculations but is included in the
distribution profiles and segmentation plots.

WEIGHT

WEIGHT = numeric- value

Reference for language elements
Version 4.1

3346

Specifies the variable-specific weighting value to apply to the variable. It determines the degree
of importance to attach to similarities and differences in the values of the variable, relative to
similarities and differences in the values of the other variables.

WINSOR

WINSOR = numeric- value

For a continuous variable, specifies the value used to winsorize (remove extreme values of) the
variable in the segmentation calculations. The specified value is the (two-tailed) proportion of the
ordered values of the variable to retain, assuming a normal distribution.
The MAX option, if specified, overrides the upper limit derived from winsorization. The MIN option,
if specified, overrides the lower limit derived from winsorization.
The default winsorization value is 0.9, which replaces the lowest 5% of values with the estimated
value at the 5th percentile and highest 5% of values with the estimated value at the 95th

percentile.
This option is ignored for discrete variables.

OUTPUT
Outputs a dataset containing the data that was processed and the segmentation that was applied.

OUTPUT options ;

Options
The following options are available:

OUT

OUT = dataset

Specifies the name of the output dataset.

If OUT is not specified, the procedure creates the dataset as DATAn in the WORK library, where n
is incremented for each output dataset.

SCORE

SCORE = varname

Specifies the name of a variable in the output dataset to contain the score value for the
observation. The score value indicates how similar the observation is to the other observations in
that segment.

Reference for language elements
Version 4.1

3347

By default, the score value is not included in the output dataset.

SEGMENT

SEGMENT = varname

Specifies the name of a variable in the output dataset to contain the segment number the
observation is most likely to belong to.
The default variable name is _SEGMENT_.

SCORE
Uses the current segmentation to score the data in the specified dataset.

SCORE options ;

The SCORE statement takes the data in the specified dataset and scores it using the segmentation
defined in PROC SEGMENT. The score value indicates how similar the observation is to the other
observations in that segment.

If no dataset is specified in the SCORE statement, the dataset in the PROC SEGMENT statement is
scored.

By default, the scored dataset contains the input observations, and for each, the segment the
observation is most likely to belong to. All observations are scored, even those with missing values.

Multiple SCORE statements can be specified.

Options
The following options are available:

COUNT

COUNT = integer

Specifies the number of potential segments to be included in the scored dataset for each
observation. The segment number with the highest score is output in the variable specified by
the SEGMENT option. The segment with the next highest score is output in the specified variable,
with 2 appended to the name. Subsequent segment numbers are output in order of decreasing
scores, in variables with increasing suffixes.
If the SCORE option is also specified then the score value is also output for each potential
segment.
The default number of potential segments included in the scored dataset is 1.

Reference for language elements
Version 4.1

3348

DATA

DATA = dataset

Specifies the dataset to score. The dataset to score must contain all variables specified in the
INPUT statement, or, if the PROC SEGMENT INMODEL option is used, the dataset to score must
contain all variables saved in the INMODEL dataset.

If PROC SEGMENT includes a BY statement, the dataset to score must also contain all the
variables mentioned in the BY statement, and must be sorted in the order of those variables.

If the DATA option is not present, the dataset in the PROC SEGMENT statement is used.

OUT

OUT = dataset

Specifies the dataset to which the score results are output. The dataset contains the original
data, and additional fields showing which segment each observation is most likely to belong to.

If OUT is not specified, the dataset name is WORK.DATAn, where n is incremented for each
output dataset.

If PROC SEGMENT specifies more than one output dataset for score results (for example, if there
is more than one SCORE statement) then each output dataset must have a unique name.

SCORE

SCORE = varname

Specifies the name of a variable in the scored dataset to contain the score value for an
observation. The score value indicates how similar the observation is to the other observations in
that segment.
By default, the score value is not included in the scored dataset.

SEGMENT

SEGMENT = varname

Specifies the name of a variable in the scored dataset to contain the segment number the
observation is most likely to belong to.
The default variable name is _SEGMENT_.

Reference for language elements
Version 4.1

3349

SELECT
Specifies a SAS language expression to select the observations from the dataset to be segmented.

SELECT expression
i

;

i See SAS Language expressions (page 24).

The SELECT statement uses the entire dataset to derive the overall distribution of observations. It
then selects the specified observations, calculates the segment allocations and displays the segment
distribution for those observations against the overall distribution of all observations. This is different
from the WHERE statement, which derives both the overall distribution of observations and the segment
allocation from the specified observations.

The SELECT statement can only appear once in PROC SEGMENT.

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

The WHERE statement derives both the overall distribution of observations and the segment allocation
from the specified observations. This is different from the SELECT statement, which uses the entire
dataset to derive the overall distribution of observations, then selects the specified observations,
calculates the segment allocations and displays the segment distribution for those observations against
the overall distribution of all observations.

SEGMENT bibliography
These items are referenced in the SEGMENT procedure section.

[1] Michaud, P., 1995. Variational data analysis versus classical data analysis. In: J.Jansen et al.,
eds. Advances in Stochastic Modelling and Data Analysis, pp. 128–158.

[2] Jain, R. & Chlamtac, I., 1985. The P2 Algorithm for Dynamic Calculation of Quantiles and
Histograms Without Storing Observations. In: R. Sargent, ed.Communications of the ACM,
Volume 28, pp. 1076–1085.

[3] Kullback, S., 1959, Information Theory and Statistics, John Wiley and Sons.
[4] Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7(2), pp. 179–188..

Reference for language elements
Version 4.1

3350

SVM procedure
The SVM procedure enables you to build a support vector machine (SVM) from an input dataset. You
can then use the SVM model to analyse other datasets.

About support vector machines
A support vector machine (SVM) is a supervised learning model that is capable of analysing data for
classification or regression.

The SVM procedure supports classification and regression models. SVM modelling relates a response
variable, y, to one or more predictor variables, x, where y can be a class (for classification models) or a
value (for regression models).

Specifically, the one class SVM model, binary classification model and multi-class classification
versions of the model are supported for classification purposes.

Development of Support Vector Machines was largely pioneered at AT&T Bell Laboratories by Boser, et
al., 1992 [1], Guyon, et al., 1993 [2] , Cortes & Vapnik, 1995 [3], Scholkopf, et al., 1995 [4], Scholkopf,
et al., 1996 [5] and Vapnik, et al., 1997 [6].

SVM models were first developed by Vapnik & Lerner, 1963 [7] such that they involved the construction
of a linear classifier. However, Boser, et al., 1992 [1] suggested a way to extend this to non-linear
classification via the application of the kernel trick (Aizerman, et al., 1964 [8]). This enables the
algorithm to construct a linear classifier in a transformed feature space that may be non-linear in the
original input predictor space. The SVM procedure supports the most commonly used kernel types for
both classification and regression modelling. For more information see the KERNEL option of the MODEL
statement.

SVM classification
For classification models, binary, multi-class and single class models are supported.

Binary classification models
A binary classification model maps predictor variables to a response variable in one of two classes.

In a binary classification model, the response, y, will be one of two elements.

Reference for language elements
Version 4.1

3351

A linear binary SVM model attempts to find a hyperplane that optimally partitions the predictor space
into two classes. The assumption is that the predictor space can be partitioned using a hyperplane (the
training data is linearly separable). This gives us the following score function:

where:

• is an observation in predictor space
• is the orthogonal vector to the hyperplane that separates the predictor space in two
• is a bias term.

The score function provides a function for assigning predictor variables to one of the two classes; a
negative value mapping the predictors to one class, and a non-negative value mapping the predictors to
the other class.

Figure 376. Two classes of data, linearly-separated by a binary classifier

The SVM procedure attempts to find a w and a b that can be used to correctly classify as much of
the predictor space as possible. It does this by using a provided set of training observations. Each
observation in the training dataset includes its position in the predictor space, x, as well as the class to
which it belongs, y.

Thus far it has been assumed that the training data is linearly separable in the predictor space.
For many collections of data this assumption is incorrect and, for the SVM model to work in these
cases, the predictor space has to be transformed so that the data becomes linearly separable. This
transformation occurs via a kernel function. A kernel function represents how one predictor variable
projects onto another in the transformed predictor space. For example, the value of the radial basis
function (sometimes called the Gaussian kernel) is based on the magnitude of the distance between
two predictor variables in the original predictor space.

Reference for language elements
Version 4.1

3352

Figure 377. Non-linear data transformed so as to become linearly separable

Generally speaking, a kernel function, , is the inner product of two transformed predictors:

where is the transform function.

Multi-class classification models
A multi-class classification model maps predictor variables to a response variable in one of multiple
classes.

In a multi-class classification model, the response, y, can be one of a number, M, of classes:

A number of strategies for performing multi-class classification are supported in the SVM procedure:

Direct
Creates a single solver that attempts to solve the multi-class optimization problem directly.

One against the rest
Creates a binary classifier for each class. Each classifier separates one of the classes from the
others. When classifying a point, the classifier with the largest positive score is used to indicate to
which class the point belongs.

Pairwise
Creates a binary classifier for each pairwise combination of classes. If there are M classes then

 classifiers are created.

Reference for language elements
Version 4.1

3353

Each classifier only concerns itself with the data that belong to the pair of classes. When
classifying a point, the method counts how many times the point was mapped to each class. The
class with the highest occurrence is considered the one to which the point belongs.

Error-Correcting Output Coding
Creates a number of binary classifiers each of which separates the classes in a particular way.
Each of the classes is represented in the set of binary classifiers by a unique string of bits (a
word).

When classifying a point, the method maps it to either a 1 (one) or 0 (zero) value, just as with a
bit, for each of the binary classifiers. This creates a word to which the point maps. The class word
that is nearest to this is considered to be the one to which the point belongs, where the Hamming
distance is used for comparing words. See Dietterich & Bakiri, 1995 [9] for more details.

The multi-class modelling strategy is specified by setting the MULTICLASS option of the MODEL
statement. For example the following statement uses the Error-Correcting Output Coding method in the
SVM procedure:

MODEL z=x y / MULTICLASS=ECOC;

Single class modelling
Single class modelling is used to detect anomalies and outliers.

A single class model looks for a hyperplane in a feature space that separates out the anomalous
observations from the rest. Single class modelling often uses a Gaussian kernel to determine the
density function. The score function is negative for anomalous results and non-negative otherwise.

Reference for language elements
Version 4.1

3354

Optimisation
SVM modelling is based around linear classifiers that partition a predictor space into two.

The purpose is to find a hyperplane in predictor space that separates two types of training data such
that the distance between the plane and the nearest observation of either type is as large as possible.
Those observations from the training data that sit on the fat margin are known as support vectors
(hence this method is called a Support Vector Machine).

There are various ways of solving the optimization problem posed by the model given above. The SVM
procedure provides two algorithms for performing model optimisation.

1. Iterative Single Data Algorithm – Further details of the algorithm are described in Kecman, et al.,
2005 [10].

2. Sequential Minimal Optimization – Further details of this optimisation algorithm are described in
Platt, 1998 [11].

The type of solver used for solving the optimisation problems is specified with the SOLVER option of the
MODEL statement.

Probability estimation
When classifying points, it is useful to know the probability that a point belongs to a class given its
position in the predictor space.

A method for finding such posterior probabilities was pioneered by Platt, 1999 [12] and later improved
by Lin, et al., 2007 [13]. In essence the probability that a point belongs to a class, , is a logistic
transformation of the classifier score, :

The parameters and are scalar values that the algorithm estimates using a maximum likelihood
method on the training data.

Specifying the PROBABILITY option of the MODEL statement estimates posterior probabilities when
using the SVM procedure. For example, the following statement uses Platt Scaling to estimate posterior
probabilities:

 MODEL z=x y / PROBABILITY=PLATT;

Reference for language elements
Version 4.1

3355

SVM Regression
The SVM procedure can fit a regression model to the provided data.

The regression model is derived in a similar way to the classification model, starting with the objective
of finding a linear function that relates the predicted value for a dependent variable, , to an
independent variable, :

The function should minimise the magnitude of . To ensure the function fits the data, the residuals
should be no greater than a specified tolerance, epsilon.

As with classifications, optimisation is solved using either the Sequential Minimal Optimization (SMO)
algorithm or the Iterative Single Data Algorithm (ISDA) that reduce the problem into a set of smaller
problems.

Use the TYPE option of PROC SVM to specify the type of problem to be solved using the SVM
procedure. For example, the following statement specifies that the SVM procedure is to solve the
regression problem:

 PROC SVM TYPE=REG;

The size of epsilon used by the SVM procedure when solving a regression problem is specified with the
EPSILON option of the MODEL statement. For example, the following statement specifies that the SVM
procedure is to solve the regression problem using 0.5 for epsilon:

 MODEL z=x y / EPSILON=0.5;

Alternatively, a value for the NU option of the MODEL statement can be specified. As with unary
classification, the value of NU should be greater than 0 (zero) and less than, or equal to, 1. In this case
the value of EPSILON is adjusted as part of the optimisation problem with the NU value setting an upper
bound on the fraction of outliers and a lower bound on the fraction of support vectors.

Data standardisation
Data standardisation ensures that when the model parameters are derived data dimensions with larger
values do not swamp data in other dimensions with smaller numerical values .

SVM models depend on the inner products between pairs of predictors. In a multidimensional predictor
space, the data in some dimensions may have values of much greater magnitude than in other
dimensions. In this case, an inner product aggregation between two predictors will be affected much
more by the dimensions with the larger values.

If the data is not already normalized, you can use the STANDARD option in the MODEL statement to
standardize the scales of the predictor variables. In this case, PROC SVM uses a weighted mean and
standard deviation as the offset and scale estimates, respectively, for each predictor variable.

Reference for language elements
Version 4.1

3356

As an example the following statement specifies that the predictor variables, temperature and year,
are scaled before performing the SVM modelling.

MODEL yield=temperature year / STANDARD=SD;

If the STANDARD option is not specified, then the predictor variables are not scaled.

Encoding categorical variables
PROC SVM supports several parameterisation encodings for categorical variables.

A variable is specified as categorical using the CLASS statement. For example, the following specifies
that the country variable is categorical, and the EFFECT parameterisation is used to encode it:

CLASS country (PARAM=EFFECT);

Response values are always encoded using a GLM encoding.

If the model type is regression (PROC SVM has TYPE=REG), the response variable numeric and not in
the CLASS statement, no encoding is performed.

Weighting and standardisation
When performing SVM modelling, observations are weighted.

The PRIORS option of the MODEL statement controls how observations are weighted. The procedure
uses the following method to calculate the weights of observations.

Each class in the model has a prior probability that is either determined by the user or is based on the
fraction of observations in the training data that belong to a class. A cost matrix that transforms the
vector of prior probabilities is specified as follows:

The SVM procedure normalises the set of prior probabilities using the following:

where is the number of classes.

The weights of each observation in a class are then normalised using the prior probability:

The SVM procedure uses the weights of the observations when standardizing the predictor variables:

Reference for language elements
Version 4.1

3357

1. L1 and L2 norms of the weights are calculated:

2. The offset coordinate is calculated:

3. The scaling vector is calculated:

4. The predictor coordinates are updated:

To specify the prior probabilities of classes, use the MODEL statement, with PRIORS=CUSTOM. For
example, the following statement sets prior probabilities for classes ‘red’, ‘green’ and ‘blue’:

 MODEL z=x y / PRIORS=CUSTOM ('red' = 0.5 'green' = 0.3 'blue' = 0.2);

To specify the cost matrix (or part of it), use the MODEL statement, with PRIORS=COST. For example,
the following statement sets the cost of incorrectly classifying a sample that belongs to the ‘red’ class
as a member of the ‘blue’ class:

 MODEL z=x y / PRIORS=COST (('red' 'blue') = 2);

Using the SVM procedure
This example shows how to use PROC SVM to analyse data and predict results.

This example uses the publicly-available Iris dataset [14]. The Iris dataset consists of measurements of
the widths and lengths of the petals and sepals of three species of Iris.

Reference for language elements
Version 4.1

3358

The model defines the petal length, p_length, and the petal width, p_width, as predictors of the
class species. It uses a multi-class 'one against the rest' classification system, and a Gaussian kernel.
This example specifies BOXCONSTRAINT and DELTAGRADTOL values, and allows a maximum of
10,000 iterations. It uses the Platt scaling method for estimating posterior probabilities for each class,
and outputs the model statistics and a variety of plots showing how the data is distributed.

PROC SVM
 DATA = iris
 PLOTS = (CONTOUR (OBS = OUTLINE UNPACK) HEATMAP (OBS))
 TYPE = CLASS;
 CLASS species;
 MODEL species = p_length p_width /
 BOXCONSTRAINT = 1.0
 DELTAGRADTOL = 0.001
 DETAILS (OUTPUTSTATS)
 KERNEL = GAUSSIAN (RBFFALLOFF = 1.0)
 MAXITERS = 10000
 MULTICLASS = ONEVREST
 PROBABILITY = PLATT;
RUN;

This example produces the following output.

Predictor Variable Standardization
The Predictor Variable Standardization table records the data standardisation applied in PROC SVM. In
this case, no standardisation was applied, as STANDARD=SD was not specified in the MODEL statement.

 Standardization applied: none

Statistic p_length p_width

Offset 0.00000 0.00000
Scale 1.00000 1.00000

Fit Summary
The Fit Summary table summarises the SVM model created in PROC SVM. This was specified as a
multi-class, one against the rest problem. The data includes three species of iris, so there are three
classes (setosa, versicolor and virginica). The model needs to solve three problems:

• Is this observation a member of the setosa class or not? This is problem 0.
• Is this observation a member of the versicolor class or not? This is problem 1.
• Is this observation a member of the virginica class or not? This is problem 2.

The fit table (below) shows some general information about the model parameters, then shows the
details for each of these problems separately. You can see that the models converged for all three
problems, problem 0 after 298 iterations, problem 1 after 105 iterations and problem 2 after 134
iterations.

Reference for language elements
Version 4.1

3359

You can specify DETAILS (MODELPARAMS) in the MODEL statement to see more information about the
model parameters.

Attribute Value

SVM Type Classification
Solver Type SMO
Number of Observations 150
Number of Predictor Dimensions 2
Number of Classes 3
Classification Accuracy 0.96667
Kernel Type Gaussian
Gaussian Falloff 1.00000
Regularization Parameter 1.00000
Maximum Iterations 10000
Delta Gradient Tolerance 0.00100
Feasibility Gap Tolerance 0.00000
KKT Violation Tolerance 0.00000
Number of Problems 3
Problem 0
Sample Count 150
Converged Yes
Iteration Count 298
Support Vector Count 13
Largest KKT Violation 0.00005
Largest Delta Gradient 0.00008
Feasibility Gap 0.00005
Primal Objective Value 2.16860
Dual Objective Value 2.16843
||w||^2 4.29970
Sum of dual variable values 4.31828
Sum of slack variable values 0.01876
Problem 1
Sample Count 150
Converged Yes
Iteration Count 105
Support Vector Count 26
Largest KKT Violation 0.00001
Largest Delta Gradient 0.00005
Feasibility Gap 0.00000
Primal Objective Value 17.50874
Dual Objective Value 17.50871
||w||^2 9.66152
Sum of dual variable values 22.33947
Sum of slack variable values 12.67798
Problem 2
Sample Count 150
Converged Yes
Iteration Count 134
Support Vector Count 27
Largest KKT Violation 0.01580
Largest Delta Gradient 0.00056
Feasibility Gap 0.00350
Primal Objective Value 17.73392
Dual Objective Value 17.66840
||w||^2 10.35378
Sum of dual variable values 22.84529
Sum of slack variable values 12.55703

Reference for language elements
Version 4.1

3360

Output Stats
The Output Stats table (extract below) lists the observations in the dataset (in this case, the petal
length, the petal width and the actual species) and the predicted class (the species that the model
predicts this petal has come from).

The final three columns (labelled setosa, versicolor and virginica) give the posterior probabilities for
each observation (the probabilities for each class that the observation is actually a member of that
class). So if the model is a good fit, the probability will be higher for the actual class than for the other
two classes. In most cases, the predicted class based on the probabilities is the same as the actual
class, but there are one or two discrepancies where the probability-based predicted class is not the
same as the actual class, for example, observation 71, where a versicolor iris has been predicted to be
virginica by the model, and observation 107, where a virginica iris has been predicted to be versicolor.
But even in these cases, the posterior probabilities for the actual and predicted classes are quite close
in value.

Observation p_length p_width species Predicted setosa versicolor virginica
Index Class
__
 1 1.40000 0.20000 setosa setosa 0.38718 0.30645 0.30637
 2 1.40000 0.20000 setosa setosa 0.38718 0.30645 0.30637
 3 1.30000 0.20000 setosa setosa 0.38627 0.30712 0.30661
 4 1.50000 0.20000 setosa setosa 0.38732 0.30620 0.30648
 5 1.40000 0.30000 setosa setosa 0.38747 0.30624 0.30629
 6 1.70000 0.40000 setosa setosa 0.38463 0.30766 0.30771
 7 1.40000 0.30000 setosa setosa 0.38747 0.30624 0.30629
 8 1.50000 0.20000 setosa setosa 0.38732 0.30620 0.30648
 9 1.40000 0.20000 setosa setosa 0.38718 0.30645 0.30637
 10 1.50000 0.10000 setosa setosa 0.38582 0.30694 0.30724
 . . .
 65 3.60000 1.30000 versicolor versicolor 0.30608 0.38650 0.30742
 66 4.40000 1.40000 versicolor versicolor 0.30779 0.39232 0.29988
 67 4.50000 1.50000 versicolor versicolor 0.30754 0.38317 0.30930
 68 4.10000 1.00000 versicolor versicolor 0.30912 0.39579 0.29508
 69 4.50000 1.50000 versicolor versicolor 0.30754 0.38317 0.30930
 70 3.90000 1.10000 versicolor versicolor 0.30751 0.39361 0.29888
 71 4.80000 1.80000 versicolor virginica 0.30655 0.33867 0.35478
 72 4.00000 1.30000 versicolor versicolor 0.30766 0.39497 0.29737
 73 4.90000 1.50000 versicolor versicolor 0.30623 0.35802 0.33575
 74 4.70000 1.20000 versicolor versicolor 0.30833 0.38881 0.30287
 . . .
 101 6.00000 2.50000 virginica virginica 0.31001 0.30837 0.38161
 102 5.10000 1.90000 virginica virginica 0.30542 0.31114 0.38344
 103 5.90000 2.10000 virginica virginica 0.30702 0.29881 0.39417
 104 5.60000 1.80000 virginica virginica 0.30573 0.29909 0.39518
 105 5.80000 2.20000 virginica virginica 0.30736 0.29769 0.39495
 106 6.60000 2.10000 virginica virginica 0.30736 0.31212 0.38053
 107 4.50000 1.70000 virginica versicolor 0.30811 0.36646 0.32543
 108 6.30000 1.80000 virginica virginica 0.30861 0.30738 0.38401
 109 5.80000 1.80000 virginica virginica 0.30659 0.29882 0.39459
 110 6.10000 2.50000 virginica virginica 0.30980 0.31016 0.38004
 . . .

Reference for language elements
Version 4.1

3361

Contour Plots
The contour plots show the distribution of the values of each pair of predictor variables, and the
posterior probability that each pair is a member of one of the classes in the model. There is one contour
plot for each class. The data points shown on each plot are the same, but the posterior probabilities for
each data point are different for each class.

In each plot, the dark red areas show values that are very likely to belong to that class, graduating
through lighter red, white, light blue and dark blue for observations that are less and less likely to belong
to that class. Note that this kind of plot can only be produced for classification models that have exactly
two predictor variables.

In the second of the three plots, the red dots in the blue areas represent the versicolor observations
that have been predicted to be virginica. In the third plot, the red dots in the blue areas represent the
virginica observations that have been predicted to be versicolor.

Reference for language elements
Version 4.1

3362

Reference for language elements
Version 4.1

3363

Heat plot
The heat plot shows the distribution of the values of each pair of predictor variables, and the class for
each pair as predicted by the model. In this plot, the setosa values are shown in blue, versicolor in
white and virginica in red. The white spots in the red area are the versicolor observations that were
misclassified as virginica and the red spots in the white area are the virginica observations that were
misclassified as versicolor.

Reference for language elements
Version 4.1

3364

Scoring another dataset
This model could then be used on another dataset to predict classifications from the predictor variables.
To do this, use the SCORE statement.

SVM procedure reference
Describes the syntax and options for PROC SVM and its contained statements.

PROC SVM ... 3365
Configures a Support Vector Machine to analyse the specified dataset.

BY ..3370
Groups the observations using one or more specified variables.

CLASS ...3370
Specifies the class variables, and, optionally, how they are handled.

FREQ ...3373
Specifies a variable in the dataset that defines the relative frequency of each observation.

Reference for language elements
Version 4.1

3365

ID ... 3373
Identifies the relevant observations in the output by using one or more specified variable names.

KERNELINNER ... 3374
Specifies the inner part of the custom kernel function to use to transform the data into a linear
space before deriving the SVM model.

KERNELOUTER ..3374
Specifies the outer part of the custom kernel function to use to transform the data into a linear
space before deriving the SVM model.

MODEL ..3375
Specifies the response variable, the predictor variables and the options to be used for the SVM
model.

OUTPUT ..3384
Creates a new dataset containing the input observations and the predicted values calculated by
the SVM model.

SCORE ..3386
Uses the current SVM model to score or classify the data in the specified dataset.

WEIGHT .. 3388
Specifies a variable in the input dataset giving the prior weight associated with each observation.

PROC SVM
Configures a Support Vector Machine to analyse the specified dataset.

PROC SVM

options

;

Options
The following options are available:

DATA

DATA = dataset

Specifies the training dataset used by PROC SVM to construct the SVM model.
If neither the DATA nor the INMODEL options are specified, the most recently-created dataset is
used as the training dataset. The DATA option cannot be specified if the INMODEL option is also
specified.

INMODEL

INMODEL = reference

Reference for language elements
Version 4.1

3366

Specifies the location of a previously-saved, serialised SVM model to be used to score another
dataset. The dataset to be scored is specified using the SCORE statement.

If the serialised model includes groupings specified in a BY statement, the groupings are included
in the serialisation and are applied automatically. The groupings in the serialised model override
any groupings that are explicitly specified in a BY statement.

The INMODEL option cannot be specified if the DATA option is also specified.

reference
The serialised model name is specified as library-name.item-name, where
library-name is a library reference, and item-name is the item contained by the library. If
library-name is not specified, the default WORK library is used.

OUTMODEL

OUTMODEL = reference

Specifies that the SVM model created from the training dataset is saved as a serialised model in
the specified location. This serialised model can later be used to score another dataset.

If the model being saved includes any groupings specified in a BY statement, the groupings are
saved with the serialised model.

reference
The serialised model name is specified as library-name.item-name, where
library-name is a library reference, and item-name is the item contained by the library. If
library-name is not specified, the default WORK library is used.

PLOTS
Specifies which plots are produced through the ODS Graphics framework.

PLOTS

(MAXPOINTS = NONE

value

ONLY

UNPACK

)

=

plot- requests

MAXPOINTS

Specifies the maximum number of elements allowed in a plot. Any plot containing more
than the specified number of elements is not output. The default value is 5000 elements.

NONE
Specifies that the cut-off value is ignored.

Reference for language elements
Version 4.1

3367

value
Specifies the maximum number of elements in a plot.

ONLY
Specifies that default plots are not produced unless specifically requested.

UNPACK
Specifies that the plots are displayed individually. By default, the plots are displayed in a
panel.

plot-requests

(ALL

CONTOUR

(OBS = GRADIENT

NONE

OUTLINE

OUTLINEGRADIENT

UNPACK

)

DIAGNOSTICS

DIAGNOSTICSPANEL (UNPACK)

FIT

(UNPACK)

HEATMAP

HEAT (OBS)

NONE

OBSERVEDBYPREDICTED

QQ

QQPLOT

RESIDUALBYPREDICTED

RESIDUALFIT

RFPLOT

RESIDUALHISTOGRAM

RESIDUALPANEL

(UNPACK)

)

ALL
Specifies that all plots appropriate for the model are produced.

CONTOUR
Produces a set of contour plots with an optional overlaid scatter plot.

If TYPE=CLASS is specified in the PROC SVM statement, each plot displays the
posterior probability for a class in the model.

Reference for language elements
Version 4.1

3368

If TYPE=REG is specified in the PROC SVM statement, a single contour plot of the
response variable is produced.

The CONTOUR option requires a model with two predictor variables, and, if
TYPE=CLASS is specified in the PROC SVM statement, PROBABILITY=PLATT must
be specified in the MODEL statement.

OBS
Specifies that observations are overlaid on top of the plot. The OBS option is
only valid if TYPE=REG is specified in the PROC SVM statement. The following
observation types are supported:

GRADIENT
Specifies that observations are displayed as circles with a coloured fill.

NONE
Specifies that observations are not displayed. This is the default.

OUTLINE
Specifies that observations are displayed as circles with a border but no
fill.

OUTLINEGRADIENT
Specifies that observations are displayed as circles with both a border
and a coloured fill.

UNPACK
Specifies that the plots should be individually displayed.

DIAGNOSTICS
Produces a summary set of regression fit diagnostics consisting of:

• Residuals against predicted values.
• Histogram of the residuals.
• Normal quantile plot of the residuals.
• Residual fit plot.
• Residual against predictor plots.
• Observed against predicted plot.

The DIAGNOSTICS option is only valid if TYPE=REG is specified in the PROC SVM
statement.

UNPACK
Specifies that the plots should be individually displayed.

FIT
Produces a set of fit plots for models with one predictor variable.

If TYPE=CLASS is specified, each plot displays the posterior probability for a class in
the model.

Reference for language elements
Version 4.1

3369

If TYPE=REG is specified, a single scatter plot of the predicted response is produced.

The FIT option requires a model with one predictor variable, and, if TYPE=CLASS is
specified in the PROC SVM statement, PROBABILITY=PLATT must be specified in
the MODEL statement.

UNPACK
Specifies that fit plots are individually displayed. This option only valid if
TYPE=CLASS is specified

HEATMAP
Produces a heat map plot of the predicted class against predictor values overlaid
with a scatter plot of the data for models with two predictor variables.

The HEATMAP option requires a model with two predictor variables, and
TYPE=CLASS specified in the PROC SVM statement.

OBS
Specifies that the observations should be overlaid on top of the plot.

NONE
Specifies that no plot output is produced.

OBSERVEDBYPREDICTED
Produces a scatter plot of the observed response variable against the predicted
response values.

This option requires that TYPE=REG is specified in the PROC SVM statement.

QQ
Produces a normal quantile plot of the residuals.

This option requires that TYPE=REG is specified in the PROC SVM statement.

RESIDUALBYPREDICTED
Produces a scatter plot of the residuals against the predicted values.

This option requires that TYPE=REG is specified in the PROC SVM statement.

RESIDUALFIT
Produces a pair of quantile plots showing the centred fit and the residuals.

This option requires that TYPE=REG is specified in the PROC SVM statement.

RESIDUALHISTOGRAM
Produces a histogram of the residuals.

This option requires that TYPE=REG is specified in the PROC SVM statement.

RESIDUALPANEL
Produces a set of scatter plots. Each plot displays the residuals against predictor
coordinate values.

Reference for language elements
Version 4.1

3370

This option requires that TYPE=REG is specified in the PROC SVM statement.

UNPACK
Specifies that the plots are individually displayed.

TYPE

TYPE = CLASS

REG

Specifies the type of problem to solve.

CLASS
Specifies that a classification problem is to be solved. This is the default TYPE.

REG
Specifies that a regression problem is to be solved.

BY
Groups the observations using one or more specified variables.

BY variable ;

The specified variable or variables are used to separate the input data into groups. PROC SVM
generates a separate model from the data in each group. If the BY statement is included, the input
dataset must be pre-sorted on the specified variable or variables.

If a variable is specified as a predictor variable or response variable in the MODEL statement, it cannot
also be specified in the BY statement. If PROC SVM includes the INMODEL option to use a pre-existing
serialised model, the BY options, if any, are derived from the serialised model, and any options
specified here are ignored.

CLASS
Specifies the class variables, and, optionally, how they are handled.

CLASS variable

(options) / options

;

A class (or categorical) variable is a variable that can take one of a limited number of values.

Reference for language elements
Version 4.1

3371

The options, if present, define the way the class variables are handled in the model. Options can be
specific to a single variable or can be global. Options in brackets after a variable name are specific
to that variable. Options specified after the forward slash are global options and apply to all class
variables. Variable-specific options override global options. Unless otherwise specified, all options can
be variable-specific or global.

The response variable always uses the ascending sort order, the FORMATTED ordering method, GLM
encoding and the LAST reference level.

If present, the CLASS statement or statements must be located before the MODEL statement.

variable

A class variable in the dataset.

Options
The following options are available. Unless otherwise stated, all options can be applied to a single
variable, or globally to all variables.

DESCENDING

DESCENDING

DESC

Specifies that the variable values are sorted in descending order. If not specified, the variable
values are sorted in ascending order. The way in which the variable values are ordered is
specified using the ORDER option.

MISSING

MISSING

Specifies that a level is created for missing values and that observations containing missing
values are retained. If not specified, observations with missing values are discarded.

ORDER

ORDER = DATA

FORMATTED

FREQ

INTERNAL

Specifies the ordering to use for variable values. Variable values are ordered in ascending order
unless the DESCENDING option is also specified.

For numeric variables, the default ordering is INTERNAL. For string variables, the default
ordering is FORMATTED.

Reference for language elements
Version 4.1

3372

DATA

The variable values are ordered in the order in which the values of the variable first occur
in the data.

FORMATTED

The variable has a user-defined format applied, and the variable values are ordered using
the variable format value.

FREQ

The variable values are ordered based on the frequency count of the values in the input
dataset. Values that occur more frequently appear earlier in the ordering than values that
occur less frequently.

INTERNAL

The variable is unformatted, and the variable values are ordered by the raw value.

PARAM

PARAM = EFFECT

GLM

ORDINAL

REFERENCE

REF

Specifies the parameterisation encoding for the variable.

Response variables always use GLM encoding. The default encoding for effect (or predictor)
variables is GLM encoding.

EFFECT

Specifies that the variable is encoded using effect encoding.

GLM

Specifies that the variable is encoded using GLM encoding.

This value can only be specified as a global option and not for an individual variable.

ORDINAL

Specifies that the variable is encoded using ordinal encoding.

REFERENCE

Specifies that the variable is encoded using reference encoding.

Reference for language elements
Version 4.1

3373

REF

REF = FIRST

LAST

"level"

Specifies the reference level to use for a class variable.

FIRST

The reference level is the first ordered level.

LAST

The reference level is the last ordered level. This is the default reference level.

"level"

Specifies a value to use as the reference level. The specified value must be a valid value
for the class variable.

This value can only be specified for individual variables, not globally.

FREQ
Specifies a variable in the dataset that defines the relative frequency of each observation.

FREQ

FREQUENCY

variable ;

If a frequency variable is defined, the existing weight of each observation is multiplied by its associated
frequency to get a new weight.

variable
The variable in the dataset that contains the frequency value for each observation.

ID
Identifies the relevant observations in the output by using one or more specified variable names.

ID variable ;

Reference for language elements
Version 4.1

3374

KERNELINNER
Specifies the inner part of the custom kernel function to use to transform the data into a linear space
before deriving the SVM model.

KERNELINNER ;

transform- statements

ENDKERNELINNER ;

The inner kernel function maps the numeric inputs _x1_ and _x2_ to a single numeric output _inner_.
The inner kernel function is paired with an outer kernel function which maps the sum of the _inner_
values defined in the inner kernel to a single output _k_.

An inner kernel function and the corresponding outer kernel function must be defined if KERNEL =
CUSTOM is specified in the MODEL statement.

Example
This example shows a simple inner kernel function and the corresponding outer kernel function for a
Gaussian kernel transformation.

KERNELINNER; x1 = _x1_; x2 = _x2_: d = x1 - x2;
 inner = d * d;
ENDKERNELINNER;
KERNELOUTER; a = _agg_;
 k = exp(-a);
ENDKERNELOUTER;

KERNELOUTER
Specifies the outer part of the custom kernel function to use to transform the data into a linear space
before deriving the SVM model.

KERNELOUTER ;

transform- statements

ENDKERNELOUTER ;

The outer kernel function maps the numeric input _agg_ (the aggregate of the _inner_ values defined in
the inner kernel function) to a single numeric output _k_.

Reference for language elements
Version 4.1

3375

An inner kernel function and the corresponding outer kernel function must be defined if KERNEL =
CUSTOM is specified in the MODEL statement.

MODEL
Specifies the response variable, the predictor variables and the options to be used for the SVM model.

MODEL

response- variable = predictor- variable- expression

*

|

predictor- variable- expression

@ number

/ options

;

predictor-variable-expression

predictor- variable

(predictor- variable)

Each PROC SVM must include exactly one MODEL statement, unless PROC SVM specifies a previously-
saved, serialised model using the INMODEL option. In that case, the model definition specified by
INMODEL is used.

response-variable
Specifies the response variable in the input dataset.

predictor-variable

Specifies a variable in the input dataset to include in the model as an predictor variable, and
optionally, specifies how it is combined with other variables to derive new predictor variables to
include in the model.

The variables can be combined in the same way as variables in other regression procedures:

* Include a new variable that is the product of the specified variables.

For example, var1*var2 defines an effect variable that is the product of var1 and
var2.

| Include each specified variable. Also include new variables from the products of each
possible combination of two or more of the specified variables .

For example, var1|var2|var3 defines the effect variables var1, var2, var3,
var1*var2, var1*var3, var2*var3 and var1*var2*var3.

Reference for language elements
Version 4.1

3376

@ When combining multiple variables to make a new variable, include no more than the
specified number of variables in each combination.

For example, var1|var2|var3@2 defines the effect variables var1, var2, var3,
var1*var2, var1*var3 and var2*var3, but not var1*var2*var3.

() The variable outside the brackets is nested on all possible discrete values of the
variable inside the brackets, and each nesting defines a new effect variable. The
variable inside the brackets must be a discrete variable specified in a CLASS
statement.

For example, if var2 has values A, B and C, var1(var2) defines the effect variables
var1(A), var1(B) and var1(C).

Options
The following options are available:

BOXCONSTRAINT

BOXCONSTRAINT

C

= value- list

Specifies the box constraints (or regularization parameters) to be used when solving the
optimization problem. Multiple values can be specified in a space-separated list, delimited by
a single pair of brackets, for example, BOXCONSTRAINT = (0.1, 1.0, 10.0). If multiple
values are specified then all values are tried and the value that gives the best fit model is
selected.
The box constraint values must be positive. The default is BOXCONSTRAINT = (0.1, 1.0,
10.0).

CLIPDUALS

CLIPDUALS

Specifies whether variables in the dual optimization problem should be clipped to either zero or
the box constraint, if considered to be close enough to either.

CROSSVAL

CROSSVAL = HOLDOUT

(HOLDOUTFRACTION = value

HOLDOUTITERS = value

)

KFOLD

(NUMKFOLDS = value)

NONE

Reference for language elements
Version 4.1

3377

Specifies the cross validation options to use in the SVM model.

HOLDOUT
The procedure randomly reserves a portion of the data for validation.

HOLDOUTFRACTION
Specifies the fraction of the training data to reserve for validation when using the
HOLDOUT option. The default fraction is 0.1.

HOLDOUTITERS
Specifies the number of holdout models to evaluate. The default is 1.

KFOLD
The procedure randomly partitions the data into number sets.

NUMKFOLDS
Specifies how many partitions are used when using the KFOLD option. The default
is 10.

NONE
Do not use cross-validation. This is the default value.

DELTAGRADTOL

DELTAGRADTOL = value

Specifies the tolerance value to use to determine convergence. The model will converge when
movements in the dual space are less than or equal to this value. If this value is 0 (zero) the
gradient tolerance method is not used to check for convergence. The default value is 1x10-3
if SOLVER=SMO is specified (by default the SMO solver uses the gradient tolerance method to
check for convergence) and 0 if SOLVER=ISDA is specified (by default the ISDA solver does not
use the gradient tolerance method to check for convergence).

DETAILS

DETAILS

(ENCODING

MODELPARMS

OUTPUTSTATS

)

Specifies which tables to display.

ENCODING
Displays the class to problem design matrix for classification models.

MODELPARMS
Displays the parameters of the SVM model.
If KERNEL=LINEAR then the coefficients of the separating hyperplane (including the bias
term) is displayed for each problem in the SVM model.

Reference for language elements
Version 4.1

3378

If a non-linear kernel is used (KERNEL is not LINEAR), then each support vector of
each problem in the SVM model is displayed complete with its dual variable value and
standardized predictor coordinates.

OUTPUTSTATS
For SVM classification modelling (TYPE=CLASS in the PROC SVM statement), displays
the classification modelling results for each observation provided in the input dataset. The
following fields are included:

• Independent variable coordinates
• Actual dependent value
• Predicted dependent value
• Posterior probabilities (if probability estimation is performed)

For SVM regression modelling (TYPE=REG in the PROC SVM statement), displays the
regression modelling results for each observation provided in the input dataset. The
following fields are included:

• Independent variable coordinates
• Actual dependent value
• Predicted dependent value
• Residual value (if the RESIDUAL option is set)

EPSILON

EPSILON = value- list

For SVM regression modelling (TYPE=REG in the PROC SVM statement), specifies the tolerance
for the residuals. The default value is 1.
Multiple values can be specified in a space-separated list, delimited by a single pair of brackets,
for example, EPSILON = (1.0, 1.1, 1.2). If multiple values are specified then all values
are tried and the value that gives the best fit model is selected.

GAPTOL

GAPTOL = value

Specifies the tolerance value to use to determine convergence. The model will converge when
the difference between the dual and primal objective functions is less than or equal to this value.
If this value is 0, the gap tolerance method is not used to check for convergence. The default is 0
(zero), that is, the gap tolerance method is not used to check for convergence.

INITDUALS

INITDUALS = variable

Reference for language elements
Version 4.1

3379

Specifies a variable in the input dataset that represents the set of initial values for each of the
variables in the dual optimization problem. In SVM classification the values should be non-
negative.

KERNEL

KERNEL = CUSTOM

GAUSSIAN

RBF

LINEAR

POLY

SIGMOID

(options)

Specifies what type of kernel function is used by the procedure.

CUSTOM
Specifies that a custom kernel function is used. If this option is selected, then the
KERNELINNER and KERNELOUTER statements must be used to define the custom kernel.

GAUSSIAN
Specifies that a radial basis function (RBF) is used. This is the default kernel function.

LINEAR
Specifies that a linear kernel is used.

POLY
Specifies that an inhomogeneous polynomial kernel is used.

SIGMOID
Specifies that a sigmoid kernel is used.

Options

KOFFSET

KOFFSET = value

Specifies that the SVM procedure should add the specified number to each element
of the Gram matrix. The default value is 0 (zero).

KSCALE

KSCALE = value

Specifies that the SVM procedure should scale each element in the Gram matrix by
the specified number. The default value is 1.

Reference for language elements
Version 4.1

3380

POLYOFFSET

POLYOFFSET = value- list

Specifies a set of offset values to use if a polynomial kernel is used. The default is a
single value of 0 (zero) (that is, a homogeneous polynomial).

POLYORDER

POLYORDER = value- list

Specifies a set of order values to use if a polynomial kernel is used. The default is a
single value of 3.

RBFFALLOFF

RBFFALLOFF = value- list

Specifies a set of falloff values to use if a Gaussian, or radial basis function, kernel is
used. The default is a single value of 1.

SIGOFFSET

SIGOFFSET = value- list

Specifies a set of offset values to use if a sigmoid kernel is used. The default is a
single value of 1.

SIGSCALE

SIGSCALE = value- list

Specifies a set of scale values to use if a sigmoid kernel is used. The default is a
single value of 1.

KKTTOL

KKTTOL = value

Specifies the tolerance value to use to determine convergence. The model will converge when
the worst violation of the Karush-Kuhn-Tucker complementarity conditions is less than or equal
to this value. If this value is 0 (zero) the Karush-Kuhn-Tucker violation value is not used to check
for convergence. The default value is 0 if SOLVER=SMO is specified (by default the SMO solver
does not use Karush-Kuhn-Tucker complementarity conditions to check for convergence) and
0.001 if SOLVER=ISDA is specified (by default the ISDA solver uses Karush-Kuhn-Tucker
complementarity conditions to check for convergence) .

Reference for language elements
Version 4.1

3381

MAXITERS

MAXITERS = value

Specifies the maximum number of iterations allowed for the optimization procedure. The default
value is 1.0E6.

MULTICLASS

MULTICLASS = DIRECT

ECOC

ONEVONE

ONEVREST

Specifies the method used by the procedure for multi-class SVM modelling. Valid values are as
follows:

DIRECT
Specifies that the SVM procedure uses a direct approach to solving the multi-class SVM
classification problem.

ECOC
Specifies that the SVM procedure uses the Error-Correcting Output Codes method.

ONEVONE
Specifies that the SVM procedure uses the one-against-one method. This is the default
method.

ONEVREST
Specifies that the SVM procedure uses the one-versus-the-rest method.

NU

NU = value- list

Specifies the one class learning parameter NU. This value should be a real numeric value that
is greater than 0 (zero) and less than or equal to 1. The default value is 0.5. If this option is
specified with SVM regression modelling then the ν-SVR solver is used.
Multiple values can be specified in a space-separated list, delimited by a single pair of brackets,
for example, NU = (0.1, 0.3, 0.5). If multiple values are specified then all values are tried
and the value that gives the best fit model is selected.

OMEGA

OMEGA = value

If SOLVER=ISDA, specifies the value of OMEGA to use for the step size. The default value is 0.1.

Reference for language elements
Version 4.1

3382

OUTLIERS

OUTLIERS = value

The proportion of the observations that are regarded as outliers, to ensure robust modelling. The
default value is 0 (zero), that is, there are no outliers. If specified, 0 < value < 1.

PRIORS

PRIORS = CUSTOM ('data' = value)

COST (('data1' 'data2') = value)

Specifies that the method should use prior probabilities when calculating the weights of the
observations. Valid values are either or both of:

CUSTOM
Specifies the prior probabilities of the classes within the dataset via a set of class
name and probability pairs (for example, CUSTOM (‘red’=0.5 ‘green’=0.3
‘blue’=0.2)). By default, the prior probability for a class is based on the fraction of
observations in the dataset (or active subset of the dataset) that belong to that class.

COST
Specifies the cost matrix used to adjust the prior probabilities. Each entry specifies the
cost of misclassifying an observation that actually belongs to class0 as class1 instead (for
example, COST (('green' 'red')=3 ('green' 'blue')=2)). By default, the cost
is 0 (zero) if the classes are the same, and 1 if they are not.

PROBABILITY

PROBABILITY = NONE

PLATT

Specifies the method used by the procedure for estimating probabilities. Valid values are as
follows:

NONE
Specifies that no probability estimation be performed. This is the default.

PLATT
Specifies that the Platt Scaling method is used for probability estimation. If this option is
specified, the score results table will include probability estimates.

REGMETRIC

REGMETRIC = MAE

MSE

Reference for language elements
Version 4.1

3383

For SVM regression modelling (TYPE=REG in the PROC SVM statement), specifies the metric to
use when selecting the model. Valid values are as follows:

MAE
Specifies that the mean average error is used. This is the default.

MSE
Specifies that the mean squared error is used.

RESIDUAL

RESIDUAL

R

Specifies that residual values are included in the OutputStats table. This option is ignored unless
PROC SVM specifies TYPE=REG.

SOLVER

SOLVER = ISDA

SMO

Specifies the algorithm used to solve the optimisation problem when constructing classifiers.

ISDA
Specifies the Iterative Single Data Algorithm (ISDA) is used to solve the optimization
problem.

SMO
Specifies the Sequential Minimal Optimization (SMO) algorithm is used to solve the
optimization problem. This is the default value.

STANDARD

STANDARD = NONE

SD

Specifies the method used to standardise the predictor variable values.

NONE
Specifies that no predictor scaling should be applied. This is the default.

SD
Specifies that the predictors should be centred and scaled by the respective means and
standard deviations.

STEPS

STEPS

Reference for language elements
Version 4.1

3384

Specifies that all evaluated models, including the intermediate models, are displayed. Otherwise,
the only results that are displayed are those from the model that is finally selected.

OUTPUT
Creates a new dataset containing the input observations and the predicted values calculated by the
SVM model.

OUTPUT

OUT = dataset
/ options

;

All the variables in the original dataset are included in the output dataset, along with variables created
by the OUTPUT statement. The new variables contain the predicted values calculated for each
observation in the dataset.

OUT
Specifies the name of the output dataset.

If OUT is not specified, the procedure creates the dataset as DATAn in the WORK library, where n
is incremented for each output dataset.

Options
The following options are available:

PROB

PROB

For classification modelling, specifies that posterior probability estimates for each class are
included in the output dataset. This option is ignored if PROC SVM specifies TYPE=REG.

RESIDUAL

RESIDUAL

R

For regression modelling, specifies that residual values are included in the output dataset. This
option is ignored unless PROC SVM specifies TYPE=REG.

Reference for language elements
Version 4.1

3385

TRANSFORM

TRANSFORM = DOUBLELOGIT

INVLOGIT

LOGIT

NONE

SIGN

SYMMETRIC

SYMMETRICLOGIT

For classification modelling, specifies that the score results are transformed by a transform
function f(x) before being output. This option is ignored if PROC SVM specifies TYPE=REG.

The following transform functions can be specified:

DOUBLELOGIT

INVLOGIT

LOGIT

NONE
No transformation is applied. This is the default value.

SIGN

SYMMETRIC

SYMMETRICLOGIT

Reference for language elements
Version 4.1

3386

SCORE
Uses the current SVM model to score or classify the data in the specified dataset.

SCORE DATA = dataset

/ options

;

The SCORE statement takes the data in the specified dataset and scores it using the SVM model
defined in PROC SVM. The score results are saved in a table which can be printed or saved in an output
dataset.

The score results table includes all the data in the input dataset, including observations with missing
values. But observations with missing values for predictor variables are not scored.

Multiple SCORE statements can be specified if required.

You can use the PRINT option to print the score results. You can also use ODS OUTPUT to save the
score results in an output dataset. If the model has one or two predictor variables, you can also produce
score plots for the mixture model and its components. Models with one predictor variable produce line
plots, and models with two predictor variables produce contour plots.

DATA

Specifies the dataset to score. All the predictor variables specified in the MODEL statement must
be present in the dataset. If a predictor variable has been specified as categorical using the
CLASS statement, the categories in the dataset must match the categories specified in the CLASS
statement.

If PROC GMM includes a BY statement, the dataset to be scored must also contain all the
variables mentioned in the BY statement, and must be sorted in the order of those variables.

The DATA option is mandatory.

Options
The following options are available:

PLOT

PLOT

Specifies that score results plots are output. This option is ignored if the PLOTS option in the
PROC SVM statement has not been specified.

RESIDUAL

RESIDUAL

R

Reference for language elements
Version 4.1

3387

For regression modelling, specifies that residual values are included in the score results table.
This option is ignored unless PROC SVM specifies TYPE=REG.

TRANSFORM

TRANSFORM = DOUBLELOGIT

INVLOGIT

LOGIT

NONE

SIGN

SYMMETRIC

SYMMETRICLOGIT

For classification modelling, specifies that the score results are transformed by a transform
function f(x) before being output. This option is ignored if PROC SVM specifies TYPE=REG.

The following transform functions can be specified:

DOUBLELOGIT

INVLOGIT

LOGIT

NONE
No transformation is applied. This is the default value.

SIGN

SYMMETRIC

SYMMETRICLOGIT

Reference for language elements
Version 4.1

3388

WEIGHT
Specifies a variable in the input dataset giving the prior weight associated with each observation.

WEIGHT variable ;

SVM bibliography
These items are referenced in the SVM procedure section.

[1] Boser, B., Guyon, I. & Vapnik, V., 1992. A training algorithm for optimal margin classifiers. In:
D. Haussler, ed. Proceedings of the Annual Conference on Computational Learning Theory.
Pittsburgh, Pennsylvania: ACM Press, pp. 144–152.

[2] Guyon, I., Boser, B. & Vapnik, V., 1993. Automatic capacity tuning of very large VC-dimension
classifiers. In: S. J. Hanson, J. D. Cowan & C. L. Giles, eds. Advances in Neural Information
Processing Systems 5. s.l.:Morgan Kaufmann Publishers, pp. 147–155.

[3] Cortes, C. & Vapnik, V., 1995. Support vector networks. Machine Learning, Issue 20, pp.
273-297.

[4] Scholkopf, B., Burges, C. & Vapnik, V., 1995. Extracting support data for a given task. In: U.
M. Fayyad & R. Uthurusamy, eds. Proceedings, First International Conference on Knowledge
Discovery and Data Mining. Menlo Park: AAAI Press.

[5] Scholkopf, B., Burges, C. & Vapnik, V., 1996. Incorporating invariances in support vector
learning machines. In: C. von der Malsburg, W. von Seelen, J. C. Vorbruggen & B. Sendhoff,
eds. Artificial Neural Networks ICANN'96. Berlin: Springer, pp. 47–52.

[6] Vapnik, V., Golowich, S. & Smola, A., 1997. Support Vector Method for Function Approximation,
Regression Estimation and Signal Processing. In: M. C. Mozer, M. I. Jordan & T. Petsche, eds.
Advances in Neural Information Processing Systems 9. Cambridge, Massachusetts: MIT Press,
pp. 281–287.

[7] Vapnik, V. & Lerner, A., 1963. Pattern Recognition using Generalized Portrait Method.
Automation and Remote Control, Volume 24, pp. 774–780.

[8] Aizerman, M. A., Braverman, E. M. & Rozonoer, L. I., 1964. Theoretical Foundations of the
Potential Function Method in Pattern Recognition Learning. Automation and Remote Control,
Issue 25, pp. 821–837.

[9] Dietterich, T. G. & Bakiri, G., 1995. Solving Multiclass Learning Problems via Error-Correcting
Output Codes. Journal of Artificial Intelligence Research, Issue 2, pp. 263–286.

[10] Kecman, V., Huang, T.-M. & Vogt, M., 2005. Iterative Single Data Algorithm for Training Kernel
Machines from Huge Data Sets: Theory and Performance. In: L. Wang, ed. Support Vector
Machines: Theory and Applications. Berlin: Springer-Verlag, pp. 255–274.

[11] Platt, J. C., 1998. Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines, s.l.: Microsoft Research.

Reference for language elements
Version 4.1

3389

[12] Platt, J. C., 1999. Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods. Advances in large margin classifiers, 10(3), pp. 61–74.

[13] Lin, H.-T., Lin, C.-J. & Weng, R. C., 2007. A Note on Platt's Probabilistic Outputs for Support
Vector Machines. Machine Learning, 68(3), pp. 267–276.

[14] Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2), pp. 179–188.

Reference for language elements
Version 4.1

3390

WPS Operational Research

Operational research procedures

LP procedure

Supported statements
• PROC LP (page 3390)
• ATTRIB (page 3392)
• COEF (page 3392)
• COL (page 3392)
• FORMAT (page 3392)
• INFORMAT (page 3393)
• LABEL (page 3393)
• RANGE (page 3393)
• RHSSEN (page 3393)
• ROW (page 3393)
• TYPE (page 3393)
• VAR (page 3394)
• WHERE (page 3394)

PROC LP

PROC LP

option

;

Reference for language elements
Version 4.1

3391

option

SPARSEDATA

DATA = input- dataset
i

DUALOUT = output- dataset
i i

MPSOUT = output- dataset
i i i

PRIMALIN = input- dataset
iv

PRIMALOUT = output- dataset
v

TABLEAUOUT = output- dataset
vi

DEVEX

NODEVEX

EPSILON = number

REPSILON = number

SMALL = number

TIME = number

INFINITY = number

MAXIT = number

MAXIT1 = number

MAXIT2 = number

FLOW

NOFLOW

FUZZ = number

PRINT

NOPRINT

PRINTFREQ = number

PRINTLEVEL = number

TABLEAUPRINT

PREPROCESS

NOPREPROCESS

PEPSILON = number

PMAXIT = number

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Output dataset (page 16).

iv See Input dataset (page 16).

v See Output dataset (page 16).

Reference for language elements
Version 4.1

3392

vi See Output dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

COEF

COEF variables ;

COL

COL variable ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3393

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

RANGE

RANGE variable ;

RHSSEN

RHSSEN variable ;

ROW

ROW variable ;

TYPE

TYPE variable ;

Reference for language elements
Version 4.1

3394

VAR

VAR variables ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3395

WPS Quality Control

Quality control procedures

CAPABILITY Procedure

Supported statements
• PROC CAPABILITY (page 3396)
• ATTRIB (page 3398)
• BY (page 3398)
• CDFPLOT (page 3399)
• CLASS (page 3405)
• COMPHISTOGRAM (page 3406)
• FORMAT (page 3408)
• FREQ (page 3408)
• HISTOGRAM (page 3408)
• ID (page 3418)
• INFORMAT (page 3418)
• LABEL (page 3418)
• OUTPUT (page 3418)
• PPPLOT (page 3422)
• PROBPLOT (page 3428)
• QQPLOT (page 3434)
• SPEC (page 3440)
• VAR (page 3440)
• WEIGHT (page 3440)
• WHERE (page 3440)

Reference for language elements
Version 4.1

3396

PROC CAPABILITY

PROC CAPABILITY

option

;

Reference for language elements
Version 4.1

3397

option

DATA = data- set
i

ALL

ALPHA = value

CHECKINDICES

(TEST = SW

KS

AD

CVM

NONE

ALPHA = value

)

CIBASIC

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

CIINDICES

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

CIPCTLDF

CIQUANTDF
(TYPE = LOWER

SYMMETRIC

UPPER

ALPHA = value

)

CIPCTLNORMAL

CIQUANTNORMAL
(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

CIPROBEX

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

EXCLNPWGT

EXCLNPWGTS

FREQ

LOCCOUNT

MODES

MODE

MU0

LOCATION

= value

NEXTROBS = n

NEXTRVAL = n

NOBYSPECS

NOPRINT

NORMAL

NORMALTEST

OUTTABLE = output- data- set
i i

PCTLDEF

DEF

= 1

2

3

4

5

ROBUSTSCALE

ROUND = value

SPEC

SPECS

= data- set
i i i

TRIM

TRIMMED

= value

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

VARDEF = DF

N

WDF

WEIGHT

WGT

WINSOR

WINSORIZED

= value

(TYPE = LOWER

TWOSIDED

UPPER

ALPHA = value

)

Reference for language elements
Version 4.1

3398

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Input dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

Reference for language elements
Version 4.1

3399

CDFPLOT

CDFPLOT

CDF

variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

IGAUSS distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3400

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

3401

IGAUSS distribution

IGAUSS

(LAMBDA = EST

value

MU = EST

value

)

LOGNORMAL distribution

LOGNORMAL

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

NORMAL distribution

NORMAL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

3402

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3403

WEIBULL distribution

WEIBULL

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3404

other-option
DESCRIPTION

DES

= value

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NAME = value

NCOLS

NCOL

= value

NOCDFLEGEND

NOECDF

NOHLABEL

NOHTICK

NOLEGEND

NOSPECLEGEND

NOSPECL

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

VSCALE = PERCENT

PROPORTION

Reference for language elements
Version 4.1

3405

CLASS

CLASS variable- name

(MISSING

ORDER = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

)

variable- name

(MISSING

ORDER = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

)

/ KEYLEVEL = class- level

(class- level1 class- level2)

NOKEYMOVE

;

Reference for language elements
Version 4.1

3406

COMPHISTOGRAM

COMPHISTOGRAM

COMPHIST

variable- name

/ NORMAL distribution

KERNEL option

other- option

;

NORMAL distribution

NORMAL

(MU = EST

value

SIGMA = EST

value

)

KERNEL option

KERNEL

(C = MISE

value

K = N

NORMAL

Q

QUADRATIC

T

TRIANGULAR

LOWER = value

UPPER = value

)

Reference for language elements
Version 4.1

3407

other-option
BARLABEL = COUNT

PERCENT

PROPORTION

CLASS = variable

(variable1 variable2)

CLASSKEY = value

(value1 value2)

DESCRIPTION

DES

= value

ENDPOINTS = value

value TO value

BY value

KEY

UNIFORM

GRID

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

MAXNBIN = value

MAXSIGMAS = value

MIDPOINTS = value

value TO value

BY value

KEY

UNIFORM

MISSING1

MISSING2

NAME = value

NCOLS

NCOL

= value

NENDPOINTS = n

NMIDPOINTS = n

NOBARS

NOHLABEL

NOHTICK

NOKEYMOVE

NOPLOT

NOCHART

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

ORDER1 = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

ORDER2 = DATA

EXTERNAL

FMT

FORMATTED

FREQ

INTERNAL

UNFMT

UNFORMATTED

OUTHISTOGRAM

OUTHIST

= output- data- set
i

OUTKERNEL = output- data- set
i i

RTINCLUDE

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

VSCALE = COUNT

PERCENT

PROPORTION

Reference for language elements
Version 4.1

3408

i See Output dataset (page 16).

ii See Output dataset (page 16).

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

FREQ

FREQ variable- name ;

HISTOGRAM

HISTOGRAM

HIST

variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

IGAUSS distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

SB distribution

SU distribution

WEIBULL distribution

KERNEL option

other- option

;

Reference for language elements
Version 4.1

3409

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3410

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

EDFNSAMPLES = value

EDFSEED = seed

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3411

IGAUSS distribution

IGAUSS

(LAMBDA = EST

value

MU = EST

value

EDFNSAMPLES = value

EDFSEED = seed

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

LOGNORMAL distribution

LOGNORMAL

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3412

NORMAL distribution

NORMAL

(MU = EST

value

SIGMA = EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3413

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

EDFNSAMPLES = value

EDFSEED = seed

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3414

SB distribution

SB

(DELTA = EST

value

FITINTERVAL = value

FITMETHOD = MLE

MOMENTS

PERCENTILE

FITTOLERANCE = value

GAMMA = EST

value

SIGMA

SCALE

= EST

value

THETA

THRESHOLD

= EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3415

SU distribution

SU

(DELTA = EST

value

FITINTERVAL = value

FITMETHOD = MLE

MOMENTS

PERCENTILE

FITTOLERANCE = value

GAMMA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

Reference for language elements
Version 4.1

3416

WEIBULL distribution

WEIBULL

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

INDICES

MIDPERCENTS

NOPRINT

PERCENTS

PERCENT

= percent ile

)

KERNEL option

KERNEL

(C = MISE

value

K = N

NORMAL

Q

QUADRATIC

T

TRIANGULAR

LOWER = value

NOPRINT

UPPER = value

)

Reference for language elements
Version 4.1

3417

other-option
BARLABEL = COUNT

PERCENT

PROPORTION

DESCRIPTION

DES

= value

ENDPOINTS = value

value TO value

BY value

KEY

UNIFORM

GRID

HANGING

HANG

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

MAXNBIN = value

MAXSIGMAS = value

MIDPERCENTS

MIDPOINTS = value

value TO value

BY value

KEY

UNIFORM

NAME = value

NCOLS

NCOL

= value

NENDPOINTS = n

NMIDPOINTS = n

NOBARS

NOCURVELEGEND

NOCURVEL

NOHLABEL

NOHTICK

NOLEGEND

NOPLOT

NOPRINT

NOSPECLEGEND

NOSPECL

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OUTHISTOGRAM

OUTHIST

= output- data- set
i

OUTKERNEL = output- data- set
i i

RTINCLUDE

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

VSCALE = COUNT

PERCENT

PROPORTION

Reference for language elements
Version 4.1

3418

i See Output dataset (page 16).

ii See Output dataset (page 16).

ID

ID variable- name ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

OUTPUT

OUTPUT

OUT = output- data- set
i

Simple Statistic

Capability Statistic

Percentile Statistic

Test Statistic

Difference Statistic

;

i See Output dataset (page 16).

Reference for language elements
Version 4.1

3419

Simple Statistic

CSS

CV

KURTOSIS

KURT

MAX

MEAN

MIN

MODE

N

NMISS

NOBS

QRANGE

RANGE

SKEWNESS

SKEW

STD

STDDEV

STDMEAN

STDERR

STD_QRANGE

SUM

SUMWGT

USS

VAR

= name

Reference for language elements
Version 4.1

3420

Capability Statistic

CP

CPK

CPKLCL

CPKUCL

CPL

CPLCL

CPLLCL

CPLUCL

CPM

CPMLCL

CPMUCL

CPU

CPUCL

CPULCL

CPUUCL

K

LSL

PCTGTR

PCTLSS

TARGET

USL

= name

Percentile Statistic

P1

P5

P10

Q1

P25

MEDIAN

Q2

P50

Q3

P75

P90

P95

P99

= name

PCTLNAME = suff ix

PCTLPRE = prefix

PCTLPTS = percent ile

TO percent ile

BY percent ile

,
percent ile

TO percent ile

BY percent ile

Reference for language elements
Version 4.1

3421

Test Statistic

MSIGN

NORMAL

PNORMAL

PROBN

PROBM

PROBS

PROBT

SIGNRANK

T

= name

Difference Statistic

GINI

MAD

QN

SN

STD_GINI

STD_MAD

STD_QN

STD_SN

= name

Reference for language elements
Version 4.1

3422

PPPLOT

PPPLOT

PP

variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

IGAUSS distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

Reference for language elements
Version 4.1

3423

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

NOLINE

)

Reference for language elements
Version 4.1

3424

IGAUSS distribution

IGAUSS

(LAMBDA = EST

value

MU = EST

value

NOLINE

)

LOGNORMAL distribution

LOGNORMAL

LNORM

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

NORMAL distribution

NORMAL

NORM

(MU = EST

value

SIGMA = EST

value

NOLINE

)

Reference for language elements
Version 4.1

3425

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

Reference for language elements
Version 4.1

3426

WEIBULL distribution

WEIBULL

WEIB

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

NOLINE

)

Reference for language elements
Version 4.1

3427

other-option

DESCRIPTION

DES

= value

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NAME = value

NCOLS

NCOL

= value

NOHLABEL

NOHTICK

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

SQUARE

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

Reference for language elements
Version 4.1

3428

PROBPLOT

PROBPLOT

PROB

variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

WEIBULL2 distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3429

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

3430

LOGNORMAL distribution

LOGNORMAL

LNORM

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= EST

value

)

NORMAL distribution

NORMAL

NORM

(MU = EST

value

SIGMA = EST

value

)

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3431

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

WEIBULL distribution

WEIBULL

WEIB

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3432

WEIBULL2 distribution

WEIBULL2

W2

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= value

)

Reference for language elements
Version 4.1

3433

other-option
DESCRIPTION

DES

= value

GRID

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NADJ = value

NAME = value

NCOLS

NCOL

= value

NOHLABEL

NOHTICK

NOLEGEND

NOLINELEGEND

NOLINEL

NOSPECLEGEND

NOSPECL

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

RANKADJ = value

ROTATE

SQUARE

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

Reference for language elements
Version 4.1

3434

QQPLOT

QQPLOT

QQ

variable- name

/ BETA distribution

EXPONENTIAL distribution

GAMMA distribution

GUMBEL distribution

LOGNORMAL distribution

NORMAL distribution

PARETO distribution

POWER distribution

RAYLEIGH distribution

WEIBULL distribution

WEIBULL2 distribution

other- option

;

BETA distribution

BETA

(ALPHA

A

= EST

value

BETA

B

= EST

value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3435

EXPONENTIAL distribution

EXPONENTIAL

EXP

(SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GAMMA distribution

GAMMA

(ALPHA

SHAPE

= EST

value

ALPHADELTA = value

ALPHAINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

GUMBEL distribution

GUMBEL

(MU = EST

value

SIGMA = EST

value

)

Reference for language elements
Version 4.1

3436

LOGNORMAL distribution

LOGNORMAL

LNORM

(SCALE

ZETA

= EST

value

SHAPE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= EST

value

)

NORMAL distribution

NORMAL

NORM

(MU = EST

value

SIGMA = EST

value

)

PARETO distribution

PARETO

(ALPHA

SHAPE

= EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3437

POWER distribution

POWER

(ALPHA = EST

value

SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

RAYLEIGH distribution

RAYLEIGH

(SIGMA = EST

value

THETA

THRESHOLD

= EST

value

)

WEIBULL distribution

WEIBULL

WEIB

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

THETA

THRESHOLD

= EST

value

)

Reference for language elements
Version 4.1

3438

WEIBULL2 distribution

WEIBULL2

W2

(C

SHAPE

= EST

value

CDELTA = value

CINITIAL = value

MAXITER = value

SCALE

SIGMA

= EST

value

SLOPE = EST

value

THETA

THRESHOLD

= value

)

Reference for language elements
Version 4.1

3439

other-option
DESCRIPTION

DES

= value

GRID

HREF = value

HREFLABELS

HREFLABEL

HREFLAB

= label

HREFLABPOS = 1

3

INTERTILE = value

NADJ = value

NAME = value

NCOLS

NCOL

= value

NOHLABEL

NOHTICK

NOLEGEND

NOLINELEGEND

NOLINEL

NOSPECLEGEND

NOSPECL

NOVLABEL

NOVTICK

NROWS

NROW

= value

ODSFOOTNOTE = FOOTNOTE

FOOTNOTE1

value

ODSFOOTNOTE2 = FOOTNOTE2

value

ODSTITLE = TITLE

TITLE1

NONE

DEFAULT

LABELFMT

value

ODSTITLE2 = TITLE2

value

OVERLAY

PCTLAXIS

(GRID

LABEL = value

)

PCTLSCALE

RANKADJ = value

ROTATE

SQUARE

STATREF = MAX

MEAN

MEDIAN

MIN

MODE

P10

P1

P25

P50

P5

P75

P90

P95

P99

Q1

Q2

Q3

factor STD

STATREFLABELS

STATREFLABEL

STATREFLAB

= label

STATREFSUBCHAR = value

VAXISLABEL = value

VREF = value

VREFLABELS

VREFLABEL

VREFLAB

= label

VREFLABPOS = 1

2

Reference for language elements
Version 4.1

3440

SPEC

SPEC

LSL = value

TARGET = value

USL = value

;

VAR

VAR variable- name ;

WEIGHT

WEIGHT variable- name ;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3441

WPS Timeseries

Timeseries procedures

ARIMA procedure

Supported statements
• PROC ARIMA (page 3441)
• ATTRIB (page 3442)
• BY (page 3443)
• FORMAT (page 3443)
• IDENTIFY (page 3443)
• INFORMAT (page 3444)
• ESTIMATE (page 3445)
• FORECAST (page 3447)
• LABEL (page 3448)
• WHERE (page 3448)

PROC ARIMA

PROC ARIMA

ARIMA- options

;

Reference for language elements
Version 4.1

3442

ARIMA-options

DATA = dataset
i

OUT = dataset
i i

PLOTS

(ONLY

UNPACK

) = (ALL

NONE

SERIES (ACF

ALL

CORR

CROSSCORR

IACF

PACF

)

RESIDUAL (ACF

ALL

CORR

HIST

IACF

NORMAL

PACF

QQ

WN

)

FORECAST (ALL

FORECAST

FORECASTONLY

)

)

i See Input dataset (page 16).

ii See Output dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3443

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

IDENTIFY

IDENTIFY VAR = variable

variable(d1,...,dt) IDENTIFY- options

Reference for language elements
Version 4.1

3444

IDENTIFY-options

ALPHA = value

CLEAR

CROSSCORR = variable

variable(d11,d12,...,d1k)

(variable(d1,d2,...,dk))

DATA = dataset
i

ESACF

NLAG = number

MINIC

NOMISS

NOPRINT

OUTCOV = dataset
i i

P = (min:max)

PERROR = (min:max)

Q = (min:max)

SCAN

WHITENOISE = ST

IGNOREMISS

i See Input dataset (page 16).

ii See Output dataset (page 16).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3445

ESTIMATE

label :

ESTIMATE

ESTIMATE- options

Reference for language elements
Version 4.1

3446

ESTIMATE-options

ALTPARM

AR = value

CONVERGE = value

DELTA = value

INITVAL = (initial values)

INPUT = variable

(transfer function)

MA = value

MAXITER

MAXIT

= value

METHOD = CLS

ML

ULS

MU = value

NOCONSTANT

NOINT

NODF

NOEST

NOLS

NOPRINT

NOSTABLE

NOTFSTABLE

OUTCORR

OUTCOV

OUTEST = dataset

OUTMODEL = dataset

OUTSTAT = dataset

P = order

(lag)

PLOT

PRINTALL

Q = order

(lag)

SINGULAR = value

WHITENOISE = ST

IGNOREMISS

Reference for language elements
Version 4.1

3447

initial values

scale

$ (value) / (value)

variable

transfer function

shift

$ (lag) / (lag)

variable

FORECAST

FORECAST

FORECAST- options

Reference for language elements
Version 4.1

3448

FORECAST-options

ALIGN = B

BEG

BEGINNING

M

MID

MIDDLE

E

END

ENDING

ALPHA = value

BACK = value

ID = variable

INTERVAL = interval

value

LEAD = value

NOOUTALL

NOPRINT

OUT = dataset
i

PRINTALL

SIGSQ = value

i See Output dataset (page 16).

LABEL

LABEL variable- name =

label- name

;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3449

AUTOREG procedure

Supported statements
• PROC AUTOREG (page 3449)
• ATTRIB (page 3451)
• BY (page 3451)
• FORMAT (page 3451)
• INFORMAT (page 3451)
• LABEL (page 3452)
• MODEL (page 3452)
• OUTPUT (page 3453)
• WHERE (page 3454)

PROC AUTOREG

PROC AUTOREG

AUTOREG- options

;

Reference for language elements
Version 4.1

3450

AUTOREG-options

ALL

ARCHTEST

= (QLM

LK

WL

ALL

)

BACKSTEP

CENTER

CONVERGE = value

CORRB

COVB

COVOUT

DATA = dataset
i

GINV

ITER

ITPRINT

MAXITER = value

METHOD = ITYW

ML

ULS

YW

NOINT

NOMISS

NOPRINT

PARTIAL

PLOTS

(ONLY

UNPACK

) = (ALL

ACF

IACF

PACF

FITPLOT

COOKSD

QQ

RESIDUAL

STUDENTRESIDUAL

STANDARDRESIDUAL

WHITENOISE

RESIDUALHISTOGRAM

NONE

)

OUTEST = dataset
i i

Reference for language elements
Version 4.1

3451

i See Input dataset (page 16).

ii See Output dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3452

LABEL

LABEL variable- name =

label- name

;

MODEL

label :

MODEL response- variable = regressor- variables

/ options

;

Reference for language elements
Version 4.1

3453

options

ALL

ARCHTEST

= (QLM

LK

WL

ALL

)

BACKSTEP

CENTER

CONVERGE = value

CORRB

COVB

GINV

ITER

ITPRINT

LOGLIKL

MAXITER = value

METHOD = ITYW

ML

ULS

YW

NLAG =

(lag_1 lag_2 ... lag_p)

value

NOINT

NOMISS

NOPRINT

PARTIAL

SLSTAY = value

OUTPUT

OUTPUT

Reference for language elements
Version 4.1

3454

option

OUT = dataset
i

ALPHACLI = value

ALPHACLM = value

ALPHACSM

= 0.01

0.05

0.10

CPEV = variable

CONSTANT = variable

CUSUM = variable

CUSUMSQ = variable

CUSUMUB = variable

CUSUMLB = variable

CUSUMSQUB = variable

CUSUMSQLB = variable

LCL = variable

LCLM = variable

PREDICTED = variable

PREDICTEDM = variable

RECPEV = variable

RECRES = variable

RESIDUAL = variable

RESIDUALM = variable

TRANSFORM = variables

UCL = variable

UCLM = variable

i See Output dataset (page 16).

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3455

EXPAND procedure

Supported statements
• PROC EXPAND (page 3455)
• ATTRIB (page 3456)
• BY (page 3456)
• CONVERT (page 3456)
• FORMAT (page 3460)
• ID (page 3461)
• INFORMAT (page 3461)
• LABEL (page 3461)
• WHERE (page 3461)

PROC EXPAND

PROC EXPAND

EXPAND- options

;

EXPAND-options

DATA = dataset
i

OUT = dataset
i i

OUTEST = dataset
i i i

ALIGN = BEGINNING

MIDDLE

ENDING

FACTOR = n

(n : m)

FROM = interval

TO = interval

EXTRAPOLATE

method
iv

observed
v

i See Input dataset (page 16).

Reference for language elements
Version 4.1

3456

ii See Output dataset (page 16).

iii See Output dataset (page 16).

iv See Option METHOD (page 3462).

v See Option OBSERVED (page 3462).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY variable- name ;

CONVERT

CONVERT variable- name

/ CONVERT- options

;

CONVERT-options

method
i

observed
i i

TRANSFORMIN = (operation)

TRANSFORMOUT = (operation)

Reference for language elements
Version 4.1

3457

i See Option METHOD (page 3462).

ii See Option OBSERVED (page 3462).

Reference for language elements
Version 4.1

3458

operation

numeric operations

(C)MOV operations

CD operations

CU operations

ABS

ADJUST

CEIL

DIF

LAG

LEAD

n

EWMA number

EXP

FDIF d

FLOOR

FSUM d

HP_T

HP_C

lambda

ILOGIT

LOG

LOGIT

MISSONLY

mean

NEG

NOMISS

PCTDIF n

PCTSUM n

RATIO n

RECIPROLCAL

REVERSE

SCALE n1 n2

SEQADD

SEQDIV

SEQMINUS

SEQMULT

sequence

SET (n1 n2)

SETEMBEDDED (n1 n2)

SETLEFT (n1 n2)

SETMISS number

SETRIGHT (n1 n2)

SIGN

SQRT

SQUARE

SUM

SUM n

TRIM n

TRIMLEFT n

TRIMRIGHT n

Reference for language elements
Version 4.1

3459

numeric operations

+

-

*

/

MAX

MIN

>

>=

=

^=

<

<=

number

CD operations

CD_I

CD_S

CD_SA

CD_TC

CDA_I

CDA_S

CDA_SA

s

CU operations

CUAVE

CUCSS

CUGMEAN

CUMAX

CUMED

CUMIN

CUPROD

CURANK

CURANGE

CUSTD

CUSUM

CUTVALUE

CUUSS

CUVAR

n

Reference for language elements
Version 4.1

3460

(C)MOV operations

CMOVMAX

CMOVMED

CMOVMIN

CMOVRANGE

CMOVRANK

CMOVSUM

MOVAVE

MOVMAX

MOVMED

MOVMIN

MOVRANGE

MOVRANK

MOVSUM

n

CMOVAVE

CMOVCSS

CMOVGMEAN

CMOVPROD

CMOVSTD

CMOVTVALUE

CMOVUSS

CMOVVAR

MOVAVE

MOVCSS

MOVGMEAN

MOVPROD

MOVSTD

MOVTVALUE

MOVUSS

MOVVAR

window

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

Reference for language elements
Version 4.1

3461

ID

ID variable ;

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3462

Common options

Option METHOD

METHOD = SPLINE

JOIN

STEP

AGGREGATE

NONE

SPLINE (

,

NOTAKNOT

NATURAL

SLOPE = value

CURVATURE = value

)

Option OBSERVED

OBSERVED = observed type

(

,

observed type)

observed type

BEGINNING

MIDDLE

END

TOTAL

AVERAGE

DERIVATIVE

FORECAST procedure

Supported statements
• PROC FORECAST (page 3463)
• ATTRIB (page 3465)

Reference for language elements
Version 4.1

3463

• BY (page 3465)
• FORMAT (page 3465)
• ID (page 3465)
• INFORMAT (page 3466)
• LABEL (page 3466)
• VAR (page 3466)
• WHERE (page 3466)

PROC FORECAST

PROC FORECAST

FORECAST- options

;

Reference for language elements
Version 4.1

3464

FORECAST-options

ALIGN = BEGINNING

MIDDLE

ENDING

AR = n

ASTART

BSTART

CSTART

= value

(

,

value)

DATA = dataset
i

INTERVAL = interval

INTPER = n

LEAD = n

MAXERRORS = n

METHOD = STEPAR

EXPO

WINTERS

ADDWINTERS

NSTART = n

NSSTART = n

OUT = dataset
i i

OUTACTUAL

OUTALL

OUTEST = dataset
i i i

OUTESTALL

OUTESTTHEIL

OUTFITSTATS

OUTFULL

OUTRESID

OUT1STEP

SEASONS = interval

SINGULAR = value

SINTPER = n

SLENTRY = value

SLSTAY = value

START = n

TREND = n

WEIGHT = w

(w1 w2)

(w1 w2 w3)

ZEROMISS

Reference for language elements
Version 4.1

3465

i See Input dataset (page 16).

ii See Output dataset (page 16).

iii See Output dataset (page 16).

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY variable- name ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

Reference for language elements
Version 4.1

3466

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

LOAN procedure

Supported statements
• PROC LOAN (page 3467)
• ARM (page 3469)
• ATTRIB (page 3469)
• BALLOON (page 3469)
• BUYDOWN (page 3470)
• COMPARE (page 3470)
• FIXED (page 3471)

Reference for language elements
Version 4.1

3467

• FORMAT (page 3471)
• INFORMAT (page 3471)
• LABEL (page 3471)
• WHERE (page 3471)

PROC LOAN

PROC LOAN

LOAN- options

;

Reference for language elements
Version 4.1

3468

LOAN-options

AMOUNT = amount

LIFE = n

PAYMENT = amount

RATE = rate

AMOUNTPCT = value

COMPOUND = t ime- unit

DOWNPAYMENT = amount

DOWNPAYPCT = value

INITIAL = amount

INITIALPCT = value

INTERVAL = t ime- unit

LABEL = 'loan label'

POINTS = amount

POINTPCT = value

PREPAYMENTS = amount

(date1 = prepayment1 date2 = prepayment2)

(period1 = prepayment1 period2 = prepayment2)

PRICE = amount

ROUND = n

NONE

START = n

yyyy

:

period

NOSUMMARYPRINT

NOPRINT

OUT = dataset
i

OUTSUM = dataset
i i

SCHEDULE

= n

YEARLY

i See Output dataset (page 16).

ii See Output dataset (page 16).

Reference for language elements
Version 4.1

3469

ARM

ARM

/ ARM- options

;

ARM-options

ADJUSTFREQ = n

CAPS = (periodic- cap , l ife- cap)

MAXADJUST = rate

MAXRATE = rate

MINRATE = rate

BESTCASE

WORSTCASE

FIXEDCASE

ESTIMATEDCASE = (date1 = rate1 date2 = rate2)

(period1 = rate1 period2 = rate2)

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BALLOON

BALLOON

/ BALLOON- options

;

Reference for language elements
Version 4.1

3470

BALLOON-options

BALLOONPAYMENT = (date1 = payment1 date2 = payment2)

(period1 = payment1 period2 = payment2)

BUYDOWN

BUYDOWN

/ BUYDOWN- options

;

BUYDOWN-options

BUYDOWNRATES = (date1 = rate1 date2 = rate2)

(period1 = rate1 period2 = rate2)

COMPARE

COMPARE

/ COMPARE- options

;

COMPARE-options

ALL

AT = (date1 date2)

(period1 period2)

BREAKINTEREST

BREAKPAYMENT

MARR = rate

PWOFCOST

TAX = rate

TRUEINTEREST

NOCOMPRINT

OUTCOMP = dataset
i

i See Output dataset (page 16).

Reference for language elements
Version 4.1

3471

FIXED

FIXED ;

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

WHERE

WHERE condit ion ;

Reference for language elements
Version 4.1

3472

X12 procedure

Supported statements
• PROC X12 (page 3472)
• ADJUST (page 3473)
• ARIMA (page 3473)
• ATTRIB (page 3474)
• BY (page 3474)
• ESTIMATE (page 3474)
• FORECAST (page 3474)
• FORMAT (page 3475)
• ID (page 3475)
• IDENTIFY (page 3475)
• INFORMAT (page 3476)
• LABEL (page 3476)
• OUTPUT (page 3476)
• REGRESSION (page 3478)
• TABLES (page 3478)
• TRANSFORM (page 3480)
• VAR (page 3480)
• X11 (page 3480)
• WHERE (page 3480)

PROC X12

PROC X12

X12- options

;

Reference for language elements
Version 4.1

3473

X12-options

DATA = dataset
i

DATE

DATEVAR

= variable

INTERVAL = QTR

QUARTER

MONTH

NOPRINT

NOTRIMMISS

PERIODOGRAM

SEASONS = 4

12

SPAN = (mmmyy , mmmyy)

(yyQq , yyQq)

SPECTRUMSERIES = A1

A19

B1

E1

START

STARTDATE

= mmmyy

"yyQq"

i See Input dataset (page 16).

ADJUST

ADJUST

PREDEFINED = LOM

LOQ

LPYEAR

;

ARIMA

ARIMA

MODEL = ((p d q) (P D Q) s)

;

Reference for language elements
Version 4.1

3474

ATTRIB

ATTRIB variable- list
i

FORMAT = format

INFORMAT = informat

LABEL = "label"

LENGTH =

$

length

;

i See Variable Lists (page 32).

BY

BY

DESCENDING

variable- name

NOTSORTED

;

ESTIMATE

ESTIMATE

ESTIMATE- options

;

ESTIMATE-options

ITPRINT

MAXITER = number

PRINTERR

TOL = value

FORECAST

FORECAST

FORECAST- options

;

Reference for language elements
Version 4.1

3475

FORECAST-options

ALPHA = value

BACKCAST

NBACK

NBACKCAST

= number

LEAD = number

OUTBACKCAST

OUTBKCAST

OUTFORECAST

OUTFCST

FORMAT

FORMAT variable- list
i

format

;

i See Variable Lists (page 32).

ID

ID variable- name ;

IDENTIFY

IDENTIFY

IDENTIFY- options

;

IDENTIFY-options

DIFF = (order , order , order)

MAXLAG = value

PRINTREG

SDIFF = (order , order , order)

Reference for language elements
Version 4.1

3476

INFORMAT

INFORMAT variable- list
i

informat

;

i See Variable Lists (page 32).

LABEL

LABEL variable- name =

label- name

;

OUTPUT

OUTPUT

OUTPUT- options

;

Reference for language elements
Version 4.1

3477

OUTPUT-options

A1

A2

A6

A7

A8

A8AO

A8LS

A8TC

A9

A10

A19

B1

C17

C20

D1

D7

D8

D9

D10

D10D

D11

D11A

D11R

D12

D13

D16

D16B

D18

E1

E2

E3

E5

E6

E6A

E6R

E7

E8

MV1

OUT = data- set
i

YEARSEAS

YRSEAS

Reference for language elements
Version 4.1

3478

i See Output dataset (page 16).

REGRESSION

REGRESSION PREDEFINED = predefined- option

/ B = (value)

;

predefined-option

CONSTANT

EASTER (value)

LABOR (value)

LOM

LOMSTOCK

LOQ

LPYEAR

SCEASTER (value)

SEASONAL

SCEASTER (value)

TD

TD1COEFF

TD1NOLPYEAR

TDSTOCK (value)

THANK (value)

TABLES

TABLES

TABLES- option

;

Reference for language elements
Version 4.1

3479

TABLES-option
A1

A19

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B13

B14

B15

B16

B17

B18

B19

B20

C1

C2

C4

C5

C6

C9

C10

C13

C14

C15

C16

C17

C18

C19

C20

D1

D2

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

E1

E2

E3

E4

E5

E6

F1

F2

G0

G1

G2

NOSUMMARY

NOSUM

NOSUMMARYLINE

Reference for language elements
Version 4.1

3480

TRANSFORM

TRANSFORM

TRANSFORM- option

;

TRANSFORM-option

FUNCTION = LOG

LOGISTIC

INVERSE

NONE

SQRT

POWER = value

VAR

VAR variable- name ;

WHERE

WHERE condit ion ;

X11

X11

X11- options

;

Reference for language elements
Version 4.1

3481

X11-options

FORCE = TOTALS

ROUND

BOTH

MODE = ADD

MULT

LOGADD

PSEUDOADD

OUTFORECAST

OUTFCST

SEASONALMA = S3X1

S3X3

S3X5

S3X9

S3X15

STABLE

X11DEFAULT

MSR

SIGMALIM = (

lower limit

,

upper limit

)

TRENDMA = value

Reference for language elements
Version 4.1

3482

WPS Communicate

Global statements

ENDRSUBMIT

ENDRSUBMIT ;

This statement indicates the end of a block of code that began with an RSUBMIT statement.

RSUBMIT

RSUBMIT

remote- id
option

;

option

optionsAtoM

optionsNtoZ

Reference for language elements
Version 4.1

3483

options A to M

CMACVAR

MACVAR

= 'variable- name'

CONNECTPERSIST

CPERSIST

PERSIST

= YES

NO

CONNECTREMOTE

CREMOTE

REMOTE

PROCESS

= remote- id

CONNECTWAIT

CWAIT

WAIT

= YES

NO

CSYSRPUTSYNC

SYSRPUTSYNC

= YES

NO

CSCRIPT

SCRIPT

= signon- script

IDENTITYFILE = ident ity- f ile

LOG = KEEP

PURGE

f ilename

Reference for language elements
Version 4.1

3484

options N to Z

NOCSCRIPT

NOSCRIPT

OUTPUT = KEEP

PURGE

f ilename

PASSWORD

PASS

PASSWD

PW

PWD

= string

SASCMD

LAUNCHCMD

= 'command- name'

SIGNONWAIT = YES

NO

TBUFSIZE = bytes

kilobytes K

megabytes M

UID

USER

USERID

USERNAME

= 'string'

SSH

DEBUG

This statement marks the beginning of a block of program code to be submitted to a (usually remote)
host for execution.

CMACVAR, MACVAR
This option specifies a macro variable whose value is bound to the completion status of the current
RSUBMIT block.

CONNECTPERSIST, CPERSIST, PERSIST
This option signifies whether or not an automatic signoff occurs after a SIGNON and RSUBMIT.

CONNECTREMOTE, CREMOTE, REMOTE, PROCESS
This option identifies the remote machine to which a connection will be established, either directly or by
naming a macro variable that contains the address.

Reference for language elements
Version 4.1

3485

Note:
If the CONNECTREMOTE option is used with the name of the remote host specifically provided as a
macro variable, then no ampersand should be placed before the macro variable name. The correct
syntax is illustrated in the following fragment:

...
%LET HostName = RemoteHost;

options ssh_hostvalidation=none;
signon connectremote=HostName ssh /* Not &HostName */
user = <username>
password = <password>
launchcmd = '<location-of-wps-executable> -dmr';
...

CONNECTWAIT, CWAIT, WAIT
This option determines if the RSUBMIT block is to be run in asynchronous or synchronous mode, by
setting it to NO or YES respectively.

CSYSRPUTSYNC, SYSRPUTSYNC
If set to YES, this option forces macro variables to be defined when %SYSRPUT executes.

CSCCRIPT, SCRIPT
This option identifies a signon script.

IDENTITYFILE
This option specifies a file containing authentication information, such as SSH keys.

NOSCRIPT, NOCSCRIPT
This option indicates that no script should be used to sign on.

LOG
This option defines whether the system log should be kept, purged or sent to a specific file.

OUTPUT
This option defines whether the output of the sub-program should be kept, purged or sent to a specific
file.

PASSWORD, PASS, PASSWD, PW, PWD
This option is used to specify a password for remote authorisation.

Reference for language elements
Version 4.1

3486

SASCMD, LAUNCHCMD
When present, this option is used to specify the command required to launch WPS on the remote
machine.

SIGNONWAIT
This option stipulates that a SIGNON should finish before permitting subsequent processing.

TBUFSIZE
This option specifies the WPS COMMUNICATE message buffer size.

UID, USER, USERID, USERNAME
When present, this option specifies the user name.

SSH
This option specifies that the connection will utilise the encrypted SSH protocol.

DEBUG
This option specifies that extra debugging messages are written to the sytem log.

SIGNOFF

SIGNOFF

remote- id

ALL
option

;

Reference for language elements
Version 4.1

3487

option

CMACVAR

MACVAR

= 'variable- name'

CONNECTREMOTE

CREMOTE

REMOTE

PROCESS

= remote- id

CSCRIPT

SCRIPT

= signon- script

NOCSCRIPT

NOSCRIPT

This statement closes down a connection with a remote server, following the execution of a remotely
executed block of code.

CMACVAR, MACVAR
This option specifies a macro variable associated with the remote session and whose value is bound to
the completion status of the current SIGNOFF statement.

CONNECTREMOTE, CREMOTE, REMOTE, PROCESS
This option names the remote session from which you wish to sign off.

CSCRIPT, SCRIPT
This option identifies a script to be executed during signoff.

NOSCRIPT, NOCSCRIPT
This option indicates that no script should be involved in the signoff process.

SIGNON

SIGNON

remote- id
option

;

Reference for language elements
Version 4.1

3488

option

optionsAtoO

optionsPtoZ

options A to O

CMACVAR

MACVAR

= 'variable- name'

CONNECTREMOTE

CREMOTE

REMOTE

PROCESS

= remote- id

CONNECTWAIT

CWAIT

WAIT

= YES

NO

CSCRIPT

SCRIPT

= signon- script

CSYSRPUTSYNC

SYSRPUTSYNC

= YES

NO

IDENTITYFILE = ident ity- f ile

LOG = KEEP

PURGE

f ilename

NOCSCRIPT

NOSCRIPT

OUTPUT = KEEP

PURGE

f ilename

Reference for language elements
Version 4.1

3489

options P to Z

PASSWORD

PASS

PASSWD

PW

PWD

= string

SASCMD

LAUNCHCMD

= 'command- name'

SIGNONWAIT = YES

NO

TBUFSIZE = bytes

kilobytes K

megabytes M

UID

USER

USERID

USERNAME

= 'string'

SSH

DEBUG

This statement and its options provide the information necessary to specify where the remote WPS
installation is located, plus credentials to connect and log in to the remote server, prior to invoking a
block of remotely executed code.

CMACVAR, MACVAR
This option specifies a macro variable associated with the remote session and whose value is bound to
the completion status of the current SIGNON statement.

CONNECTREMOTE, CREMOTE, REMOTE, PROCESS
This option names the remote session.

Reference for language elements
Version 4.1

3490

Note that if the CONNECTREMOTE option is used with the name of the remote host specifically provided
as a macro variable, then (perhaps counterintuitively) no ampersand should be placed before the
macro variable name. The correct syntax is illustrated in the following fragment:

...
%LET HostName = RemoteHost;

options ssh_hostvalidation=none;
signon connectremote=HostName ssh /* Not &HostName */
user = <username>
password = <password>
launchcmd = '<location-of-wps-executable> -dmr';
...

CONNECTWAIT, CWAIT, WAIT
This option determines if the RSUBMIT block is to be run in asynchronous or synchronous mode, by
setting it to NO or YES respectively.

CSYSRPUTSYNC, SYSRPUTSYNC
If set to YES, this option forces macro variables to be defined when %SYSRPUT executes.

CSCCRIPT, SCRIPT
This option identifies a signon script.

IDENTITYFILE
This option specifies a file containing authentication information, such as SSH keys.

NOSCRIPT, NOCSCRIPT
This option indicates that no script should be used to sign on.

LOG
This option defines whether the system log should be kept, purged or sent to a specific file.

OUTPUT
This option defines whether the output of the sub-program should be kept, purged or sent to a specific
file.

PASSWORD, PASS, PASSWD, PW, PWD
This option is used to specify a password for remote authorisation.

Reference for language elements
Version 4.1

3491

SASCMD, LAUNCHCMD
When present, this option is used to specify the command required to launch WPS on the remote
machine.

SIGNONWAIT
This option stipulates that a SIGNON should finish before permitting subsequent processing.

TBUFSIZE
This option specifies the WPS COMMUNICATE message buffer size.

UID, USER, USERID, USERNAME
When present, this option specifies the user name.

SSH
This option specifies that the connection will utilise the encrypted SSH protocol.

DEBUG
This option specifies that extra debugging messages are written to the sytem log.

WAITFOR

WAITFOR

ANY

ALL

remote- id

TIMEOUT = seconds

;

In that the above diagram applies to WPS Communicate only, the WAITFOR _ALL_ statement
suspends execution of the current session until processing is complete for all of the server remote-
ids, or until the TIMEOUT interval, if specified, has expired.

If you use WAITFOR _ANY_, or simply WAITFOR, instead of WAITFOR _ALL_, then execution of the
session will only be suspended until processing is complete on one of the server remote-ids (or until
the TIMEOUT interval, if specified, has expired).

Note:
As implied above, the default is _ANY_ rather than _ALL_ if no argument is supplied between WAITFOR
and the remote-ids.

Reference for language elements
Version 4.1

3492

Macro processor statements
These statements enable you to create and retrieve the value of a macro variable on a remote server.

%SYSLPUT
%SYSLPUT macro- variable = value

ALL

AUTOMATIC

GLOBAL

LOCAL

USER

/ option

;

option

LIKE = 'pattern'

REMOTE = remote- id

This statement creates a macro variable on a remote host with which you have established a WPS
Communicate session. It should be placed outside of the corresponding RSUBMIT block.

%SYSRPUT
%SYSRPUT macro- variable = value ;

This statement retrieves a macro variable from a remote host to which there is an established WPS
Communicate session, creating an identical local macro variable. It should be placed inside the
corresponding RSUBMIT block.

Reference for language elements
Version 4.1

3493

WPS Communicate procedures
These procedures enable you to transfer files, libraries or datasets to and from a remote host.

DOWNLOAD Procedure
This procedure downloads one or more files, libraries or datasets from a remote host. It can only be
invoked from inside an RSUBMIT block.

Supported statements
• PROC DOWNLOAD (page 3493)
• EXCLUDE (page 3496)
• SELECT (page 3496)
• WHERE (page 3497)

PROC DOWNLOAD

PROC DOWNLOAD

option

;

Reference for language elements
Version 4.1

3494

option

AFTER = numeric

BINARY

DATA = server- data- set

(dataset- opt ions)

DATECOPY

EXTENDSN = NO

YES

INDEX = NO

YES

INFILE = server- f ile- reference

INLIB

IN

INDD

= server- library- name

MEMTYPE = ALL

CATALOG

DATA

MDDB

VIEW

OUT = l ibrary.dataset

dataset (dataset- opt ions)

OUTFILE = client- f ile- reference

OUTLIB

OUTDD

OUT

= client- library- name

V6TRANSPORT

AFTER
Specifies a numeric modification date, ensuring that only datasets or libraries modified after this date
are downloaded. This option is invalid for external file downloads.

BINARY
Valid only when downloading external files, this option specifies that the transfer should be an exact,
binary copy.

DATA
Specifies the name of a dataset to be downloaded.

Reference for language elements
Version 4.1

3495

DATECOPY
When present, this option indicates that a remote dataset's creation date and time should be retained
when it is downloaded. This option is invalid for external file downloads.

EXTENDSN
Specifies if short numeric variables should have their lengths extended. This option is invalid for
external file downloads and might be considered if transferring datasets from a mainframe to a PC.

INDEX
For remote datasets that have indexes, this indicates whether these indexes should be re-established
on the local machine after the download. This option is invalid for external files downloads.

INFILE
Specifies the name of a remote external file to download. If this option is present, so must the
OUTFILE= option be.

INLIB
Specifies the name of the remote library. This option is invalid for external file downloads.

OUT
Specifies the name of the receiving local dataset. This option is invalid for external file downloads.

OUTFILE
Specifies the name of local file to receive an external file download. If this option is present, so must the
INFILE option be.

OUTLIB
Specifies the name of the local library into which a remote dataset is downloaded. This option is invalid
for external file downloads.

V6TRANSPORT
This is a translation option when exchanging data between two different versions.

Reference for language elements
Version 4.1

3496

EXCLUDE

EXCLUDE data- set

/ option

;

data-set

data- set- name
: (MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

)

option

MEMTYPE = DATA

VIEW

CATALOG

ALL

MEMTYPE
This option specifies the member types to be downloaded - see the syntax diagram above. This option
is invalid for external file downloads.

SELECT

SELECT data- set

/ option

;

data-set

data- set- name
: (MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

)

Reference for language elements
Version 4.1

3497

option

MEMTYPE = DATA

VIEW

CATALOG

ALL

MEMTYPE
See statement EXCLUDE.

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

UPLOAD Procedure
This procedure uploads one or more files, libraries or datasets to a remote host. It can only be invoked
from inside an RSUBMIT block.

Supported statements
• PROC UPLOAD (page 3497)
• EXCLUDE (page 3500)
• SELECT (page 3500)
• WHERE (page 3501)

PROC UPLOAD

PROC UPLOAD

option

;

Reference for language elements
Version 4.1

3498

option

AFTER = numeric

BINARY

DATA = client- data- set

DATECOPY

EXTENDSN = NO

YES

INDEX = NO

YES

INFILE = client- f ile- reference

INLIB

IN

INDD

= client- library- name

MEMTYPE = ALL

CATALOG

DATA

MDDB

VIEW

OUT = l ibrary.dataset

dataset (dataset- opt ions)

OUTLIB

OUTDD

OUT

= server- library- name

OUTFILE = server- f ile- reference

V6TRANSPORT

AFTER
Specifies a numeric modification date, ensuring that only datasets or libraries modified after this date
are uploaded. This option is invalid for external file uploads.

BINARY
Valid only when uploading external files, this option specifies that the transfer should be an exact,
binary copy.

DATA
Specifies the name of a dataset to be uploaded.

Reference for language elements
Version 4.1

3499

DATECOPY
When present, this option indicates that a local dataset's creation date and time should be retained
when it is uploaded. This option is invalid for external file uploads.

EXTENDSN
Specifies if short numeric variables should have their lengths extended. This option is invalid for
external file uploads and might be considered if transferring datasets to a mainframe from a PC.

INDEX
For local datasets that have indexes, this indicates whether these indexes should be re-established on
the remote machine after the upload. This option is invalid for external files uploads.

INFILE
Specifies the name of a local external file to upload. If this option is present, so must the OUTFILE=
option be.

INLIB
Specifies the name of the local library. This option is invalid for external file uploads.

MEMTYPE
This option specifies the member types to be uploaded - see the syntax diagram above. This option is
invalid for external file uploads.

OUT
Specifies the name of the receiving remote dataset. This option is invalid for external file uploads.

OUTFILE
Specifies the name of remote file to receive an external file upload. If this option is present, so must the
INFILE option be.

OUTLIB
Specifies the name of the remote library into which a local dataset is uploaded. This option is invalid for
external file uploads.

V6TRANSPORT
This is a translation option when exchanging data between two different versions.

Reference for language elements
Version 4.1

3500

EXCLUDE

EXCLUDE data- set

/ option

;

data-set

data- set- name
: (MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

)

option

MEMTYPE = DATA

VIEW

CATALOG

ALL

SELECT

SELECT data- set

/ option

;

data-set

data- set- name
: (MEMTYPE

MTYPE

M

= DATA

VIEW

CATALOG

)

option

MEMTYPE = DATA

VIEW

CATALOG

ALL

Reference for language elements
Version 4.1

3501

WHERE
Restricts the observations to be processed.

WHERE condit ion ;

Reference for language elements
Version 4.1

3502

Data Engines

WPS Engine for Access

ACCESS

LIBNAME l ibrary- name ACCESS

f ilepath

Connection options

SQL generation

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

DBPASSWORD

DBPASSWORD

DBPWD

DBPW

= database- passwd

Reference for language elements
Version 4.1

3503

Type: String

DBSYSFILE

DBSYSFILE

DBSYS

WGB

= f ilepath

Type: String

INIT_STRING

INIT_STRING

INIT

= init ialisat ion- opt ions

Type: String

MSENGINE

MSENGINE = ACE

JET

PASSWORD

PASSWORD

PWD

PW

= user- passwd

Type: String

PATH

PATH

DS

DATASRC

= datasource- name

Type: String

PROMPT

Reference for language elements
Version 4.1

3504

PROMPT = NO

NOPROMPT

REQUIRED

UDL

YES

UDL

UDL

UDL_FILE

= f ilepath

Type: String

USER

USER

UID

USERID

= user- name

Type: String

SQL generation

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DIRECT_SQL

Reference for language elements
Version 4.1

3505

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

LABEL

LABEL

Type: Keyword

REPLACE

REPLACE

Type: Keyword

STRINGDATES

STRINGDATES

STRDATES

= NO

YES

USE_DATETYPE

USE_DATETYPE

USE_DATE

USEDATE

= NO

YES

SQL transaction

Reference for language elements
Version 4.1

3506

COMMAND_TIMEOUT

COMMAND_TIMEOUT

TIMEOUT

= durat ion

Type: Numeric

Minimum value: 0

CURSOR_TYPE

CURSOR_TYPE = KEYSET_DRIVEN

STATIC

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 0

Reference for language elements
Version 4.1

3507

SCAN_TEXTSIZE

SCAN_TEXTSIZE

SCAN_TEXT

SCANMEMO

SCANTEXT

= NO

YES

SCAN_TIMETYPE

SCAN_TIMETYPE

SCAN_TIME

SCANTIME

= ANY

NO

YES

SPOOL

SPOOL = NO

YES

WPS Engine for Actian Matrix

ACTIANMATRIX

LIBNAME l ibrary- name ACTIANMATRIX

PARACCEL

ACMATRIX

Connection options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

Reference for language elements
Version 4.1

3508

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

= database- name

Type: String

DATASRC

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DRIVER

DRIVER = driver- name

Reference for language elements
Version 4.1

3509

Type: String

PASSWORD

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER

HOST

= remote- id

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

Reference for language elements
Version 4.1

3510

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3511

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

Reference for language elements
Version 4.1

3512

UPDATE_MULT_ROWS = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Reference for language elements
Version 4.1

3513

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

Reference for language elements
Version 4.1

3514

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

WPS Engine for DB2

DB2

LIBNAME l ibrary- name DB2 Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

COMPLETE

Reference for language elements
Version 4.1

3515

COMPLETE = complete- opt ions

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASENAME

DATABASENAME = database- name

Type: String

DATASRC

DATASRC

DSN

DATABASE

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DBLIBINIT

DBLIBINIT = init ialisat ion- opt ions

Type: String

Reference for language elements
Version 4.1

3516

DBLIBTERM

DBLIBTERM = terminat ion- opt ions

Type: String

DEFER

DEFER = NO

YES

NOPROMPT

NOPROMPT = noprompt- opt ions

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

PORT

PORT = port- number

Minimum value: 1

Maximum value: 65535

PROMPT

PROMPT = prompt- opt ions

Type: String

REQUIRED

REQUIRED = required- opt ions

Type: String

Reference for language elements
Version 4.1

3517

SCHEMA

SCHEMA

AUTHID

= schema- name

Type: String

SERVERNAME

SERVERNAME = remote- id

Type: String

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

BL_ALLOW_READ_ACCESS

BL_ALLOW_READ_ACCESS = NO

YES

BL_CPU_PARALLELISM

BL_CPU_PARALLELISM = cpu- count

Type: Numeric

Maximum value: 30

Reference for language elements
Version 4.1

3518

BL_DATA_BUFFER_SIZE

BL_DATA_BUFFER_SIZE = buffer- size

Type: Numeric

BL_DISK_PARALLELISM

BL_DISK_PARALLELISM = disk- count

Type: Numeric

BL_INDEXING_MODE

BL_INDEXING_MODE = AUTOSELECT

DEFERRED

INCREMENTAL

REBUILD

BL_LOAD_REPLACE

BL_LOAD_REPLACE = NO

YES

BL_LOG

BL_LOG = f ilepath

Type: String

BL_METHOD

BL_METHOD = CLILOAD

BL_RECOVERABLE

BL_RECOVERABLE = NO

YES

SQL generation

Reference for language elements
Version 4.1

3519

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DBINDEX

DBINDEX = NO

YES

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

DIRECT_EXE

DIRECT_EXE = DELETE

Reference for language elements
Version 4.1

3520

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

IN

IN = string

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

Reference for language elements
Version 4.1

3521

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

CURSOR_TYPE

CURSOR_TYPE = DYNAMIC

FORWARD_ONLY

KEYSET_DRIVEN

STATIC

Reference for language elements
Version 4.1

3522

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

SPOOL

SPOOL = DBMS

NO

YES

Reference for language elements
Version 4.1

3523

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

UPDATE_ISOLATION_LEVEL

Reference for language elements
Version 4.1

3524

UPDATE_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = LUW

NOLOCK

ROW

TABLE

DB2 Dataset Options

BULKLOAD

BULKLOAD = NO

YES

CURSOR_TYPE

CURSOR_TYPE = DYNAMIC

FORWARD_ONLY

KEYSET_DRIVEN

STATIC

Reference for language elements
Version 4.1

3525

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBINDEX

DBINDEX = NO

YES

DBKEY

DBKEY = column- name

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

DBNULL

DBNULL = null- value

DBNULLKEYS

DBNULLKEYS = NO

YES

Reference for language elements
Version 4.1

3526

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DBSLICE

DBSLICE = (where- clause)

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(THREADED_APPS
,

threads)

(ALL
,

threads)

DBTYPE

DBTYPE = dbtype- value

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

IN

IN = in- opt ions

Type: String

INSERTBUFF

INSERTBUFF = buffer- size

Minimum value: 1

PRESERVE_COL_NAMES

Reference for language elements
Version 4.1

3527

PRESERVE_COL_NAMES = NO

YES

Default value: FALSE

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Minimum value: 0

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

SCHEMA

SCHEMA

AUTHID

= schema- name

Type: String

Reference for language elements
Version 4.1

3528

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

DB2OLD

LIBNAME l ibrary- name DB2OLD Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

Reference for language elements
Version 4.1

3529

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

COMPLETE

COMPLETE = opt ion- list

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASENAME

DATABASENAME = database- name

Type: String

DATASRC

DATASRC

DSN

DATABASE

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

Reference for language elements
Version 4.1

3530

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

NOPROMPT

NOPROMPT = opt ion- list

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

PROMPT

PROMPT = opt ion- list

Type: String

REQUIRED

REQUIRED = opt ion- list

Type: String

SCHEMA

SCHEMA

AUTHID

= schema- name

Type: String

SERVERNAME

SERVERNAME = remote- id

Type: String

USER

Reference for language elements
Version 4.1

3531

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

BL_ALLOW_READ_ACCESS

BL_ALLOW_READ_ACCESS = NO

YES

BL_CPU_PARALLELISM

BL_CPU_PARALLELISM = cpu- count

Type: Numeric

BL_DATA_BUFFER_SIZE

BL_DATA_BUFFER_SIZE = buffer- size

Type: Numeric

BL_DISK_PARALLELISM

BL_DISK_PARALLELISM = disk- count

Type: Numeric

BL_INDEXING_MODE

Reference for language elements
Version 4.1

3532

BL_INDEXING_MODE = AUTOSELECT

DEFERRED

INCREMENTAL

REBUILD

BL_LOAD_REPLACE

BL_LOAD_REPLACE = NO

YES

BL_LOG

BL_LOG = f ilepath

Type: String

BL_METHOD

BL_METHOD = CLILOAD

BL_RECOVERABLE

BL_RECOVERABLE = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

Reference for language elements
Version 4.1

3533

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

SQL metadata

PRESERVE_COL_NAMES

Reference for language elements
Version 4.1

3534

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

CURSOR_TYPE

CURSOR_TYPE = DYNAMIC

FORWARD_ONLY

KEYSET_DRIVEN

STATIC

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

Reference for language elements
Version 4.1

3535

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

IN

IN = in- opt ions

Type: String

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

SPOOL

Reference for language elements
Version 4.1

3536

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = CS

NONE

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UR

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = CS

NONE

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UR

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = LUW

NOLOCK

ROW

TABLE

Reference for language elements
Version 4.1

3537

DB2 (for z/OS)

LIBNAME l ibrary- name DB2 Connection options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASENAME

DATABASENAME = database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

Reference for language elements
Version 4.1

3538

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DBLIBINIT

DBLIBINIT = init ialisat ion- opt ions

Type: String

DBLIBTERM

DBLIBTERM = terminat ion- opt ions

Type: String

DEFER

DEFER = NO

YES

LOCATION

LOCATION = locat ion- opt ions

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

SCHEMA

SCHEMA

AUTHID

= schema- name

Type: String

SERVER

Reference for language elements
Version 4.1

3539

SERVER = remote- id

Type: String

SSID

SSID = ssid- opt ions

Type: String

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSASLABEL

Reference for language elements
Version 4.1

3540

DBSASLABEL = COMPAT

NONE

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

DEGREE

DEGREE = 1

ANY

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Reference for language elements
Version 4.1

3541

Default value: YES

IN

IN = string

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

Reference for language elements
Version 4.1

3542

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

SPOOL

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

Reference for language elements
Version 4.1

3543

READ_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

Reference for language elements
Version 4.1

3544

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = LUW

NOLOCK

ROW

TABLE

DB2 Dataset Options

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBKEY

DBKEY = column- name

DBNULL

DBNULL = null- value

DBNULLKEYS

DBNULLKEYS = NO

YES

Reference for language elements
Version 4.1

3545

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DBSLICE

DBSLICE = (where- clause)

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(THREADED_APPS
,

threads)

(ALL
,

threads)

DBTYPE

DBTYPE = dbtype- value

DEGREE

DEGREE = 1

ANY

IN

IN = in- opt ions

Type: String

LOCATION

LOCATION = locat ion- opt ions

Type: String

Reference for language elements
Version 4.1

3546

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: FALSE

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

READBUFF

READBUFF = buffer- size

Minimum value: 1

SCHEMA

SCHEMA

AUTHID

= schema- name

Reference for language elements
Version 4.1

3547

Type: String

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = COMMITTEDREAD

CS

NONE

READCOMMITTED

READSTABILITY

READSTABILITY KEEP UPDATE LOCKS

READUNCOMMITTED

REPEATABLEREAD

REPEATABLEREAD KEEP UPDATE LOCKS

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UNCOMMITTEDREAD

UR

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

DB2OLD (for z/OS)

LIBNAME l ibrary- name DB2OLD Connection options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

Reference for language elements
Version 4.1

3548

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASENAME

DATABASENAME = database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DEGREE

DEGREE = 1

ANY

LOCATION

LOCATION = remote- id

Reference for language elements
Version 4.1

3549

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

SCHEMA

SCHEMA

AUTHID

= schema- name

Type: String

SERVER

SERVER = remote- id

Type: String

SSID

SSID = remote- id

Type: String

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Reference for language elements
Version 4.1

3550

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

Reference for language elements
Version 4.1

3551

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

READBUFF

Reference for language elements
Version 4.1

3552

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

SPOOL

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = CS

NONE

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UR

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = CS

NONE

RR

RR KEEP UPDATE LOCKS

RS

RS KEEP UPDATE LOCKS

UR

UPDATE_LOCK_TYPE

Reference for language elements
Version 4.1

3553

UPDATE_LOCK_TYPE = LUW

NOLOCK

ROW

TABLE

DB2EXT Procedure

Supported statements
• PROC DB2EXT (page 3553)
• FMT (page 3553)
• RENAME (page 3553)
• SELECT (page 3554)
• EXIT (page 3554)

PROC DB2EXT

PROC DB2EXT

opt ions OUT = data- set

SSID

;

FMT

FMT column- index = "format- name" ;

RENAME

RENAME column- index = column- name ;

Reference for language elements
Version 4.1

3554

SELECT

SELECT db2- sql- query ;

EXIT

EXIT ;

WPS Engine for Excel

EXCEL

LIBNAME l ibrary- name EXCEL

f ilepath

Connection options

SQL generation

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

HEADER

HEADER = NO

YES

Reference for language elements
Version 4.1

3555

INIT_STRING

INIT_STRING

INIT

= init ialisat ion- opt ions

Type: String

MIXED

MIXED = NO

YES

MSENGINE

MSENGINE = ACE

JET

PATH

PATH

DS

DATASRC

= datasource- name

Type: String

PROMPT

PROMPT = NO

NOPROMPT

REQUIRED

UDL

YES

REPLACE

REPLACE

Type: Keyword

UDL

Reference for language elements
Version 4.1

3556

UDL

UDL_FILE

= f ilepath

Type: String

VERSION

VERSION

VER

= engine- version

SQL generation

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

LABEL

LABEL

Type: Keyword

Reference for language elements
Version 4.1

3557

STRINGDATES

STRINGDATES

STRDATES

= NO

YES

USE_DATETYPE

USE_DATETYPE

USE_DATE

USEDATE

= NO

YES

SQL transaction

COMMAND_TIMEOUT

COMMAND_TIMEOUT

TIMEOUT

= durat ion

Type: Numeric

Minimum value: 0

CURSOR_TYPE

CURSOR_TYPE = KEYSET_DRIVEN

STATIC

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Reference for language elements
Version 4.1

3558

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 0

SCAN_TEXTSIZE

SCAN_TEXTSIZE

SCAN_TEXT

SCANMEMO

SCANTEXT

= NO

YES

SCAN_TIMETYPE

SCAN_TIMETYPE

SCAN_TIME

SCANTIME

= ANY

NO

YES

SPOOL

SPOOL = NO

YES

XLSX

LIBNAME l ibrary- name XLSX

XLS

f ilepath Options ;

Reference for language elements
Version 4.1

3559

Options

ACCESS

ACCESS = READONLY

CONSIDERXLSXCOLWIDTHS

CONSIDERXLSXCOLWIDTHS

Type: Keyword

DATAROW

DATAROW = int32

Type: Numeric

DATE_FORMAT

DATE_FORMAT = excel- format

Type: String

DATETIME_FORMAT

DATETIME_FORMAT = excel- format

Type: String

HEADER

HEADER = NO

YES

Default value: YES

HEADERROW

HEADERROW = int32

Type: Numeric

LABEL

Reference for language elements
Version 4.1

3560

LABEL

Type: Keyword

NOCONSIDERXLSXCOLWIDTHS

NOCONSIDERXLSXCOLWIDTHS

Type: Keyword

NOREPLACE

NOREPLACE

Type: Keyword

REPLACE

REPLACE

Type: Keyword

TIME_FORMAT

TIME_FORMAT = excel- format

Type: String

XLSX Dataset Options

CONSIDERXLSXCOLWIDTHS

CONSIDERXLSXCOLWIDTHS

Type: Keyword

DATAROW

DATAROW = None

Type: Numeric

Reference for language elements
Version 4.1

3561

Minimum value: 1

HEADER

HEADER = NO

YES

HEADERROW

HEADERROW = None

Type: Numeric

Minimum value: 1

NOCONSIDERXLSXCOLWIDTHS

NOCONSIDERXLSXCOLWIDTHS

Type: Keyword

XLSX_FORMAT

XLSX_FORMAT = (column- name = column- format)

WPS Engine for Greenplum

GREENPLUM

LIBNAME l ibrary- name GREENPLUM

GREENPLM

Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

;

Reference for language elements
Version 4.1

3562

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

DATABASE

DATABASE = database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

HOST

HOST = remote- id

Type: String

OPTIONS

Reference for language elements
Version 4.1

3563

OPTIONS = opt ion- list

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

TTY

TTY = opt ion- list

Type: String

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

Reference for language elements
Version 4.1

3564

BULKLOAD = NO

YES

BL_BUFFERSIZE

BL_BUFFERSIZE = buffer- size

Type: String

BL_DELIMITER

BL_DELIMITER = delimiter- value

Type: String

BL_NULLSTRING

BL_NULLSTRING = nullstring- value

Type: String

BULKUNLOAD

BULKUNLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DBMSTEMP

Reference for language elements
Version 4.1

3565

DBMSTEMP = NO

YES

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSASLABEL

DBSASLABEL = NO

YES

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Reference for language elements
Version 4.1

3566

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

Default value: ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

Default value: YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: NO

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

Reference for language elements
Version 4.1

3567

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

READBUFF

READBUFF = buffer- size

Type: Numeric

Reference for language elements
Version 4.1

3568

Minimum value: 1

Maximum value: 32767

Default value: 1

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

WPS Engine for Hadoop

HADOOP

LIBNAME l ibrary- name HADOOP Connection options

Bulkload options

SQL generation

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

Reference for language elements
Version 4.1

3569

BL_PORT

BL_PORT

BULKLOAD_PORT

= port- number

Type: Numeric

CONFIG

CONFIG = opt ion- list

Type: String

DATASRC

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

HIVE_PRINCIPAL

HIVE_PRINCIPAL = string

Type: String

JDBC_CONNECTION_STRING

JDBC_CONNECTION_STRING = opt ion- list

Reference for language elements
Version 4.1

3570

Type: String

JDBC_DRIVER

JDBC_DRIVER = driver- name

Type: String

PASSWORD

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: Numeric

SCHEMA

SCHEMA

DB

DATABASE

= schema- name

Type: String

SERVER

SERVER

HOST

= remote- id

Type: String

SERVICE

SERVICE = HIVE

IMPALA

Reference for language elements
Version 4.1

3571

USER

USER

UID

= user- name

Type: String

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3572

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL transaction

HDFS_TEMPDIR

HDFS_TEMPDIR = directory- path

Type: String

SPOOL

SPOOL = DBMS

NO

YES

Reference for language elements
Version 4.1

3573

WPS Engine for Informix

INFORMIX

LIBNAME l ibrary- name INFORMIX Connection options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Reference for language elements
Version 4.1

3574

Type: String

DBDATASRC

DBDATASRC

DSN

= datasource- name

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER = remote- id

Type: String

USER

USER = user- name

Type: String

USING

USING

PWD

PASSWORD

= passwd

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

Reference for language elements
Version 4.1

3575

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

Reference for language elements
Version 4.1

3576

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

SPOOL

Reference for language elements
Version 4.1

3577

SPOOL = DBMS

NO

YES

Table locking options

LOCKTABLE

LOCKTABLE = EXCLUSIVE

SHARE

LOCKTIME

LOCKTIME = durat ion

Type: Numeric

LOCKWAIT

LOCKWAIT = NO

YES

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = COMMITTED_READ

CURSOR_STABILITY

DIRTY_READ

REPEATABLE_READ

Reference for language elements
Version 4.1

3578

WPS Engine for Kognito

KOGNITIO

LIBNAME l ibrary- name KOGNITIO Connection options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

DATABASE

DATABASE

DB

= database- name

Type: String

Reference for language elements
Version 4.1

3579

DATASRC

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DRIVER

DRIVER = driver- name

Type: String

PASSWORD

PASSWORD

PWD

PASS

PW

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

Reference for language elements
Version 4.1

3580

SCHEMA = schema- name

Type: String

SERVER

SERVER

HOST

= remote- id

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

Reference for language elements
Version 4.1

3581

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

Reference for language elements
Version 4.1

3582

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

Reference for language elements
Version 4.1

3583

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Reference for language elements
Version 4.1

3584

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

WPS Engine for MariaDB

MARIADB

LIBNAME l ibrary- name MARIADB Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

Reference for language elements
Version 4.1

3585

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

DATABASE

DATABASE = database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

PORT

PORT = port- number

Reference for language elements
Version 4.1

3586

Type: Numeric

Minimum value: 0

Default value: 3306

SERVER

SERVER = remote- id

Type: String

TIMEOUT

TIMEOUT = durat ion

Type: Numeric

Minimum value: 1

Maximum value: 1000

Default value: 15

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

Default value: NO

BL_BUFFERSIZE

Reference for language elements
Version 4.1

3587

BL_BUFFERSIZE = buffer- size

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

BL_DELETE_DATAFILE

BL_DELETE_DATAFILE = NO

YES

Default value: YES

BL_LOCAL

BL_LOCAL = NO

YES

Default value: YES

BL_USE_PIPE

BL_USE_PIPE = NO

YES

Default value: NO

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBDATETIME_TYPE

DBDATETIME_TYPE = DATETIME

TIMESTAMP

Reference for language elements
Version 4.1

3588

Default value: TIMESTAMP

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUALIFIER

QUALIFIER = qualifer- name

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

Reference for language elements
Version 4.1

3589

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

Default value: NO

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Reference for language elements
Version 4.1

3590

Minimum value: 0

Default value: 1000

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 1024

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

Reference for language elements
Version 4.1

3591

WPS Engine for MySQL

MYSQL

LIBNAME l ibrary- name MYSQL Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

DATABASE

DATABASE = database- name

Type: String

DBCONINIT

Reference for language elements
Version 4.1

3592

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

PASSWORD

PASSWORD = user- passwd

Type: String

PORT

PORT = port- number

Type: Numeric

Minimum value: 0

Default value: 3306

QUALIFIER

QUALIFIER = qualifer- name

Type: String

SERVER

SERVER = remote- id

Type: String

SSL

SSL = NO

YES

Default value: FALSE

Reference for language elements
Version 4.1

3593

SSL_CA

SSL_CA = cert if icate- authority- f ile

Type: String

SSL_CAPATH

SSL_CAPATH = cert if icate- authority- directory

Type: String

SSL_CERT

SSL_CERT = cert if icate- f ile

Type: String

SSL_CIPHER

SSL_CIPHER = permissible- ssl- ciphers

Type: String

SSL_KEY

SSL_KEY = key- f ile

Type: String

TIMEOUT

TIMEOUT = durat ion

Type: Numeric

Minimum value: 1

Maximum value: 1000

Default value: 15

USER

USER = user- name

Reference for language elements
Version 4.1

3594

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

Default value: NO

BL_BUFFERSIZE

BL_BUFFERSIZE = buffer- size

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

BL_DELETE_DATAFILE

BL_DELETE_DATAFILE = NO

YES

Default value: YES

BL_LOCAL

BL_LOCAL = NO

YES

Default value: YES

BL_USE_PIPE

Reference for language elements
Version 4.1

3595

BL_USE_PIPE = NO

YES

Default value: NO

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBDATETIME_TYPE

DBDATETIME_TYPE = DATETIME

TIMESTAMP

Default value: TIMESTAMP

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3596

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Reference for language elements
Version 4.1

3597

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

Default value: NO

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

Default value: 1000

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 1024

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Reference for language elements
Version 4.1

3598

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

WPS Engine for Netezza

NETEZZA

LIBNAME l ibrary- name NETEZZA

NETEZZAM

Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

Reference for language elements
Version 4.1

3599

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

= database- name

Type: String

DATASRC

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DBLIBINIT

DBLIBINIT = init ialisat ion- opt ions

Type: String

DBLIBTERM

DBLIBTERM = terminat ion- opt ions

Reference for language elements
Version 4.1

3600

Type: String

DEFER

DEFER = NO

YES

PASSWORD

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: Numeric

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER

HOST

= remote- id

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

Reference for language elements
Version 4.1

3601

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

BL_BUFFERSIZE

BL_BUFFERSIZE

BL_BUFFSIZE

= buffer- size

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

BL_DELETE_DATAFILE

BL_DELETE_DATAFILE = NO

YES

BL_DELIMITER

BL_DELIMITER = delimiter- value

Type: String

BL_OPTIONS

Reference for language elements
Version 4.1

3602

BL_OPTIONS = bulkload- opt ions

Type: String

BL_PIPE_NAME

BL_PIPE_NAME = pipe- name

Type: String

BL_USE_PIPE

BL_USE_PIPE = NO

YES

BULKUNLOAD

BULKUNLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DBNULLKEYS

DBNULLKEYS = NO

YES

DELETE_MULT_ROWS

Reference for language elements
Version 4.1

3603

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUALIFIER

QUALIFIER = qualifer- name

Type: String

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

Reference for language elements
Version 4.1

3604

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

Reference for language elements
Version 4.1

3605

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

Reference for language elements
Version 4.1

3606

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

NETEZZA Dataset Options

BL_BUFFERSIZE

BL_BUFFERSIZE

BL_BUFFSIZE

= buffer- size

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

BL_DELETE_DATAFILE

Reference for language elements
Version 4.1

3607

BL_DELETE_DATAFILE = NO

YES

BL_DELIMITER

BL_DELIMITER = delimiter- value

Type: String

BL_OPTIONS

BL_OPTIONS = bulkload- opt ions

Type: String

BL_PIPE_NAME

BL_PIPE_NAME = named- pipe

Type: String

BL_USE_PIPE

BL_USE_PIPE = NO

YES

BULKLOAD

BULKLOAD = NO

YES

BULKUNLOAD

BULKUNLOAD = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Reference for language elements
Version 4.1

3608

Minimum value: 0

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBINDEX

DBINDEX = NO

YES

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

DBNULL

DBNULL = null- value

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DBTYPE

DBTYPE = dbtype- value

Reference for language elements
Version 4.1

3609

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: FALSE

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SCHEMA

SCHEMA

AUTHID

= schema- name

Type: String

Reference for language elements
Version 4.1

3610

NETEZZAOLD

LIBNAME l ibrary- name NETEZZAOLD Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

= database- name

Type: String

DATASRC

Reference for language elements
Version 4.1

3611

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

PASSWORD

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

Reference for language elements
Version 4.1

3612

SERVER

HOST

= remote- id

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

BL_BUFFERSIZE

BL_BUFFERSIZE

BL_BUFFSIZE

= buffer- size

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

Reference for language elements
Version 4.1

3613

BL_DELETE_DATAFILE

BL_DELETE_DATAFILE = NO

YES

BL_DELIMITER

BL_DELIMITER = delimiter- value

Type: String

BL_OPTIONS

BL_OPTIONS = bulkload- opt ions

Type: String

BL_PIPE_NAME

BL_PIPE_NAME = pipe- name

Type: String

BL_USE_PIPE

BL_USE_PIPE = NO

YES

BULKUNLOAD

BULKUNLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

Reference for language elements
Version 4.1

3614

DBGEN_NAME = DBMS

SAS

Default value: SAS

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUALIFIER

QUALIFIER = qualifer- name

Type: String

QUOTE_CHAR

Reference for language elements
Version 4.1

3615

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

Reference for language elements
Version 4.1

3616

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

Reference for language elements
Version 4.1

3617

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

Reference for language elements
Version 4.1

3618

WPS Engine for ODBC

ODBC

LIBNAME l ibrary- name ODBC

ODBCM

Connection options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

COMPLETE

COMPLETE = connect ion- string

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATASRC

Reference for language elements
Version 4.1

3619

DATASRC

DSN

DS

DATABASE

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ializat ion- command

Type: String

DBCONTERM

DBCONTERM = terminat ion- command

Type: String

DBLIBINIT

DBLIBINIT = init ializat ion- command

Type: String

DBLIBTERM

DBLIBTERM = terminat ion- command

Type: String

NOPROMPT

NOPROMPT = opt ion- list

Type: String

PASSWORD

Reference for language elements
Version 4.1

3620

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PROMPT

PROMPT = opt ion- list

Type: String

REQUIRED

REQUIRED = opt ion- list

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

Reference for language elements
Version 4.1

3621

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBINDEX

DBINDEX = NO

YES

Default value: YES

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3622

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

QUALIFIER

QUALIFIER = qualifer- name

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

Default value: NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

PRESERVE_TAB_NAMES

Reference for language elements
Version 4.1

3623

PRESERVE_TAB_NAMES = NO

YES

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: NO

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

Reference for language elements
Version 4.1

3624

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

Reference for language elements
Version 4.1

3625

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

ODBC Dataset Options

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBINDEX

DBINDEX = NO

YES

Default value: TRUE

DBKEY

DBKEY = column- name

DBMAX_TEXT

Reference for language elements
Version 4.1

3626

DBMAX_TEXT = max- string- length

Type: Numeric

DBNULL

DBNULL = null- value

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DBSLICE

DBSLICE = (where- clause)

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

DBTYPE

DBTYPE = dbtype- value

IGNORE_READ_ONLY_COLUMNS

Reference for language elements
Version 4.1

3627

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: FALSE

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

Reference for language elements
Version 4.1

3628

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

ODBCOLD

LIBNAME l ibrary- name ODBCOLD Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

COMPLETE

Reference for language elements
Version 4.1

3629

COMPLETE = connect ion- string

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATASRC

DATASRC

DSN

DS

DATABASE

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

NOPROMPT

NOPROMPT = opt ion- list

Type: String

PASSWORD

Reference for language elements
Version 4.1

3630

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PROMPT

PROMPT = opt ion- list

Type: String

REQUIRED

REQUIRED = opt ion- list

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Reference for language elements
Version 4.1

3631

Bulkload options

BULKLOAD

BULKLOAD

BCP

= NO

YES

Default value: NO

BL_LOG

BL_LOG = f ilepath

Type: String

BL_OPTIONS

BL_OPTIONS = opt ions- list

Type: String

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

Reference for language elements
Version 4.1

3632

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

INSERT_SQL

INSERT_SQL = NO

YES

QUALIFIER

QUALIFIER = qualif ier- name

Type: String

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

Reference for language elements
Version 4.1

3633

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

UPDATE_SQL

UPDATE_SQL = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: NO

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Reference for language elements
Version 4.1

3634

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

CURSOR_TYPE

CURSOR_TYPE = DYNAMIC

FORWARD_ONLY

KEYSET_DRIVEN

STATIC

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 4000

INSERTBUFF

Reference for language elements
Version 4.1

3635

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

KEYSET_SIZE

KEYSET_SIZE = buffer- size

Type: Numeric

Minimum value: 0

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

Reference for language elements
Version 4.1

3636

TRACEFILE = f ilepath

Type: String

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

Reference for language elements
Version 4.1

3637

ODBCOLD Dataset Options

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 4000

DBNULL

DBNULL = dbnull- value

DBTYPE

DBTYPE = dbtype- value

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: FALSE

INSERT_SQL

INSERT_SQL = NO

YES

INSERTBUFF

Reference for language elements
Version 4.1

3638

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

Reference for language elements
Version 4.1

3639

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

WPS Engine for OLEDB

OLEDB

LIBNAME l ibrary- name OLEDB Connection options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

COMPLETE

COMPLETE = NO

YES

CONNECTION

Reference for language elements
Version 4.1

3640

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

DATASOURCE

DATASOURCE = datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

INIT_STRING

INIT_STRING = init ialisat ion- opt ions

Type: String

OLEDB_SERVICES

OLEDB_SERVICES = NO

YES

PASSWORD

PASSWORD = user- passwd

Type: String

PROMPT

Reference for language elements
Version 4.1

3641

PROMPT = NO

YES

PROPERTIES

PROPERTIES = (opt ion)

option

"Provider"

"Provider" = value

Type: String

"Integrated Security"

"Integrated Security" = value

Type: String

"Password"

"Password" = value

Type: String

"Initial Catalog"

"Initial Catalog" = value

Type: String

"Location"

"Location" = value

Type: String

"User ID"

"User ID" = value

Reference for language elements
Version 4.1

3642

Type: String

"Data Source"

"Data Source" = value

Type: String

"Extended Properties"

"Extended Properties" = value

Type: String

"Cache Authentication"

"Cache Authentication" = FALSE

TRUE

"Encrypt Password"

"Encrypt Password" = FALSE

TRUE

"Mask Password"

"Mask Password" = FALSE

TRUE

"Persist Encrypted"

"Persist Encrypted" = FALSE

TRUE

"Persist Security Info"

"Persist Security Info" = FALSE

TRUE

Reference for language elements
Version 4.1

3643

"General Timeout"

"General Timeout" = value

Type: Numeric

"Window Handle"

"Window Handle" = value

Type: Numeric

"Connection Timeout"

"Connection Timeout" = value

Type: Numeric

"Locale Identifier"

"Locale Identifier" = value

Type: Numeric

"Impersonation Level"

"Impersonation Level" = "ANONYMOUS"

"DELEGATE"

"IDENTIFY"

"IMPERSONATE"

"Mode"

"Mode" = "READ"

"READWRITE"

"SHARE DENY READ"

"SHARE DENY WRITE"

"SHARE EXCLUSIVE"

"WRITE"

Reference for language elements
Version 4.1

3644

"OLE DB Services"

"OLE DB Services" = "AGRAFTERSESSION"

"CLIENTCURSOR"

"DISABLEALL"

"ENABLEALL"

"RESOURCEPOOLING"

"TXNENLISTMENT"

"Prompt"

"Prompt" = "COMPLETE"

"COMPLETEREQUIRED"

"NOPROMPT"

"PROMPT"

PROVIDER

PROVIDER = provider- name

Type: String

PROVIDER_STRING

PROVIDER_STRING = provider- string

Type: String

REQUIRED

REQUIRED = NO

YES

SCHEMA

SCHEMA = schema- name

Type: String

UDL

Reference for language elements
Version 4.1

3645

UDL

UDL_FILE

= f ilepath

Type: String

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3646

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUALIFIER

QUALIFIER = qualifer- name

Type: String

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

SQL metadata

Reference for language elements
Version 4.1

3647

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: NO

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

COMMAND_TIMEOUT

COMMAND_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

CURSOR_TYPE

Reference for language elements
Version 4.1

3648

CURSOR_TYPE = DYNAMIC

KEYSET_DRIVEN

STATIC

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

Reference for language elements
Version 4.1

3649

READ_ISOLATION_LEVEL = RC

RR

RU

S

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

Default value: NOLOCK

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

Default value: NOLOCK

WPS Engine for Oracle
Two versions of the Oracle engine are available:

• A multi-threaded version. This is the latest version of the engine and is activated using the keyword
ORACLE.

• A single threaded version. This was the original version of the engine, and is activated using the
keyword ORACLEOLD.

Data Types in Oracle ..3650
Describes the correspondence between WPS formats and Oracle data types.

How to use the Oracle engine ..3651
Connect to an Oracle database in a SAS language program.

ORACLE connection reference ...3652
Describes the syntax and options for Oracle connection statements.

Reference for language elements
Version 4.1

3650

Data Types in Oracle
Describes the correspondence between WPS formats and Oracle data types.

This section describes the correspondence between WPS formats and Oracle data types. WPS has
many formats that affect the output and display of data. When you write data to an Oracle database
table using the Oracle data engine, formatted data is converted to an equivalent and sensible data
type. Many formats only affect the layout of data output, such as adding currency symbols or comma
separators, and these formats have no effect when writing data to Oracle. See the sections below for
more details.

Unformatted data
WPS format Resulting Oracle data type Notes

Unformatted number NUMBER

Unformatted string VARCHAR2(x) x is a multiple of four. Each
character in the string is allotted
four bytes, which provides
space for characters from
a multibyte character set.
For example, if the string in
the dataset is one character
long, the Oracle datatype is
VARCHAR2(4); if the string
is two characters long, the
datatype is VARCHAR2(8); and
so on.

Formatted data - numbers
WPS format Resulting Oracle data type Notes

w.d NUMBER(w,d) The width and number of decimal
places are replicated in the Oracle
data type. For example, data with the
number format 4.2 is reproduced as
the data type NUMBER(4,2).

BEST. and BESTw. NUMBER The number is passed to the
database unformatted.

FLOATw.d NUMBER The number is passed to the
database unformatted.

WPS also provides NLS-sensitive money and numeric formats; the Oracle datetype of these
corresponds to the equivalent basic numeric format above.

Reference for language elements
Version 4.1

3651

Formatted data - strings
WPS format Oracle data type Notes

$w. $CHARw. $Fw. VARCHAR2(x) x is a multiple of four. Each character
in the string is allotted four bytes,
which provides space for characters
from a multibyte character set. For
example, if the string in the dataset
is one character long, the Oracle
datatype is VARCHAR2(4); if the
string is two characters long, the
datatype is VARCHAR2(4); and so
on.

Formatted data - dates and times
WPS format Oracle data type Notes

DATEw. DATE

DDMMYYw. and all variants (such
as DDMMYYBw.., MMDDYYSw.,
and YYMMw.)

DATE

DTDATEw. and all variants
(such as DTMONYYw. and
DTWKDATXw.

TIMESTAMP(6)

TIMEw. , HOURw., HHMMw. and
all similar time formats.

TIMESTAMP(6)

JULIANw. and all similar date
formats.

DATE

WPS also provides international and NLS-sensitive date formats; the Oracle datetype of these
corresponds to the equivalent basic format above.

How to use the Oracle engine
Connect to an Oracle database in a SAS language program.

In this example, a connection is made to the database using the Oracle multi-threaded engine:

LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' USER=ARichards PASSWORD *******;

The Transparent Network Substrate name (TNS-name) is created on a computer when an Oracle
server exists on a remote site. The TNS-name enables a connection between a client and server.

Reference for language elements
Version 4.1

3652

To connect to a database using a single user thread Oracle engine, substitute ORACLEOLD for ORACLE
in the LIBNAME statement:

LIBNAME MyLib ORACLEOLD PATH='oracle-pz-e27/ZY' USER=ARichards PASSWORD *******;

ORACLE connection reference
Describes the syntax and options for Oracle connection statements.

The LIBNAME library connection statement provides access to an Oracle database within a SAS
language program. A full description is provided of how both the multi-threaded engine and the single-
threaded engine access a database, and the options available to those engines. Options for both
engines are similar, but where they differ an explanation is provided.

ORACLE ..3652
The LIBNAME library connection statement provides a connection to an Oracle database using
the multi-threaded engine.

ORACLE Dataset Options .. 3680
ORACLEOLD .. 3694

The LIBNAME library connection statement provides access to an Oracle database using the
single-threaded engine.

ORACLEOLD Dataset Options ... 3719

ORACLE
The LIBNAME library connection statement provides a connection to an Oracle database using the
multi-threaded engine.

LIBNAME l ibrary- name ORACLE

ORACLEM

Connection options

Bulkload options

Encoding options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Reference for language elements
Version 4.1

3653

The LIBNAME library reference enables a program to access to the database using the name defined in
the library-name argument. You can use the specified library reference in any SAS language programs
to access data stored in the database, as long as programs are run in the same WPS session as that
in which the library reference was specified. The library reference is only active during the current WPS
session. The LIBNAME statement contains options that, when specified, determine how SAS language
programs interact with the database, grouped as follows:

• Connection options (page 3653): Connect to the Oracle database.
• Bulkload options (page 3659): Rapidly insert large amounts of data into a database using bulk

loading (bulk insert).
• Encoding options (page 3665): Manage the encoding differences between database and WPS

client.
• SQL generation options (page 3668): Affect how SQL statements are created, and whether the

statements are processed by the database or WPS.
• SQL metadata options (page 3673): Determine how table description information or query

statements are formatted and used.
• SQL transaction options (page 3676): Affect how SQL statements consisting of execution and

data integrity are passed between the Oracle server and WPS.
• Table locking options (page 3678): Determine how WPS interacts with the Oracle table and row

locking mechanisms.

You can also specify options for individual tables. These override the same options set on the LIBNAME
statement. For more information, see ORACLE dataset options (page 3680).

library-name

The name used in other SAS language statements to access the database.

For example, the following statement:

LIBNAME myLib ORACLE PATH='TNS-name' USER=user-name PASSWORD=user-password;

creates a connection to a database using the name MyLib. This name can then be used in, for
example, the SQL procedure:

PROC SQL;
 INSERT INTO MyLib.person VALUES (32, 'Smith', 'John', 479216691);
QUIT;

Connection options
These options provide the basic access settings for an Oracle database.

ACCESS

Specifies the access mode for the library connection.

ACCESS = READONLY

Reference for language elements
Version 4.1

3654

READONLY

The library connection can only be used to read data. Specifying ACCESS = READONLY
overrides insert or update settings in other options and can result in data not being
modified as expected.

If this option is not specified, the library connection uses a read-write access mode
enabling read, insert, and update operations.

AUTHDOMAIN

Specifies the authorisation domain.

AUTHDOMAIN = authdomain

Type: String

The authorisation domain provides permissions to access a database server. WPS uses Hub as
an authorisation domain, and a Hub server must be available to your system.

In this example, permissions for accessing the Hub are supplied as system options, and the
name of the authorisation domain containing the authorisation details in the Hub is specified to
AUTHDOMAIN.

OPTIONS HUB_SERVER='blue_streak' HUB_PORT=309 HUB_PROTOCOL='HTTP'
HUB_USER='ARichards' HUB_PWD='******';
LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' AUTHDOMAIN='OracleAuth';

Note:
If USER and PASSWORD are specified in the LIBNAME statement, then AUTHDOMAIN is ignored.

CONNECTION
Specifies the type of connection to the database to use.

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

Note:
If a database can only accept one SQL statement per connection, the connection type is always
treated as a UNIQUE connection, whatever value is specified to this option.

Reference for language elements
Version 4.1

3655

GLOBAL

A single connection to the database is created for this library connection statement, and for
any other libraries that match the connection options. This connection to the database is
used for all read, insert, and update operations that use this library connection statement.

GLOBALREAD

A single connection to a database is created for this library connection statement, and for
any other libraries that match the connection options. This connection to the database is
used for all read operations. However, a separate connection to the database is created for
each write operation.

SHARED

All database operations using this library connection statement share the same default
connection created when the library connection statement is invoked. A software locking
mechanism enables information to be updated. Shared connections are not currently
supported.

SHAREDREAD

All database read operations that use this library connection statement share the same
connection to the database that is created when the library connection statement is
invoked. A connection to the database is created when the first insert or update operation
occurs, and then this connection is shared for subsequent updates to the database.

This option interacts with the UTILCONN_TRANSIENT option as follows:

• If UTILCONN_TRANSIENT = YES, a utility connection is created each time the
connection to the database is required, but not persisted for future connections.

• If a utility connection does not exist, and UTILCONN_TRANSIENT = NO, a utility
connection is created and stored for future connections to the database.

• If a utility connection already exists, and UTILCONN_TRANSIENT = NO is specified,
the existing utility connection is used and then stored for future connections to the
database.

UNIQUE

Each operation using this library connection statement has its own connection to the
database.

DBCONINIT

Specifies SQL statements or database commands that are processed every time the library
connection is opened.

DBCONINIT = init ialisat ion- opt ions

Type: String

Reference for language elements
Version 4.1

3656

The connection is opened when this LIBNAME statement is first executed, and then every time
a connection to the database is made; for example, by running an SQL statement in the SQL
procedure.

In this example, a connection is created to an Oracle database. An existing table UK_PMJan is
deleted, if it exists:

LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' USER=test PASSWORD=********
DBCONINIT='DROP TABLE IF EXISTS UK_PMJan';

DBCONTERM

Specifies SQL statements or database commands that are processed every time the library
connection is closed.

DBCONTERM = terminat ion- opt ions

Type: String

In this example, a new table UK_PMFeb is created and the table UK_PMJan is deleted, if it exists.

LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' USER=test
PASSWORD=******** DBCONTERM='DROP TABLE IF EXISTS UK_PMJan';

 DATA myLib.UK_PMFeb;
 SET UK_PM;

 RUN;

DBLIBINIT

Specifies SQL statements or database commands that are processed after the first library
connection has been successfully made.

DBLIBINIT = init ialisat ion- opt ions

Type: String

DBLIBTERM

Specifies SQL statements or database commands that are processed before the first library is
disconnected.

DBLIBTERM = terminat ion- opt ions

Type: String

DBPROMPT

For compatibility only.

This option currently has no effect.

Reference for language elements
Version 4.1

3657

DBPROMPT = NO

YES

Default value: NO

NO

For compatibility only.

YES

For compatibility only.

DEFER

Specifies at what point a library connection is made.

DEFER = NO

YES

A connection to the database can be made as soon as the library connection statement is
executed, or only when an action is performed on the database.

NO

Connect when the library connection statement is executed.

YES

Connect when a SAS language statement requires access to the database.

This is the default if CONNECTION (page 3654) is set to UNIQUE.

PASSWORD
Specifies the password for the user name.

PASSWORD

PWD

PW

PASS

USING

ORAPW

= user- passwd

Type: String

If special characters are used as part of the string, you must enter user-passwd in quotation
marks. The user name is specified with the USER option.

PATH

Specifies the TNS service name for the Oracle database.

Reference for language elements
Version 4.1

3658

PATH = TNS- name

Type: String

The TNS name is an alias for the Oracle Call Interface (OCI) connection string that identifies the
database server and instance to which you want to connect. For example: PATH='oracle-pg-
e27/ZY'.

SCHEMA

Specifies the name of the database schema with which the connection interacts.

SCHEMA = schema- name

Type: String

The schema is a grouping of database objects and data accessible by the user that can be
manipulated through SQL statements.

USER

Specifies the user name required to access the database.

USER = user- name

Type: String

If special characters are used as part of the string, you must enter user-name in quotation marks.

UTILCONN_TRANSIENT

Specifies whether the utility connection is transient or non-transient.

UTILCONN_TRANSIENT = NO

YES

Default value: NO

A utility connection is created to separate data read and update processes from metadata
handling. This connection is used by WPS Workbench to list the members of the database in
which to populate information; for example, the Sashelp tables.

NO

The utility connection is created and stored for future connections to the database.

YES

The utility connection is created whenever required, but is not persisted for future
connections to the database.

Reference for language elements
Version 4.1

3659

Bulkload options
Rapidly insert large amounts of data into a database using bulk loading (bulk insert). Bulk insert uses
either the native Oracle Call Interface (OCI) or, if installed, SQL*Loader.

SQL*Loader provides a bulk insert mechanism that can be faster than the OCI, because indexes are
only updated when data insertion has finished.

Note:
With SQL*Loader you can inadvertently insert incorrect data into an index, and create a table that
cannot be accessed. You should therefore keep the intermediate data file that enables you to validate
information on insertion.

Oracle supports two methods for bulk loading data:

• Conventional path load. SQL INSERT statements are constructed that encapsulate the data to be
inserted. This is the default method used by both OCI or SQL*Loader.

• Direct path load. Data is bulk loaded directly using the OCI direct path API.

Library connection options enable you to specify which bulk loading methods to use. To bulk load data
using:

• The conventional path and the OCI, specify BULKLOAD=YES.
• The conventional path and SQL*Loader, specify:

BULKLOAD=YES BL_USE_SQLLDR=YES

• The direct path and the OCI, specify:

BULKLOAD=YES BL_DIRECT_PATH=YES

• The direct path and SQL*Loader, specify:

BULKLOAD=YES BL_USE_SQLLDR=YES BL_DIRECT_PATH=YES

For information on these options, see BULKLOAD (page 3659), BL_DIRECT_PATH (page 3661)
and BL_USE_SQLLDR (page 3665).

BULKLOAD

Specifies whether the library connection permits bulk insert into a database table.

BULKLOAD = NO

YES

NO

Data cannot be bulk inserted. All other bulkload options are ignored.

YES

Data can be bulk inserted.

Reference for language elements
Version 4.1

3660

BL_BADFILE

Specifies the path to the SQL*Loader bad file.

BL_BADFILE = f ilepath

The bad file is used to store records that could not be inserted into the database table due to
errors. The file is only created if required. The file has the extension or type *.bad.

BL_CONTROL

Specifies the path to the SQL*Loader control file.

BL_CONTROL = f ilepath

The control file is used to specify how data is loaded from the data file specified in BL_DATAFILE
into the database table. The file has the extension or type *.ctrl.

BL_DATAFILE

Specifies the path to the SQL*Loader data file.

BL_DATAFILE = f ilepath

The data file contains the data to be inserted into the database table. The file has the extension
or type *.dat.

BL_DATECACHE_SIZE

Specifies the size of the date cache to use with a bulk insert using OCI.

BL_DATECACHE_SIZE = buffer- size

This cache is used when data is inserted that contains date information. A date value needs to
be converted from a SAS language date format to an Oracle data type before it is inserted into a
table. A converted date value is stored in this cache to speed insertion of duplicate information.

BL_DEFAULT_DIR

Specifies the default path to use for the files automatically generated by SQL*Loader (bad, data,
discard, log, and parameter).

BL_DEFAULT_DIR = f ilepath

Type: String

If pathnames for these automatically generated files are not specified using the corresponding
bulkload options, a file is automatically created when required and stored in the location specified
by this option.

Reference for language elements
Version 4.1

3661

BL_DELETE_DATAFILE

Specifies whether the SQL*Loader data and associated control and log files are deleted.

BL_DELETE_DATAFILE

BL_DELETE_FILES

= NO

YES

Default value: YES

NO
Keep the data, control, and log files after insert.

YES

Delete the data, control, and log files after insert.

BL_DELETE_ONLY_DATAFILE

Specifies whether only the SQL*Loader data file is deleted.

BL_DELETE_ONLY_DATAFILE = NO

YES

Default value: NO

NO

Keep the data after insert. The control and log files are also kept.

YES

Delete only the data file after insert.

BL_DIRECT_PATH

Specifies that the direct path load is used, rather than a conventional path load, to bulk insert
data.

BL_DIRECT_PATH = NO

YES

Default value: NO

NO

Use a conventional path load.

YES

Use a direct path load. This method can be used with either the Oracle Call Interface or
SQL*Loader. To use it with SQL*Loader, also specify BL_USE_SQLLDR=YES.

Reference for language elements
Version 4.1

3662

BL_DISCARDFILE

Specifies the path to the SQL*Loader discard file.

BL_DISCARDFILE = f ilepath

The discard file contains data that has neither been inserted into the database table, nor been
rejected as bad after the bulk insert process. The file has the extension or type *.dsc.

BL_INDEX_OPTIONS

Specifies how indexes are created when inserting information through SQL*Loader.

BL_INDEX_OPTIONS = opt ions- list

Type: String

BL_LOAD_METHOD

Specifies the method used by SQL*Loader to bulk insert data into a database table.

BL_LOAD_METHOD = APPEND

INSERT

REPLACE

TRUNCATE

APPEND

Add data to an empty table or append data to a table that already contains rows.

INSERT

Add data to an empty table. Attempting to insert data into a non-empty table results in an
error.

REPLACE

Replace all existing content in the database table with the content of the SQL*Loader data
file. An SQL DELETE FROM TABLE… statement is first executed, and any delete triggers
created on the table are therefore run before the new data is inserted.

TRUNCATE

Replace all existing content in the database table with the content of the SQL*Loader data
file. A TRUNCATE TABLE… statement is executed as the first step to reset the number of
table rows to zero. Any referential constraints on the table must be disabled before using
this load method.

Reference for language elements
Version 4.1

3663

BL_LOG

Specifies the path to the SQL*Loader log file.

BL_LOG = f ilepath

The log file is created when the SQL*Loader begins bulk-inserting data, and contains log entries
summarising the events during the data insert. The file has the extension or type *.log.

BL_OPTIONS

Specifies options for SQL*Loader.

BL_OPTIONS = f ilepath

Type: String

Where these options are specified in both the SQL*Loader control file and BL_OPTIONS, any
options specified using BL_OPTIONS take priority.

BL_PARFILE

Specifies the path to the SQL*Loader parameter file.

BL_PARFILE = f ilepath

This file is used to store frequently-used command line options. The file has the extension or type
*.par.

BL_PRESERVE_BLANKS

Specifies whether SQL*Loader trims trailing spaces from inserted data.

BL_PRESERVE_BLANKS = NO

YES

Default value: NO

NO

Remove trailing spaces.

YES

Do not remove trailing spaces.

BL_RECOVERABLE

Specifies whether the SQL*Loader bulk insert attempts to reload data if there is a problem during
the insert that is not related to data.

Reference for language elements
Version 4.1

3664

BL_RECOVERABLE = NO

YES

Default value: YES

NO

Do not attempt to recover from errors. No redo log is created.

YES

Attempt to recover from an error. The data is added to the redo log, and this log is used as
the basis of the recovery.

BL_RETURN_WARNINGS_AS_ERRORS

Specifies whether warnings generated when bulk-inserting data with SQL*Loader are displayed
as errors in the SQL*Loader log file.

BL_RETURN_WARNINGS_AS_ERRORS = NO

YES

Default value: NO

NO

Do not display warnings as errors in the SQL*Loader log file.

YES

Display warnings as errors in the SQL*Loader log file.

BL_SQLLDR_PATH

Specifies the path of the SQL*Loader application.

BL_SQLLDR_PATH = f ilepath

Type: String

BL_STREAM_SIZE

Specifies the size of the buffer to use when bulk loading data using the SQL*Loader and direct
path loading.

BL_STREAM_SIZE = buffer- size

BL_SUPPRESS_NULLIF

Specifies whether to ignore NULLIF conditions defined in the SQL*Loader control file.

Reference for language elements
Version 4.1

3665

BL_SUPPRESS_NULLIF = (variable = NO

YES

)

Default value: NO

variable

The name of a column (variable), or _ALL_.

Specify:

• variable=YES to ignore the NULLIF condition for the column variable
• variable=NO to ignore the NULLIF condition for the column variable; this is the

default.
• _ALL_=YES to ignore NULLIF conditions for all columns,

If you specify _ALL_=YES, do not specify subsequent arguments. If you do, the list of arguments
might not execute correctly.

BL_USE_SQLLDR

Specifies whether bulk inserts are made using Oracle's SQL*Loader.

BL_USE_SQLLDR = NO

YES

Default value: NO

Note:
SQL*Loader is not included in the Oracle Instant Client and must be installed separately.

NO

Do not use SQL*Loader for bulk inserts; the Oracle Call Interface (OCI) is used instead.

YES

Use SQL*Loader for bulk inserts.

The option BL_DIRECT_PATH (page 3661) can be used to specify whether
SQL*Loader uses the conventional load path or the direct load path. See Bulkload
options (page 3659)

Encoding options
Options that manage the encoding differences between database and WPS client.

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS

Specifies how to handle database columns defined as CHAR and VARCHAR when WPS and
database server encodings differ.

Reference for language elements
Version 4.1

3666

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS = NO

YES

If the encodings between the database server and WPS differ, and database columns have
been specified as the CHAR and VARCHAR client column size is adjusted to store all characters
retrieved from the database server.

The default depends on the value of DBCLIENT_MAX_BYTES. If DBCLIENT_MAX_BYTES is equal
to 1, then the default is NO. If DBCLIENT_MAX_BYTES is greater than 1, then the default is YES.

NO

The WPS variable holds the same number of bytes as the corresponding column in
the database. If the number of bytes used to represent a character differs between the
character sets used by WPS and by the database, data might be truncated.

YES

Adjust variable lengths in WPS to ensure all characters from the corresponding column are
accurately represented.

For example, if the character set on the database server uses two bytes to represent a
character, a 500 character column is returned as 1000 bytes. If the character set in WPS
uses four bytes to represent a character, the client reads the number of characters (1000/2
= 500 characters) and allocates the correct amount of space (500*4=2000 bytes) to ensure
the characters are correctly encoded.

ADJUST_NCHAR_COLUMN_LENGTHS

Specifies how to handle database columns defined as NCHAR and NVARCHAR.

ADJUST_NCHAR_COLUMN_LENGTHS = NO

YES

Default value: YES

NO

The WPS variable holds the same number of bytes as the corresponding column in
the database. If the number of bytes used to represent a character differs between the
character sets used by WPS and by the database, data might be truncated.

YES

The column length in WPS is adjusted to cater for the value defined in
DBSERVER_MAX_BYTES. The adjustment is calculated using:

number_of_characters * value_of_DBCLIENT_MAX_BYTES

where number_of_characters is the number of characters in the column, and
value_of_DBCLIENT_MAX_BYTES

Reference for language elements
Version 4.1

3667

where number_of_characters is the number of characters in the column, and
value_of_DBCLIENT_MAX_BYTES is the value specified by DBCLIENT_MAX_BYTES
(page 3668).

DB_LENGTH_SEMANTICS_BYTE

Specifies how to handle database columns defined as NCHAR and NVARCHAR.

DB_LENGTH_SEMANTICS_BYTE = NO

YES

Default value: TRUE

NO

Definitions for CHAR or VARCHAR2 columns are created by specifying the total number of
characters.

For example, if a dataset has a column that has 20 bytes available to store characters, and
each character is composed of:

• One byte, then 20 characters can be stored in each column.
• Two bytes, then only 10 characters can be stored in each column.
• Four bytes, then only five characters can be stored in each column.

The length defined for CHAR or VARCHAR2 allows a maximum number of characters
to be stored whatever the character set encoding used on the database. For example,
if the character set consists of a fixed two-byte encoding, and the variable is 20 bytes
long, then the data type for the variable is the length of the variable, divided by two bytes
per character. The data type for the corresponding column is therefore VARCHAR2 (10
CHAR). If a character set uses a variable number of bytes to define a character, then the
maximum number of bytes used to define a character is used to calculate the data type; for
example, characters in the UTF-8 character set can be represented using up to four bytes,
therefore a 20 byte variable is defined as VARCHAR2 (5 CHAR) in the database.

YES

Definitions for CHAR or VARCHAR2 data types are created by specifying the data type in
bytes. The length of the data type is dependent on the encoding used by the database
server, and whether characters have fixed or variable encodings. It is calculated as:

number_of_characters * value_of_DBSERVER_MAX_BYTES

where number_of_characters is the number of characters defined for the variable, and
value_of_DBSERVER_MAX_BYTES is the value specified by DBSERVER_MAX_BYTES
(page 3668).

For example, assume a dataset has a column of 20 bytes available to store characters.
The dataset variable is defined as 10 characters long, and the database character set has
four bytes UTF-8 encoding, as specified in DBSERVER_MAX_BYTES). The equivalent table
column data type is defined as VARCHAR(40) (that is, 10 x 4).

Reference for language elements
Version 4.1

3668

DBCLIENT_MAX_BYTES

Specifies the maximum number of bytes used to encode each character in WPS.

DBCLIENT_MAX_BYTES = bytes- per- character

Type: Numeric

Minimum value: 1

When not set, this defaults to the number of bytes used by the current WPS session encoding.

DBSERVER_MAX_BYTES

Specifies the maximum number of bytes per character in the encoding used by the database.

DBSERVER_MAX_BYTES = bytes- per- character

Type: Numeric

Minimum value: 1

SQL generation
Options that affect how SQL statements are created, and whether the statements are created on the
Oracle server or by WPS.

DBCREATE_TABLE_OPTS

Specifies extra table options to be added to a CREATE TABLE… statement after the columns in
the table have been defined.

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

Specifies how to modify column names that require adjustment to be valid in the language of
SAS.

DBGEN_NAME = DBMS

SAS

Default value: SAS

Reference for language elements
Version 4.1

3669

DBMS

If the column name contains invalid characters, those characters are replaced with an
underscore. If this change results in a name that clashes with that of another column, the
column count is appended to the column name.

For example, if your table contains the columns id$x, id#x and id_x, the variables in the
language of SAS would be ID_X, ID_X0, and ID_X1 respectively.

Note:

The numbering starts at the first repeat of the variable name, and also begins at 0.

SAS

If the column name contains invalid characters, or have the same name, the column name
is replaced with the string _COL. If this change results in a name clash with other columns,
the column count is appended to the name: _COLx where x is the column, starting at 0
(zero).

DBINDEX

Specifies whether database indexes are used, where available, to provide a fast table look-up
when joining a table with a WPS dataset. Database indexes are only used in this way when an
available index has the same fields as the join keys.

DBINDEX = NO

YES

Default value: NO

NO

Do not use database indexes.

YES

Use database indexes.

DBMSTEMP

Specifies whether to create temporary database tables rather than permanent tables.

DBMSTEMP = NO

YES

Default value: NO

Temporary tables are deleted on disconnection.

NO
Create temporary database tables.

Reference for language elements
Version 4.1

3670

YES

Do not create temporary database tables.

A typical DATA step might be:

LIBNAME tdtemp ORACLE path='oracle-xe-p21/XZ' user=test
password=c987dZ4y connection=global dbmstemp=YES;

 data carinfo.customer_update;
 set tdtemp.customer_update;

RUN;

DBNULLKEYS

Specifies what should happen if a value in a column specified as a key using DBKEY is null.

DBNULLKEYS = NO

YES

DBKEY is a dataset option.

NO

Specifies that if the value in a column defined as a key column using DBKEY is null, the row
that contains the null value is ignored.

YES

Specifies that if the value in a column defined as a key column using DBKEY is null, the row
that contains the null value is processed.

DBSLICEPARM

Specifies whether to perform multi-threaded reads, in which a part of the database table is
returned on each thread.

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

This option can be used to improve the performance of read operations on large database tables.
You can specify a number of threads to be used; different parts of the table are then returned on
each thread.

Reference for language elements
Version 4.1

3671

Note:
The default value is that set by the system option DBSLICEPARM. The default if the system option
has not been set is THREADED APPS, 2.

ALL

The number of available threads is equal to the number of available CPUs. To limit the
number of threads used, specify the number in threads.

NONE

Multiple threads are not used. Data is returned on one thread.

THREADED_APPS

The number of available threads is equal to the number of available CPUs. To limit the
number of threads used, specify the number in threads.

DIRECT_EXE

Specifies whether delete statements are executed directly on the database, or through WPS.

DIRECT_EXE = DELETE

When not specified, the database table is scanned and rows matching the delete criteria are
returned to WPS. An SQL DELETE FROM… statement is created by WPS for each affected row
and passed to the database for processing.

DELETE

The SQL DELETE FROM… command is passed to the database and processed entirely by
the database engine. In this case, the SQL DELETE… statements are not created by WPS.

DIRECT_SQL

Specifies whether SQL statements are passed through for processing by the database server, or
processed by WPS.

Reference for language elements
Version 4.1

3672

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

NO

All SQL statements are processed by WPS.

NOFUNCTIONS
Any SQL statements containing function calls are processed by WPS. All other statements
that can be processed by the database server are passed through to the server for
processing.

NOGENSQL

All SQL statements are processed by WPS.

NOMULTOUTJOINS

Any SQL statements containing multiple outer joins are processed by WPS. All other
statements that can be processed by the database server are passed through to the server
for processing.

NONE

All SQL statements are processed by WPS.

NOWHERE

Any statements containing WHERE clauses are processed by WPS. All other statements
that can be processed by the database server are passed through to the database server
for processing.

Reference for language elements
Version 4.1

3673

YES

All SQL statements that can processed in-database are passed through to the database
server for processing.

SQLGENERATION

Specifies where the SQL statements required to create summary data for the SUMMARY
procedure are processed.

SQLGENERATION = DBMS

NONE

This option enables you to specify whether the SQL statements required to create summary data
for the SUMMARY procedure are generated and the data processed by the database server or
by WPS.

DBMS
Data processing is carried out by the database server.

NONE
WPS generates the SQL statements and processes data, sending the result to the
database server.

SQL metadata
Options used to determine how table description information or query statements are formatted and
used.

PRESERVE_COL_NAMES

Specifies whether the case of variable names in datasets is preserved in column names in tables.

PRESERVE_COL_NAMES = NO

YES

Default value: NO

Note:
When column names are enclosed in quotes, the database preserves the case.

NO

Case is not preserved. The name reverts to the default case the database.

For example, if a dataset contains a variable labelled xX, and the dataset is written to a
database table, the column is labelled XX.

YES

Case is preserved.

Reference for language elements
Version 4.1

3674

Note:
This option does not function with a case-insensitive database.

For example, the following program reads data from a table, and writes it to a dataset:

DATA MyLib.table1 (PRESERVE_COL_NAMES = YES);
 SET Mynums;
 PUT XX;
RUN;

The dataset Mynums contains variables named xX and yY. The resulting table table1
in the database specified by Mylib contains columns with names in the same case. In
the PUT statement, however, the variable is specified in upper case; because the SAS
language ignores the case of variables in statements, the value of the variable xX is written
to the log.

PRESERVE_NAMES

Specifies whether both the table and column names in SQL statements are treated as case-
sensitive or case-insensitive identifiers.

PRESERVE_NAMES = NO

YES

Default value: NO

NO

Table and column names in SQL statements are treated as case insensitive and converted
to the normal label form – typically uppercase – when the SQL statement is processed.

For example if you have a table labelled Customer, this is typically treated as if it is
labelled CUSTOMER. Any use of the table name, however it is written – customer or
Customer – refers to the same table. The same rule applies to columns in the table; this
means the same table and column combination is referenced in a SAS language program
whichever case is used in the names.

YES

Table and column names in SQL statements are treated as case sensitive. As part of the
statement processing, the names have opening quotation marks and closing quotation
marks added and used as entered. For example, SELECT test.myColumn FROM
test… becomes SELECT "test"."myColumn" FROM "test"….

Using case-sensitive names means that a combination of table and column labels within
a SAS language program must accurately reflect the case of the names used within the
database. For example, a statement such as SELECT Test.Column1 FROM Test
WHERE TEST.Column2… would be interpreted as SELECT "Test"."Column1" FROM
"Test" WHERE "TEST"."Column2"…, meaning the WHERE… clause in the in the
statement has applied a different table than that in the SELECT… clause.

Reference for language elements
Version 4.1

3675

PRESERVE_TAB_NAMES

Specifies whether the table names in SQL statements are treated as case-sensitive – and
converted to the normal label form for the database – or case-insensitive identifiers.

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

NO

Table names in SQL statements are treated as case insensitive and converted to the
normal label form – typically uppercase – when the SQL statement is processed.

For example, if you have a table labelled myTable, this is treated as if it is labelled
MYTABLE. Any use of the table name in a SAS language program, however it is written –
MyTable or mytable – refers to the same table.

YES

Table names in SQL statements are treated as case sensitive. When a statement is
processed, names are have opening quotation marks and closing quotation marks added
and used as entered. For example, SELECT test.myColumn FROM test is interpreted
as SELECT "test".MYCOLUMN FROM "test".

Using case-sensitive names enables a database to contain multiple, similarly-named
tables, because clientName and CLIENTNAME are treated as different tables.

SHOW_SYNONYMS

Specifies whether the Oracle-specific alternative name for database objects is used when
querying the database structure.

SHOW_SYNONYMS = NO

YES

Default value: NO

NO

The original object names are used when viewing the information about a database
through PROC DATASETS, or when querying DICTIONARY tables through PROC SQL.

YES

Created synonyms are used when viewing the information about a database through PROC
DATASETS, or when querying DICTIONARY tables through PROC SQL.

Reference for language elements
Version 4.1

3676

SQL transaction
Options that affect how SQL statements consisting of execution and data integrity are passed between
the Oracle server and WPS.

DBCOMMIT

Specifies the maximum number of records in each commit that is passed to the database server.

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBLINK
Specifies a database link through which you can access objects on another database.

DBLINK = l ink- name

Type: String

link-name is a pointer to a table or view from a main Oracle database to a different Oracle
database that might be on the same, or on a different, database server.

When this option is specified for a library connection, all SQL SELECT…, INSERT…, UPDATE…,
and DELETE… statements that accessing the main database have the DBLINK name appended
to the table or view name.

To access tables from both the main and linked databases requires two library connections to
the same main database, and both connections must use the same connection credentials.
One of the statements must have the DBLINK option specified and both statements require the
CONNECTION=GLOBAL option specified.

The DBLINK reference is created using the OracleSQL statement CREATE DATABASE LINK.

DBMAX_TEXT

The maximum string length (number of characters) that can be inserted into a field in a database
table.

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 1024

Reference for language elements
Version 4.1

3677

INSERTBUFF

Specifies the number of records inserted into a database in a single insert action, when not using
bulkload options. If DBCOMMIT is set, the lower value of INSERTBUFF or DBCOMMIT is used.

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Default value: 10

READBUFF

Specifies the number of records retrieved from the database in a single read action.

READBUFF

BUFFSIZE

= buffer- size

Type: Numeric

Minimum value: 1

Default value: 250

SPOOL

Spooling creates a temporary file containing the results of reading a database table.

SPOOL = DBMS

NO

YES

This cache file is used for subsequent read actions on the data, enabling data to be read more
quickly than re-reading the content from the database table.

DBMS

Spooling is active and handled by the DBMS.

NO

Spooling is active and handled by the DBMS.

YES

Spooling is active in WPS.

Reference for language elements
Version 4.1

3678

UPDATEBUFF

Specifies the number of records updated in or deleted from a database in a single action, when
not using bulkload options. If DBCOMMIT is set, the lower value of UPDATEBUFF or DBCOMMIT is
used.

UPDATEBUFF = buffer- size

Type: Numeric

Minimum value: 1

Default value: 1

The maximum value is determined by the size of the database.

Table locking options
Options that determine how WPS interacts with the Oracle table and row locking mechanisms.

LOCKWAIT

Specifies what happens when another process attempts to read or update a locked database
table.

LOCKWAIT = NO

YES

Default value: YES

NO

Nothing is read from or written to the table, and a message is written to the log.

YES

Wait for the lock to be removed from the table, and then attempt to read or update the
table.

READ_ISOLATION_LEVEL

Specifies when a client can read data that is inserted into a database table if the table is
accessed by multiple clients.

READ_ISOLATION_LEVEL = READCOMMITTED

SERIALIZABLE

READ_ISOLATION_LEVEL settings only affect SQL SELECT statements, and then only when the
ACCESS option is not set to READONLY.

Reference for language elements
Version 4.1

3679

READCOMMITTED

Only committed data is read by a client. Data inserted as part of an another client's
transaction can be queried once the transaction is complete and the data has been
committed to the database. Where multiple read actions take place against a table by the
same client, returned results are only updated to reflect any transactional changes made
between the read actions.

SERIALIZABLE

Where multiple clients are reading data from the table, only one query is processed at a
time – any query of the table data must complete before the next query or data update can
begin. If the client attempts to read data from the table while an update transaction is being
processed, the client reading the table data cannot access the table until the updating
transaction is complete.

READ_LOCK_TYPE

Specifies the type of lock to apply to read actions on a table.

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

NOLOCK

No lock is applied to the table. There are no restrictions on updates to the table, and
multiple, concurrent read actions of the data might return different results.

ROW

When LOCKWAIT=NO, the WPS client obtains a row share lock on a row. This lock allows
concurrent access, but prevents a full table lock. This lock also prevents updates to the
row until the read action is complete.

TABLE

When LOCKWAIT=NO, WPS obtains a share lock on the table. This lock allows concurrent
read access, but prevents any updates to the table until the query action is complete.

UPDATE_ISOLATION_LEVEL

Specifies when a client can update a table if the table is accessed by multiple clients.

UPDATE_ISOLATION_LEVEL = READCOMMITTED

SERIALIZABLE

UPDATE_ISOLATION_LEVEL settings only affect SQL UPDATE statements, and then only when
the ACCESS option is not set to READONLY.

Reference for language elements
Version 4.1

3680

READCOMMITTED

Read before update. A second read might return different data to the original read, as
there is no restriction on the update which might insert new rows, delete existing rows, or
change data.

SERIALIZABLE

A WPS client waits for the current client to finish its updates to a table before it makes its
changes.

UPDATE_LOCK_TYPE

Specifies the type of lock to apply to update actions on a table in the database.

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

NOLOCK

No lock is applied to the table. There are no restrictions on updates to the table, and
multiple, concurrent read actions of the data might return different results.

ROW

The WPS client obtains a row share lock on the table and makes the required updates.
This lock allows multiple client access to the table for reading and updating. None of those
clients can obtain an exclusive lock on the table, and no other client can update the locked
row until the transaction is complete.

TABLE

The WPS client obtains an exclusive lock on the table and makes the required updates.
Any other activity on the table is delayed until updates are complete.

ORACLE Dataset Options

When dataset options are specified for a database table, the values of those options override the
settings specified for the same options on the library connection statement. You should therefore
configure a library connection statement so that it provides the best access to all accessible objects in a
database. If different options are required for specific tables, the following dataset options can be used.

You can specify dataset options wherever you can specify a database table in a SAS language or SQL
statement.

Reference for language elements
Version 4.1

3681

For example, dataset options can be added when a database table is specified in an SQL INSERT
statement when using the SQL procedure:

PROC SQL;
 INSERT INTO myLib.myTable (BULKLOAD=YES, BL_LOAD_METHOD=TRUNCATE)
 AS SELECT * FROM datasrc.append_src;
QUIT;

Similarly, dataset options can be added when a database table is specified as the input dataset in a
SAS language program:

DATA myoutfile;
 SET mylib.a_xyz1 (BULKLOAD=YES);
RUN;

BL_BADFILE

Specifies the path to the SQL*Loader bad file.

BL_BADFILE = f ilepath

The bad file is used to store records that could not be inserted into the database table due to
errors. The file is only created if required. The file has the extension or type *.bad.

BL_CONTROL

Specifies the path to the SQL*Loader control file.

BL_CONTROL = f ilepath

The control file is used to specify how data is loaded from the data file specified in BL_DATAFILE
into the database table. The file has the extension or type *.ctrl.

BL_DATAFILE

Specifies the path to the SQL*Loader data file.

BL_DATAFILE = f ilepath

The data file contains the data to be inserted into the database table. The file has the extension
or type *.dat.

BL_DEFAULT_DIR

Specifies the default path to use for the files automatically generated by SQL*Loader (bad, data,
discard, log, and parameter).

BL_DEFAULT_DIR = f ilepath

Type: String

Reference for language elements
Version 4.1

3682

The data file contains the data to be inserted into the database table. The file has the extension
or type *.dat.

BL_DELETE_DATAFILE

Specifies whether the SQL*Loader data and associated control and log files are deleted.

BL_DELETE_DATAFILE

BL_DELETE_FILES

= NO

YES

NO
Keep the data, control, and log files after insert.

YES

Delete the data, control, and log files after insert.

BL_DELETE_ONLY_DATAFILE

Specifies whether only the SQL*Loader data file is deleted.

BL_DELETE_ONLY_DATAFILE = NO

YES

NO

Keep the data after insert. The control and log files are also kept.

YES

Delete only the data file after insert.

BL_DIRECT_PATH

Specifies that the direct path load is used, rather than a conventional path load, to bulk insert
data.

BL_DIRECT_PATH = NO

YES

NO

Use a conventional path load.

YES

Use a direct path load. This method can be used with either the Oracle Call Interface or
SQL*Loader. To use it with SQL*Loader, also specify BL_USE_SQLLDR=YES.

Reference for language elements
Version 4.1

3683

BL_DISCARDFILE

Specifies the path to the SQL*Loader discard file.

BL_DISCARDFILE = f ilepath

The discard file contains data that has neither been inserted into the database table, nor been
rejected as bad after the bulk insert process. The file has the extension or type *.dsc.

BL_INDEX_OPTIONS

Specifies how indexes are created when inserting information through SQL*Loader.

BL_INDEX_OPTIONS = opt ions- list

Type: String

SORTEDINDEX

Inserts an index entry at the same time as a row is inserted into a table.

SINGLEROW

Adds data to an empty table or appends data to a table that already contains rows.

BL_LOAD_METHOD

Specifies the method used by SQL*Loader to bulk insert data into a database table.

BL_LOAD_METHOD = APPEND

INSERT

REPLACE

TRUNCATE

APPEND

Add data to an empty table or append data to a table that already contains rows.

INSERT

Add data to an empty table. Attempting to insert data into a non-empty table results in an
error.

REPLACE

Replace all existing content in the database table with the content of the SQL*Loader data
file. An SQL DELETE FROM TABLE… statement is first executed, and any delete triggers
created on the table are therefore run before the new data is inserted.

Reference for language elements
Version 4.1

3684

TRUNCATE

Replace all existing content in the database table with the content of the SQL*Loader data
file. A TRUNCATE TABLE… statement is executed as the first step to reset the number of
table rows to zero. Any referential constraints on the table must be disabled before using
this load method.

BL_LOG

Specifies the path to the SQL*Loader log file.

BL_LOG = f ilepath

The log file is created when the SQL*Loader begins bulk-inserting data, and contains log entries
summarising the events during the data insert. The file has the extension or type *.log.

BL_OPTIONS

Specifies options for SQL*Loader.

BL_OPTIONS = opt ions- list

Type: String

The log file is created when the SQL*Loader begins bulk-inserting data, and contains log entries
summarising the events during the data insert. The file has the extension or type *.log.

BL_PARFILE

Specifies the path to the SQL*Loader parameter file.

BL_PARFILE = f ilepath

This file is used to store frequently-used command line options. The file has the extension or type
*.par.

BL_PRESERVE_BLANKS

Specifies whether SQL*Loader trims trailing spaces from inserted data.

BL_PRESERVE_BLANKS = NO

YES

NO

Remove trailing spaces.

YES

Do not remove trailing spaces.

Reference for language elements
Version 4.1

3685

BL_RECOVERABLE

Attempt to recover from an error. The data is added to the redo log, and this log is used as the
basis of the recovery.

BL_RECOVERABLE = NO

YES

NO

Do not attempt to recover from errors. No redo log is created.

YES

Attempt to recover from an error. The data is added to the redo log, and this log is used as
the basis of the recovery.

BL_RETURN_WARNINGS_AS_ERRORS

Specifies whether warnings generated when bulk-inserting data with SQL*Loader are displayed
as errors in the SQL*Loader log file.

BL_RETURN_WARNINGS_AS_ERRORS = NO

YES

NO

Do not display warnings as errors in the SQL*Loader log file.

YES

Display warnings as errors in the SQL*Loader log file.

BL_SQLLDR_PATH

Specifies the path of the SQL*Loader application.

BL_SQLLDR_PATH = f ilepath

Type: String

BL_SUPPRESS_NULLIF

Specifies whether to ignore NULLIF conditions defined in the SQL*Loader control file.

BL_SUPPRESS_NULLIF = (variable = NO

YES

)

Reference for language elements
Version 4.1

3686

variable

The name of a column (variable), or _ALL_.

Specify:

• variable=YES to ignore the NULLIF condition for the column variable
• variable=NO to ignore the NULLIF condition for the column variable; this is the

default.
• _ALL_=YES to ignore NULLIF conditions for all columns,

If you specify _ALL_=YES, do not specify subsequent arguments. If you do, the list of arguments
might not execute correctly.

BL_USE_SQLLDR

Specifies whether bulk inserts are made using Oracle's SQL*Loader.

BL_USE_SQLLDR = NO

YES

Note:
SQL*Loader is not included in the Oracle Instant Client and must be installed separately.

NO

Do not use SQL*Loader for bulk inserts; the Oracle Call Interface (OCI) is used instead.

YES

Use SQL*Loader for bulk inserts.

BULKLOAD

Specifies whether the library connection permits bulk insert into a database table.

BULKLOAD = NO

YES

Default value: FALSE

NO

Data cannot be bulk inserted. All other bulkload options are ignored.

YES

Data can be bulk inserted.

DBCOMMIT

Specifies the maximum number of records in each commit that is passed to the database server.

Reference for language elements
Version 4.1

3687

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

Any value entered is accepted, but ignored.

DBCREATE_TABLE_OPTS

Specifies extra table options to be added to a CREATE TABLE… statement after the columns in
the table have been defined.

DBCREATE_TABLE_OPTS = opt ions- list

Type: String

DBINDEX

Specifies whether database indexes are used, where available, to provide a fast table look-up
when joining a table with a WPS dataset. Database indexes are only used in this way when an
available index has the same fields as the join keys.

DBINDEX = NO

YES

Default value: FALSE

Specifies whether database indexes are used, where available, to provide a fast table look-up
when joining a table with a WPS dataset. Database indexes are only used in this way when an
available index has the same fields as the join keys.

NO

Do not use database indexes.

YES

Use database indexes.

DBKEY
Specifies a table column to use as a database key.

DBKEY = column- name

The key is used to index tables for faster access, and for matching rows in datasets.

DBNULL

Specifies that a missing value in a dataset is written to a table as a null.

Reference for language elements
Version 4.1

3688

DBNULL = None

DBNULLKEYS

Specifies what should happen if a value in a column specified as a key using DBKEY is null.

DBNULLKEYS = NO

YES

Default value: TRUE

DBKEY is a dataset option.

NO

Specifies that if the value in a column defined as a key column using DBKEY is null, the row
that contains the null value is ignored.

YES

Specifies that if the value in a column defined as a key column using DBKEY is null, the row
that contains the null value is processed.

DBSLICE

Enables you to divide large tables into smaller tables when you perform operations on the table.
The table is divided using a condition.

DBSLICE = (where- clause)

This option can be used to improve performance when performing operations on large tables.
The table is divided by a condition specified in where-clause. You can specify more than one
where-clause. When the table has been divided into smaller tables, operations are performed on
the smaller tables. A separate thread is used for the operations on each of the smaller tables.

DBSLICEPARM

Specifies whether to perform multi-threaded reads, in which a part of the database table is
returned on each thread.

DBSLICEPARM = ALL

NONE

THREADED_APPS

(THREADED_APPS
,

threads)

(ALL
,

threads)

Reference for language elements
Version 4.1

3689

This option can be used to improve the performance of read operations on large database tables.
You can specify a number of threads to be used; different parts of the table are then returned on
each thread.

Note:
The default value is that set by the system option DBSLICEPARM. The default if the system option
has not been set is THREADED APPS, 2.

ALL

The number of available threads is equal to the number of available CPUs. To limit the
number of threads used, specify the number in threads.

NONE

Multiple threads are not used. Data is returned on one thread.

THREADED_APPS

The number of available threads is equal to the number of available CPUs. To limit the
number of threads used, specify the number in threads.

DBTYPE

Specifies data types for columns rather than using mapped data types.

DBTYPE = dbtype- value

This option enables you to change the data type defined by default for a column when you create
a table from a WPS dataset.

dbtype-value has the format:

(column-name = datatype)

where column-name is the name of a database column, and datatype is a database data type.

You can redefine multiple columns; separate each column name definition with spaces. If you
specify the same column name more than once, the last definition is applied.

For example:

LIBNAME Mylib ORACLE path='oracle-xe-el7/XE' user=xxxx password=xxxxxxxx;
DATA MyLib.a_xyz (dbtype = (x = long y = integer));
 SET Mynums;
RUN;

By default, numbers in a dataset are mapped to Oracle table as the NUMBER data type. DBTYPE
has been set in this program to specify that the variables x and y in the dataset are written
to column x with an Oracle data type LONG and y with a data type NUMBER(38) (the Oracle
equivalent of INTEGER).

Reference for language elements
Version 4.1

3690

INSERTBUFF

Specifies the number of records to be inserted into the database.

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Default value: 10

If the DBCOMMIT option is specified on the connection statement, the buffer-size is the lower
value of either INSERTBUFF or DBCOMMIT. For example if INSERTBUFF = 100, and DBCOMMIT =
200, then 100 is selected.

PRESERVE_COL_NAMES

Specifies whether the case of variable names in datasets is preserved in column names in tables.

PRESERVE_COL_NAMES = NO

YES

Default value: FALSE

This option enables you to specify how dataset variable names specified in lower case or mixed
case are handled when written to a database table.

Note:
If column names are in quotation marks, the database always preserves the case.

Any use of the column name in a SAS language program, however it is written – xX or XX –
refers to the same column.

If column names are case-sensitive, a table can contain multiple similarly-named columns; for
example, clientName and CLIENTNAME are treated as different columns.

NO

Case is not preserved. The name reverts to the default case the database.

For example, if a dataset contains a variable labelled xX, and the dataset is written to a
database table, the column is labelled XX.

YES

Case is preserved.

Note:
This option does not function with a case-insensitive database.

Reference for language elements
Version 4.1

3691

For example, the following program reads data from a table, and writes it to a dataset:

DATA MyLib.table1 (PRESERVE_COL_NAMES = YES);
 SET Mynums;
 PUT XX;
RUN;

The dataset Mynums contains variables named xX and yY. The resulting table table1
in the database specified by Mylib contains columns with names in the same case. In
the PUT statement, however, the variable is specified in upper case; because the SAS
language ignores the case of variables in statements, the value of the variable xX is written
to the log.

PRESERVE_NAMES

Specifies whether both the table and column names in SQL statements are treated as case-
sensitive or case-insensitive identifiers.

PRESERVE_NAMES = NO

YES

Default value: FALSE

NO

Table and column names in SQL statements are treated as case insensitive and converted
to the normal label form – typically uppercase – when the SQL statement is processed.

For example if you have a table labelled Customer, this is typically treated as if it is
labelled CUSTOMER. Any use of the table name, however it is written – customer or
Customer – refers to the same table. The same rule applies to columns in the table; this
means the same table and column combination is referenced in a SAS language program
whichever case is used in the names.

YES

Table and column names in SQL statements are treated as case sensitive. As part of the
statement processing, the names have opening quotation marks and closing quotation
marks added and used as entered. For example, SELECT test.myColumn FROM
test… becomes SELECT "test"."myColumn" FROM "test"….

Using case-sensitive names means that a combination of table and column labels within
a SAS language program must accurately reflect the case of the names used within the
database. For example, a statement such as SELECT Test.Column1 FROM Test
WHERE TEST.Column2… would be interpreted as SELECT "Test"."Column1" FROM
"Test" WHERE "TEST"."Column2"…, meaning the WHERE… clause in the in the
statement has applied a different table than that in the SELECT… clause.

PRESERVE_TAB_NAMES

Specifies whether the table names in SQL statements are treated as case-sensitive – and
converted to the normal label form for the database – or case-insensitive identifiers.

Reference for language elements
Version 4.1

3692

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

NO

Table names in SQL statements are treated as case insensitive and converted to the
normal label form – typically uppercase – when the SQL statement is processed.

For example, if you have a table labelled myTable, this is treated as if it is labelled
MYTABLE. Any use of the table name in a SAS language program, however it is written –
MyTable or mytable – refers to the same table.

YES

Table names in SQL statements are treated as case sensitive. When a statement is
processed, names are have opening quotation marks and closing quotation marks added
and used as entered. For example, SELECT test.myColumn FROM test is interpreted
as SELECT "test".MYCOLUMN FROM "test".

Using case-sensitive names enables a database to contain multiple, similarly-named
tables, because clientName and CLIENTNAME are treated as different tables.

READ_LOCK_TYPE

Specifies the type of lock to apply to read actions on a table.

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

The type of lock applied to read actions on a table.

NOLOCK

No lock is applied to the table. There are no restrictions on updates to the table, and
multiple, concurrent read actions of the data might return different results.

ROW

When LOCKWAIT=NO, the WPS client obtains a row share lock on a row. This lock allows
concurrent access, but prevents a full table lock. This lock also prevents updates to the
row until the read action is complete.

TABLE

When LOCKWAIT=NO, WPS obtains a share lock on the table. This lock allows concurrent
read access, but prevents any updates to the table until the query action is complete.

Reference for language elements
Version 4.1

3693

READBUFF

Specifies the number of records retrieved from the database in a single read action.

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

SCHEMA

Specifies the name of the database schema with which the connection interacts.

SCHEMA

AUTHID

= schema- name

Type: String

The schema is a grouping of database objects and data accessible by the user that can be
manipulated through SQL statements.

UPDATE_LOCK_TYPE

Specifies the type of lock to apply to update actions on a table in the database.

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

NOLOCK

The WPS client obtains an exclusive lock on the table and makes the required updates.
Any other activity on the table is delayed until updates are complete.

ROW

The WPS client obtains a row share lock on the table and makes the required updates.
This lock allows multiple client access to the table for reading and updating. None of those
clients can obtain an exclusive lock on the table, and no other client can update the locked
row until the transaction is complete.

TABLE

The WPS client obtains an exclusive lock on the table and makes the required updates.
Any other activity on the table is delayed until updates are complete.

Reference for language elements
Version 4.1

3694

ORACLEOLD
The LIBNAME library connection statement provides access to an Oracle database using the single-
threaded engine.

LIBNAME l ibrary- name ORACLEOLD Connection options

Bulkload options

Encoding options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

The LIBNAME library reference enables a program to access to the database using the name defined in
the library-name argument. You can use the specified library reference in any SAS language programs
to access data stored in the database, as long as programs are run in the same WPS session as that
in which the library reference was specified. The library reference is only active during the current WPS
session. The LIBNAME statement contains options that, when specified, determine how SAS language
programs interact with the database, grouped as follows:

• Connection options (page 3695): Connect to the Oracle database.
• Bulkload options (page 3699): Rapidly insert large amounts of data into a database using bulk

loading (bulk insert).
• Encoding options (page 3706): Manage the encoding differences between database and WPS

client.
• SQL generation options (page 3709): Affect how SQL statements are created, and whether the

statements are processed by the database or WPS.
• SQL metadata options (page 3712): Determine how table description information or query

statements are formatted and used.
• SQL transaction options (page 3714): Affect how SQL statements consisting of execution and

data integrity are passed between the Oracle server and WPS.
• Table locking options (page 3716): Determine how WPS interacts with the Oracle table and row

locking mechanisms.

In addition to options specified using the library connection statement, options can be specified for
individual datasets. When dataset options are specified, these options override the option set using the
library connection statement. For more information, see ORACLE dataset options (page 3680).

library-name

The name used in other SAS language statements to access the database.

Reference for language elements
Version 4.1

3695

For example, the following statement:

LIBNAME myLib ORACLEOLD PATH='TNS-name' USER=user-name
PASSWORD password;

Note:
The Transparent Network Substrate name (TNS-name) is created on a computer when an Oracle
server exists on a remote site. The TNS-name enables an ODBC connection between client and
server.

creates a connection to a database using the name MyLib. This name can then be used in, for
example, the SQL procedure:

PROC SQL;
 INSERT INTO MyLib.person VALUES (32, 'Smith', 'John', 479216691);
QUIT;

Connection options
Connect to the Oracle database.

ACCESS

Specifies the access mode for the library connection.

ACCESS = READONLY

READONLY

The library connection can only be used to read data. Specifying ACCESS = READONLY
overrides insert or update settings in other options and can result in data not being
modified as expected.

AUTHDOMAIN

Specifies the authorisation domain.

AUTHDOMAIN = authdomain

Type: String

The authorisation domain provides permissions to access a database server. WPS uses Hub as
an authorisation domain, and a Hub server must be available to your system.

In this example, permissions for accessing the Hub are supplied as system options, and the
name of the authorisation domain containing the authorisation details in the Hub is specified to
AUTHDOMAIN.

OPTIONS HUB_SERVER='blue_streak' HUB_PORT=309 HUB_PROTOCOL='HTTP'
HUB_USER='ARichards' HUB_PWD='******';
LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' AUTHDOMAIN='OracleAuth';

Reference for language elements
Version 4.1

3696

Note:
If USER and PASSWORD are specified in the LIBNAME statement, then AUTHDOMAIN is ignored.

CONNECTION

Specifies the library connection type to the database when not in single-connection mode.

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

Default value: SHAREDREAD

Note:

• If a database can only accept one SQL statement per connection, the connection type is
always treated as a UNIQUE connection, whatever value is specified to this option.

• This option is ignored on z/OS systems, where the connection type is always treated as
unique.

GLOBALREAD

A single connection to a database is created for this library connection statement, and for
any other libraries that match the connection options. This connection to the database is
used for all read operations. However, a separate connection to the database is created for
each write operation.

SHAREDREAD

All database read operations that use this library connection statement share the same
connection to the database that is created when the library connection statement is
invoked. A connection to the database is created when the first insert or update operation
occurs, and then this connection is shared for subsequent updates to the database.

This option interacts with the UTILCONN_TRANSIENT option as follows:

• If UTILCONN_TRANSIENT = YES, a utility connection is created each time the
connection to the database is required, but not persisted for future connections.

• If a utility connection does not exist, and UTILCONN_TRANSIENT = NO, a utility
connection is created and stored for future connections to the database.

• If a utility connection already exists, and UTILCONN_TRANSIENT = NO is specified,
the existing utility connection is used and then stored for future connections to the
database.

UNIQUE

Each operation using this library connection statement has its own connection to the
database.

Reference for language elements
Version 4.1

3697

DBCONINIT

Specifies SQL statements or database commands that are processed every time the library
connection is opened.

DBCONINIT = init ialisat ion- opt ions

Type: String

The connection is opened when this LIBNAME statement is first executed, and then every time
a connection to the database is made; for example, by running an SQL statement in the SQL
procedure.

In this example, a connection is created to an Oracle database. An existing table UK_PMJan is
deleted, if it exists:

LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' USER=test PASSWORD=********
DBCONINIT='DROP TABLE IF EXISTS UK_PMJan';

DBCONTERM

Specifies SQL statements or database commands that are processed every time the library
connection is closed.

DBCONTERM = terminat ion- opt ions

Type: String

In this example, a new table UK_PMFeb is created and the table UK_PMJan is deleted, if it exists.

LIBNAME MyLib ORACLE PATH='oracle-pz-e27/ZY' USER=test
PASSWORD=******** DBCONTERM='DROP TABLE IF EXISTS UK_PMJan';

 DATA myLib.UK_PMFeb;
 SET UK_PM;

 RUN;

DBLIBTERM

Specifies SQL statements or database commands that are processed after the first library
connection has been successfully made.

DBLIBTERM = terminat ion- opt ions

Type: String

PASSWORD
Specifies the password for the user name.

Reference for language elements
Version 4.1

3698

PASSWORD

PWD

PW

PASS

USING

ORAPW

= user- passwd

Type: String

If special characters are used as part of the string, you must enter user-passwd in quotation
marks. The user name is specified with the USER option.

PATH

Specifies the TNS service name for the Oracle database.

PATH = TNS- name

Type: String

The TNS name is an alias for the Oracle Call Interface (OCI) connection string that identifies the
database server and instance to which you want to connect. For example: PATH='oracle-pg-
e27/ZY'.

SCHEMA

Specifies the name of the database schema with which the connection interacts.

SCHEMA = schema- name

Type: String

The schema is a grouping of database objects and data accessible by the user that can be
manipulated through SQL statements.

USER

Specifies the user name required to access the database.

USER = user- name

Type: String

If special characters are used as part of the string, you must enter user-name in quotation marks.

UTILCONN_TRANSIENT

Specifies whether the utility connection is transient or non-transient.

Reference for language elements
Version 4.1

3699

UTILCONN_TRANSIENT = NO

YES

A utility connection is created to separate data read and update processes from metadata
handling. This connection is used by WPS Workbench to list the members of the database in
which to populate information; for example, the Sashelp tables.

NO

A utility connection is created to separate data read and update processes from metadata
handling. This connection is used by WPS Workbench to list the members of the database
in which to populate information; for example, the Sashelp tables.

YES

The utility connection is created whenever required, but is not persisted for future
connections to the database.

Bulkload options
Rapidly insert large amounts of data into a database using bulk loading (bulk insert). Bulk insert uses
either the native Oracle Call Interface (OCI) or, if installed, SQL*Loader.

SQL*Loader provides a bulk insert mechanism that can be faster than the OCI, because indexes are
only updated when data insertion has finished.

Note:
With SQL*Loader you can inadvertently insert incorrect data into an index, and create a table that
cannot be accessed. You should therefore keep the intermediate data file that enables you to validate
information on insertion.

Oracle supports two methods for bulk loading data:

• Conventional path load. SQL INSERT statements are constructed that encapsulate the data to be
inserted. This is the default method used by both OCI or SQL*Loader.

• Direct path load. Data is bulk loaded directly using the OCI direct path API.

Library connection options enable you to specify which bulk loading methods to use. To bulk load data
using:

• The conventional path and the OCI, specify BULKLOAD=YES.
• The conventional path and SQL*Loader, specify:

BULKLOAD=YES BL_USE_SQLLDR=YES

• The direct path and the OCI, specify:

BULKLOAD=YES BL_DIRECT_PATH=YES

• The direct path and SQL*Loader, specify:

BULKLOAD=YES BL_USE_SQLLDR=YES BL_DIRECT_PATH=YES

Reference for language elements
Version 4.1

3700

For information on these options, see BULKLOAD (page 3700), BL_DIRECT_PATH (page 3702)
BL_USE_SQLLDR (page 3706).

BULKLOAD

Specifies whether the library connection permits bulk insert into a database table.

BULKLOAD = NO

YES

Default value: NO

NO

Data cannot be bulk inserted. All other bulkload options are ignored.

YES

Data can be bulk inserted.

BL_BADFILE

Specifies the path to the SQL*Loader bad file.

BL_BADFILE = f ilepath

Type: String

The bad file is used to store records that could not be inserted into the database table due to
errors. The file is only created if required. The file has the extension or type *.bad.

BL_CONTROL

Specifies the path to the SQL*Loader control file.

BL_CONTROL = f ilepath

Type: String

The control file is used to specify how data is loaded from the data file specified in BL_DATAFILE
into the database table. The file has the extension or type *.ctrl.

BL_DATAFILE

Specifies the path to the SQL*Loader data file.

BL_DATAFILE = f ilepath

Type: String

The data file contains the data to be inserted into the database table. The file has the extension
or type *.dat.

Reference for language elements
Version 4.1

3701

BL_DATECACHE_SIZE

Specifies the size of the date cache to use with a bulk insert using OCI.

BL_DATECACHE_SIZE = buffer- size

Type: Numeric

Minimum value: 0

Default value: 65536

This cache is used when data is inserted that contains date information. A date value needs to
be converted from a SAS language date format to an Oracle data type before it is inserted into a
table. A converted date value is stored in this cache to speed insertion of duplicate information.

BL_DEFAULT_DIR

Specifies the default path to use for the files automatically generated by SQL*Loader (bad, data,
discard, log, and parameter).

BL_DEFAULT_DIR = f ilepath

Type: String

If pathnames for these automatically generated files are not specified using the corresponding
bulkload options, a file is automatically created when required and stored in the location specified
by this option.

BL_DELETE_DATAFILE

Specifies whether the SQL*Loader data and associated control and log files are deleted.

BL_DELETE_DATAFILE = NO

YES

Default value: YES

NO
Keep the data, control, and log files after insert.

YES

Delete the data, control, and log files after insert.

BL_DELETE_ONLY_DATAFILE

Specifies whether only the SQL*Loader data file is deleted.

BL_DELETE_ONLY_DATAFILE = NO

YES

Reference for language elements
Version 4.1

3702

Default value: NO

NO

Keep the data after insert. The control and log files are also kept.

YES

Delete only the data file after insert.

BL_DIRECT_PATH

Specifies that the direct path load is used, rather than a conventional path load, to bulk insert
data.

BL_DIRECT_PATH = NO

YES

Default value: NO

NO

Use a conventional path load.

YES

Use a direct path load. This method can be used with either the Oracle Call Interface or
SQL*Loader. To use it with SQL*Loader, also specify BL_USE_SQLLDR=YES.

BL_DISCARDFILE

Specifies the path to the SQL*Loader discard file.

BL_DISCARDFILE = f ilepath

Type: String

The discard file contains data that has neither been inserted into the database table, nor been
rejected as bad after the bulk insert process. The file has the extension or type *.dsc.

BL_INDEX_OPTIONS

Specifies how indexes are created when inserting information through SQL*Loader.

BL_INDEX_OPTIONS = opt ions- list

Type: String

SORTEDINDEX

Inserts an index entry at the same time as a row is inserted into a table.

Reference for language elements
Version 4.1

3703

SINGLEROW

Adds data to an empty table or appends data to a table that already contains rows.

BL_LOAD_METHOD

Specifies the method used by SQL*Loader to bulk insert data into a database table.

BL_LOAD_METHOD = APPEND

INSERT

REPLACE

TRUNCATE

Default value: APPEND

APPEND

Add data to an empty table or append data to a table that already contains rows.

INSERT

Add data to an empty table. Attempting to insert data into a non-empty table will result in
an error.

REPLACE

Replace all existing content in the database table with the content of the SQL*Loader data
file. An SQL DELETE FROM TABLE… statement is first executed, and any delete triggers
created on the table are therefore run before the new data is inserted.

TRUNCATE

Replace all existing content in the database table with the content of the SQL*Loader data
file. A TRUNCATE TABLE… statement is executed as the first step to reset the number of
table rows to zero. Any referential constraints on the table must be disabled before using
this load method.

BL_LOG

Specifies the path to the SQL*Loader log file.

BL_LOG = f ilepath

Type: String

The log file is created when the SQL*Loader begins bulk-inserting data, and contains log entries
summarising the events during the data insert. The file has the extension or type *.log.

BL_OPTIONS

Specifies options for SQL*Loader.

Reference for language elements
Version 4.1

3704

BL_OPTIONS = opt ions- list

Type: String

Where these options are specified in both the SQL*Loader control file and BL_OPTIONS, any
options specified using BL_OPTIONS take priority.

BL_PARFILE

Specifies the path to the SQL*Loader parameter file.

BL_PARFILE = f ilepath

Type: String

The path to the SQL*Loader parameter (*.par) file, used to store frequently-used command line
options.

BL_PRESERVE_BLANKS

Specifies whether SQL*Loader trims trailing spaces from inserted data.

BL_PRESERVE_BLANKS = NO

YES

Default value: YES

NO

Remove trailing spaces.

YES

Do not remove trailing spaces.

BL_RECOVERABLE

Specifies whether the SQL*Loader bulk insert attempts to reload data if there is a problem during
the insert that is not related to data.

BL_RECOVERABLE = NO

YES

Default value: NO

NO

Do not attempt to recover from errors. No redo log is created.

Reference for language elements
Version 4.1

3705

YES

Attempt to recover from an error. The data is added to the redo log, and this log is used as
the basis of the recovery.

BL_RETURN_WARNINGS_AS_ERRORS

Specifies whether warnings generated when bulk-inserting data with SQL*Loader are displayed
as errors in the SQL*Loader log file.

BL_RETURN_WARNINGS_AS_ERRORS = NO

YES

NO

Do not display warnings as errors in the SQL*Loader log file.

YES

Display warnings as errors in the SQL*Loader log file.

BL_SQLLDR_PATH

BL_SQLLDR_PATH = f ilepath

Type: String

Specifies the path of the SQL*Loader (.sqlldr) application.

BL_STREAM_SIZE

Specifies the path of the SQL*Loader application.

BL_STREAM_SIZE = buffer- size

Type: Numeric

Minimum value: 0

BL_SUPPRESS_NULLIF

Specifies whether to ignore NULLIF conditions defined in the SQL*Loader control file.

BL_SUPPRESS_NULLIF = (variable = NO

YES

)

variable

The name of a column (variable), or _ALL_.

Specify:

Reference for language elements
Version 4.1

3706

• variable=YES to ignore the NULLIF condition for the column variable
• variable=NO to ignore the NULLIF condition for the column variable; this is the

default.
• _ALL_=YES to ignore NULLIF conditions for all columns,

If you specify _ALL_=YES, do not specify subsequent arguments. If you do, the list of arguments
might not execute correctly.

BL_USE_SQLLDR

Specifies whether bulk inserts are made using Oracle's SQL*Loader.

BL_USE_SQLLDR = NO

YES

Default value: NO

Note:
SQL*Loader is not included in the Oracle Instant Client and must be installed separately.

NO

Do not use SQL*Loader for bulk inserts; the Oracle Call Interface (OCI) is used instead.

YES

Use SQL*Loader for bulk inserts.

Encoding options
Manage the encoding differences between database and WPS client.

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS

Specifies how to handle database columns defined as CHAR and VARCHAR when WPS and
database server encodings differ.

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS = NO

YES

If the encodings between the database server and WPS differ, and database columns have
been specified as the CHAR and VARCHAR client column size is adjusted to store all characters
retrieved from the database server.

The default depends on the value of DBCLIENT_MAX_BYTES. If DBCLIENT_MAX_BYTES is equal
to 1, then the default is NO. If DBCLIENT_MAX_BYTES is greater than 1, then the default is YES.

Reference for language elements
Version 4.1

3707

NO

The WPS variable holds the same number of bytes as the corresponding column in
the database. If the number of bytes used to represent a character differs between the
character sets used by WPS and by the database, data might be truncated.

YES

Adjust variable lengths in WPS to ensure all characters from the corresponding column are
accurately represented.

For example, if the character set on the database server uses two bytes to represent a
character, a 500 character column is returned as 1000 bytes. If the character set in WPS
uses four bytes to represent a character, the client reads the number of characters (1000/2
= 500 characters) and allocates the correct amount of space (500*4=2000 bytes) to ensure
the characters are correctly encoded.

ADJUST_NCHAR_COLUMN_LENGTHS

Specifies how to handle database columns defined as NCHAR and NVARCHAR.

ADJUST_NCHAR_COLUMN_LENGTHS = NO

YES

Default value: YES

NO

The WPS variable holds the same number of bytes as the corresponding column in
the database. If the number of bytes used to represent a character differs between the
character sets used by WPS and by the database, data might be truncated.

YES

The column length in WPS is adjusted to cater for the value defined in
DBSERVER_MAX_BYTES. The adjustment is calculated using:

number_of_characters * value_of_DBCLIENT_MAX_BYTES

where number_of_characters is the number of characters in the column, and
value_of_DBCLIENT_MAX_BYTES

where number_of_characters is the number of characters in the column, and
value_of_DBCLIENT_MAX_BYTES is the value specified by DBCLIENT_MAX_BYTES
(page 3668).

DB_LENGTH_SEMANTICS_BYTE

Specifies how to handle database columns defined as NCHAR and NVARCHAR.

DB_LENGTH_SEMANTICS_BYTE = NO

YES

Reference for language elements
Version 4.1

3708

Default value: TRUE

NO

Definitions for CHAR or VARCHAR2 columns are created by specifying the total number of
characters.

For example, if a dataset has a column that has 20 bytes available to store characters, and
each character is composed of:

• One byte, then 20 characters can be stored in each column.
• Two bytes, then only 10 characters can be stored in each column.
• Four bytes, then only five characters can be stored in each column.

The length defined for CHAR or VARCHAR2 allows a maximum number of characters
to be stored whatever the character set encoding used on the database. For example,
if the character set consists of a fixed two-byte encoding, and the variable is 20 bytes
long, then the data type for the variable is the length of the variable, divided by two bytes
per character. The data type for the corresponding column is therefore VARCHAR2 (10
CHAR). If a character set uses a variable number of bytes to define a character, then the
maximum number of bytes used to define a character is used to calculate the data type; for
example, characters in the UTF-8 character set can be represented using up to four bytes,
therefore a 20 byte variable is defined as VARCHAR2 (5 CHAR) in the database.

YES

Definitions for CHAR or VARCHAR2 data types are created by specifying the data type in
bytes. The length of the data type is dependent on the encoding used by the database
server, and whether characters have fixed or variable encodings. It is calculated as:

number_of_characters * value_of_DBSERVER_MAX_BYTES

where number_of_characters is the number of characters defined for the variable, and
value_of_DBSERVER_MAX_BYTES is the value specified by DBSERVER_MAX_BYTES
(page 3668).

For example, assume a dataset has a column of 20 bytes available to store characters.
The dataset variable is defined as 10 characters long, and the database character set has
four bytes UTF-8 encoding, as specified in DBSERVER_MAX_BYTES). The equivalent table
column data type is defined as VARCHAR(40) (that is, 10 x 4).

DBCLIENT_MAX_BYTES

Specifies the maximum number of bytes used to encode each character in WPS.

DBCLIENT_MAX_BYTES = bytes- per- character

Type: Numeric

Minimum value: 1

When not set, this defaults to the number of bytes used by the current WPS session encoding.

Reference for language elements
Version 4.1

3709

DBSERVER_MAX_BYTES

Specifies the maximum number of bytes per character in the encoding used by the database.

DBSERVER_MAX_BYTES = bytes- per- character

Type: Numeric

Minimum value: 1

SQL generation
Affect how SQL statements are created, and whether the statements are processed by the database or
WPS.

DBCREATE_TABLE_OPTS

Specifies extra table options to be added to a CREATE TABLE… statement after the columns in
the table have been defined.

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

Specifies how to modify column names that require adjustment to be valid in the language of
SAS.

DBGEN_NAME = DBMS

SAS

Default value: SAS

DBMS

If the column name contains invalid characters, those characters are replaced with an
underscore. If this change results in a name that clashes with that of another column, the
column count is appended to the column name.

For example, if your table contains the columns id$x, id#x and id_x, the variables in the
language of SAS would be ID_X, ID_X0, and ID_X1 respectively.

Note:

The numbering starts at the first repeat of the variable name, and also begins at 0.

Reference for language elements
Version 4.1

3710

SAS

If the column name contains invalid characters, or have the same name, the column name
is replaced with the string _COL. If this change results in a name clash with other columns,
the column count is appended to the name: _COLx where x is the column, starting at 0
(zero).

DBINDEX

Specifies whether database indexes are used, where available, to provide a fast table look-up
when joining a table with a WPS dataset. Database indexes are only used in this way when an
available index has the same fields as the join keys.

DBINDEX = NO

YES

NO

Do not use database indexes.

YES
Enable this option.

DIRECT_EXE

Specifies whether delete statements are executed directly on the database, or through WPS.

DIRECT_EXE = DELETE

When not specified, the database table is scanned and rows matching the delete criteria are
returned to WPS. An SQL DELETE FROM… statement is created by WPS for each affected row
and passed to the database for processing.

DELETE

The SQL DELETE FROM… command is passed to the database and processed entirely by
the database engine. In this case, the SQL DELETE… statements are not created by WPS.

DIRECT_SQL

Specifies whether SQL statements are passed through for processing by the database server, or
processed by WPS.

Reference for language elements
Version 4.1

3711

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

NO

All SQL statements are processed by WPS.

NOFUNCTIONS
Any SQL statements containing function calls are processed by WPS. All other statements
that can be processed by the database server are passed through to the server for
processing.

NOGENSQL

Setting this value has no effect.

NOMULTOUTJOINS

Any SQL statements containing multiple outer joins are processed by WPS. All other
statements that can be processed by the database server are passed through to the server
for processing.

NONE

All SQL statements are processed by WPS.

NOWHERE

Any statements containing WHERE clauses are processed by WPS. All other statements
that can be processed by the database server are passed through to the database server
for processing.

Reference for language elements
Version 4.1

3712

YES

All SQL statements that can processed in-database are passed through to the database
server for processing.

SQLGENERATION

Specifies where the SQL statements required to create summary data for the SUMMARY
procedure are processed.

SQLGENERATION = DBMS

NONE

DBMS
Data processing is carried out by the database server.

NONE
WPS generates the SQL statements and processes data, sending the result to the
database server.

SQL metadata
Determine how table description information or query statements are formatted and used.

PRESERVE_COL_NAMES

Specifies whether the case of variable names in datasets is preserved in column names in tables.

PRESERVE_COL_NAMES = NO

YES

Default value: NO

Note:
When column names are enclosed in quotes, the database preserves the case. However when
column names are not quoted the database examines the content and makes a decision.

NO

Case is not preserved. The name reverts to the default case the database.

For example, if a dataset contains a variable labelled xX, and the dataset is written to a
database table, the column is labelled XX.

YES

Case is preserved.

Note:
This option does not function with a case-insensitive database.

Reference for language elements
Version 4.1

3713

For example, the following program reads data from a table, and writes it to a dataset:

DATA MyLib.table1 (PRESERVE_COL_NAMES = YES);
 SET Mynums;
 PUT XX;
RUN;

The dataset Mynums contains variables named xX and yY. The resulting table table1
in the database specified by Mylib contains columns with names in the same case. In
the PUT statement, however, the variable is specified in upper case; because the SAS
language ignores the case of variables in statements, the value of the variable xX is written
to the log.

PRESERVE_NAMES

Specifies whether both the table and column names in SQL statements are treated as case-
sensitive or case-insensitive identifiers.

PRESERVE_NAMES = NO

YES

Default value: NO

NO

Table and column names in SQL statements are treated as case insensitive and converted
to the normal label form – typically uppercase – when the SQL statement is processed.

For example if you have a table labelled Customer, this is typically treated as if it is
labelled CUSTOMER. Any use of the table name, however it is written – customer or
Customer – refers to the same table. The same rule applies to columns in the table; this
means the same table and column combination is referenced in a SAS language program
whichever case is used in the names.

YES

Table and column names in SQL statements are treated as case sensitive. As part of the
statement processing, the names have opening quotation marks and closing quotation
marks added and used as entered. For example, SELECT test.myColumn FROM
test… becomes SELECT "test"."myColumn" FROM "test"….

Using case-sensitive names means that a combination of table and column labels within
a SAS language program must accurately reflect the case of the names used within the
database. For example, a statement such as SELECT Test.Column1 FROM Test
WHERE TEST.Column2… would be interpreted as SELECT "Test"."Column1" FROM
"Test" WHERE "TEST"."Column2"…, meaning the WHERE… clause in the in the
statement has applied a different table than that in the SELECT… clause.

PRESERVE_TAB_NAMES

Specifies whether the table names in SQL statements are treated as case-sensitive – and
converted to the normal label form for the database – or case-insensitive identifiers.

Reference for language elements
Version 4.1

3714

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

NO

Table names in SQL statements are treated as case insensitive and converted to the
normal label form – typically uppercase – when the SQL statement is processed.

For example, if you have a table labelled myTable, this is treated as if it is labelled
MYTABLE. Any use of the table name in a SAS language program, however it is written –
MyTable or mytable – refers to the same table.

YES

Table names in SQL statements are treated as case sensitive. When a statement is
processed, names are have opening quotation marks and closing quotation marks added
and used as entered. For example, SELECT test.myColumn FROM test is interpreted
as SELECT "test".MYCOLUMN FROM "test".

Using case-sensitive names enables a database to contain multiple, similarly-named
tables, because clientName and CLIENTNAME are treated as different tables.

SHOW_SYNONYMS

Specifies whether the Oracle-specific alternative name for database objects is used when
querying the database structure.

SHOW_SYNONYMS = NO

YES

Default value: NO

NO

The original object names are used when viewing the information about a database
through PROC DATASETS, or when querying DICTIONARY tables through PROC SQL.

YES

Created synonyms are used when viewing the information about a database through PROC
DATASETS, or when querying DICTIONARY tables through PROC SQL.

SQL transaction
Affect how SQL statements consisting of execution and data integrity are passed between the Oracle
server and WPS.

Reference for language elements
Version 4.1

3715

DBCOMMIT

Specifies the number of records that are passed to the Oracle database server before a commit
is made.

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBLINK
This option is not supported.

DBLINK = l ink- name

Type: String

DBMAX_TEXT

Specifies the maximum string length (number of characters) that can be inserted into a field in a
database table.

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 1000

INSERTBUFF

Specifies the number of records to be inserted into the database.

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 10

This number applies if you are not also specifying bulkload options.

If the DBCOMMIT option is specified on the connection statement, the buffer-size is the lower
value of either INSERTBUFF or DBCOMMIT. For example if INSERTBUFF = 100, and DBCOMMIT =
200, then 100 is selected.

Reference for language elements
Version 4.1

3716

READBUFF

Specifies the number of records retrieved from the database in a single read action.

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 250

SPOOL

Spooling creates a temporary file containing the results of reading a database table.

SPOOL = DBMS

NO

YES

This cache file is used for subsequent read actions on the data, enabling data to be read more
quickly than re-reading the content from the database table.

DBMS

Spooling is active and handled by the DBMS.

NO

Spooling is not active in WPS. Any attempt by WPS to spool will generate an error.

YES

Spooling is active in WPS.

Table locking options
Determine how WPS interacts with the Oracle table and row locking mechanisms.

LOCKWAIT

Specifies what happens when another process attempts to read or update a locked database
table.

LOCKWAIT = NO

YES

NO

Nothing is read from or written to the table, and a message is written to the log.

Reference for language elements
Version 4.1

3717

YES

Wait for the lock to be removed from the table, and then attempt to read or update the
table.

READ_ISOLATION_LEVEL

Specifies when a client can read data that is inserted into a database table if the table is
accessed by multiple clients.

READ_ISOLATION_LEVEL = READCOMMITTED

SERIALIZABLE

Default value: READCOMMITTED

READ_ISOLATION_LEVEL settings only affect SQL SELECT statements, and then only when the
ACCESS option is not set to READONLY.

READCOMMITTED

Only committed data is read by a client. Data inserted as part of an another client's
transaction can be queried once the transaction is complete and the data has been
committed to the database. Where multiple read actions take place against a table by the
same client, returned results are only updated to reflect any transactional changes made
between the read actions.

SERIALIZABLE

Where multiple clients are reading data from the table, only one query is processed at a
time – any query of the table data must complete before the next query or data update can
begin. If the client attempts to read data from the table while an update transaction is being
processed, the client reading the table data cannot access the table until the updating
transaction is complete.

READ_LOCK_TYPE

Specifies the type of lock to apply to read actions on a table.

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

NOLOCK

No lock is applied to the table. There are no restrictions on updates to the table, and
multiple, concurrent read actions of the data might return different results.

Reference for language elements
Version 4.1

3718

ROW

When LOCKWAIT=NO, the WPS client obtains a row share lock on a row. This lock allows
concurrent access, but prevents a full table lock. This lock also prevents updates to the
row until the read action is complete.

TABLE

When LOCKWAIT=NO, WPS obtains a share lock on the table. This lock allows concurrent
read access, but prevents any updates to the table until the query action is complete.

UPDATE_ISOLATION_LEVEL

Specifies when a client can update a table if the table is accessed by multiple clients.

UPDATE_ISOLATION_LEVEL = READCOMMITTED

SERIALIZABLE

Default value: READCOMMITTED

UPDATE_ISOLATION_LEVEL settings only affect SQL UPDATE statements, and then only when
the ACCESS option is not set to READONLY.

READCOMMITTED

Read before update. A second read might return different data to the original read, as
there is no restriction on the update which might insert new rows, delete existing rows, or
change data.

SERIALIZABLE

A WPS client waits for the current client to finish its updates to a table before it makes its
changes.

UPDATE_LOCK_TYPE

Specifies the type of lock to apply to update actions on a table in the database.

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

NOLOCK

No lock is applied to the table. There are no restrictions on updates to the table, and
multiple, concurrent read actions of the data might return different results.

Reference for language elements
Version 4.1

3719

ROW

The WPS client obtains a row share lock on the table and makes the required updates.
This lock allows multiple client access to the table for reading and updating. None of those
clients can obtain an exclusive lock on the table, and no other client can update the locked
row until the transaction is complete.

TABLE

The WPS client obtains an exclusive lock on the table and makes the required updates.
Any other activity on the table is delayed until updates are complete.

ORACLEOLD Dataset Options

When dataset options are specified for a database table, the values of those options override the
settings specified for the same options on the library connection statement. You should therefore
configure a library connection statement so that it provides the best access to all accessible objects in a
database. If different options are required for specific tables, the following dataset options can be used.

You can specify dataset options wherever you can specify a database table in a SAS language or SQL
statement.

For example, dataset options can be added when a database table is specified in an SQL INSERT
statement when using the SQL procedure:

PROC SQL;
 INSERT INTO myLib.myTable (BULKLOAD=YES, BL_LOAD_METHOD=TRUNCATE)
 AS SELECT * FROM datasrc.append_src;
QUIT;

Similarly, dataset options can be added when a database table is specified as the input dataset in a
SAS language program:

DATA myoutfile;
 SET mylib.a_xyz1 (BULKLOAD=YES);
RUN;

BL_BADFILE

Specifies the path to the SQL*Loader bad file.

BL_BADFILE = f ilepath

Type: String

The bad file is used to store records that could not be inserted into the database table due to
errors. The file is only created if required. The file has the extension or type *.bad.

Reference for language elements
Version 4.1

3720

BL_CONTROL

Specifies the path to the SQL*Loader control file.

BL_CONTROL = f ilepath

Type: String

The control file is used to specify how data is loaded from the data file specified in BL_DATAFILE
into the database table. The file has the extension or type *.ctrl.

BL_DATAFILE

Specifies the path to the SQL*Loader data file.

BL_DATAFILE = f ilepath

Type: String

The data file contains the data to be inserted into the database table. The file has the extension
or type *.dat.

BL_DEFAULT_DIR

Specifies the default path to use for the files automatically generated by SQL*Loader (bad, data,
discard, log, and parameter).

BL_DEFAULT_DIR = f ilepath

Type: String

The data file contains the data to be inserted into the database table. The file has the extension
or type *.dat.

BL_DELETE_DATAFILE

Specifies whether the SQL*Loader data and associated control and log files are deleted.

BL_DELETE_DATAFILE = NO

YES

NO
Keep the data, control, and log files after insert.

YES

BL_DELETE_ONLY_DATAFILE

Delete the data, control, and log files after insert.

Reference for language elements
Version 4.1

3721

BL_DELETE_ONLY_DATAFILE = NO

YES

NO

Keep the data after insert. The control and log files are also kept.

YES

BL_DIRECT_PATH

Specifies that the direct path load is used, rather than a conventional path load, to bulk insert
data.

BL_DIRECT_PATH = NO

YES

NO

Use a conventional path load.

YES

Use a direct path load. This method can be used with either the Oracle Call Interface or
SQL*Loader. To use it with SQL*Loader, also specify BL_USE_SQLLDR=YES.

BL_DISCARDFILE

Specifies the path to the SQL*Loader discard file.

BL_DISCARDFILE = f ilepath

Type: String

The discard file contains data that has neither been inserted into the database table, nor been
rejected as bad after the bulk insert process. The file has the extension or type *.dsc.

BL_INDEX_OPTIONS

Specifies how indexes are created when inserting information through SQL*Loader.

BL_INDEX_OPTIONS = opt ions- list

Type: String

SORTEDINDEX

Inserts an index entry at the same time as a row is inserted into a table.

Reference for language elements
Version 4.1

3722

SINGLEROW

Adds data to an empty table or appends data to a table that already contains rows.

BL_LOAD_METHOD

Specifies the method used by SQL*Loader to bulk insert data into a database table.

BL_LOAD_METHOD = APPEND

INSERT

REPLACE

TRUNCATE

Default value: APPEND

APPEND

Add data to an empty table or append data to a table that already contains rows.

INSERT

Add data to an empty table. Attempting to insert data into a non-empty table results in an
error.

REPLACE

Replace all existing content in the database table with the content of the SQL*Loader data
file. An SQL DELETE FROM TABLE… statement is first executed, and any delete triggers
created on the table are therefore run before the new data is inserted.

TRUNCATE

Replace all existing content in the database table with the content of the SQL*Loader data
file. A TRUNCATE TABLE… statement is executed as the first step to reset the number of
table rows to zero. Any referential constraints on the table must be disabled before using
this load method.

BL_LOG

Specifies the path to the SQL*Loader log file.

BL_LOG = f ilepath

Type: String

The log file is created when the SQL*Loader begins bulk-inserting data, and contains log entries
summarising the events during the data insert. The file has the extension or type *.log.

BL_OPTIONS

Specifies options for SQL*Loader.

Reference for language elements
Version 4.1

3723

BL_OPTIONS = opt ions- list

Type: String

The log file is created when the SQL*Loader begins bulk-inserting data, and contains log entries
summarising the events during the data insert. The file has the extension or type *.log.

BL_PARFILE

Specifies the path to the SQL*Loader parameter file.

BL_PARFILE = f ilepath

Type: String

BL_PRESERVE_BLANKS

This file is used to store frequently-used command line options. The file has the extension or type
*.par.

BL_PRESERVE_BLANKS = NO

YES

NO

Remove trailing spaces.

YES

Do not remove trailing spaces.

BL_RECOVERABLE

Specifies whether the SQL*Loader bulk insert attempts to reload data if there is a problem during
the insert that is not related to data.

BL_RECOVERABLE = NO

YES

NO

Do not attempt to recover from errors. No redo log is created.

YES

Attempt to recover from an error. The data is added to the redo log, and this log is used as
the basis of the recovery.

Reference for language elements
Version 4.1

3724

BL_RETURN_WARNINGS_AS_ERRORS

Specifies whether warnings generated when bulk-inserting data with SQL*Loader are displayed
as errors in the SQL*Loader log file.

BL_RETURN_WARNINGS_AS_ERRORS = NO

YES

NO

Do not display warnings as errors in the SQL*Loader log file.

YES

Display warnings as errors in the SQL*Loader log file.

BL_SQLLDR_PATH

Specifies the path of the SQL*Loader application.

BL_SQLLDR_PATH = f ilepath

Type: String

BL_SUPPRESS_NULLIF

Specifies whether to ignore NULLIF conditions defined in the SQL*Loader control file.

BL_SUPPRESS_NULLIF = (variable = NO

YES

)

variable

The name of a column (variable), or _ALL_.

Specify:

• variable=YES to ignore the NULLIF condition for the column variable
• variable=NO to ignore the NULLIF condition for the column variable; this is the

default.
• _ALL_=YES to ignore NULLIF conditions for all columns,

BL_USE_SQLLDR

Specifies whether bulk inserts are made using Oracle's SQL*Loader.

BL_USE_SQLLDR = NO

YES

Reference for language elements
Version 4.1

3725

Note:
SQL*Loader is not included in the Oracle Instant Client and must be installed separately.

NO

Do not use SQL*Loader for bulk inserts; the Oracle Call Interface (OCI) is used instead.

YES

Use SQL*Loader for bulk inserts.

BULKLOAD

Specifies whether the library connection permits bulk insert into a database table.

BULKLOAD = NO

YES

Default value: FALSE

NO

Data cannot be bulk inserted. All other bulkload options are ignored.

YES

Data can be bulk inserted.

DBCREATE_TABLE_OPTS

Specifies extra table options to be added to a CREATE TABLE… statement after the columns in
the table have been defined.

DBCREATE_TABLE_OPTS = opt ions- list

Type: String

DBNULL

Specifies that a missing value in a dataset is written to a table as a null.

DBNULL = None

SCHEMA

Specifies the name of the database schema with which the connection interacts.

SCHEMA

AUTHID

= schema- name

Reference for language elements
Version 4.1

3726

Type: String

The schema is a grouping of database objects and data accessible by the user that can be
manipulated through SQL statements.

WPS Engine for PostgreSQL

POSTGRESQL

LIBNAME l ibrary- name POSTGRESQL

PGRESQL

POSTGSQL

POSTGRES

Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

DATABASE

Reference for language elements
Version 4.1

3727

DATABASE

DB

= database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

HOST

HOST

SERVER

= remote- id

Type: String

OPTIONS

OPTIONS = opt ion- list

Type: String

PASSWORD

PASSWORD

PASS

PW

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

Reference for language elements
Version 4.1

3728

SCHEMA

SCHEMA = schema- name

Type: String

TTY

TTY = t ty- opt ions

Type: String

USER

USER

USR

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

BL_BUFFERSIZE

BL_BUFFERSIZE = buffer- size

Type: String

BL_DELIMITER

BL_DELIMITER = delimiter- value

Type: String

Reference for language elements
Version 4.1

3729

BL_NULLSTRING

BL_NULLSTRING = null- opt ion

Type: String

BULKUNLOAD

BULKUNLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3730

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

Reference for language elements
Version 4.1

3731

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

READBUFF

READBUFF = buffer- size

Reference for language elements
Version 4.1

3732

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

WPS Engine for Sand

SAND

LIBNAME l ibrary- name SAND Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

Reference for language elements
Version 4.1

3733

CONNECTION_NAME

CONNECTION_NAME = connect ion- id

Type: String

DATABASE

DATABASE = database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

HOST

HOST

SERVER

= remote- id

Type: String

PASSWORD

PASSWORD

PASS

PW

= user- passwd

Type: String

PORT

PORT = port- number

Type: Numeric

Reference for language elements
Version 4.1

3734

SCHEMA

SCHEMA = schema- name

Type: String

USER

USER = user- name

Type: String

Bulkload options

BULKLOAD

BULKLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3735

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Reference for language elements
Version 4.1

3736

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

SPOOL

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

Reference for language elements
Version 4.1

3737

READ_ISOLATION_LEVEL = RC

RR

RU

S

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

WPS Engine for SQL Server

SQLSERVER

LIBNAME l ibrary- name SQLSERVER

SQLSERVR

SQLSVR

SQLSERVERM

Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

Reference for language elements
Version 4.1

3738

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

DBASE

DATABASENAME

= database- name

Type: String

DATASRC

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ializat ion- command

Type: String

DBCONTERM

DBCONTERM = terminat ion- command

Type: String

DBLIBINIT

DBLIBINIT = init ializat ion- command

Type: String

DBLIBTERM

Reference for language elements
Version 4.1

3739

DBLIBTERM = terminat ion- command

Type: String

DRIVER

DRIVER = driver- name

Type: String

PASSWORD

PASSWORD

PWD

PW

PASS

= user- passwd

Type: String

PORT

PORT

PORTNUMBER

= port- number

Type: Numeric

Minimum value: 0

Default value: 1433

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER

HOST

= remote- id

Type: String

USE_ODBC_CL

Reference for language elements
Version 4.1

3740

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD

BCP

= NO

YES

Default value: NO

BL_BCPEXE

BL_BCPEXE = NO

YES

Default value: NO

BL_BCPEXE_PATH

BL_BCPEXE_PATH = f ilepath

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

Reference for language elements
Version 4.1

3741

BL_DELETE_ONLY_DATAFILE

BL_DELETE_ONLY_DATAFILE = NO

YES

Default value: NO

BL_LOG

BL_LOG = f ilepath

Type: String

BL_OPTIONS

BL_OPTIONS = opt ions- list

Type: String

BULKUNLOAD

BULKUNLOAD = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBINDEX

DBINDEX = NO

YES

Reference for language elements
Version 4.1

3742

DBNULLKEYS

DBNULLKEYS = NO

YES

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

INSERT_SQL

INSERT_SQL = NO

YES

Default value: YES

Reference for language elements
Version 4.1

3743

QUALIFIER

QUALIFIER = qualifer- name

Type: String

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

Default value: NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: YES

Reference for language elements
Version 4.1

3744

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: YES

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: YES

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: NO

Reference for language elements
Version 4.1

3745

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

Reference for language elements
Version 4.1

3746

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

SQLSERVER Dataset Options

BL_BCPEXE

BL_BCPEXE = NO

YES

Reference for language elements
Version 4.1

3747

Default value: FALSE

BL_BCPEXE_PATH

BL_BCPEXE_PATH = f ilepath

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

BL_DELETE_ONLY_DATAFILE

BL_DELETE_ONLY_DATAFILE = NO

YES

Default value: FALSE

BL_LOG

BL_LOG = f ilepath

Type: String

BL_OPTIONS

BL_OPTIONS = opt ions- list

Type: String

BULKLOAD

BULKLOAD

BCP

= NO

YES

Default value: FALSE

BULKUNLOAD

BULKUNLOAD = NO

YES

Reference for language elements
Version 4.1

3748

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

DBINDEX

DBINDEX = NO

YES

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

DBNULL

DBNULL = dbnull- value

DBNULLKEYS

DBNULLKEYS = NO

YES

Reference for language elements
Version 4.1

3749

DBSASLABEL

DBSASLABEL = COMPAT

NONE

DBSLICE

DBSLICE = (where- clause)

DBSLICEPARM

DBSLICEPARM = ALL

NONE

THREADED_APPS

(NONE)

(THREADED_APPS
,

threads)

(ALL
,

threads)

DBTYPE

DBTYPE = dbtype- value

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

INSERT_SQL

INSERT_SQL = NO

YES

Default value: TRUE

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Reference for language elements
Version 4.1

3750

Minimum value: 1

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: TRUE

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SCHEMA

Reference for language elements
Version 4.1

3751

SCHEMA

AUTHID

= schema- name

Type: String

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

SQLSERVEROLD

LIBNAME l ibrary- name SQLSERVEROLD

SQLSERVROLD

SQLSVROLD

Connection options

Bulkload options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

Reference for language elements
Version 4.1

3752

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DATABASENAME

= database- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

DRIVER

DRIVER = driver- name

Type: String

PASSWORD

Reference for language elements
Version 4.1

3753

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT

PORTNUMBER

= port- number

Type: Numeric

Default value: 1433

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER = remote- id

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

Reference for language elements
Version 4.1

3754

UTILCONN_TRANSIENT = NO

YES

Bulkload options

BULKLOAD

BULKLOAD

BCP

= NO

YES

Default value: NO

BL_BCPEXE

BL_BCPEXE = NO

YES

Default value: NO

BL_BCPEXE_PATH

BL_BCPEXE_PATH = f ilepath

Type: String

BL_LOG

BL_LOG = f ilepath

Type: String

BL_OPTIONS

BL_OPTIONS = opt ions- list

Type: String

BULKUNLOAD

BULKUNLOAD = NO

YES

Default value: NO

Reference for language elements
Version 4.1

3755

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Reference for language elements
Version 4.1

3756

Default value: YES

INSERT_SQL

INSERT_SQL = NO

YES

QUALIFIER

QUALIFIER = qualif ier- name

Type: String

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

UPDATE_SQL

Reference for language elements
Version 4.1

3757

UPDATE_SQL = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: NO

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

CURSOR_TYPE

Reference for language elements
Version 4.1

3758

CURSOR_TYPE = DYNAMIC

FORWARD_ONLY

KEYSET_DRIVEN

STATIC

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 4000

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

KEYSET_SIZE

KEYSET_SIZE = buffer- size

Type: Numeric

Minimum value: 0

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Reference for language elements
Version 4.1

3759

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

Reference for language elements
Version 4.1

3760

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

SQLSERVEROLD Dataset Options

BL_BCPEXE

BL_BCPEXE = NO

YES

Default value: FALSE

BL_BCPEXE_PATH

BL_BCPEXE_PATH = f ilepath

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Reference for language elements
Version 4.1

3761

Type: String

BL_DELETE_ONLY_DATAFILE

BL_DELETE_ONLY_DATAFILE = NO

YES

Default value: FALSE

BL_LOG

BL_LOG = f ilepath

Type: String

BL_OPTIONS

BL_OPTIONS = opt ions- list

Type: String

BULKLOAD

BULKLOAD

BCP

= NO

YES

Default value: FALSE

BULKUNLOAD

BULKUNLOAD = NO

YES

Default value: FALSE

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

Reference for language elements
Version 4.1

3762

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

Default value: 4000

DBNULL

DBNULL = dbnull- value

DBTYPE

DBTYPE = dbtype- value

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

Default value: FALSE

INSERT_SQL

INSERT_SQL = NO

YES

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

READ_ISOLATION_LEVEL

Reference for language elements
Version 4.1

3763

READ_ISOLATION_LEVEL = RC

RR

RU

S

V

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

V

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = NOLOCK

ROW

TABLE

Default value: NOLOCK

Reference for language elements
Version 4.1

3764

WPS Engine for Sybase

SYBASE

LIBNAME l ibrary- name SYBASE Connection options

Libname Options

SQL generation

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBALREAD

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

= database- name

Type: String

DBCONINIT

Reference for language elements
Version 4.1

3765

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

PASSWORD

PASSWORD

PWD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER

HOST

= remote- id

Type: String

USER

Reference for language elements
Version 4.1

3766

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Libname Options

QUOTED_IDENTIFIER

QUOTED_IDENTIFIER = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3767

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

Reference for language elements
Version 4.1

3768

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

MAX_CONNECTS

MAX_CONNECTS = total- connect ions

Type: Numeric

PACKETSIZE

PACKETSIZE = maximum- packetsize

Type: Numeric

READBUFF

READBUFF = buffer- size

Type: Numeric

SPOOL

SPOOL = DBMS

NO

YES

Table locking options

READ_LOCK_TYPE

READ_LOCK_TYPE = NOLOCK

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = isolat ion- level

Reference for language elements
Version 4.1

3769

Type: Numeric

SYBASE Dataset Options

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

WPS Engine for Sybase IQ

SYBASEIQ

LIBNAME l ibrary- name SYBASEIQ Connection options

Libname Options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Reference for language elements
Version 4.1

3770

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

= database- name

Type: String

DATASRC

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

HOST

HOST = remote- id

Type: String

Reference for language elements
Version 4.1

3771

PASSWORD

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

SERVER = remote- id

Type: String

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

Libname Options

QUERY_TIMEOUT

Reference for language elements
Version 4.1

3772

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

Reference for language elements
Version 4.1

3773

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

Reference for language elements
Version 4.1

3774

UPDATE_MULT_ROWS = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Reference for language elements
Version 4.1

3775

Type: Numeric

Minimum value: 1

Maximum value: 32767

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

READBUFF

READBUFF

ROWSET_SIZE

ROWSET

= buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 65535

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Type: String

Table locking options

Reference for language elements
Version 4.1

3776

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = RC

RR

RU

S

READ_LOCK_TYPE

READ_LOCK_TYPE = ROW

TABLE

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = RC

RR

S

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = ROW

TABLE

SYBASEIQ Dataset Options

BL_CLIENT_DATAFILE

BL_CLIENT_DATAFILE = f ilepath

Type: String

BL_DATAFILE

BL_DATAFILE = f ilepath

Type: String

BL_DELETE_DATAFILE

Reference for language elements
Version 4.1

3777

BL_DELETE_DATAFILE = NO

YES

BL_DELIMITER

BL_DELIMITER = delimiter- value

Type: String

BL_OPTIONS

BL_OPTIONS = opt ions- list

Type: String

BL_USE_PIPE

BL_USE_PIPE = NO

YES

BULKLOAD

BULKLOAD = NO

YES

WPS Engine for Teradata

TERADATA

LIBNAME l ibrary- name TERADATA Connection options

SQL generation

SQL metadata

SQL transaction

Table locking options

;

Reference for language elements
Version 4.1

3778

Connection options

ACCESS

ACCESS = READONLY

ACCOUNT

ACCOUNT = user- account

Type: String

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

PASSWORD

PASSWORD

PASS

PW

= user- passwd

Reference for language elements
Version 4.1

3779

Type: String

SCHEMA

SCHEMA

DATABASE

= schema- name

Type: String

TDPID

TDPID

SERVER

= remote- id

Type: String

USER

USER = user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DIRECT_EXE

Reference for language elements
Version 4.1

3780

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

SQL metadata

PRESERVE_COL_NAMES

PRESERVE_COL_NAMES = NO

YES

Default value: NO

PRESERVE_NAMES

Reference for language elements
Version 4.1

3781

PRESERVE_NAMES = NO

YES

Default value: NO

PRESERVE_TAB_NAMES

PRESERVE_TAB_NAMES = NO

YES

Default value: NO

SQL transaction

CAST_OVERHEAD_MAXPERCENT

CAST_OVERHEAD_MAXPERCENT = value

Type: Numeric

Minimum value: 0

Maximum value: 100

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

MODE

MODE = ANSI

TERADATA

QUERY_BAND

QUERY_BAND = value

Type: String

SPOOL

Reference for language elements
Version 4.1

3782

SPOOL = DBMS

NO

YES

Table locking options

READ_ISOLATION_LEVEL

READ_ISOLATION_LEVEL = ACCESS

READ

WRITE

READ_LOCK_TYPE

READ_LOCK_TYPE = TABLE

VIEW

READ_MODE_WAIT

READ_MODE_WAIT = NO

YES

UPDATE_ISOLATION_LEVEL

UPDATE_ISOLATION_LEVEL = ACCESS

READ

WRITE

UPDATE_LOCK_TYPE

UPDATE_LOCK_TYPE = TABLE

VIEW

UPDATE_MODE_WAIT

UPDATE_MODE_WAIT = NO

YES

Reference for language elements
Version 4.1

3783

WPS Engine for Vertica

VERTICA

LIBNAME l ibrary- name VERTICA Connection options

SQL generation

SQL metadata

SQL transaction

;

Connection options

ACCESS

ACCESS = READONLY

AUTHDOMAIN

AUTHDOMAIN = authdomain

Type: String

CONNECTION

CONNECTION = GLOBAL

GLOBALREAD

SHARED

SHAREDREAD

UNIQUE

DATABASE

DATABASE

DB

= database- name

Type: String

DATASRC

Reference for language elements
Version 4.1

3784

DATASRC

DSN

DS

= datasource- name

Type: String

DBCONINIT

DBCONINIT = init ialisat ion- opt ions

Type: String

DBCONTERM

DBCONTERM = terminat ion- opt ions

Type: String

PASSWORD

PASSWORD

PWD

PW

PASS

USING

= user- passwd

Type: String

PORT

PORT = port- number

Type: String

SCHEMA

SCHEMA = schema- name

Type: String

SERVER

Reference for language elements
Version 4.1

3785

SERVER

HOST

= remote- id

Type: String

USE_ODBC_CL

USE_ODBC_CL = NO

YES

USER

USER

UID

= user- name

Type: String

UTILCONN_TRANSIENT

UTILCONN_TRANSIENT = NO

YES

SQL generation

DBCREATE_TABLE_OPTS

DBCREATE_TABLE_OPTS = table- opt ions

Type: String

DBGEN_NAME

DBGEN_NAME = DBMS

SAS

Default value: SAS

DELETE_MULT_ROWS

DELETE_MULT_ROWS = NO

YES

Reference for language elements
Version 4.1

3786

DIRECT_EXE

DIRECT_EXE = DELETE

DIRECT_SQL

DIRECT_SQL = NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

(NO

NOFUNCTIONS

NOGENSQL

NOMULTOUTJOINS

NONE

NOWHERE

YES

)

Default value: YES

QUOTE_CHAR

QUOTE_CHAR = character

Type: String

SQL_FUNCTIONS

SQL_FUNCTIONS = ALL

SQLGENERATION

SQLGENERATION = DBMS

NONE

STRINGDATES

Reference for language elements
Version 4.1

3787

STRINGDATES = NO

YES

UPDATE_MULT_ROWS

UPDATE_MULT_ROWS = NO

YES

SQL metadata

IGNORE_READ_ONLY_COLUMNS

IGNORE_READ_ONLY_COLUMNS = NO

YES

SQL transaction

AUTOCOMMIT

AUTOCOMMIT = NO

YES

DBCOMMIT

DBCOMMIT = number- of- records

Type: Numeric

Minimum value: 0

DBMAX_TEXT

DBMAX_TEXT = max- string- length

Type: Numeric

Minimum value: 1

Maximum value: 32767

DBMSTEMP

Reference for language elements
Version 4.1

3788

DBMSTEMP = NO

YES

INSERTBUFF

INSERTBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

QUERY_TIMEOUT

QUERY_TIMEOUT = durat ion

Type: Numeric

Minimum value: 0

READBUFF

READBUFF = buffer- size

Type: Numeric

Minimum value: 1

Maximum value: 32767

SPOOL

SPOOL = DBMS

NO

YES

TRACE

TRACE = NO

YES

TRACEFILE

TRACEFILE = f ilepath

Reference for language elements
Version 4.1

3789

Type: String

Reference for language elements
Version 4.1

3790

Legal Notices
Copyright © 2002–2019 World Programming Limited.

All rights reserved. This information is confidential and subject to copyright. No part of this publication
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system.

Trademarks
WPS and World Programming are registered trademarks or trademarks of World Programming Limited
in the European Union and other countries. (r) or ® indicates a Community trademark.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

All other trademarks are the property of their respective owner.

General Notices
World Programming Limited is not associated in any way with the SAS Institute.

WPS is not the SAS System.

The phrases "SAS", "SAS language", and "language of SAS" used in this document are used to refer to
the computer programming language often referred to in any of these ways.

The phrases "program", "SAS program", and "SAS language program" used in this document are used
to refer to programs written in the SAS language. These may also be referred to as "scripts", "SAS
scripts", or "SAS language scripts".

The phrases "IML", "IML language", "IML syntax", "Interactive Matrix Language", and "language of IML"
used in this document are used to refer to the computer programming language often referred to in any
of these ways.

WPS includes software developed by third parties. More information can be found in the THANKS or
acknowledgments.txt file included in the WPS installation.

	Contents
	How to read railroad syntax diagrams
	Common Syntax
	Identifying access and view descriptors
	Access Descriptors
	View Descriptors

	Identifying Views
	Identifying datasets
	Dataset
	Input dataset
	Output dataset
	Dataset options
	BUFNO
	BUFSIZE
	COMPRESS
	DROP
	ENCRYPT
	ENCRYPTKEY
	FILECLOSE
	FIRSTOBS
	IN
	INDEX
	KEEP
	LABEL
	OBS
	OBSBUF
	OUTREP
	POINTOBS
	RENAME
	REPLACE
	SPILL
	WHERE

	Expressions
	SAS Language expressions
	SQL expressions

	External Files
	LOCALE Values
	Variable Lists
	ENCODING Values
	z/OS encoding values
	Encoding values on non-z/OS platforms
	Not supported for server encoding

	LOCALE Values

	WPS Core
	System options
	Setting system options
	Displaying system options
	Restricting system options
	COMMUNICATIONS group system options
	AUTOSIGNON
	COMAMID
	CONNECTPERSIST
	CONNECTREMOTE
	CONNECTTIMEOUT
	CONNECTWAIT
	DMR
	SASCMD
	SASSCRIPT
	SIGNONWAIT
	SSH_HOSTVALIDATION
	SSH_IDENTITYFILE
	SYSRPUTSYNC
	TBUFSIZE
	TCPPORTFIRST
	TCPPORTLAST
	WPSCOMCOMPRESS
	WPSCOMENCRYPT
	WPSCOMENCRYPTKEY
	WPSCOMPROTOCOL

	DATABASE ENGINE group system options
	CONSIDERXLSXCOLWIDTHS
	DBIDIRECTEXEC
	LEGACYDB2ENGINE
	LEGACYNETEZZAENGINE
	LEGACYODBCENGINE
	LEGACYORACLEENGINE
	LEGACYSQLSERVERENGINE
	SASTRACE
	SASTRACELOC

	DB2 group system options
	DB2IN
	DB2READBUFF
	DB2SSID
	DBSLICEPARM

	EMAIL group system options
	EMAILAUTHDOMAIN
	EMAILAUTHPROTOCOL
	EMAILHOST
	EMAILID
	EMAILMASQUERADEHOST
	EMAILPORT
	EMAILPW
	EMAILSTARTTLS
	EMAILSYS

	ENVDISPLAY group system options
	CHARCODE
	FONTPATH
	XMIN
	XSYNC
	XWAIT

	ENVFILES group system options
	ALTLOG
	AUTOEXEC
	FMTSEARCH
	LOG
	NEWS
	PARM
	PARMCARDS
	PRINT
	SASAUTOS
	SASHELP
	SASINITIALFOLDER
	SASUSER
	SET
	SYSIN
	SYSPARM
	USER
	WORK
	WORKINIT
	WORKPERMS
	WORKTERM
	WPDDASDLIBNAMEINFO

	ERRORHANDLING group system options
	BYERR
	CLEANUP
	DSNFERR
	ERRORABEND
	ERRORCHECK
	ERRORS
	FMTERR
	QUOTELENMAX
	VNFERR

	EXECMODES group system options
	CONFIGFONT
	DMS
	FONTCACHEDIR
	INITSTMT
	LINKINITSTMT
	LINKTERMSTMT
	JREOPTIONS
	SCANDEFAULTMODIFERS
	TERMSTMT

	EXTFILES group system options
	BOMFILE
	CAPSOUT
	FILEBLKSIZE(3375)
	FILEBLKSIZE(3380)
	FILEBLKSIZE(3390)
	FILEBLKSIZE(3400)
	FILEBLKSIZE(3480)
	FILEBLKSIZE(3490E)
	FILEBLKSIZE(3590)
	FILEBLKSIZE(9345)
	FILEBLKSIZE(DISK)
	FILEBLKSIZE(OTHER)
	FILEBLKSIZE(SYSOUT)
	FILEBLKSIZE(TAPE)
	FILEBLKSIZE(TERM)
	FILECC
	FILEDEV
	FILEMSGS
	FILESPPRI
	FILESPSEC
	FILESTAT
	FILEUNIT
	LRECL
	S99NOMIG
	SYSPREF
	SYSTEMLOCALEENCODING
	TRANSACTEDFILELOCKINGBLOCKS
	VSAMLEENGINE
	VSAMLOAD
	VSAMREAD
	VSAMRLS
	VSAMRLSREAD
	VSAMUPDATE

	FLE_CONTROL group system options
	PYTHONHOME
	PYTHONKEEP
	RKEEP

	GRAPHICS group system options
	DEVICE
	MAPS

	HUB group system options
	HUB_AUTOLIBS
	HUB_PORT
	HUB_PROTOCOL
	HUB_PWD
	HUB_SERVER
	HUB_TOKEN
	HUB_USER

	IMS group system options
	IMSDLDBR

	INPUTCONTROL group system options
	CAPS
	CARDIMAGE
	DATASTMTCHK
	DATESTYLE
	DYNAMICNOBS
	INVALIDDATA
	S
	S2
	SEQ
	SEQNUMFEACH
	SPOOL
	STDIO
	VBUFSIZE
	XCMD
	YEARCUTOFF

	INSTALL group system options
	FONTCACHEDIR
	PATH
	USSWPSHOME

	ISPF group system options
	ISPCAPS
	ISPCHARF
	ISPCSR
	ISPEXECV
	ISPMISS
	ISPMSG
	ISPNOTES
	ISPNUMF
	ISPNZTRC
	ISPPT
	ISPTRACE
	ISPVDEFA
	ISPVDLT
	ISPVDTRC
	ISPVIMSG
	ISPVRMSG
	ISPVTMSG
	ISPVTNAM
	ISPVTPNL
	ISPVTRAP
	ISPVTVARS

	LANGUAGECONTROL group system options
	CHARTRANUNMAPPABLE
	DATESTYLE
	DDEXLANG
	DFLANG
	EBCDICFMTINFMTBEHAVIOUR
	ENCODING
	LOCALE
	NLSCOMPATMODE
	TRANTAB
	URLENCODING

	LOG_LISTCONTROL group system options
	DATE
	DETAILS
	DTRESET
	LINESIZE
	MISSING
	NUMBER
	PAGESIZE

	LISTCONTROL group system options
	BYLINE
	CENTER
	DATE
	DETAILS
	DTRESET
	FILESYSOUT
	FORMCHAR
	FORMDLIM
	LABEL
	LINESIZE
	LISTINGFILERECFM
	MISSING
	NUMBER
	PAGENO
	PAGESIZE

	LOGCONTROL group system options
	DATE
	DETAILS
	DTRESET
	ECHOAUTO
	ERRORS
	FULLSTATS
	FULLSTIMER
	LINESIZE
	LOGPARM
	LOGTITLE
	MEMRPT
	MISSING
	MLOGIC
	MLOGICNEST
	MPRINT
	MSGCASE
	MSGLEVEL
	NEWS
	NOTES
	NUMBER
	OPLIST
	OVP
	PAGESIZE
	SOURCE
	SOURCE2
	STIMEFMT
	SYMBOLGEN
	VERBOSE

	MACRO group system options
	IMPLMAC
	MACRO
	MACROGEN
	MAUTOLOCDISPLAY
	MAUTOSOURCE
	MCOMPILE
	MCOMPILENOTE
	MERROR
	MINDELIMITER
	MINOPERATOR
	MLOGIC
	MLOGICNEST
	MPRINT
	MPRINTNEST
	MRECALL
	MSTORED
	MSYMTABMAX
	MVARSIZE
	SASAUTOS
	SASMSTORE
	SERROR
	SYMBOLGEN

	MEMORY group system options
	MEMRPT
	MEMSIZE
	MINSTG
	SORTSIZE
	SUMBUFNO
	SUMSIZE

	ODSPRINT group system options
	BOTTOMMARGIN
	LEFTMARGIN
	ODSDEST
	ODSHTMLDEST
	ORIENTATION
	PAPERSIZE
	PREFERLEGACYTABLETEMPLATES
	RIGHTMARGIN
	TOPMARGIN

	PERFORMANCE group system options
	BUFNO
	BUFSIZE
	BUFSIZECMULT
	BUFSIZEUMULT
	COMPRESS
	CPUCOUNT
	FULLSTATS
	IBUFNO
	IBUFSIZE
	SORTSIZE
	STIMER
	THREADS
	WPDHUGE

	SASFILES group system options
	LAST
	BASEENGINE
	BLKALLOC
	BLKSIZE
	BLKSIZE(3375)
	BLKSIZE(3380)
	BLKSIZE(3390)
	BLKSIZE(9345)
	BLKSIZE(DISK)
	BLKSIZE(OTHER)
	BUFNO
	BUFSIZE
	BUFSIZECMULT
	BUFSIZEUMULT
	COMPRESS
	CPORTVER
	DIRECTIO
	DKRICOND
	DKROCOND
	DLCREATEDIR
	DLDSNTYPE
	DLEXCPCOUNT
	ENCRYPT
	ENCRYPTKEY
	ENGINE
	FILEDEV
	FILEMSGS
	FILESPPRI
	FILESPSEC
	FILEUNIT
	FIRSTOBS
	IBUFNO
	IBUFSIZE
	MERGENOBY
	OBS
	REPLACE
	REPORTSTEPMEMORYUSAGE
	S99NOMIG
	SEQENGINE
	SYNCIO
	TAPECLOSE
	TAPEENGINE
	VALIDVARNAME
	VARLENCHK

	SMF group system options
	STIMER

	SORT group system options
	DYNALLOC
	FILSZ
	SORTBLKMODE
	SORTCHECK
	SORTCONFIG
	SORTCUTP
	SORTDEV
	SORTDEVWARN
	SORTDUP
	SORTEQOP
	SORTEQUALS
	SORTLIST
	SORTLOCALE
	SORTMAXKEY
	SORTMAXOFF
	SORTMMAP
	SORTMSG
	SORTNAME
	SORTOPTS
	SORTPARM
	SORTPGM
	SORTSEQ
	SORTSIZE
	SORTSTATS
	SORTSUMF
	SORTVALIDATE
	SORTWKNO
	SORTWORK

	SQL group system options
	DQUOTE
	SQLCONSTDATETIME
	SQLGENERATION
	SQLREMERGE

	TLS group system options
	TLS_CACERTS
	TLS_HOSTVALIDATION

	Formats
	Core formats
	w.d
	$w.
	$CHARw.
	$Fw.
	$VARYINGw.
	BESTw.

	Basic character formats
	$ASCIIw.
	$BASE64Xw.
	$BINARYw.
	$BYVALw.
	$CSTRw.
	$EBCDICw.
	$HEXw.
	$MSGCASEw.
	$OCTALw.
	$QUOTEw.
	$REVERJw.
	$REVERSw.
	$UPCASEw.

	Bidirectional formats
	$BIDIw.
	$LOGVSw.
	$LOGVSRw.
	$VSLOGw.
	$VSLOGRw.

	Unicode formats
	$UCS2Bw.
	$UCS2BEw.
	$UCS2Lw.
	$UCS2LEw.
	$UCS2Xw.
	$UCS2XEw.
	$UCS4Bw.
	$UCS4BEw.
	$UCS4Lw.
	$UCS4LEw.
	$UCS4Xw.
	$UCS4XEw.
	$UESCw.
	$UESCEw.
	$UNCRw.
	$UNCREw.
	$UPARENw.
	$UPARENEw.
	$UTF8Xw.
	$UTF8XEw.

	Simple numeric formats
	BESTXw.
	BINARYw.
	COMMAw.d
	COMMAXw.d
	Dw.d
	DOLLARw.d
	DOLLARXw.d
	Ew.
	EUROw.d
	EUROXw.d
	Fw.d
	FLOATw.d
	FRACTw.
	HEXw.
	IBw.d
	IBRw.d
	IEEEw.d
	NEGPARENw.d
	NUMXw.d
	OCTALw.d
	ODDSRw.d
	PDw.d
	PERCENTw.d
	PERCENTNw.d
	PIBw.d
	PIBRw.d
	PKw.d
	PVALUEw.d
	RBw.d
	ROMANw.
	S370FFw.d
	S370FIBw.d
	S370FIBUw.d
	S370FPDw.d
	S370FPDUw.d
	S370FPIBw.d
	S370FRBw.d
	S370FZDw.d
	S370FZDLw.d
	S370FZDSw.d
	S370FZDTw.d
	S370FZDUw.d
	SSNw.
	WORDFw.
	WORDSw.
	Zw.d
	ZDw.d

	Numeric date formats
	DATEw.
	DATEAMPMw.d
	DATETIMEw.d
	DAYw.
	DDMMYYw.
	DDMMYYBw.
	DDMMYYDw.
	DDMMYYCw.
	DDMMYYNw.
	DDMMYYPw.
	DDMMYYSw.
	DOWNAMEw.
	DTDATEw.
	DTMONYYw.
	DTWKDATXw.
	DTYEARw.
	DTYYQCw.
	HHMMw.d
	HOURw.d
	JULDAYw.
	JULIANw.
	JULDATEw.
	MDYAMPMw.d
	MINGUOw.
	MMDDYYw.
	MMDDYYBw.
	MMDDYYCw.
	MMDDYYDw.
	MMDDYYNw.
	MMDDYYPw.
	MMDDYYSw.
	MMSSw.d
	MMYYw.
	MMYYCw.
	MMYYDw.
	MMYYNw.
	MMYYPw.
	MMYYSw.
	MONNAMEw.
	MONTHw.
	MONYYw.
	NENGOw.
	PDJULGw.
	PDJULIw.
	QTRw.
	QTRRw.
	TIMEw.d
	TIMEAMPMw.d
	TODw.d
	WEEKUw.
	WEEKVw.
	WEEKWw.
	WEEKDATEw.
	WEEKDATXw.
	WEEKDAYw.
	WORDDATEw.
	WORDDATXw.
	YEARw.
	YYMMw.
	YYMMCw.
	YYMMDw.
	YYMMNw.
	YYMMPw.
	YYMMSw.
	YYMMDDw.
	YYMMDDBw.
	YYMMDDCw.
	YYMMDDDw.
	YYMMDDNw.
	YYMMDDPw.
	YYMMDDSw.
	YYMONw.
	YYQw.
	YYQCw.
	YYQDw.
	YYQNw.
	YYQPw.
	YYQRw.
	YYQSw.
	YYQRCw.
	YYQRDw.
	YYQRNw.
	YYQRPw.
	YYQRSw.
	YYWEEKUw.
	YYWEEKVw.
	YYWEEKWw.

	ISO8601 date formats
	$N8601Bw.
	$N8601BAw.
	$N8601Ew.
	$N8601EAw.
	$N8601EHw.
	$N8601EXw.
	$N8601Hw.
	$N8601Xw.
	B8601DAw.
	E8601DAw.
	B8601DNw.
	E8601DNw.
	B8601DTw.d
	E8601DTw.d
	B8601DZw.
	E8601DZw.
	B8601LZw.
	E8601LZw.
	B8601TMw.d
	E8601TMw.d
	B8601TZw.
	E8601TZw.
	IS8601DAw.
	IS8601DNw.
	IS8601LZw.
	IS8601TMw.d
	IS8601TZw.
	IS8601DTw.d
	IS8601DZw.

	International date formats
	HDATEw.
	HEBDATEw.
	xxxDFDDw.
	xxxDFDEw.
	xxxDFDNw.
	xxxDFDTw.
	xxxDFDWNw.
	xxxDFMNw.
	xxxDFMYw.
	xxxDFWDXw.
	xxxDFWKXw.

	NLS-sensitive date formats
	NLDATEw.
	NLDATEMDw.
	NLDATEMNw.
	NLDATEWw.
	NLDATEWNw.
	NLDATEYMw.
	NLDATEYRw.
	NLDATMw.
	NLDATMAPw.
	NLDATMDTw.
	NLDATMMDw.
	NLDATMMNw.
	NLDATMTMw.
	NLDATMTZw.
	NLDATMWw.
	NLDATMWZw.
	NLDATMYMw.
	NLDATMYRw.
	NLDATMZw.
	NLSTRMONw.
	NLSTRQTRw.
	NLSTRWKw.
	NLTIMAPw.
	NLTIMEw.

	NLS-sensitive money formats
	NLMNYw.d
	NLMNYIw.d
	NLMNIxxxw.d
	NLMNLxxxw.d
	YENw.d

	NLS-sensitive numeric formats
	NLNUMw.d
	NLNUMIw.d
	NLPCTw.d
	NLPCTIw.d
	NLPCTNw.d
	NLPCTPw.d
	NLBESTw.d
	NLPVALUEw.d

	Informats
	Core informats
	BESTw.d
	Dw.d
	Ew.d
	Fw.d

	Basic character informats
	$ASCIIw.
	$BASE64Xw.
	$BINARYw.
	$CHARw.
	$CHARZBw.
	$CSTRw.
	$EBCDICw.
	$Fw.
	$HEXw.
	$PHEXw.
	$QUOTEw.
	$REVERJw.
	$REVERSw.
	$UPCASEw.
	$VARYINGw.

	Bidirectional informats
	$LOGVSw.
	$LOGVSRw.
	$VSLOGw.
	$VSLOGRw.

	Unicode informats
	$UCS2Bw.
	$UCS2BEw.
	$UCS2Lw.
	$UCS2LEw.
	$UCS2Xw.
	$UCS2XEw.
	$UCS4Bw.
	$UCS4Lw.
	$UCS4Xw.
	$UCS4XEw.
	$UESCw.
	$UESCEw.
	$UNCRw.
	$UNCREw.
	$UPARENw.
	$UPARENEw.
	$UTF8Xw.
	$UTF8XEw.

	Simple numeric informats
	BINARYw.d
	BITSw.d
	BZw.d
	COMMAw.d
	COMMAXw.d
	DOLLARw.d
	DOLLARXw.d
	EUROw.d
	EUROXw.d
	FLOATw.d
	HEXw.
	IBw.d
	IBRw.d
	NUMXw.d
	PDw.d
	PERCENTw.d
	PIBw.d
	PIBRw.d
	PKw.d
	RBw.d
	S370FFw.d
	S370FIBw.d
	S370FIBUw.d
	S370FPDw.d
	S370FPDUw.d
	S370FPIBw.d
	S370FRBw.d
	S370FZDw.d
	S370FZDBw.d
	S370FZDLw.d
	S370FZDSw.d
	S370FZDTw.d
	S370FZDUw.d
	TRAILSGNw.d
	YENw.d
	ZDw.d
	ZDBw.d

	Numeric date informats
	ANYDTDTEw.
	ANYDTDTMw.
	ANYDTTMEw.
	DATEw.
	DATETIMEw.
	DDMMYYw.
	HHMMSSw.
	JULIANw.
	MDYAMPMw.
	MINGUOw.
	MMDDYYw.
	MONYYw.
	MSECw.
	NENGOw.
	PDJULGw.
	PDJULIw.
	PDTIMEw.
	RMFDURw.
	RMFSTAMPw.
	SHRSTAMPw.
	SMFSTAMPw.
	TIMEw.
	TODSTAMPw.
	TUw.
	YMDDTTMw.d
	YYMMDDw.
	YYMMNw.
	YYQw.

	ISO8601 date informats
	$N8601Bw.d
	$N8601Ew.d
	B8601DAw.
	B8601DNw.
	B8601DTw.
	B8601DZw.
	B8601LZw.
	B8601TMw.
	B8601TZw.
	E8601DAw.
	E8601DNw.
	E8601DTw.
	E8601DZw.
	E8601TMw.
	E8601TZw.
	E8601LZw.
	IS8601DAw.
	IS8601DNw.
	IS8601DTw.
	IS8601DZw.
	IS8601LZw.
	IS8601TMw.
	IS8601TZw.
	ND8601DAw.
	ND8601DNw.
	ND8601DTw.
	ND8601DZw.
	ND8601LZw.
	ND8601TMw.
	ND8601TZw.

	NLS-sensitive date informats
	NLDATEw.
	NLDATMw.
	NLTIMEw.

	NLS-sensitive money informats
	NLMNYw.d
	NLMNYIw.d
	NLMNIXXXw.d
	NLMNLXXXw.d

	NLS-sensitive numeric informats
	NLNUMw.d
	NLNUMIw.d
	NLPCTw.d
	NLPCTI

	Global statements
	Comment
	CATNAME
	DSNEXST
	ENDSAS
	ENDWPS
	FILENAME statements
	FILENAME
	FILENAME, DDE Access Method
	FILENAME, DDEX Access Method
	FILENAME, DISK Access Method
	FILENAME, EMAIL Access Method
	FILENAME, FTP Access Method
	FILENAME, HADOOP Access Method
	FILENAME, HTTP Access Method
	FILENAME, PIPE Access Method
	FILENAME, SOCKET Access Method
	FILENAME, SYSOUT Access Method
	FILENAME, URL Access Method
	FILENAME, z/OS Datasets Access Method

	FOOTNOTE
	%INCLUDE
	LIBNAME
	MISSING
	OPTIONS
	PAGE
	RUN
	SKIP
	SYSTASK statements
	SYSTASK COMMAND
	SYSTASK LIST
	SYSTASK KILL

	TITLE
	WAITFOR
	X statements
	X (on UNIX platforms)
	X (on Windows)
	X (on z/OS)

	DATA step statements
	NEW
	ABORT
	ARRAY
	ATTRIB
	BY
	CALL
	CONTINUE
	DATA
	DELETE
	DESCRIBE
	DO
	DO, iterative
	DO UNTIL
	DO WHILE
	DROP
	END
	ERROR
	EXECUTE
	FILE
	FORMAT
	GO TO
	IF, subsetting
	IF-THEN/ELSE
	INFILE
	INFORMAT
	INPUT
	KEEP
	LABEL
	Labels,Statement
	LEAVE
	LENGTH
	LINK
	LIST
	MERGE
	MODIFY
	OUTPUT
	PUT
	PUTLOG
	REDIRECT
	REMOVE
	RENAME
	REPLACE
	RETAIN
	RETURN
	SELECT
	SET
	SKIP
	STOP
	Sum
	UPDATE
	WHERE
	Describing data in a DATA step
	CARDS
	CARDS4
	DATALINES
	DATALINES4

	DATA step functions and CALL routines
	Array functions
	DIM
	HBOUND
	LBOUND

	Bitwise functions
	BAND
	BOR
	BXOR
	BNOT
	BLSHIFT
	BRSHIFT

	Combination functions and CALL routines
	ALLPERM
	COMB
	LCOMB
	LPERM
	PERM
	CALL ALLPERM
	CALL RANPERK
	CALL RANPERM

	Comparison functions
	IFC
	IFN

	Cryptographic functions
	MD5
	PWENCODE
	SHA1
	SHA256
	SHA384
	SHA512
	CALL AES256DEC
	CALL AES256ENC

	Date and time functions and CALL routine
	Get date and time values
	DATE
	TODAY
	DATETIME
	TIME
	MDY
	DHMS
	HMS
	YYQ

	Select date and time values
	DATEPART
	TIMEPART
	YEAR
	QTR
	MONTH
	WEEK
	WEEKDAY
	DAY
	HOUR
	MINUTE
	SECOND

	Convert date and time values
	DATEJUL
	JULDATE
	JULDATE7
	CALL IS8601_CONVERT

	Calculate date and time values
	INTCK
	INTNX
	DATDIF
	YRDIF

	Dataset input and output functions and CALL routines
	ATTRC
	ATTRN
	CEXIST
	CLOSE
	CUROBS
	DESCRIBE
	DSNAME
	EXIST
	FETCH
	FETCHOBS
	GETVARC
	GETVARN
	IORCMSG
	LIBNAME
	LIBREF
	NOTE
	OPEN
	POINT
	REWIND
	VARFMT
	VARINFMT
	VARLABEL
	VARLEN
	VARNAME
	VARNUM
	VARTYPE
	CALL SET

	Decision forest functions and CALL routines
	DF_OPEN
	DF_PREDICT
	CALL DF_CLOSE
	CALL DF_DESCRIBE
	CALL DF_PREDICT

	Difference and lag functions
	DIF
	LAG

	Distribution-based functions and CALL routines
	CALL STREAMINIT
	Bernoulli distribution
	PDF – BERNOULLI
	PMF – BERNOULLI
	LOGPDF – BERNOULLI
	LOGPMF – BERNOULLI
	CDF – BERNOULLI
	LOGCDF – BERNOULLI
	SDF – BERNOULLI
	LOGSDF – BERNOULLI
	QUANTILE – BERNOULLI
	DEVIANCE – BERNOULLI
	RAND – BERNOULLI

	Beta distribution
	PDF – BETA
	PMF – BETA
	LOGPDF – BETA
	LOGPMF – BETA
	CDF – BETA
	PROBBETA
	LOGCDF – BETA
	SDF – BETA
	LOGSDF – BETA
	QUANTILE – BETA
	BETAINV
	RAND – BETA

	Binomial distribution
	PDF – BINOMIAL
	PMF – BINOMIAL
	LOGPDF – BINOMIAL
	LOGPMF – BINOMIAL
	CDF – BINOMIAL
	PROBBNML
	LOGCDF – BINOMIAL
	SDF – BINOMIAL
	LOGSDF – BINOMIAL
	QUANTILE – BINOMIAL
	DEVIANCE – BINOMIAL
	RAND – BINOMIAL
	RANBIN
	CALL RANBIN

	Bivariate Normal distribution
	PROBBNRM

	Cauchy distribution
	PDF – CAUCHY
	PMF – CAUCHY
	LOGPDF – CAUCHY
	LOGPMF – CAUCHY
	CDF – CAUCHY
	LOGCDF – CAUCHY
	SDF – CAUCHY
	LOGSDF – CAUCHY
	QUANTILE – CAUCHY
	RAND – CAUCHY
	RANCAU
	CALL RANCAU

	Chi-Squared distribution
	PDF – CHISQUARE
	PMF – CHISQUARE
	LOGPDF – CHISQUARE
	LOGPMF – CHISQUARE
	CDF – CHISQUARE
	PROBCHI
	LOGCDF – CHISQUARE
	SDF – CHISQUARE
	LOGSDF – CHISQUARE
	QUANTILE – CHISQUARE
	CINV
	RAND – CHISQUARE

	Erlang distribution
	RAND – ERLANG

	Exponential distribution
	PDF – EXPONENTIAL
	PMF – EXPONENTIAL
	LOGPDF – EXPONENTIAL
	LOGPMF – EXPONENTIAL
	CDF – EXPONENTIAL
	LOGCDF – EXPONENTIAL
	SDF – EXPONENTIAL
	LOGSDF – EXPONENTIAL
	QUANTILE – EXPONENTIAL
	RAND – EXPONENTIAL
	RANEXP
	CALL RANEXP

	Fisher distribution
	PDF – F
	PMF – F
	LOGPDF – F
	LOGPMF – F
	CDF – F
	PROBF
	LOGCDF – F
	SDF – F
	LOGSDF – F
	QUANTILE – F
	FINV
	RAND – F

	Gamma distribution
	PDF – GAMMA
	PMF – GAMMA
	LOGPDF – GAMMA
	LOGPMF – GAMMA
	CDF – GAMMA
	PROBGAM
	LOGCDF – GAMMA
	SDF – GAMMA
	LOGSDF – GAMMA
	QUANTILE – GAMMA
	GAMINV
	DEVIANCE – GAMMA
	RAND – GAMMA
	RANGAM
	CALL RANGAM

	Gaussian distribution
	PDF – GAUSSIAN
	PMF – GAUSSIAN
	LOGPDF – GAUSSIAN
	LOGPMF – GAUSSIAN
	CDF – GAUSSIAN
	LOGCDF – GAUSSIAN
	SDF – GAUSSIAN
	LOGSDF – GAUSSIAN
	QUANTILE – GAUSSIAN
	DEVIANCE – GAUSSIAN

	Geometric distribution
	PDF – GEOMETRIC
	PMF – GEOMETRIC
	LOGPDF – GEOMETRIC
	LOGPMF – GEOMETRIC
	CDF – GEOMETRIC
	LOGCDF – GEOMETRIC
	SDF – GEOMETRIC
	LOGSDF – GEOMETRIC
	QUANTILE – GEOMETRIC
	RAND – GEOMETRIC

	Gumbel distribution
	PDF – GUMBEL
	PMF – GUMBEL
	LOGPDF – GUMBEL
	LOGPMF – GUMBEL
	CDF – GUMBEL
	LOGCDF – GUMBEL
	SDF – GUMBEL
	LOGSDF – GUMBEL
	QUANTILE – GUMBEL
	RAND – GUMBEL

	Hypergeometric distribution
	PDF – HYPERGEOMETRIC
	PMF – HYPERGEOMETRIC
	LOGPDF – HYPERGEOMETRIC
	LOGPMF – HYPERGEOMETRIC
	CDF – HYPERGEOMETRIC
	PROBHYPR
	LOGCDF – HYPERGEOMETRIC
	SDF – HYPERGEOMETRIC
	LOGSDF – HYPERGEOMETRIC
	QUANTILE – HYPERGEOMETRIC
	RAND – HYPER

	Inverse Gaussian distribution
	PDF – IGAUSS
	PMF – IGAUSS
	LOGPDF – IGAUSS
	LOGPMF – IGAUSS
	CDF – IGAUSS
	LOGCDF – IGAUSS
	SDF – IGAUSS
	LOGSDF – IGAUSS
	QUANTILE – IGAUSS
	DEVIANCE – IGAUSS
	RAND – INVERSE GAUSSIAN

	Johnson SB distribution
	PDF – JOHNSON SB
	PMF – JOHNSON SB
	LOGPDF – JOHNSON SB
	LOGPMF – JOHNSON SB
	CDF – JOHNSON SB
	LOGCDF – JOHNSON SB
	SDF – JOHNSON SB
	LOGSDF – JOHNSON SB
	QUANTILE – JOHNSON SB
	RAND – JOHNSON SB

	Johnson SU distribution
	PDF – JOHNSON SU
	PMF – JOHNSON SU
	LOGPDF – JOHNSON SU
	LOGPMF – JOHNSON SU
	CDF – JOHNSON SU
	LOGCDF – JOHNSON SU
	SDF – JOHNSON SU
	LOGSDF – JOHNSON SU
	QUANTILE – JOHNSON SU
	RAND – JOHNSON SU

	Laplace distribution
	PDF – LAPLACE
	PMF – LAPLACE
	LOGPDF – LAPLACE
	LOGPMF – LAPLACE
	CDF – LAPLACE
	LOGCDF – LAPLACE
	SDF – LAPLACE
	LOGSDF – LAPLACE
	QUANTILE – LAPLACE

	Logistic distribution
	PDF – LOGISTIC
	PMF – LOGISTIC
	LOGPDF – LOGISTIC
	LOGPMF – LOGISTIC
	CDF – LOGISTIC
	LOGCDF – LOGISTIC
	SDF – LOGISTIC
	LOGSDF – LOGISTIC
	QUANTILE – LOGISTIC

	Lognormal distribution
	PDF – LOGNORMAL
	PMF – LOGNORMAL
	LOGPDF – LOGNORMAL
	LOGPMF – LOGNORMAL
	CDF – LOGNORMAL
	LOGCDF – LOGNORMAL
	SDF – LOGNORMAL
	LOGSDF – LOGNORMAL
	QUANTILE – LOGNORMAL
	RAND – LOGNORMAL

	Negative Binomial distribution
	PDF – NEGBINOMIAL
	PMF – NEGBINOMIAL
	LOGPDF – NEGBINOMIAL
	LOGPMF – NEGBINOMIAL
	CDF – NEGBINOMIAL
	PROBNEGB
	LOGCDF – NEGBINOMIAL
	SDF – NEGBINOMIAL
	LOGSDF – NEGBINOMIAL
	QUANTILE – NEGBINOMIAL
	RAND – NEGBINOMIAL

	Normal distribution
	PDF – NORMAL
	PMF – NORMAL
	LOGPDF – NORMAL
	LOGPMF – NORMAL
	CDF – NORMAL
	LOGCDF – NORMAL
	SDF – NORMAL
	LOGSDF – NORMAL
	QUANTILE – NORMAL
	PROBNORM
	PROBIT
	DEVIANCE – NORMAL
	RAND – NORMAL
	RANNOR
	NORMAL
	CALL RANNOR

	Normal mixture distribution
	PDF – NORMALMIX
	PMF – NORMALMIX
	LOGPDF – NORMALMIX
	LOGPMF – NORMALMIX
	CDF – NORMALMIX
	LOGCDF – NORMALMIX
	SDF – NORMALMIX
	LOGSDF – NORMALMIX
	QUANTILE – NORMALMIX

	Pareto distribution
	PDF – PARETO
	PMF – PARETO
	LOGPDF – PARETO
	LOGPMF – PARETO
	CDF – PARETO
	LOGCDF – PARETO
	SDF – PARETO
	LOGSDF – PARETO
	QUANTILE – PARETO
	RAND – PARETO

	Poisson distribution
	PDF – POISSON
	PMF – POISSON
	LOGPDF – POISSON
	LOGPMF – POISSON
	CDF – POISSON
	POISSON
	LOGCDF – POISSON
	SDF – POISSON
	LOGSDF – POISSON
	QUANTILE – POISSON
	DEVIANCE – POISSON
	RAND – POISSON
	RANPOI
	CALL RANPOI

	Power distribution
	PDF – POWER
	PMF – POWER
	LOGPDF – POWER
	LOGPMF – POWER
	CDF – POWER
	LOGCDF – POWER
	SDF – POWER
	LOGSDF – POWER
	QUANTILE – POWER
	RAND – POWER

	Rayleigh distribution
	RAND – RAYLEIGH

	Student's T distribution
	PDF – T
	PMF – T
	LOGPDF – T
	LOGPMF – T
	CDF – T
	LOGCDF – T
	SDF – T
	LOGSDF – T
	QUANTILE – T
	PROBT
	TINV
	RAND – T

	Table distribution
	RAND – TABLE
	RANTBL
	CALL RANTBL

	Triangular distribution
	RAND – TRIANGLE
	RANTRI
	CALL RANTRI

	Tweedie distribution
	PDF – TWEEDIE
	PMF – TWEEDIE
	LOGPDF – TWEEDIE
	LOGPMF – TWEEDIE
	CDF – TWEEDIE
	LOGCDF – TWEEDIE
	SDF – TWEEDIE
	LOGSDF – TWEEDIE
	QUANTILE – TWEEDIE

	Uniform distribution
	PDF – UNIFORM
	PMF – UNIFORM
	LOGPDF – UNIFORM
	LOGPMF – UNIFORM
	CDF – UNIFORM
	LOGCDF – UNIFORM
	SDF – UNIFORM
	LOGSDF – UNIFORM
	QUANTILE – UNIFORM
	RAND – UNIFORM
	RANUNI
	UNIFORM
	CALL RANUNI

	Wald distribution
	PDF – WALD
	PMF – WALD
	LOGPDF – WALD
	LOGPMF – WALD
	CDF – WALD
	LOGCDF – WALD
	SDF – WALD
	LOGSDF – WALD
	QUANTILE – WALD
	DEVIANCE – WALD

	Weibull distribution
	PDF – WEIBULL
	PMF – WEIBULL
	LOGPDF – WEIBULL
	LOGPMF – WEIBULL
	CDF – WEIBULL
	LOGCDF – WEIBULL
	SDF – WEIBULL
	LOGSDF – WEIBULL
	QUANTILE – WEIBULL
	RAND – WEIBULL

	External file functions
	DCLOSE
	DCREATE
	DINFO
	DNUM
	DOPEN
	DOPTNAME
	DOPTNUM
	DREAD
	DROPNOTE
	DSNCATLGD
	FCLOSE
	FCOL
	FDELETE
	FEXIST
	FGET
	FILEEXIST
	FILENAME
	FILEREF
	FINFO
	FNOTE
	FOPEN
	FOPTNAME
	FOPTNUM
	FPOINT
	FPOS
	FPUT
	FREAD
	FRECCNT
	FREWIND
	FRLEN
	FSEP
	FWRITE
	MOPEN
	PATHNAME
	SYSMSG
	SYSRC

	External module functions and CALL routines
	The attribute table
	MODULEN
	MODULEC
	CALL MODULE

	Financial functions
	BLACKCLPRC
	BLACKPTPRC
	BLKSHCLPRC
	BLKSHPTPRC
	COMPOUND
	CONVX
	CONVXP
	CUMIPMT
	CUMPRINC
	DACCDB
	DACCDBSL
	DACCSL
	DACCSYD
	DACCTAB
	DEPDB
	DEPDBSL
	DEPSL
	DEPSYD
	DEPTAB
	DUR
	DURP
	EFFRATE
	FINANCE
	ACCRINT Calculation
	ACCRINTM Calculation
	AMORDEGRC Calculation
	AMORLINC Calculation
	COUPDAYBS Calculation
	COUPDAYS Calculation
	COUPDAYSNC Calculation
	COUPNCD Calculation
	COUPNUM Calculation
	COUPPCD Calculation
	CUMIPMT Calculation
	CUMPRINC Calculation
	DB Calculation
	DDB Calculation
	DISC Calculation
	DOLLARDE Calculation
	DOLLARFR Calculation
	DURATION Calculation
	EFFECT Calculation
	FV Calculation
	FVSCHEDULE Calculation
	INTRATE Calculation
	IPMT Calculation
	IRR Calculation
	MDURATION Calculation
	MIRR Calculation
	NOMINAL Calculation
	NPER Calculation
	NPV Calculation
	ODDFPRICE Calculation
	ODDFYIELD Calculation
	ODDLPRICE Calculation
	ODDLYIELD Calculation
	PMT Calculation
	PPMT Calculation
	PRICE Calculation
	PRICEDISC Calculation
	PRICEMAT Calculation
	PV Calculation
	RATE Calculation
	RECEIVED Calculation
	SLN Calculation
	SYD Calculation
	TBILLEQ Calculation
	TBILLPRICE Calculation
	TBILLYIELD Calculation
	VDB Calculation
	XIRR Calculation
	XNPV Calculation
	YIELD Calculation
	YIELDDISC Calculation
	YIELDMAT Calculation

	GARKHCLPRC
	GARKHPTPRC
	INTRR
	IPMT
	IRR
	MARGRCLPRC
	MARGRPTPRC
	MORT
	NETPV
	NOMRATE
	NPV
	PMT
	PPMT
	PVP
	SAVING
	SAVINGS
	TIMEVALUE
	YIELDP

	Internet functions
	APPSRVGETC
	APPSRVGETN
	APPSRV_AUTHCLS
	APPSRV_AUTHDS
	APPSRV_AUTHLIB
	APPSRV_HEADER
	APPSRV_SESSION
	CREATE Command
	DELETE Command

	APPSRV_SET
	APPSRV_UNSAFE
	APPSRVSET

	List functions and CALL routines
	CLEARLIST
	COMPARELIST
	COPYLIST
	CURLIST
	DELITEM
	DELLIST
	DELNITEM
	DESCRIBE
	ENVLIST
	FILLIST
	GETITEMC
	GETITEML
	GETITEMN
	GETLATTR
	GETLCNTA
	GETLCNTP
	GETNITEMC
	GETNITEML
	GETNITEMN
	HASATTR
	INSERTC
	INSERTL
	INSERTN
	ITEMTYPE
	LISTLEN
	LVARLEVEL
	MAKELIST
	MAKENLIST
	NAMEDITEM
	NAMEITEM
	POPC
	POPL
	POPN
	REVLIST
	ROTLIST
	SAVELIST
	SEARCHC
	SEARCHL
	SEARCHN
	SETITEMC
	SETITEML
	SETITEMN
	SETLATTR
	SETNITEMC
	SETNITEML
	SETNITEMN
	SORTLIST
	CALL LISTPROF
	CALL PUTLIST

	ISPF CALL routines
	CALL ISPEXEC
	CALL ISPLINK

	Macro functions and CALL routines
	RESOLVE
	SYMEXIST
	SYMGET
	SYMGETN
	SYMGLOBL
	SYMLOCAL
	CALL EXECUTE
	CALL SYMDEL
	CALL SYMPUT
	CALL SYMPUTN
	CALL SYMPUTX

	Mathematical functions and CALL routines
	Constant functions
	Mathematical constants
	CONSTANT – E
	CONSTANT – EULER
	CONSTANT – PI

	Numerical limits
	CONSTANT – BIG
	CONSTANT – LOGBIG
	CONSTANT – SQRTBIG
	CONSTANT – MACEPS
	CONSTANT – LOGMACEPS
	CONSTANT – SQRTMACEPS
	CONSTANT – SMALL
	CONSTANT – LOGSMALL
	CONSTANT – SQRTSMALL
	CONSTANT – EXACTINT

	Arithmetic functions
	ABS
	SIGN
	MODZ
	MOD
	DIVIDE
	GCD
	LCM

	Power and exponent functions
	SQRT
	EXP
	POW
	CALL LOGISTIC

	Logarithmic functions
	LOG
	LOG2
	LOG10
	LOG1PX

	Trigonometric functions
	Primary trigonometric functions
	SIN
	COS
	TAN

	Inverse trigonometric functions
	ARSIN
	ARCOS
	ATAN
	ATAN2

	Hyperbolic functions
	SINH
	COSH
	TANH
	CALL TANH

	Inverse hyperbolic functions
	ARSINH
	ARCOSH
	ARTANH

	Factorials and special functions
	FACT
	LFACT
	GAMMA
	LGAMMA
	DIGAMMA
	TRIGAMMA
	BETA
	LOGBETA
	JBESSEL
	IBESSEL
	AIRY
	DAIRY
	ERF
	ERFC

	Value counts
	CMISS
	NMISS
	N

	Minimum and maximum values
	MIN
	MAX
	RANGE
	SMALLEST
	LARGEST
	ORDINAL

	Percentile-based calculations
	PCTL methods
	PCTL
	PCTL1
	PCTL2
	PCTL3
	PCTL4
	PCTL5

	MEDIAN
	MAD
	IQR

	Sums and sums of squares
	SUM
	SUMABS
	USS
	CSS
	EUCLID
	RMS
	LPNORM

	Mean calculations
	MEAN
	GEOMEANZ
	GEOMEAN
	HARMEANZ
	HARMEAN

	Variance, skewness and kurtosis calculations
	VAR
	CV
	STD
	STDERR
	SKEWNESS
	KURTOSIS

	Memory manipulation functions
	ADDRLONG
	ADDRLONGX
	PEEKCLONG
	PEEKLONG
	PTRLONGADD
	CALL POKELONG
	Memory manipulation functions (32-bit compatibility
	ADDR
	ADDRX
	PEEK
	PEEKC
	CALL POKE

	Miscellaneous functions
	LOOKSLIKENUMBER
	JSONPP
	SLEEP
	CALL SLEEP
	CALL SOUND

	National language support functions
	ENCODCOMPAT
	ENCODISVALID
	GETLOCENV
	GETPXLANGUAGE
	GETPXLOCALE
	GETPXREGION
	NLDATE
	NLDATM
	NLTIME

	Regular expression functions and CALL routines
	PRXCHANGE
	PRXMATCH
	PRXPAREN
	PRXPARSE
	PRXPOSN
	CALL PRXCHANGE
	CALL PRXDEBUG
	CALL PRXFREE
	CALL PRXNEXT
	CALL PRXPOSN
	CALL PRXSUBSTR

	Sequence manipulation functions
	CHOOSEC
	CHOOSEN
	COALESCEC
	COALESCE
	WHICHC
	WHICHN
	CALL SORTC
	CALL SORTN

	String functions and CALL routines
	Calculate edit distances
	COMPGED
	COMPLEV
	SPEDIS
	CALL COMPCOST

	Change character case in strings
	LOWCASE
	KLOWCASE
	KPROPCASE
	KUPCASE
	PROPCASE
	UPCASE

	Compare strings
	COMPARE
	KCOMPARE
	LIKE
	MAXC
	MINC
	SOUNDSLIKE

	Concatenate strings
	CAT
	CATQ
	CATS
	CATT
	CATX
	CALL CATS
	CALL CATT
	CALL CATX
	KSTRCAT

	Count characters or strings in a source string
	COUNT
	COUNTC
	COUNTW
	KCOUNT

	Extract a substring from a source string
	COALESCEC
	KSCAN
	KSUBSTR
	KSUBSTRB
	SCAN
	SCANQ
	SUBPAD
	SUBSTR
	SUBSTRN
	CALL SCAN
	CALL SCANQ

	Find first character of a type
	ANYALNUM
	ANYALPHA
	ANYCNTRL
	ANYDIGIT
	ANYFIRST
	ANYGRAPH
	ANYLOWER
	ANYNAME
	ANYPRINT
	ANYPUNCT
	ANYSPACE
	ANYUPPER
	ANYXDIGIT
	FIRST
	NOTALNUM
	NOTALPHA
	NOTCNTRL
	NOTDIGIT
	NOTFIRST
	NOTGRAPH
	NOTLOWER
	NOTNAME
	NOTPRINT
	NOTPUNCT
	NOTSPACE
	NOTUPPER
	NOTXDIGIT

	Find characters or rank in collating sequence
	COLLATE
	RANK

	Find position and length of substrings
	CHAR
	CONTAINS
	FIND
	FINDC
	INDEX
	INDEXC
	INDEXW
	KINDEX
	KINDEXC
	KLENGTH
	KVERIFY
	LENGTH
	LENGTHC
	LENGTHM
	LENGTHN
	VERIFY
	WHICHC

	Modifying strings, characters and numerics
	BYTE
	COMPRESS
	DEQUOTE
	KCOMPRESS
	KCVT
	KREVERSE
	KTRANSLATE
	KTRUNCATE
	KUPDATE
	KUPDATEB
	MISSING
	QUOTE
	REPEAT
	REVERSE
	SOUNDEX
	TRANSLATE
	TRANSTRN
	TRANTAB
	TRANWRD
	CALL MISSING
	CALL SORTC

	Name literal check and manipulation
	NLITERAL
	NVALID

	Remove spaces from a source string
	COMPBL
	LEFT
	KLEFT
	KRIGHT
	KTRIM
	RIGHT
	STRIP
	TRIM
	TRIMN

	System command function and CALL routine
	SYSTEM
	CALL SYSTEM

	System information functions
	ENVLEN
	GETOPTION
	SYSGET
	SYSPARM
	SYSPROCESSID
	SYSPROCESSNAME
	SYSPROD

	Truncation and rounding functions
	CEIL
	CEILZ
	FLOOR
	FLOORZ
	FUZZ
	INT
	INTZ
	ROUND
	ROUNDE
	ROUNDZ
	TRUNC

	Unicode functions
	UNICODE
	UNICODEC
	UNICODELEN

	Value formatting and assignment functions
	FORMAT
	INFORMAT
	INPUT
	INPUTC
	INPUTN
	PUT
	PUTC
	PUTN

	Variable information functions and CALL routines
	VARRAY
	VARRAYX
	VFORMAT
	VFORMATD
	VFORMATDX
	VFORMATN
	VFORMATNX
	VFORMATW
	VFORMATWX
	VFORMATX
	VINARRAY
	VINARRAYX
	VINFORMAT
	VINFORMATD
	VINFORMATDX
	VINFORMATN
	VINFORMATNX
	VINFORMATW
	VINFORMATWX
	VINFORMATX
	VLABEL
	VLABELX
	VLENGTH
	VLENGTHX
	VNAME
	VNAMEX
	VTRANSCODE
	VTRANSCODEX
	VTYPE
	VTYPEX
	VVALUE
	VVALUEX
	CALL LABEL
	CALL VNAME
	CALL VNEXT

	Web functions
	HTMLDECODE
	HTMLENCODE
	URLDECODE
	URLENCODE

	Zipcode functions
	FIPNAME
	FIPNAMEL
	FIPSTATE
	GEODIST
	STFIPS
	STNAME
	STNAMEL
	ZIPCITY
	ZIPCITYDISTANCE
	ZIPFIPS
	ZIPNAME
	ZIPNAMEL
	ZIPSTATE

	DATA step Components
	HASH Component
	HASH
	ADD
	CHECK
	CLEAR
	DECLARE
	DEFINEDATA
	DEFINEDONE
	DEFINEKEY
	DELETE
	EQUALS
	FIND
	FIND_NEXT
	FIND_PREV
	HAS_NEXT
	HAS_PREV
	ITEM_SIZE
	NUM_ITEMS
	OUTPUT
	REF
	REMOVE
	REMOVEDUP
	REPLACE
	REPLACEDUP
	SUM
	SUMDUP

	HITER Component
	HITER
	FIRST
	LAST
	NEXT
	PREV
	SUM

	JAVAOBJ Component
	JAVAOBJ
	JAVAOBJ type
	CALLSTATICtypeMETHOD
	CALLtypeMETHOD
	CALLSTATICVOIDMETHOD
	CALLVOIDMETHOD
	EXCEPTIONCHECK
	EXCEPTIONCLEAR
	EXCEPTIONDESCRIBE
	FLUSHJAVAOUTPUT
	GETSTATICtypeFIELD
	GETtypeFIELD
	SETSTATICtypeFIELD
	SETtypeFIELD

	Output Delivery System
	ODS global statements
	ODS _ALL_ CLOSE
	ODS ESCAPECHAR
	ODS GRAPHICS
	ODS PROCLABEL
	ODS PROCTITLE
	ODS OUTPUT
	ODS TRACE

	ODS
	ODS MARKUP
	ODS CHTML
	ODS CSV
	ODS CSVALL
	ODS EXCELXP
	ODS HTML
	ODS HTMLCSS
	ODS HTML4
	ODS MSOFFICE2K
	ODS PHTML
	ODS XML

	ODS EXCEL
	ODS OLDHTML
	ODS LISTING
	ODS PDF
	ODS PDF options
	PAPER SIZE
	ORIENTATION
	TOPMARGIN
	BOTTOMMARGIN
	LEFTMARGIN
	RIGHTMARGIN

	Procedures
	ACCESS procedure
	PROC ACCESS
	ASSIGN
	CREATE
	DROP
	FORMAT
	LIST
	RENAME
	RESET
	SELECT
	SUBSET
	TABLE
	UNIQUE
	Connection option

	APPEND procedure
	PROC APPEND
	WHERE

	APPSRV Procedure
	PROC APPSRV
	ADMINLIBS
	ALLOCATE
	DATALIBS
	LOG
	PROGLIBS
	REQUEST
	SESSION
	SESSIONLIBS
	SESSIONWORKLIBS
	STATISTICS
	WORKLIBS
	Substitution Characters Table

	CATALOG procedure
	PROC CATALOG
	CHANGE
	CONTENTS
	COPY
	DELETE
	EXCHANGE
	EXCLUDE
	MODIFY
	SAVE
	SELECT

	CDISC procedure
	PROC CDISC
	ODM
	STUDY
	GLOBALVARIABLES
	USER
	LOCATION
	SIGNATURE
	CLINICALDATA
	CONTENTS
	DATASETS
	SDTM
	DOMAINDATA

	CHART procedure
	PROC CHART
	HBAR
	VBAR
	BY
	WHERE

	CIMPORT procedure
	PROC CIMPORT
	EXCLUDE
	SELECT

	COMPARE procedure
	PROC COMPARE
	BY
	EXCLUDEVAR
	ID
	VAR
	WITH
	WHERE

	CONTENTS procedure
	PROC CONTENTS

	COPY procedure
	PROC COPY
	EXCLUDE
	SELECT

	CORR procedure
	PROC CORR
	BY
	FREQ
	PARTIAL
	VAR
	WEIGHT
	WHERE
	WITH

	CPORT procedure
	PROC CPORT
	EXCLUDE
	SELECT

	DATASETS procedure
	PROC DATASETS
	AGE
	APPEND
	CHANGE
	CONTENTS
	COPY
	DELETE
	EXCLUDE
	EXCHANGE
	FORMAT
	INDEX CREATE
	INDEX DELETE
	INFORMAT
	LABEL
	MODIFY
	RENAME
	REPAIR
	SELECT

	DBLOAD procedure
	PROC DBLOAD
	ACCDESC
	COLUMN
	COMMIT
	DELETE
	ERRLIMIT
	LABEL
	LIMIT
	LIST
	LOAD
	NULL
	RENAME
	RESET
	SQL
	TABLE
	TYPE
	WHERE
	Connection option

	DELETE procedure
	PROC DELETE

	EXPORT procedure
	PROC EXPORT
	DATABASE
	DBLIBOPTS
	DBPASSWORD
	DELIMITER
	MSENGINE
	NEWFILE
	PASSWORD
	PUTNAMES
	SHEET
	USER
	WGDB

	FMTLIB procedure
	PROC FMTLIB
	EXCLUDE
	INVALUE
	PICTURE
	SELECT
	VALUE

	FONT Procedure
	Examples
	Basic example
	Example – more detailed font configuration information

	FONT procedure reference
	PROC FONT

	FORMAT procedure
	PROC FORMAT
	EXCLUDE
	INVALUE
	PICTURE
	SELECT
	VALUE

	FORMS procedure
	PROC FORMS
	BY
	FREQ
	LINE
	WHERE

	FREQ procedure
	PROC FREQ
	BY
	EXACT
	OUTPUT
	TABLES
	WEIGHT
	WHERE

	HADOOP Procedure
	PROC HADOOP
	HDFS
	MAPREDUCE
	PIG

	HTTP procedure
	How to use the HTTP procedure
	HTTP procedure reference
	PROC HTTP

	IMPORT procedure
	PROC IMPORT
	DATABASE
	DATAROW
	DBLIBOPTS
	DBPASSWORD
	DELIMITER
	GETDELETED
	GETNAMES
	GUESSINGROWS
	MEMOSIZE
	MIXED
	MSENGINE
	PASSWORD
	RANGE
	SCANMEMO
	SCANTEXT
	SCANTIME
	SHEET
	TEXTSIZE
	USEDATE
	USER
	WGDB

	JSON Procedure
	Example
	Basic example
	Example – format output of multiple datasets

	JSON procedure reference
	PROC JSON
	EXPORT
	WRITE

	JAVAINFO procedure
	How to use the JAVAINFO procedure
	JAVAINFO procedure reference
	PROC JAVAINFO

	MEANS procedure
	Statistic keywords
	PROC MEANS
	BY
	CLASS
	FREQ
	ID
	OUTPUT
	TYPES
	VAR
	WAYS
	WEIGHT
	WHERE

	OPTIONS procedure
	Examples
	Basic example
	Example – getting information for a specified option

	OPTIONS procedure reference
	PROC OPTIONS

	OPTLOAD procedure
	Example – loading system options
	OPTLOAD procedure reference
	PROC OPTLOAD

	OPTSAVE procedure
	Example – Saving system options in current session
	OPTSAVE procedure reference
	PROC OPTSAVE

	PDS procedure
	PROC PDS
	DELETE
	CHANGE
	EXCHANGE

	PDSCOPY procedure
	PROC PDSCOPY
	DELETE
	SELECT
	EXCLUDE

	PLOT procedure
	PROC PLOT
	PLOT
	BY
	WHERE

	PRINT procedure
	PROC PRINT
	ID
	PAGEBY
	SUM
	SUMBY
	VAR
	BY
	WHERE

	PRINTTO procedure
	PROC PRINTTO

	PWENCODE procedure
	Example
	PWENCODE procedure reference
	PROC PWENCODE

	PYTHON procedure
	Introduction
	Setup and configuration
	Using Python with WPS
	Data type conversion
	Import custom Python modules
	Using graphics created by Python

	Example
	Python procedure reference
	PROC PYTHON
	EXECUTE
	EXPORT
	IMPORT
	SUBMIT
	ENDSUBMIT

	R Procedure
	Introduction
	Setup and configuration
	Installing the R interpreter
	Setting the R_HOME environment variable

	Using R with WPS
	Data type conversion
	Using R graphics
	Using additional R packages
	SAS language macro processing

	Example
	R procedure reference
	PROC R
	ASSIGN
	ENDSUBMIT
	EXECUTE
	EXPORT
	IMPORT
	LOAD
	SAVE
	SUBMIT

	RANK procedure
	PROC RANK
	BY
	RANKS
	VAR
	WHERE

	RELEASE procedure
	PROC RELEASE

	REPORT procedure
	PROC REPORT
	BREAK
	BY
	COLUMN
	COMPUTE
	DEFINE
	FREQ
	RBREAK
	WEIGHT

	SOAP procedure
	PROC SOAP

	SORT procedure
	PROC SORT
	BY
	WHERE

	SOURCE procedure
	PROC SOURCE
	SELECT
	EXCLUDE
	FIRST
	LAST
	AFTER
	BEFORE

	SQL Procedure
	PROC SQL
	ALTER
	CONNECT
	CREATE INDEX
	CREATE TABLE
	CREATE VIEW
	DELETE
	DESCRIBE
	DISCONNECT
	DROP
	EXECUTE
	INSERT
	RESET
	SELECT
	UPDATE
	VALIDATE
	Component Dictionary
	PROC SQL options
	Conditions
	ALL condition
	ANY condition
	BETWEEN condition
	BTRIM condition
	CALCULATED condition
	CONTAINS condition
	EXISTS condition
	IN condition
	IS condition
	LIKE condition

	Expressions
	CASE expression
	SELECT expression
	FROM expression
	INTO expression
	GROUP BY expression
	ORDER BY expression
	Relational expression
	Query expression
	SQL expression

	Functions
	LOWER function
	SUBSTRING function
	SUMMARY function
	UPPER function

	Tables
	DICTIONARY tables
	Column Definition
	Column Modifier
	Column Name
	Joined Table
	TABLE expression

	Connections
	CONNECTION-TO

	STANDARD procedure
	PROC STANDARD
	BY
	FREQ
	VAR
	WEIGHT

	SUMMARY procedure
	Statistic keywords
	PROC SUMMARY
	CLASS
	BY
	FREQ
	ID
	OUTPUT
	TYPES
	VAR
	WAYS
	WEIGHT
	WHERE

	TABLEAU procedure
	PROC TABLEAU
	UPLOAD

	TABULATE procedure
	PROC TABULATE
	BY
	CLASS
	CLASSLEV
	FREQ
	KEYLABEL
	KEYWORD
	TABLE
	VAR
	WEIGHT
	WHERE

	TEMPLATE procedure
	PROC TEMPLATE
	DELETE
	EDIT
	LINK
	LIST
	PATH
	SOURCE
	DEFINE COLUMN
	DEFINE FOOTER
	DEFINE HEADER
	DEFINE STYLE
	DEFINE TABLE
	DEFINE TAGSET
	Components
	TABLE definition
	HEADER definition
	FOOTER definition
	COLUMN definition
	STYLE

	TRANSPOSE procedure
	PROC TRANSPOSE
	BY
	COPY
	ID
	IDLABEL
	VAR
	WHERE

	TRANTAB procedure
	PROC TRANTAB
	CLEAR
	INVERSE
	LIST
	LOAD
	REPLACE
	SAVE
	SWAP

	UNIVARIATE procedure
	PROC UNIVARIATE
	BY
	CDFPLOT
	CLASS
	FREQ
	HISTOGRAM
	ID
	OUTPUT
	PPPLOT
	PROBPLOT
	QQPLOT
	VAR
	WEIGHT
	WHERE

	Library engines
	CVP
	JSON
	SASDASD
	SAS7BDAT
	SD2
	SASSEQ
	V8SEQ
	V9SEQ
	WPDSEQ
	WPD
	WPD (z/OS)
	WPD1
	WPDV2
	WPDV2 (z/OS)
	XML
	XPORT

	Macros
	Automatic macro variables
	SYSADDRBITS
	SYSCHARWIDTH
	SYSCC
	SYSDATE
	SYSDATE9
	SYSDAY
	SYSDSN
	SYSENDIAN
	SYSENV
	SYSERR
	SYSERRORTEXT
	SYSFILRC
	SYSENDIAN
	SYSINDEX
	SYSINFO
	SYSJOBID
	SYSLAST
	SYSLIBRC
	SYSMACRONAME
	SYSMAXLONG
	SYSMENV
	SYSPARM
	SYSPBUFF
	SYSPROCESSID
	SYSPROCESSNAME
	SYSPROCNAME
	SYSRC
	SYSSCP
	SYSSCPL
	SYSSITE
	SYSMAXLONG
	SYSSIZEOFPTR
	SYSSIZEOFUNICODE
	SYSUID
	SYSUSERID
	SYSVER
	SYSVLONG
	SYS99ERR
	SYS99INF
	SYS99MSG
	SYS99R15

	Macro processor statements
	%ABORT
	%* comment
	%COPY
	%DO
	%DO, Iterative
	%DO %UNTIL
	%DO %WHILE
	%END
	%EXECUTE
	%GLOBAL
	%GOTO
	%IF-%THEN/%ELSE
	%INCLUDE
	%label
	%LET
	%LOCAL
	%MACRO
	%MEND
	%PUT
	%RETURN
	%SYSCALL
	%SYMDEL
	%SYSEXEC

	Macro processor functions
	%BQUOTE
	%CMPRES
	%DATATYP
	%DS2CSV
	%EVAL
	%INDEX
	%LEFT
	%LENGTH
	%LOWCASE
	%NRBQUOTE
	%NRQUOTE
	%NRSTR
	%QCMPRES
	%QLEFT
	%QLOWCASE
	%QSCAN
	%QSUBSTR
	%QSYSFUNC
	%QTRIM
	%QUOTE
	%QUPCASE
	%SCAN
	%STR
	%SUBSTR
	%SUPERQ
	%SYMEXIST
	%SYMGLOBL
	%SYMLOCAL
	%SYSEVALF
	%SYSFUNC
	%SYSGET
	%SYSPROD
	%SYSRC
	%TRIM
	%UNQUOTE
	%UPCASE
	%VERIFY

	WPS Graphing
	Global statements
	AXIS
	GOPTIONS
	LEGEND
	PATTERN
	SYMBOL

	Graphing procedures
	GANNO procedure
	PROC GANNO

	GBARLINE procedure
	PROC GBARLINE
	BAR
	BY
	FORMAT
	LABEL
	PLOT
	WHERE

	GCHART procedure
	PROC GCHART
	BY
	FORMAT
	HBAR
	LABEL
	PIE
	VBAR
	WHERE

	GINSIDE procedure
	PROC GINSIDE
	ID

	GMAP procedure
	PROC GMAP
	BY
	CHORO
	FORMAT
	ID
	LABEL
	WHERE

	GOPTIONS procedure
	PROC GOPTIONS

	GPLOT procedure
	PROC GPLOT
	BUBBLE
	BUBBLE2
	BY
	FORMAT
	LABEL
	PLOT
	PLOT2
	WHERE

	GPROJECT procedure
	PROC GPROJECT
	ID
	WHERE

	GREDUCE procedure
	PROC GREDUCE
	BY
	ID

	GREMOVE procedure
	PROC GREMOVE
	BY
	ID

	GREPLAY procedure
	PROC GREPLAY
	DEVICE
	DELETE
	IGOUT
	LIST
	QUIT
	REPLAY

	GSLIDE procedure
	PROC GSLIDE

	MAPIMPORT procedure
	PROC MAPIMPORT
	ID
	EXCLUDE
	RENAME
	SELECT

	SGPANEL procedure
	PROC SGPANEL
	BAND
	BUBBLE
	BY
	COLAXIS
	DENSITY
	FORMAT
	HBAR
	HBARPARM
	HBOX
	HIGHLOW
	HISTOGRAM
	HLINE
	KEYLEGEND
	LABEL
	LINEPARM
	LOESS
	NEEDLE
	PANELBY
	PBSPLINE
	REFLINE
	REG
	ROWAXIS
	SCATTER
	SERIES
	STEP
	VBAR
	VBARPARM
	VBOX
	VECTOR
	VLINE
	WHERE

	SGPLOT procedure
	PROC SGPLOT
	BAND
	BUBBLE
	BY
	DENSITY
	ELLIPSE
	FORMAT
	HBAR
	HBARPARM
	HBOX
	HIGHLOW
	HISTOGRAM
	HLINE
	KEYLEGEND
	LABEL
	LINEPARM
	LOESS
	NEEDLE
	PBSPLINE
	REFLINE
	REG
	SCATTER
	SERIES
	STEP
	VBAR
	VBARPARM
	VBOX
	VECTOR
	VLINE
	WATERFALL
	WHERE
	XAXIS
	X2AXIS
	YAXIS
	Y2AXIS

	SGSCATTER procedure
	PROC SGSCATTER
	BY
	COMPARE
	MATRIX
	PLOT
	WHERE

	WPS Statistics
	Statistics procedures
	ACECLUS procedure
	PROC ACECLUS
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	VAR
	WHERE

	ANOVA procedure
	PROC ANOVA
	ATTRIB
	BY
	CLASS
	FORMAT
	FREQ
	INFORMAT
	LABEL
	MEANS
	MODEL
	TEST
	WHERE

	ASSOCRULES procedure
	Overview of Association Rules
	About ASSOCRULES
	Mining of association rules from a transaction dataset
	Matching association rules to a transaction dataset

	How to use ASSOCRULES
	Mining association rules from a transaction dataset
	Matching association rules to a transaction dataset

	ASSOCRULES syntax
	PROC ASSOCRULES
	OUTPUT

	BIN procedure
	PROC BIN
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	ID
	INPUT
	TARGET
	WHERE

	BOXPLOT procedure
	PROC BOXPLOT
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	LABEL
	PLOT
	WHERE

	CANCORR procedure
	PROC CANCORR
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	PARTIAL
	VAR
	WEIGHT
	WHERE
	WITH

	CANDISC procedure
	PROC CANDISC
	ATTRIB
	BY
	CLASS
	FORMAT
	FREQ
	INFORMAT
	LABEL
	VAR
	WEIGHT
	WHERE

	CLUSTER procedure
	PROC CLUSTER
	ATTRIB
	BY
	COPY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	RMSSTD
	VAR
	WHERE

	CORRESP procedure
	PROC CORRESP
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	LABEL
	SUPPLEMENTARY
	TABLES
	VAR
	WEIGHT
	WHERE

	DISCRIM procedure
	PROC DISCRIM
	ATTRIB
	BY
	CLASS
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	PRIORS
	TESTCLASS
	TESTFREQ
	TESTID
	VAR
	WEIGHT
	WHERE

	DISTANCE procedure
	PROC DISTANCE
	ATTRIB
	BY
	COPY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	VAR
	WEIGHT
	WHERE

	FACTOR procedure
	PROC FACTOR
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	PRIORS
	VAR
	PARTIAL
	WEIGHT
	WHERE

	FASTCLUS procedure
	PROC FASTCLUS
	ATTRIB
	BY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	VAR
	WEIGHT
	WHERE

	GAM procedure
	PROC GAM
	ATTRIB
	BY
	CLASS
	FORMAT
	FREQ
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	SCORE
	WHERE

	GENMOD procedure
	PROC GENMOD
	ATTRIB
	BY
	CLASS
	CODE
	CONTRAST
	ESTIMATE
	FORMAT
	DEVIANCE
	FWDLINK
	INFORMAT
	INVLINK
	FREQ
	LABEL
	MODEL
	OUTPUT
	REPEATED
	VARIANCE
	WEIGHT
	WHERE
	ZERO

	GLM procedure
	PROC GLM
	ATTRIB
	BY
	CLASS
	CODE
	CONTRAST
	ESTIMATE
	FORMAT
	FREQ
	INFORMAT
	LABEL
	LSMEANS
	MEANS
	MODEL
	OUTPUT
	RANDOM
	TEST
	WEIGHT
	WHERE

	GLMMOD procedure
	PROC GLMMOD
	ATTRIB
	BY
	FORMAT
	CLASS
	FREQ
	INFORMAT
	LABEL
	MODEL
	WEIGHT
	WHERE

	GLMSELECT procedure
	PROC GLMSELECT
	ATTRIB
	BY
	CLASS
	CODE
	FORMAT
	FREQ
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	SCORE
	WEIGHT

	ICLIFETEST procedure
	PROC ICLIFETEST
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	STRATA
	TEST
	TIME
	WHERE

	KDE procedure
	PROC KDE
	ATTRIB
	BIVAR
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	UNIVAR
	WEIGHT
	WHERE

	LIFEREG procedure
	PROC LIFEREG
	ATTRIB
	BY
	CLASS
	CODE
	ESTIMATE
	FORMAT
	INFORMAT
	INSET
	LABEL
	MODEL
	OUTPUT
	PPLOT
	WEIGHT
	WHERE

	LIFETEST procedure
	PROC LIFETEST
	ATTRIB
	BY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	STRATA
	TEST
	TIME
	WHERE

	LOESS procedure
	PROC LOESS
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	SCORE
	WEIGHT
	WHERE

	LOGISTIC procedure
	PROC LOGISTIC
	ATTRIB
	BY
	CLASS
	CODE
	CONTRAST
	ESTIMATE
	FORMAT
	INFORMAT
	LABEL
	MODEL
	FREQ
	OUTPUT
	ROC
	ROCCONTRAST
	SCORE
	TEST
	WEIGHT
	WHERE

	MDS procedure
	PROC MDS
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	INVAR
	LABEL
	MATRIX
	VAR
	WEIGHT
	WHERE

	MI procedure
	PROC MI
	ATTRIB
	BY
	CLASS
	EM
	FCS
	FORMAT
	FREQ
	INFORMAT
	LABEL
	MCMC
	MONOTONE
	TRANSFORM
	VAR
	WHERE

	MIANALYZE procedure
	PROC MIANALYZE
	ATTRIB
	BY
	CLASS
	FORMAT
	INFORMAT
	LABEL
	MODELEFFECTS
	STDERR
	TEST
	WHERE

	MIXED procedure
	PROC MIXED
	ATTRIB
	BY
	CLASS
	CODE
	CONTRAST
	ESTIMATE
	FORMAT
	ID
	INFORMAT
	LABEL
	LSMEANS
	MODEL
	RANDOM
	REPEATED
	WEIGHT
	WHERE

	MODECLUS procedure
	PROC MODECLUS
	ATTRIB
	BY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	VAR
	WHERE

	NESTED procedure
	PROC NESTED
	ATTRIB
	BY
	CLASS
	FORMAT
	INFORMAT
	LABEL
	VAR
	WHERE

	NLIN procedure
	PROC NLIN
	ATTRIB
	BOUNDS
	BY
	CONTROL
	DER
	FORMAT
	ID
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	PARAMETERS
	RETAIN
	VAR
	WEIGHT
	WHERE

	NPAR1WAY procedure
	PROC NPAR1WAY
	ATTRIB
	BY
	CLASS
	EXACT
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	OUTPUT
	VAR
	WHERE

	PHREG procedure
	PROC PHREG
	ATTRIB
	BASELINE
	BY
	CLASS
	ESTIMATE
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	STRATA
	TEST
	WEIGHT
	WHERE

	PLAN procedure
	PROC PLAN
	ATTRIB
	FACTORS
	FORMAT
	INFORMAT
	LABEL
	OUTPUT
	TREATMENTS
	WHERE

	PLS procedure
	PROC PLS
	ATTRIB
	BY
	CLASS
	FORMAT
	ID
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	WHERE

	POWER procedure
	PROC POWER
	ATTRIB
	FORMAT
	INFORMAT
	LABEL
	LOGISTIC
	MULTREG
	ONECORR
	ONESAMPLEFREQ
	ONESAMPLEMEANS
	ONEWAYANOVA
	PAIREDFREQ
	PAIREDMEANS
	PLOT
	TWOSAMPLEFREQ
	TWOSAMPLEMEANS
	TWOSAMPLESURVIVAL
	TWOSAMPLEWILCOXON
	WHERE

	PRINCOMP procedure
	PROC PRINCOMP
	ATTRIB
	BY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	PARTIAL
	VAR
	WEIGHT
	WHERE

	PROBIT procedure
	PROC PROBIT
	ATTRIB
	BY
	CLASS
	CODE
	ESTIMATE
	FORMAT
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	WEIGHT
	WHERE

	QUANTREG procedure
	PROC QUANTREG
	ATTRIB
	BY
	CLASS
	ESTIMATE
	FORMAT
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	TEST
	WEIGHT
	WHERE

	REG procedure
	PROC REG
	ADD
	ATTRIB
	BY
	CODE
	DELETE
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	MODEL
	MTEST
	OUTPUT
	PRINT
	REFIT
	REWEIGHT
	TEST
	VAR
	WEIGHT
	WHERE

	ROBUSTREG procedure
	PROC ROBUSTREG
	ATTRIB
	BY
	CLASS
	FORMAT
	MODEL
	ID
	INFORMAT
	LABEL
	OUTPUT
	TEST
	WEIGHT
	WHERE

	RSREG procedure
	PROC RSREG
	ATTRIB
	BY
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	MODEL
	RIDGE
	WEIGHT
	WHERE

	SCORE procedure
	PROC SCORE
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	LABEL
	VAR
	WHERE

	SIMNORMAL procedure
	PROC SIMNORMAL
	ATTRIB
	BY
	CONDITION
	FORMAT
	INFORMAT
	LABEL
	VAR
	WHERE

	STDIZE procedure
	PROC STDIZE
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	LOCATION
	SCALE
	VAR
	WEIGHT
	WHERE

	STEPDISC procedure
	PROC STEPDISC
	ATTRIB
	BY
	CLASS
	FORMAT
	FREQ
	INFORMAT
	LABEL
	VAR
	WEIGHT
	WHERE

	SURVEYSELECT procedure
	PROC SURVEYSELECT
	ATTRIB
	CONTROL
	FORMAT
	FREQ
	ID
	INFORMAT
	LABEL
	SIZE
	STRATA
	WHERE

	TPSPLINE procedure
	PROC TPSPLINE
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	FREQ
	LABEL
	MODEL
	OUTPUT
	SCORE
	WHERE

	TRANSREG procedure
	PROC TRANSREG
	ATTRIB
	BY
	ID
	FORMAT
	FREQ
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	WEIGHT
	WHERE

	TREE procedure
	PROC TREE
	ATTRIB
	BY
	COPY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	HEIGHT
	ID
	NAME
	PARENT
	WHERE

	TTEST procedure
	PROC TTEST
	ATTRIB
	BY
	CLASS
	FORMAT
	FREQ
	INFORMAT
	LABEL
	PAIRED
	VAR
	WEIGHT
	WHERE

	VARCLUS procedure
	PROC VARCLUS
	ATTRIB
	BY
	FORMAT
	FREQ
	INFORMAT
	LABEL
	PARTIAL
	SEED
	VAR
	WEIGHT
	WHERE

	VARCOMP procedure
	PROC VARCOMP
	ATTRIB
	BY
	CLASS
	FORMAT
	INFORMAT
	LABEL
	MODEL
	WHERE

	WPS Machine Learning
	DECISIONFOREST procedure
	About decision forests
	Using the DECISIONFOREST procedure
	DECISIONFOREST procedure reference
	PROC DECISIONFOREST
	FREQ
	INPUT
	OUTPUT
	SCORE
	TARGET
	WEIGHT
	WHERE

	DECISIONTREE procedure
	About decision trees
	Predictive power criteria
	Using the DECISIONTREE procedure
	DECISIONTREE procedure reference
	PROC DECISIONTREE
	CODE
	FREQ
	INPUT
	TARGET
	WHERE

	GMM procedure
	About Gaussian mixture models
	Mixture models
	Gaussian mixture models
	Posterior probabilities
	Maximum likelihood and expectation maximisation
	Model selection
	Using the GMM procedure
	GMM procedure reference
	PROC GMM
	BY
	CODE
	SCORE
	VAR

	GMM bibliography

	MLP procedure
	About multilayer perceptrons
	Specifying network structure
	Preprocessing data
	Training a network
	Loading and saving a trained network
	Results and generated output
	Using the MLP procedure
	MLP procedure reference
	PROC MLP
	CLASS
	CODE
	MODEL
	OUTPUT

	OPTIMALBIN procedure
	About optimal binning
	Predictive power criteria
	Using the OPTIMALBIN procedure
	OPTIMALBIN procedure reference
	PROC OPTIMALBIN
	BY
	FREQ
	INPUT
	TARGET
	WHERE

	SEGMENT procedure
	About segmentation
	Segmentation calculations
	Difference functions
	Weighting factor
	ODS Outputs
	Scoring datasets
	Saving and reusing segmentation models
	Using the SEGMENT procedure
	SEGMENT procedure reference
	PROC SEGMENT
	BY
	FREQ
	INPUT
	OUTPUT
	SCORE
	SELECT
	WHERE

	SEGMENT bibliography

	SVM procedure
	About support vector machines
	SVM classification
	Binary classification models
	Multi-class classification models
	Single class modelling
	Optimisation
	Probability estimation

	SVM Regression
	Data standardisation
	Encoding categorical variables
	Weighting and standardisation
	Using the SVM procedure
	SVM procedure reference
	PROC SVM
	BY
	CLASS
	FREQ
	ID
	KERNELINNER
	KERNELOUTER
	MODEL
	OUTPUT
	SCORE
	WEIGHT

	SVM bibliography

	WPS Operational Research
	Operational research procedures
	LP procedure
	PROC LP
	ATTRIB
	COEF
	COL
	FORMAT
	INFORMAT
	LABEL
	RANGE
	RHSSEN
	ROW
	TYPE
	VAR
	WHERE

	WPS Quality Control
	Quality control procedures
	CAPABILITY Procedure
	PROC CAPABILITY
	ATTRIB
	BY
	CDFPLOT
	CLASS
	COMPHISTOGRAM
	FORMAT
	FREQ
	HISTOGRAM
	ID
	INFORMAT
	LABEL
	OUTPUT
	PPPLOT
	PROBPLOT
	QQPLOT
	SPEC
	VAR
	WEIGHT
	WHERE

	WPS Timeseries
	Timeseries procedures
	ARIMA procedure
	PROC ARIMA
	ATTRIB
	BY
	FORMAT
	IDENTIFY
	INFORMAT
	ESTIMATE
	FORECAST
	LABEL
	WHERE

	AUTOREG procedure
	PROC AUTOREG
	ATTRIB
	BY
	FORMAT
	INFORMAT
	LABEL
	MODEL
	OUTPUT
	WHERE

	EXPAND procedure
	PROC EXPAND
	ATTRIB
	BY
	CONVERT
	FORMAT
	ID
	INFORMAT
	LABEL
	WHERE
	Common options
	Option METHOD
	Option OBSERVED

	FORECAST procedure
	PROC FORECAST
	ATTRIB
	BY
	FORMAT
	ID
	INFORMAT
	LABEL
	VAR
	WHERE

	LOAN procedure
	PROC LOAN
	ARM
	ATTRIB
	BALLOON
	BUYDOWN
	COMPARE
	FIXED
	FORMAT
	INFORMAT
	LABEL
	WHERE

	X12 procedure
	PROC X12
	ADJUST
	ARIMA
	ATTRIB
	BY
	ESTIMATE
	FORECAST
	FORMAT
	ID
	IDENTIFY
	INFORMAT
	LABEL
	OUTPUT
	REGRESSION
	TABLES
	TRANSFORM
	VAR
	WHERE
	X11

	WPS Communicate
	Global statements
	ENDRSUBMIT
	RSUBMIT
	SIGNOFF
	SIGNON
	WAITFOR

	Macro processor statements
	%SYSLPUT
	%SYSRPUT

	WPS Communicate procedures
	DOWNLOAD Procedure
	PROC DOWNLOAD
	EXCLUDE
	SELECT
	WHERE

	UPLOAD Procedure
	PROC UPLOAD
	EXCLUDE
	SELECT
	WHERE

	Data Engines
	WPS Engine for Access
	ACCESS

	WPS Engine for Actian Matrix
	ACTIANMATRIX

	WPS Engine for DB2
	DB2
	DB2 Dataset Options

	DB2OLD
	DB2 (for z/OS)
	DB2 Dataset Options

	DB2OLD (for z/OS)
	DB2EXT Procedure
	PROC DB2EXT
	FMT
	RENAME
	SELECT
	EXIT

	WPS Engine for Excel
	EXCEL
	XLSX
	XLSX Dataset Options

	WPS Engine for Greenplum
	GREENPLUM

	WPS Engine for Hadoop
	HADOOP

	WPS Engine for Informix
	INFORMIX

	WPS Engine for Kognito
	KOGNITIO

	WPS Engine for MariaDB
	MARIADB

	WPS Engine for MySQL
	MYSQL

	WPS Engine for Netezza
	NETEZZA
	NETEZZA Dataset Options

	NETEZZAOLD

	WPS Engine for ODBC
	ODBC
	ODBC Dataset Options

	ODBCOLD
	ODBCOLD Dataset Options

	WPS Engine for OLEDB
	OLEDB

	WPS Engine for Oracle
	Data Types in Oracle
	How to use the Oracle engine
	ORACLE connection reference
	ORACLE
	ORACLE Dataset Options
	ORACLEOLD
	ORACLEOLD Dataset Options

	WPS Engine for PostgreSQL
	POSTGRESQL

	WPS Engine for Sand
	SAND

	WPS Engine for SQL Server
	SQLSERVER
	SQLSERVER Dataset Options

	SQLSERVEROLD
	SQLSERVEROLD Dataset Options

	WPS Engine for Sybase
	SYBASE
	SYBASE Dataset Options

	WPS Engine for Sybase IQ
	SYBASEIQ
	SYBASEIQ Dataset Options

	WPS Engine for Teradata
	TERADATA

	WPS Engine for Vertica
	VERTICA

	Legal Notices

